WO2006088155A1 - 誘電体多層周期構造体 - Google Patents

誘電体多層周期構造体 Download PDF

Info

Publication number
WO2006088155A1
WO2006088155A1 PCT/JP2006/302875 JP2006302875W WO2006088155A1 WO 2006088155 A1 WO2006088155 A1 WO 2006088155A1 JP 2006302875 W JP2006302875 W JP 2006302875W WO 2006088155 A1 WO2006088155 A1 WO 2006088155A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric
refractive index
layer
periodic structure
optical path
Prior art date
Application number
PCT/JP2006/302875
Other languages
English (en)
French (fr)
Inventor
Naoki Matsumoto
Takuji Nakagawa
Akira Ando
Yukio Sakabe
Yoshinari Miyamoto
Soshu Kirihara
Original Assignee
Murata Manufacturing Co., Ltd.
Osaka University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co., Ltd., Osaka University filed Critical Murata Manufacturing Co., Ltd.
Priority to JP2007503757A priority Critical patent/JPWO2006088155A1/ja
Publication of WO2006088155A1 publication Critical patent/WO2006088155A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/2005Electromagnetic photonic bandgaps [EPB], or photonic bandgaps [PBG]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/006Selective devices having photonic band gap materials or materials of which the material properties are frequency dependent, e.g. perforated substrates, high-impedance surfaces

Definitions

  • the present invention relates to a dielectric multilayer periodic structure in which a plurality of dielectrics are periodically stacked.
  • An electromagnetic wave region to be used is in a 50 GHz to 3 THz millimeter wave and terahertz band. The frequency band.
  • a so-called one-dimensional photonic crystal structure filter in which a plurality of types of dielectric layers having different refractive indexes (dielectric constants) are stacked has been proposed as a conventional dielectric multilayer periodic structure type filter (patent) Reference 1 and Patent Reference 2).
  • the dielectric multilayer substrate of Patent Document 1 forms a multilayer periodic structure by laminating a plurality of basic gratings in which a pair of dielectric substrates having different refractive indexes are laminated, and each optical path length (refractive index). And the thickness of the dielectric layer) are fixed at 1Z4 wavelength (see paragraphs [0026], [0027] and [0092] of Patent Document 1).
  • FIG. (A) in Fig. 1 shows the relationship between the incident wave and the reflected wave on the basic grating.
  • the basic grating 3 is composed of a laminate of a high refractive index dielectric layer 1 and a low refractive index dielectric layer 2, and the refractive index of the high refractive index dielectric layer 1 is n and the low refractive index is low.
  • the thicknesses of the high-refractive index dielectric layer 1 and the low-refractive index dielectric layer 2 have a specific wavelength.
  • the optical path length of the incident wave of ⁇ is determined to be 1Z4 wavelength ( ⁇ / 4) or an odd multiple thereof.
  • the basic lattice 3 is laminated as shown in FIG.
  • Light (electromagnetic waves) incident on this laminate is reflected at the interface of each dielectric layer, but light traveling from the low refractive index dielectric layer 2a to the high refractive index dielectric layer la is phase-inverted at the interface pa. Reflect. Further, light traveling from the high refractive index dielectric layer la toward the low refractive index dielectric layer 2b is reflected at the interface qa in the same phase.
  • the reflected wave at the interface qa between the high refractive index dielectric layer la and the low refractive index dielectric layer 2b and the interface pb between the low refractive index dielectric layer 2b and the high refractive index dielectric layer lb The same applies to the synthesis with the reflected wave. That is, light traveling from the high refractive index dielectric layer la to the low refractive index dielectric layer 2b is reflected in phase at the interface qa, and light traveling from the low refractive index dielectric layer 2b to the high refractive index dielectric layer lb The phase is inverted at the interface pb and reflected.
  • the two reflected waves are synthesized in the same phase. In this way, the electromagnetic wave having the wavelength ⁇ is reflected, and this laminate acts as a reflecting mirror.
  • FIG. 2 shows the electromagnetic wave transmission characteristics of the dielectric multilayer substrate shown in FIG. 1 ( ⁇ ) or ( ⁇ ).
  • the stop band where the transmittance is greatly attenuated is called the photonic band gap (PBG), and there is a band where the transmittance is attenuated periodically.
  • PBG photonic band gap
  • Patent Document 2 shows an example in which the function of the narrow band pass filter is obtained by applying the two principles to the periodic structure of the dielectric multilayer film.
  • a high refractive index with a thickness of optical path length ⁇ 4 an optical thin film ⁇ , and a refractive index with a thickness of optical path length ⁇ 4.
  • Low optical thin film L is a basic optical thin film, and these optical thin films are stacked one by one as a unit reflector layer (hereinafter referred to as ⁇ ⁇ 4 basic lattice), and unit reflector layers are stacked several times. This is the reflector layer (hereinafter referred to as the ⁇ ⁇ 4 basic lattice layer).
  • a unit cavity layer is formed by sandwiching a spacer layer (hereinafter referred to as a ⁇ ⁇ 2 defect layer) with an optical path length of ⁇ ⁇ 2 between the reflector layers, and the unit cavity layer is passed through the connecting layer several times.
  • Multiple thin film optical filters are constructed by multilayering.
  • the structure of the unit cavity layer is expressed as ( ⁇ ⁇ 4 basic lattice layer) * ( ⁇ ⁇ 2 defect layer) * ( ⁇ ⁇ 4 basic lattice layer).
  • the basic configuration of a narrow bandpass filter as found in the same document is shown in Fig. 3 (ii).
  • the defect layer 4 is inserted into a part of the basic lattice 3 composed of the high-refractive index dielectric layer 1 and the low-refractive index dielectric layer 2 laminated a plurality of times, the photonic bandgap is originally supposed to be inserted.
  • Even in a region where electromagnetic waves are not transmitted through the optical path it is possible to obtain a narrow band pass mode in which only electromagnetic waves of a specific wavelength are transmitted. This is because the periodicity of the photonic crystal collapses due to the insertion of the defect layer, and an electromagnetic resonance phenomenon (generally called localization) occurs.
  • the basic grating layer is configured with an optical path length period that is an odd multiple of ⁇ ⁇ 4
  • the optical path length of the defect layer is designed to be an integral multiple of ⁇ ⁇ 2 with respect to the wavelength ⁇ ⁇ of the specific electromagnetic wave Since the phase of the reflected wave at the boundary between this defect layer and the adjacent basic lattice layer is exactly the same as the phase of the incident wave, the electromagnetic wave having the wavelength ⁇ is strongly localized.
  • Fig. 3 ( ⁇ ) when the basic lattice layer is composed of ⁇ 4 periods and the defect layer is composed of ⁇ 2, the electric field amplitude intensity when the electromagnetic wave of wavelength ⁇ ⁇ is localized is measured by simulation. The calculated result is shown.
  • the vertical axis in the figure shows the electric field energy amplitude intensity
  • the horizontal axis is expressed in coordinates that are standardized by x and a, where X is the position in the film thickness direction of the multilayer film, and a is the film thickness of 1 unit basic lattice. ing.
  • the electromagnetic wave is localized in the ⁇ ⁇ 2 defect layer 4 as a resonance region.
  • FIG. 4 shows the transmission characteristics of the dielectric multilayer periodic structure type filter shown in FIG.
  • the horizontal axis is the standard frequency and the vertical axis is the transmittance.
  • the transmittance increases at the center of the stop band (photonic band gap) shown in FIG. 2 on the frequency axis.
  • a multilayer periodic structure in which a defect layer is inserted at a position sandwiched between basic lattices can be used as a narrow-band pass filter, and particularly shown above ( ⁇ ⁇ 4 basic lattice layer) * ( ⁇ ⁇ 2 defect layer) * ( ⁇ ⁇ 4 basic lattice layer)
  • the conventional multilayer periodic structure filter is widely applied to optical filters in general.
  • Patent Document 1 Japanese Patent Laid-Open No. 10-290109
  • Patent Document 2 Japanese Patent Laid-Open No. 2002-350633
  • the dielectric loss of a dielectric generally occurs when a change in polarization cannot follow an alternating electric field.
  • Most of the conventional technologies handle the visible to infrared light region with an operating frequency on the order of 10 14 Hz, and in such a frequency band, the main component is electronic polarization with high response characteristics to an alternating electric field. There is little tracking delay and the dielectric loss component is small. Therefore, as disclosed in Patent Document 2, a configuration in which the number of stacked layers is several tens of layers is common.
  • the main component is ion polarization, which is less followable to the AC electric field than the electronic polarization. Becomes very large.
  • the refractive index ratio is high, the reflectance at the interface between the dielectric layers increases, so that a sufficient photonic band gap can be obtained with a small number of layers, and the width of the stop band can be increased.
  • a high refractive index material to increase the refractive index ratio, there is an advantage that the element thickness can be further reduced due to the wavelength shortening effect.
  • This cause is related to the following mechanism.
  • the resonance region of the electromagnetic wave is only in the defect layer as described above, and wave localization occurs only in this layer.
  • Localized electromagnetic waves are strongly confined in the defect layer because the ⁇ 4 basic lattice layers at both ends of the defect layer act as reflectors, and are reflected multiple times between them. If there is a dielectric loss in the dielectric material of the defective layer, the localized electromagnetic energy gradually attenuates during the multiple reflection process, so the extraction efficiency to the outside is significantly degraded. As a result, the transmission intensity in the narrow band pass mode is very small.
  • the loss is very large compared to the value in the visible light frequency band where the loss can be ignored.
  • Patent Document 1 a layer in which the optical path length is shifted from ⁇ ⁇ 2 by a predetermined third value (X) is inserted in claims 6, 7, 19, and 20 to thereby provide bandpass. It is stated that the function of the filter is obtained.
  • This shows only a configuration method in which two layers of ⁇ ⁇ 2 ⁇ ⁇ are inserted, There is no mention of any examples and their characteristics, and the electromagnetic waves in the millimeter wave band to the terahertz band described above are not mentioned. It does not solve the problem of intensity attenuation of the narrow-band passband in the wave region.
  • Patent Document 2 shows a method of constructing a filter according to desired transmission characteristics and reflection characteristics by a full-bit polynomial on the basis of the conventional multilayer periodic structure filter. As described in [0021], this relates to the design of a filter with low linear distortion in the passband, and nothing is mentioned about improving the transmission intensity of the transmission signal. Since it becomes several tens of layers, it does not solve the problem of intensity attenuation of the narrow-band passband in the electromagnetic wave region from the millimeter wave band to the terahertz band.
  • an object of the present invention is to improve the transmission intensity of the narrow-band pass mode by changing the configuration method of the photonic crystal.
  • the present invention is configured as follows in order to solve the above-described problems.
  • a dielectric multi-layered periodic structure comprising a plurality of basic lattices in which two types of dielectric layers having different refractive indexes are laminated, and of the two types of dielectric layers, a dielectric layer having a high refractive index L / L> 1 where L is the optical path length of the dielectric layer and L is the optical path length of the low refractive index dielectric layer.
  • the refractive index ratio between the two types of dielectric layers is such that the refractive index ratio between the high refractive index dielectric layer and the low refractive index is 2 or more. .
  • optical path length of the defective layer is made smaller than 1Z2 which is the center wavelength of the narrow band pass band.
  • the optical path length of the defect layer is made smaller than the optical path length of a dielectric layer made of the same dielectric material as the defect layer among the dielectric layers constituting the basic lattice.
  • the narrow band pass mode by the dielectric multilayer periodic structure has a frequency of 50 GHz to 3 T.
  • the dielectric multilayer periodic structure includes a plurality of dielectric ceramic groups having different refractive indexes. It is assumed that a laminate in which lean sheets are laminated in a predetermined order so as to form a periodic structure is co-fired.
  • the band gap in the photonic crystal is not limited to the length of 1Z4 with respect to the wavelength ⁇ ⁇ of the incident electromagnetic wave, as described in the prior art.
  • the present invention By adopting a staggered configuration, electromagnetic waves localized inside the defect layer are not subjected to multiple reflections inside the defect layer, and are easily extracted outside.
  • the phase matching condition of the wave reflected in the basic grating layer is difficult to be satisfied unlike the case of the ⁇ 4 basic grating. Therefore, the electromagnetic waves localized around the defect layer can be easily extracted outside without being multiple-reflected by the basic lattice layers at both ends. As a result, the transmittance in the narrow band pass mode can be improved.
  • the element thickness can be reduced by the wavelength shortening effect.
  • the average refractive index is expressed by ⁇ , the relationship between the wavelength ⁇ of the electromagnetic wave propagating in the dielectric and the thickness d of the dielectric layer a
  • Refraction of a dielectric layer having a high refractive index (hereinafter referred to as “high refractive index dielectric layer”) and an dielectric layer having a low refractive index (hereinafter referred to as “low refractive index dielectric layer”).
  • high refractive index dielectric layer an dielectric layer having a low refractive index
  • low refractive index dielectric layer By setting the ratio to 2 or more, a sufficient band gap width and blocking gain can be obtained even with a small number of layers of about 10 layers.
  • the optical path length of the defective layer smaller than 1Z2 which is the center wavelength of the narrow band pass band, the thickness of the defective layer can be reduced and the element thickness can be reduced.
  • the localized region of the electromagnetic wave is made to be the defect layer. It spreads to other layers adjacent to and improves the efficiency of taking out to the outside.
  • the resonance mode of electromagnetic waves across multiple layers is used.
  • the element thickness can be reduced and the transmittance can be improved.
  • the device manufacturing process can be simplified and the device can be miniaturized.
  • FIG. 1 is a diagram showing a configuration of a dielectric multilayer substrate of Patent Document 1.
  • FIG. 2 is a diagram showing an example of a stop band of the same dielectric multilayer substrate.
  • FIG. 3 (A) is a diagram showing a basic configuration of a multilayer periodic structure in which a defect layer is inserted.
  • (B) is ( ⁇ ⁇ 4 basic lattice) * ( ⁇ ⁇ 2 defect layer) * ( ⁇ ⁇ 4 basic lattice) type multilayer periodic structure of electric field amplitude intensity at the center wavelength ⁇ ⁇ of narrowband transmission band It is a figure which shows distribution.
  • FIG. 4 is a diagram showing an example of electromagnetic wave transmission characteristics of the filter.
  • FIG. 6 (A) is a diagram showing a basic configuration of a multilayer periodic structure according to the first embodiment.
  • (B) is a diagram showing the distribution of the electric field amplitude intensity at the center wavelength ⁇ o of the narrow band transmission band in the same structure.
  • FIG. 6 is a diagram showing how the minimum transmittance (Tmin) of the stop band changes depending on the refractive index ratio of the optical axis.
  • Tmin minimum transmittance
  • B shows that the required element thickness varies with the refractive index of the low-refractive index material when the refractive index ratio is 2 and the center frequency at which the narrow-band pass mode is obtained is set to 150 GHz.
  • FIG. 10 is a diagram showing the relationship between the optical path length Lc of the defect layer and the center frequency of the narrow band pass mode.
  • FIG. 11 is a diagram showing the transmission characteristics of a dielectric multilayer periodic structure having defect layers with different optical path lengths.
  • FIG. 13 is a diagram showing a configuration of a dielectric multilayer periodic structure according to a second embodiment.
  • FIG. 14 is a diagram showing an example of transmittance characteristics of the dielectric multilayer periodic structure according to the second embodiment.
  • FIG. 15 is a diagram showing manufacturing steps of the dielectric multilayer periodic structure according to the third embodiment. Explanation of symbols
  • a dielectric multilayer periodic structure according to the first embodiment will be described with reference to FIGS.
  • FIG. 6A and 6B are diagrams showing a dielectric multilayer periodic structure according to the present embodiment.
  • FIG. 6A is a cross-sectional view of the periodic structure
  • FIG. 6B is a distribution of amplitude intensity of electric field energy when an electromagnetic wave is localized.
  • FIG. 6 is a diagram showing a cloth in the film thickness direction of the element.
  • a high refractive index dielectric layer 5 having a refractive index n and a film thickness d, a refractive index n,
  • HH and a low-refractive-index dielectric layer 6 with a film thickness of d are alternately stacked one by one, and the two layers are one unit.
  • the photonic band gap can be formed by providing two or more basic lattices 7.
  • the number of force layers having a nine-layer structure may be larger.
  • the defective layer 8 is formed by a dielectric layer having a different optical path length from the dielectric layers 5 and 6 constituting the basic grating 7, and the basic grating 7 is provided at both ends thereof. Due to the introduction of this defect layer, part of the periodicity formed by the basic lattice 7 is destroyed, and as a result, localization of the electromagnetic wave centering on the defect layer 8 occurs as shown in FIG. A narrow band pass mode appears in the photonic band gap.
  • FIG. 6 shows a configuration using a high refractive index material for the defect layer, a configuration using a low refractive index material may be used.
  • the refractive index ratio is not an essential condition.
  • Tmin The minimum transmittance (Tmin) within the photonic band gap strongly depends on the refractive index ratio. Specifically, Tmin in ( ⁇ ⁇ 4 basic lattice layer) * ( ⁇ ⁇ 2 defect layer) * ( ⁇ ⁇ 4 basic lattice layer) type multi-layer periodic filter is n, which means that the refractive index of a high-index dielectric is n If the refractive index of the refractive index dielectric is n and the number of stacked layers is N, then approximately
  • FIG. 7 ( ⁇ ) shows the result of calculating the value of Tmin with respect to the refractive index ratio based on this equation.
  • the millimeter wave force targeted by the present invention has a problem that the dielectric loss of the dielectric material is greatly affected in the terahertz electromagnetic wave band, and also for the purpose of downsizing the element. It is desirable to suppress the number of stacked layers as much as possible. Therefore, in order to obtain the blocking gain of 30 dB required for general filters and to suppress the number of laminated layers, it is necessary to make the refractive index ratio at least 2 or more. For example, when a multilayer periodic structure filter having a blocking gain of ⁇ 30 dB is configured according to the condition of the refractive index ratio 2, the number of stacked layers can be suppressed to about 13. However, if the refractive index ratio is too high, the ratio of the electromagnetic wave incident on the element being reflected without being transmitted increases, so that the refractive index ratio can be kept at a maximum of about 5 when used as a bandpass filter. Hope.
  • Figure 7 (B) shows a narrow band pass at 150 GHz when the refractive index ratio is fixed to 2 and the number of layers is fixed to 9 under the above conditions, and the refractive index of the low refractive index material is changed in the range of 1 to 5. It shows the element thickness required to obtain the mode.
  • the refractive index of the low refractive index material is low, the average refractive index of the entire system is also reduced, so that the wavelength shortening effect cannot be obtained and the element thickness is very thick. Therefore, it is desirable to use a dielectric material used for the low refractive index material having a refractive index of 2 or higher, which should be higher to some extent.
  • Examples of the material of the low refractive index dielectric layer include A10, 2MgO-SiO, SiO, MgO-Si
  • Ceramic materials such as O, MgAl O, ZrO, MgTiO, Ba (Mg, Ta) 0, Ba (Mn, Ta) 0
  • the minimum refractive index of the medium used for the low refractive index dielectric layer be 2 or more by using these materials.
  • Examples of the material for the high refractive index dielectric layer include TiO, CaTiO, and BaO-TiO series.
  • Ceramic materials such as CaTiO-Re (Mg Ti) 0 and CaTiO-Ca (Mg Nb) 0
  • a composite material that can be sintered at low temperature by adding, for example, crystallized glass or various elements serving as a sintering aid may be used as the above material.
  • the material is appropriately selected so that the refractive index ratio is 2 or more.
  • the examples of the low-refractive index dielectric material and the high-refractive index dielectric material are merely examples of the embodiment.
  • the refractive index ratio is 2 or more from the above-described high-refractive index dielectric material group. You can choose any combination of materials.
  • the material group listed here is an example of a desirable embodiment, and the kind power of the material used in the present invention is not limited to these.
  • the high refractive index material of the high refractive index dielectric layer 5 is made of TiO.
  • the refractive index ratio is about 3.
  • the film thicknesses of the two dielectric layers constituting the basic grating 7 are designed so that the ratio of the optical path lengths (L ZL) is larger than 1.
  • Figure 8 shows the case where the L / L value is 1.0 according to the prior art, and 3.3, 7.6.
  • the change in the maximum transmittance of the narrow band pass mode in the dielectric multilayer periodic structure is shown, and the downward triangle symbol in the figure indicates the narrow band pass mode.
  • FIG. 9 shows the value of the optical path length L + L of the unit basic grating in the first embodiment. Narrow
  • L (L + L) ⁇
  • the material used for the defect layer is not limited to the high refractive index material, and the low refractive index material can also be used. Further, a third medium different from the material constituting the basic lattice is used as the low refractive index material. It can also be selected from the group of materials given as examples of the dielectric constant dielectric layer and the high refractive index dielectric layer.
  • the element thickness of the laminate can be reduced as the value of L ZL increases.
  • the upper limit of the value is preferably limited to about 10.
  • the resonance region of the electromagnetic wave is not limited to the defect layer as described above. Therefore, in order to obtain a narrow-band pass mode at a desired frequency position, simply ⁇ ⁇ 2 as in the conventional case.
  • the film thickness of the defective layer cannot be determined by such an optical path length. In other words, it is necessary to design the film thickness considering the interference effect of the entire system. Therefore, in this embodiment, L / L
  • FIG. 10 shows that in the above-described embodiment, the value of L ZL is 3.3, and the defect layer optical path length Lc is changed.
  • the force that changes the relationship of the center frequency in the narrow-band pass mode is obtained by simulation.
  • the simulation results described in this specification are all calculated by solving the electric field and magnetic field components at each interface of the multilayer periodic structure based on the Maxwell equation.
  • the optical path length Lc of the defect layer when the narrow-band pass mode is obtained at 150 GHz is designed to be about 180 m based on the simulation result.
  • the optical path length Lc of this defect layer is made smaller than ⁇ 2 ( ⁇ ⁇ 2) of the center wavelength of the narrow-band passband to reduce the element thickness.
  • the optical path length Lc of the defect layer can be made smaller than ⁇ o 2. Furthermore, in this embodiment, as apparent from FIG. 9, the optical path length Lc of the defect layer can be made shorter than the optical path length L of the basic grating made of the same high refractive index material. In this way, the thickness of the defect layer can be reduced.
  • the optical path length Lc of the defect layer is ⁇ .
  • Figure 11 shows the L / L value of 3.3, the narrow-band pass mode center wavelength ⁇ ⁇ of 2 mm, and the optical path of the defect layer
  • FIG. 11 shows that the bandwidth of the narrow band pass mode can be controlled by the optical path length of the defect layer.
  • the bandwidth of the narrow-band pass mode is narrowed as the optical path length of the defect layer is increased.
  • the peak half-value width changes between 2. lGHz and 4.3GHz.
  • the optical path length of the defect layer is larger than ⁇ ⁇ 2
  • the bandwidth of the narrow band pass mode can be controlled without greatly reducing the transmittance.
  • the optical path length of the defect layer is larger than ⁇ 2
  • the advantage of reducing the element thickness cannot be obtained.
  • the maximum transmittance (Tmax) in the narrow-band pass mode and the minimum transmittance (Tmin) in the stopband are calculated by simulation (dots in the figure) and the values of the above experimental results ( Figure) The point of the middle fill).
  • the average refractive index of the entire system decreases in this case, so that the thickness of the element must be increased accordingly. It is. If the relationship between the wavelength of the electromagnetic wave propagating in the dielectric and the thickness d of the dielectric is the same wavelength ⁇ as described above, the larger the average refractive index value, the smaller the d value. This is due to the fact that it can be done. Almost the same transmission for L / L ⁇ 1 and L / L> 1
  • the thickness of the element is calculated under the conditions for obtaining strength (A and ⁇ 'in Fig. 12), the difference is approximately doubled. It is more advantageous to set L / L> 1 because a significant increase in the element thickness loses the merit of reducing the element thickness.
  • the resonance region of the electromagnetic wave is widened in the vicinity of the defect layer, so that the localized region is not limited to the defect layer. It is possible to reduce the rate at which electromagnetic waves are multiple-reflected and lost by the basic lattice layer.
  • a narrow band pass filter that can selectively transmit an electromagnetic wave of a desired frequency with a configuration of a dielectric multilayer periodic structure with a small number of layers and a thin element thickness.
  • the transmission strength can be improved.
  • the optical path length is changed by changing the thickness of the defect layer.
  • the means for changing the optical path length is not limited to the thickness, but by changing the refractive index. Needless to say, the optical path length can be changed.
  • FIG. 13 is a basic structural diagram of a dielectric multilayer periodic structure according to the second embodiment.
  • the second embodiment is a high refractive index dielectric having a refractive index n and a film thickness d.
  • Layers 9 and low refractive index dielectric layers 10 with refractive index n and film thickness d are alternately stacked one by one.
  • FIG. 13 is similar to FIG. 6A shown in the first embodiment in that the defect layer 12 having a thin optical path length with respect to the optical path length of the basic grating is formed of the multilayer periodic structure 101. It is inserted in the center, thereby obtaining the function of a narrow band pass filter.
  • the end face layer having a small effect on the development of the photonic band gap is intentionally removed, so that the total number of layers can be suppressed and the transmittance can be improved. As a result, it has the same stopband as in the first embodiment and is strong.
  • a narrow band pass mode with V and transmittance can be obtained.
  • High refractive index dielectric layer 9 is TiO
  • low refractive index dielectric layer 10 is Al 2 O
  • defect layer 12 is
  • a low refractive index material is used for the defect layer 12
  • a high refractive index material is used for the defect layer as in the example shown in the first embodiment.
  • the optical path length of the defect layer 12 can be made shorter than the optical path length of one layer constituting the basic grating made of the same dielectric material, and in the case of this embodiment using a low refractive index material for the defect layer.
  • the optical path length Lc of the defect layer is the same from AlO.
  • FIG. 15 shows the manufacturing process
  • 3rd dielectric that is different from the basic grating with alternating green sheets 6 'and the high refractive index dielectric material, low refractive index dielectric material that should be the defect layer, or the material that constitutes the basic grating A ceramic green sheet 8 ′ as a material is placed between the basic lattices, laminated, and pressed, and a laminated body 10 () of ceramic green sheets is formed as shown in FIG.
  • the optical path lengths of the high refractive index dielectric layer, the low refractive index dielectric layer, and the defect layer are set to a predetermined dimension. Adjust the thickness of ceramic green sheets 5 ', 6' and 8 'so that
  • FIGS. 15 (B) to 15 (D) the force of the nine-layer structure of the first embodiment In the case of the second embodiment, it is needless to say that seven layers are used!

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Optical Filters (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

 高屈折率誘電体層の光路長をLH、低屈折率誘電体層の光路長をLLで表した時、LH/LL>1となる関係とし、この高屈折率誘電体層と低屈折率誘電体層の積層体で基本格子を構成し、上記2種類の誘電体層とは異なる光路長を有する誘電体層を欠陥層として基本格子同士で挟まれる位置に設ける。

Description

明 細 書
誘電体多層周期構造体
技術分野
[0001] この発明は、複数の誘電体を周期的に積層させた誘電体多層周期構造体に関す るものであり、使用の対象とする電磁波領域を 50GHz〜3THzのミリ波ならびにテラ ヘルツ帯の周波帯域とするものである。
背景技術
[0002] 従来の誘電体多層周期構造型フィルタとして、屈折率 (誘電率)の異なった複数種 の誘電体層を積層してなる所謂 1次元フォトニック結晶構造のフィルタが提案されて いる (特許文献 1,特許文献 2参照)。
[0003] 特許文献 1の誘電体多層基板は、一対の屈折率の異なる誘電体基板同士を積層 させた基本格子を複数積層することによって多層周期構造体を構成し、それぞれの 光路長 (屈折率と誘電体層の厚さとの積)を 1Z4波長に固定している (特許文献 1の 段落 [0026] , [0027] , [0092]参照)。
[0004] ここで特許文献 1の基本格子の構造を図 1に示す。図 1の (A)は基本格子に対する 入射波と反射波の関係を示している。ここで、基本格子 3は高屈折率誘電体層 1と低 屈折率誘電体層 2の積層体からなり、高屈折率誘電体層 1の屈折率を n、低屈折率
H
誘電体層の屈折率を n、基本格子 3以外の媒質の屈折率を nとすると、 η <η , n
L O O L H
>nの関係にある。高屈折率誘電体層 1と低屈折率誘電体層 2の層厚は、特定波長 し
λ οの入射波の光路長が 1Z4波長( λ ο/4)またはその奇数倍となるように定める。 このような構造であれば、各誘電体層の界面で反射した波の位相が一致するため、 この特定の波長 λ οにおいて反射率が最大となる。
[0005] 上記基本格子を多層化する場合、図 1の(Β)に示すように、基本格子 3を積層する ことになる。この積層体に入射した光 (電磁波)は、各誘電体層の界面で反射するが 、低屈折率誘電体層 2aから高屈折率誘電体層 laへ進む光は、その界面 paで位相 反転して反射する。また、高屈折率誘電体層 laから低屈折率誘電体層 2b方向へ進 む光は、その界面 qaで同位相で反射する。高屈折率誘電体層 laの層厚 dlの光路 長が λ οΖ4であれば、界面 paで上記 2つの反射波が同位相で合成される。このこと は、高屈折率誘電体層 laと低屈折率誘電体層 2bとの界面 qaでの反射波と、低屈折 率誘電体層 2bと高屈折率誘電体層 lbとの界面 pbでの反射波との合成についても 同様である。すなわち、高屈折率誘電体層 laから低屈折率誘電体層 2bへ進む光は 、その界面 qaで同相で反射し、低屈折率誘電体層 2bから高屈折率誘電体層 lbへ 進む光は、その界面 pbで位相反転して反射する。低屈折率誘電体層 2bの層厚 d2 の光路長が λ οΖ4であれば、上記 2つの反射波が同位相で合成される。このように して波長 λ οの電磁波は反射され、この積層体は反射鏡として作用する。
[0006] 図 2は、図 1の (Α)または (Β)に示した誘電体多層基板の電磁波透過特性を示して いる。ここで横軸に電磁波の周波数を cZa (c =光速、 a =基本格子膜厚)で除した 規格化周波数、縦軸に透過率をとつている。このように入射波の波長を変化させたと き、透過率が大きく減衰する阻止帯域をフォトニックバンドギャップ (PBG)と呼び、周 期的に透過率が減衰する帯域が生じる。
[0007] また、誘電体基板の光路長が、入射する電磁波の 1Z2波長の整数倍であるときは 、反射波の位相が打ち消し合うため透過率が最大になる(特許文献 1の段落 [0033] , [段落 0034]参照)。
[0008] 特許文献 2では、この 2つの原理を応用し、誘電体多層膜の周期構造によって狭帯 域通過フィルタの機能を得る一例につ 、て示したものである。その段落 [0024]〜 [0 028]および [0129]にお 、て、光路長 λ οΖ4の厚みを持った屈折率の高 、光学薄 膜 Ηと、光路長 λ οΖ4の厚みを持った屈折率の低い光学薄膜 Lを基本的な光学薄 膜とし、これら光学薄膜を 1層ずつ重ねた 2層を単位反射鏡層(以下 λ οΖ4基本格 子と呼ぶ)とし、単位反射鏡層を複数回重ねたものを反射鏡層(以下 λ οΖ4基本格 子層と呼ぶ)としている。そして、反射鏡層間に光路長が λ οΖ2となるスぺーサ層( 以下 λ οΖ2欠陥層と呼ぶ)を挟んで構成したものを単位キヤビティ層とし、単位キヤ ビティ層を連絡層を介して複数回多層化することにより多重薄膜光学フィルタを構成 している。なお、本明細書ではこの単位キヤビティ層の構造を(λ οΖ4基本格子層) * ( λ οΖ2欠陥層) * ( λ οΖ4基本格子層)と表記する。
[0009] ここで、同文献にみられるような狭帯域通過フィルタの基本構成を図 3 (Α)に示す。 このように、高屈折率誘電体層 1と低屈折率誘電体層 2から成る基本格子 3を複数回 積層させたものの一部に、欠陥層 4を挿入すると、本来ならばフォトニックバンドギヤッ プ中で電磁波が透過しな 、領域であっても、特定の波長の電磁波だけが透過する 狭帯域通過モードを得ることができる。これは、欠陥層の挿入によってフォトニック結 晶の周期性が崩れ、電磁波の共振現象 (一般的には局在化という)が生じることに因 る。特に、基本格子層を λ οΖ4の奇数倍になるような光路長周期で構成し、欠陥層 の光路長を特定の電磁波の波長 λ οに対して λ οΖ2の整数倍となるように設計する と、この欠陥層と、その隣の基本格子層との境界における反射波の位相がちょうど入 射波の位相と一致するため、波長 λ οの電磁波につ 、て強 、局在化が起きる。
[0010] 図 3 (Β)に、基本格子層をえ οΖ4周期、欠陥層をえ οΖ2で構成したときに、波長 λ οの電磁波が局在化するときの電界振幅強度の様子をシミュレーションによって計 算した結果を示す。同図縦軸は電界エネルギー振幅強度を示し、横軸は、多層膜の 膜厚方向の位置を Xとし、 1単位基本格子の膜厚を aとして、 x,aで規格ィ匕した座標 で表している。同図から明らかなように、電磁波は λ οΖ2欠陥層 4内を共振領域とし て局在化する。
[0011] また、図 3 (Β)に示す誘電体多層周期構造型フィルタの透過特性を図 4に示す。こ こで、横軸は規格ィ匕周波数であり、縦軸は透過率である。このように、ちょうど図 2に 示した阻止帯域 (フォトニックバンドギャップ)の周波数軸上での中央に、透過率が高 くなる狭帯域通過モードが生じる。
[0012] 以上に示すように、基本格子で挟まれる位置に欠陥層を挿入した多層周期構造体 は狭帯域通過フィルタとして利用することができ、特に上記で示した( λ οΖ4基本格 子層) * ( λ οΖ2欠陥層) * ( λ οΖ4基本格子層)の従来型の多層周期構造フィル タは、光学フィルタ一般に広く応用されている。
特許文献 1:特開平 10— 290109号公報
特許文献 2:特開 2002— 350633公報
発明の開示
発明が解決しょうとする課題
[0013] ところが前記基礎概念に基づ ヽて作製される ( λ οΖ4基本格子層) * ( λ οΖ2欠 陥層) * ( λ οΖ4基本格子層)の従来型の多層周期構造フィルタを、ミリ波帯〜テラ ヘルツ帯(50GHzから 3ΤΗζ)の電磁波領域で機能させようとすると、次に述べるよう な問題が生じる。
[0014] 上記周波数帯で最も問題になるのは、材料の誘電損失により電磁波の透過帯、特 に前記狭帯域通過帯の透過強度が大きく減衰してしまうことである。
[0015] 誘電体の誘電損失は、一般的に交流電場に対して分極の変化が追従できない場 合に発生する。従来技術では、動作周波数が 1014Hz台の可視光〜赤外光領域を 扱うものがほとんどであり、このような周波数帯では交流電場に対する応答特性の高 い電子分極が主体であるため、その追従遅れが少なく誘電損失成分は小さい。その ため、特許文献 2に示されているように、積層層数を数十層とする構成が一般的であ る。
[0016] しかし、動作周波数がミリ波帯〜 THz帯を含む 1012〜1015Hz帯では、電子分極と 比較して交流電場に対する追従性の悪いイオン分極が主体となるため、誘電損失の 影響が非常に大きくなる。
[0017] このように材料の誘電損失が大きくなる周波数帯で透過帯の透過率向上を図るに は、積層層数をできるだけ減らし、素子厚も薄くすることが望ましい。
[0018] ただし、単純に積層層数を減らしただけでは波の干渉効果が弱まるため、入射した 波がほとんど透過することになり、そのままではフィルタとしての特性が劣化してしまう
[0019] この問題に対しては、積層材料の屈折率比を高めることが有効である。
[0020] 屈折率比が高ければ、誘電体層間の界面における反射率が高まるため、少ない層 数で十分なフォトニックバンドギャップを得ることができ、阻止帯の幅も広帯域ィ匕でき る。また、屈折率比を高めるために高屈折率材料を用いることで、波長短縮効果によ つて、より素子厚を薄くできる利点がある。
[0021] 以上の概念に従い、狭帯域通過帯の波長 λ οを 2mm (150GHz)として設計し、そ れに基づ 、て作製した( λ οΖ4基本格子層) * ( λ οΖ2欠陥層) * ( λ οΖ4基本格 子層)の従来型の多層周期構造フィルタの透過特性を図 5に示す。これは高屈折率 誘電体層に η = 10. 4の TiO、低屈折率誘電体層に n = 3. 5の Al Oを用いて、 屈折率比をおよそ 3倍としたものである。全体層数は従来技術と比較して格段に少な い 9層で、素子厚は 0. 84mmとなっている。 100〜200GHzの領域で阻止帯域の最 小透過率 (Tmin)は 40dB程度となっており、強い阻止帯域を形成することができ る。これはこの種のフィルタで一般的に必要とされる - 30dBと比較しても遜色な 、値 である。
[0022] ところが、図 5において狭帯域通過モードの強度に着目すると、誘電損失を考慮し な 、シミュレーション (上段)では透過損失力^である力 実験結果(下段)では最大で 20dB程度の透過強度に留まっている。その他の透過帯(0〜100GHz、 200〜3 OOGHz)ではある程度の透過強度が得られていることを勘案すると、何らかの理由で 欠陥層における電磁波の共振効果が弱まっているものと推測できる。
[0023] この原因には次のメカニズムが関係している。この従来型の λ οΖ2欠陥層構造の 場合、電磁波の共振領域は前述の通り欠陥層内のみとなり、この層内だけで波の局 在化が起きる。局在化した電磁波は、欠陥層両端の λ οΖ4基本格子層が反射鏡と して作用するので、その間で多重反射し、欠陥層内に強く閉じ込められる。欠陥層の 誘電体材料に誘電損失がある場合は、その多重反射の過程で、局在化した電磁波 エネルギーが徐々に減衰してしまうため、外部への取り出し効率は著しく悪ィ匕する。 それによつて、狭帯域通過モードの透過強度は非常に小さなものとなるのである。
[0024] この例で用いた材料の誘電損失の値は、測定周波数 100〜300GHzの領域で、 T iO力 ¾an δ =8. 7 Χ 10_3、 Al Ο力 ¾an δ = 7.5 X 10_3程度であり、これはほとんど
2 2 3
損失が無視できる可視光領域の周波数帯における値と比較すると非常に大きい。
[0025] 従って、以上のように( λ οΖ4基本格子層) * ( λ οΖ2欠陥層) * ( λ οΖ4基本格 子層)の従来型の多層周期構造フィルタにおいて、単純に屈折率比を高め、低層数 化しただけでは局在化した電磁波を外部へ効率的に取り出すことは難しい。
[0026] なお、特許文献 1では、その請求項 6, 7, 19, 20に、光路長を λ Ζ2から所定の第 3の値 (X)だけずらした層を挿入し、それによつてバンドパスフィルタの機能を得る旨 記載されて ヽる。し力し、段落 [0034] , [0046]〜 [0048]に述べられて!/、るように、 これは λ Ζ2± χの層を 2層挿入した構成法についてのみ示しており、その具体例と その特性にっ ヽては何ら触れられておらず、前述のミリ波帯〜テラへルツ帯の電磁 波領域における狭帯域通過帯の強度減衰の問題を解消するものでは無い。
[0027] また、特許文献 2では、前記従来型の多層周期構造フィルタを基礎として、フルビッ ッ多項式により所望の透過特性および反射特性に応じたフィルタを構成する手法に ついて示しているが、段落 [0021]で述べているように、これは通過帯における直線 ひずみが少ないフィルタの設計に関するものであって、透過信号の透過強度を向上 させることに関しては何ら触れられておらず、さらに全体層数が数十層になることから 、前述のミリ波帯〜テラへルツ帯の電磁波領域における狭帯域通過帯の強度減衰の 問題を解消するものでは無 、。
[0028] そこで、本発明の目的は、フォトニック結晶の構成法を変えることによって狭帯域通 過モードの透過強度を向上させることにある。
課題を解決するための手段
[0029] この発明は、上述の問題を解消するために、次のように構成する。
(1)屈折率が異なる 2種類の誘電体層を積層した基本格子を複数備えた誘電体多 層周期構造体であって、前記 2種類の誘電体層のうち、屈折率の高い誘電体層の光 路長を L、屈折率の低い誘電体層の光路長を Lで表したとき、 L /L > 1となる関
H L H L
係を満たし、前記基本格子同士で挟まれる位置に、前記基本格子を構成する前記 2 種類の誘電体層とは異なる光路長を有する誘電体層を欠陥層として設けた多層周 期構造とする。
[0030] (2)前記 2種類の誘電体層の屈折率比は、前記屈折率の高い誘電体層と、前記屈 折率の低!、誘電体層との屈折率比を 2以上とする。
[0031] (3)前記欠陥層の光路長を狭帯域通過帯の中心波長の 1Z2より小さくする。
[0032] (4)前記欠陥層の光路長を、前記基本格子を構成する誘電体層のうち欠陥層と同 じ誘電体材料からなる誘電体層の光路長より小さくする。
[0033] (5)前記誘電体多層周期構造体の最外部の基本格子のうち、外側の誘電体層を 取り除いた構造とする。
[0034] (6)前記誘電体多層周期構造体による狭帯域通過モードが、周波数 50GHz〜3T
Hzのミリ波帯またはテラへルツ帯の周波数域に生じるものである。
[0035] (7)前記誘電体多層周期構造体は、屈折率の異なる複数の誘電体セラミックスのグ リーンシートを周期構造をなすように所定の順序で積層した積層体を同時焼成したも のとする。
発明の効果
[0036] 本発明は、フォトニック結晶におけるバンドギャップが、前記従来技術に記載のよう に基本格子の光路長を入射する電磁波の波長 λ οに対して 1Z4の長さにせずとも、 あくまで屈折率の異なる誘電体層を周期的に配置することによって得られるものであ ることに着目し、その光路長を λ οΖ4、すなわち光路長比率の条件を L /L = 1か
H L
らずらした構成とすることによって、欠陥層内部で局在化した電磁波が欠陥層内部で 多重反射されず、外部に取り出され易くなるようにするものである。本発明の構成に おいては、狭帯域通過モードが得られる時の波長 λ οのとき、基本格子層において 反射される波の位相整合条件が λ οΖ4基本格子の場合と異なって満たされにくい 状態になるため、欠陥層を中心として局在化した電磁波が両端の基本格子層で多重 反射されずに外部へ取り出しやすい状態とすることができる。これにより狭帯域通過 モードの透過率を向上させることができる。
[0037] 特に前記光路長比率 L /Lを 1より高めることによって、系全体の平均屈折率が向
H L
上するため、波長短縮効果により素子厚を低減することができる。これは、平均屈折 率を ηで表すと、誘電体中を伝搬する電磁波の波長 λと誘電体層の厚さ dとの関係 a
力 d= λ Ζηで表されるように、同じ波長 λであれば、分母の平均屈折率 ηの値が a a 大きいほど誘電体層の厚さ dを小さくできることに起因する。
[0038] 屈折率の高い誘電体層(以下、「高屈折率誘電体層」という。)と、屈折率の低い誘 電体層(以下、「低屈折率誘電体層」という。)の屈折率比を 2以上とすることによって 、 10層前後の少な 、層数でも充分なバンドギャップ幅および阻止利得が得られる。 欠陥層の光路長を狭帯域通過帯の中心波長の 1Z2より小さくすることにより、欠陥 層の膜厚を薄くすることができ、素子厚の低減を図ることができる。
[0039] また、欠陥層を構成する誘電体層の光路長を、基本格子層を構成する同じ誘電体 材料力 なる誘電体層の光路長より小さくすることにより、電磁波の局在領域が欠陥 層に隣接する他の層にまで広がり、外部への取り出し効率が向上する。すなわち、欠 陥層の導入による電磁波の局在化に関しては、複数層にまたがる電磁波の共振モ ードを利用することで、局在化した電磁波が欠陥層の両側の基本格子層で反射する ことによって損失となる割合を低減できる。また、欠陥層の光路長を小さくすることが できるので、積層体の総膜厚 (素子厚)が低減できる。
[0040] 前記誘電体多層周期構造体の最外部の基本格子のうち、外側の誘電体層を取り 除いた構造とすることにより、素子厚が低減でき、透過率の向上が図れる。また、素子 作製プロセスの簡略ィ匕および素子の小型化が図れる。
[0041] 前記多層誘電体を、誘電体セラミックグリーンシートを用いたシート工法で作製する ことにより、特性の均質な素子を量産でき、低コストィ匕が図れる。
図面の簡単な説明
[0042] [図 1]特許文献 1の誘電体多層基板の構成を示す図である。
[図 2]同誘電体多層基板の阻止帯域の例を示す図である。
[図 3] (A)は欠陥層を挿入した多層周期構造体の基本構成を示す図である。 (B)は( λ οΖ4基本格子) * ( λ οΖ2欠陥層) * ( λ οΖ4基本格子)型で構成した多層周期 構造体において、狭帯域透過帯の中心波長 λ οのときの電界振幅強度の分布を示 す図である。
[図 4]同フィルタの電磁波透過特性の例を示す図である。
[図 5]高屈折率誘電体層に TiO、低屈折率誘電体層に Al Oを用いて実際に構成
2 2 3
した従来型の多層周期構造フィルタの透過率特性を示す図である。
[図 6] (A)は第 1の実施形態に係る多層周期構造体の基本構成を示す図である。
[0043] (B)は、同構造にぉ 、て、狭帯域透過帯の中心波長 λ οのときの電界振幅強度の分 布を示す図である。
[図 7] (Α)は( λ οΖ4基本格子) * ( λ οΖ2欠陥層) * ( λ οΖ4基本格子)型で構成 した多層周期構造において、高屈折率誘電体層と低屈折率誘電体層の屈折率比に よって阻止帯域の最小透過率 (Tmin)がどのように変化するかを示す図である。 (B) は、上記構造で屈折率比を 2とし、狭帯域通過モードが得られる中心周波数を 150G Hzに設定したときに必要な素子厚が、低屈折率材料の屈折率によって変化すること を示す図である。
[図 8]高屈折率誘電体層と低屈折率誘電体層の光路長比 L ZLの値を変化させた 時に得られた透過特性の変化の例を示す図である。
[図 9]高屈折率誘電体層と低屈折率誘電体層の光路長比 L /Lの違いによる素子
H L
各部の厚さの違 、を示す図である。
[図 10]欠陥層の光路長 Lcと狭帯域通過モードの中心周波数との関係を示す図であ る。
[図 11]光路長の異なる欠陥層を有する誘電体多層周期構造体の透過特性を示す図 である。
[図 12]高屈折率誘電体層と低屈折率誘電体層の光路長比率 L ZLに対する透過
H L
率の変化の例を示す図である。
[図 13]第 2の実施形態に係る誘電体多層周期構造体の構成を示す図である。
[図 14]第 2の実施形態における誘電体多層周期構造体の透過率特性の例を示す図 である。
[図 15]第 3の実施形態に係る誘電体多層周期構造体の製造工程を示す図である。 符号の説明
[0044] 1, 5, 9一高屈折率誘電体層
2, 6, 10—低屈折率誘電体層
3, 7, 11一基本格子
4, 8, 12—欠陥層
13 -最外層
100, 101—誘電体多層周期構造体
発明を実施するための最良の形態
[0045] 第 1の実施形態に係る誘電体多層周期構造体について図 6〜図 12の各図を参照 して説明する。
図 6は本実施形態における誘電体多層周期構造体を示す図であり、 (A)は周期構 造体の断面図、(B)は電磁波が局在化するときの電界エネルギーの振幅強度の分 布を素子の膜厚方向にぉ 、て表した図である。
[0046] この第 1の実施形態では、屈折率 n、膜厚 dの高屈折率誘電体層 5と、屈折率 n 、
H H し 膜厚 dの低屈折率誘電体層 6をそれぞれ 1層ずつ交互に積層し、その 2層を 1単位 基本格子 7とした構成から成り、フォトニックバンドギャップは、この基本格子 7を 2つ 以上設けることで形成することができる。この実施形態では 9層の多層構造としている 力 層数はこれより多くても構わない。ここで、本発明における誘電体材料の比誘電 率の値と屈折率値との対応に関しては、真空の誘電率を ε ο、誘電体材料の誘電率 を ε sとすると、屈折率 ηは η = ^ ( ε s/ ε ο)となり、 ε s/ ε οは比誘電率 ε 'である から、
η=^ ( ε ' )として扱う。なお、ここでは複屈折率の概念を扱わないものとする。
[0047] 欠陥層 8は、基本格子 7を構成する誘電体層 5, 6とは光路長が異なる誘電体層に よって形成し、その両端に基本格子 7を設ける。この欠陥層の導入により、基本格子 7 で形成される周期性の一部が崩れるため、図 6 (B)に示すように欠陥層 8を中心とす る電磁波の局在化が起き、それによりフォトニックバンドギャップ中で狭帯域通過モー ドが発現する。図 6では高屈折率材料を欠陥層に用いた構成を示しているが、これは 低屈折率材料を用いた構成としても構わな ヽ。
[0048] 次に、前記基本格子を構成する高屈折率誘電体と低屈折率誘電体との屈折率比 について説明する。
[0049] 基本的には屈折率に周期性を持たせればフォトニックバンドギャップが得られるの で、フォトニックバンドギャップを得ると 、う点では上記屈折率比は必須の条件ではな い。
[0050] し力し、フォトニックバンドギャップ内における最小透過率 (Tmin)は屈折率比に強 く依存する。具体的に示すと、 ( λ οΖ4基本格子層) * ( λ οΖ2欠陥層) * ( λ οΖ4 基本格子層)型の多層周期構造フィルタにおける Tminは、高屈折率誘電体の屈折 率を n、低屈折率誘電体の屈折率を n、積層層数を Nとおくと、近似的に次の式で
H し
与えられる。
[0051] [数 1]
Figure imgf000012_0001
[0052] この式に基づいて屈折率比に対する Tminの値を求めた結果を図 7 (Α)に示す。
同図から明らかなように、屈折率比が小さいと Tminが OdBに近づき、また層数が少 なくなるとさらに Tminの値が OdBに近づく。よって、フィルタの設計を行う上では十分 な阻止利得が得られるように屈折率比および積層層数を決定する必要がある。具体 的な例を示すと、屈折率比 1. 5の光学多層周期構造フィルタで Tmin=— 30dBを 得ようとする場合、積層層数は約 20層必要である。
[0053] 但し、前述したように本発明が目的とするミリ波力もテラへルツ帯の電磁波帯域では 誘電体材料の誘電損失の影響が大きい問題があり、また素子の小型化を図るために もできるだけ積層層数は抑えることが望ましい。そこで、一般的なフィルタに要求され る— 30dBの阻止利得を得て、かつ積層層数を抑えるためには、屈折率比を最低で も 2以上にすることが必要である。例えば、屈折率比 2の条件に従い阻止利得— 30d Bの多層周期構造フィルタを構成する場合は、積層層数を 13層程度に抑えることが できる。但し、屈折率比を高めすぎると素子に入射した電磁波が透過せずに反射さ れてしまう割合が高まるため、帯域通過フィルタとして使用する上では、屈折率比は 最大でも 5程度に留めることが望ま 、。
[0054] また、低屈折率材料の屈折率を大きくすることで、より阻止帯域の最小透過率を低 く抑えることができ、素子厚も減らすことができる。図 7 (B)は上記条件において、屈 折率比を 2、層数を 9層に固定し、低屈折率材料の屈折率を 1〜5の範囲で変えたと きに、 150GHzで狭帯域通過モードを得ようとする場合に必要な素子厚を示したもの である。低屈折率材料の屈折率が低い場合は、系全体の平均屈折率も減少するた め、前記波長短縮効果が得られず素子厚は非常に厚いものとなる。従って、低屈折 率材料に用いる誘電体材料の屈折率はある程度高い方がよぐおよそ屈折率 2以上 のものを使用することが望まし 、。
[0055] 前記低屈折率誘電体層の材料としては、例えば A1 0、 2MgO-SiO、 SiO、 MgO -Si
2 3 2 2
O、 MgAl O、 ZrO、 MgTiO、 Ba(Mg ,Ta )0、 Ba(Mn ,Ta )0などのセラミック材
2 2 4 2 3 1/3 2/3 3 1/3 2/3 3
料が挙げられ、これらを用いることにより、低屈折率誘電体層に用いる媒質の最低屈 折率は 2以上とすることが望まし 、。
[0056] また、前記高屈折率誘電体層の材料としては、例えば TiOや CaTiO、 BaO-TiO系
2 3 2
、 ZrO - SnO -TiO系、 Pb(Mg,Nb)0系、 Pb(Zn,Nb)0系、 BaO- Nd O -TiO系、 BaO-
2 2 2 3 3 2 3 2
Sm O -TiO系、(CaSrBa)ZrO系、 BaO— TiO—WO系、(Ba,Sr)0— Sm O—TiO系、 Ca O-TiO— SiO系、 BaO— Pb O— Nd O— TiO系、 Ba(Zn,Nb)0系、 Ba(Zn,Ta)0系、 MgTi
2 2 2 3 2 3 2 3 3
O - CaTiO系、 CaTiO -(Li Re )TiO系、(Ca,Re)(Ti,Al)0系、(Sr,La)(Ti,Al)0系、
3 3 3 1/2 1/2 3 3 3
CaTiO -Re(Mg Ti )0、 CaTiO - Ca(Mg Nb )0などのセラミック材料が挙げられ
3 1/2 1/2 3 3 1/3 2/3 3
る(但し Re=La,Nd,Sm)。
[0057] また、上記材料には例えば結晶化ガラスや焼結助剤となる各種元素を添加すること により低温焼結を可能にした複合材料を用いても構わな 、。
[0058] これらを前記低屈折率材料と組み合わせる際は、その屈折率比が 2以上になるよう 材料を適宜選択する。なお、前記低屈折率誘電体材料および高屈折率誘電体材料 の例はあくまで実施形態の一例であり、例えば前記記載の高屈折率誘電体材料群 の中から屈折率比が 2以上になるような材料の組み合わせを選択しても構わな 、。ま た、ここに挙げた材料群は望ましい実施形態の一例であり、本発明で使用される材 料の種類力 Sこれらに限定されるものではない。
[0059] 図 6に示すこの第 1の実施形態では、高屈折率誘電体層 5の高屈折率材料に TiO
2
(n = 10. 4)、と低屈折率誘電体層 6の低屈折率材料に Al O (n = 3. 5)を用い、
H 2 3 L
屈折率比を約 3としている。また、欠陥層 8を高屈折率誘電体層とし、その誘電体材 料は上記高屈折率誘電体層 4の高屈折率材料と同様の TiO (n = 10. 4)を用いて
2 H
いる。
[0060] 次に、図 6に示す第 1の実施形態において、基本格子 7を構成する 2つの誘電体層 の膜厚を、その光路長の比 (L ZL )が 1より大きくなるように設計することで、狭帯
H L
域通過モードの透過率を高める事が可能であることを実験によって検証した結果を 以下に示す。
[0061] まず、狭帯域通過モードの中心周波数 foはおよそ 150GHz ( o = 2mm)として設 計し、全体層数は 9層として前記誘電体多層周期構造体を作製した。
[0062] 図 8は、 L /Lの値を従来技術に従って 1. 0とした場合と、 3. 3, 7. 6とした場合
H L
の、前記誘電体多層周期構造体における狭帯域通過モードの最大透過率の変化を 示したもので、図中下向き三角記号は狭帯域通過モードを示している。同図から明ら かなように、狭帯域通過モードの透過率は L /L = 1. 0のものでは—19dB程度に
H L
留まっているが、 L ZLの値が増すに連れてその強度は増大し、 L /L = 3. 3で
H L H L は一 6dB、L /L = 7. 6では一 3dBまで向上している。
H L
[0063] この第 1の実施形態における単位基本格子の光路長 L +Lの値を図 9に示す。狭
H L
帯域通過モードが得られた中心周波数での 1Z2波長(λ οΖ2)と比較すると、 L +
Η
Lの値は 、ずれも (L +L ) < λ
L H L οΖ2なる関係を満たして 、る。
[0064] なお、欠陥層に用いる材料は前記高屈折率材料に限らず、前記低屈折率材料を 用いることもでき、さらに基本格子を構成する材料とは異なる第 3の媒質を、前記低屈 折率誘電体層と高屈折率誘電体層の例として挙げた材料群の中から選択することも できる。
[0065] 積層体の素子厚は図 9に示すように L ZLの値が大きいほど薄型化することがで
H L
きる。但し、 L ZLの値を大きくし過ぎると、低屈折率誘電体層の膜厚の割合が減
H L
少し、高屈折率誘電体層の膜厚の割合が増加しすぎることにより、フォトニックバンド ギャップの発現効果が弱まるため、その値の上限は 10程度に留めることが望ましい。
[0066] なお、 L /L = 1. 0の試料では、基本格子長 L +Lと欠陥層光路長 Lcの値が
H L H L
X oZ2とほぼ等しぐ従来技術に従った構成となっている。
[0067] 次に、欠陥層の設計手法について述べる。
[0068] この実施形態では、前述したように電磁波の共振領域を欠陥層内に限定しないの で、所望の周波数位置で狭帯域通過モードを得るためには、従来のように単純に λ οΖ2となるような光路長で欠陥層の膜厚を決めることはできない。すなわち、系全体 での干渉効果を考慮した膜厚設計が必要となる。そこで、この実施形態では L /L
H L
の値を固定し、欠陥層の膜厚のみをある一定の範囲で変化させた場合に、狭帯域通 過モードの中心周波数がどのようにシフトするかを予めシミュレーションにより検討し た。
[0069] 図 10は、前述の実施形態で L ZLの値を 3. 3とし、欠陥層光路長 Lcを変化させ
H L
た場合に、狭帯域通過モードの中心周波数の関係がどのように変化する力をシミュレ ーシヨンにより求めたものである。なお、本明細書で記載するシミュレーション結果は 、すべて多層周期構造の各界面における電界および磁界成分をマクスゥエルの方程 式に基づ 、て解き透過率を算出して 、る。
[0070] 同図について説明すると、欠陥層の光路長を 0から 800 mに増していった場合は 、狭帯域通過モードの中心周波数が 190GHzから 110GHzに変化しており、さらに 光路長を増した場合は、中心周波数が再び 190GHzにシフトする。これは、上下の 破線で挟まれる領域が阻止帯域であり、その中に狭帯域通過モードの中心周波数 が存在することを意味する。従って、欠陥層の光路長を適切に設定すれば、阻止帯 域内の任意の周波数において、狭帯域通過モードが得られる欠陥層の膜厚条件を 決定することができる。
[0071] 図 8に示した実施形態では上記シミュレーション結果に基づき、 150GHzで狭帯域 通過モードが得られるときの欠陥層の光路長 Lcを約 180 mとして設計した。この欠 陥層の光路長 Lcは、狭帯域通過帯の中心波長の ΐΖ2( λ οΖ2)より小さくすること で、素子厚の低減を図っている。
[0072] この実施形態では必ずしも欠陥層内のみを電磁波の共振領域として扱わな 、ので 、欠陥層の光路長 Lcは λ οΖ2より小さくすることができる。さらに、本実施例では図 9 を参照すれば明らかなように、欠陥層の光路長 Lcは同じ高屈折率材料で構成される 基本格子の光路長 Lよりも短くすることができる。このように欠陥層の膜厚を薄くでき
H
ることは、素子厚を低減する上で有効である。
[0073] 一方、欠陥層の光路長 Lcを λ。Ζ2よりも大きくした場合についても検討した。図 1 1は、 L /Lの値を 3. 3、狭帯域通過モードの中心波長 λ οを 2mm、欠陥層の光路
H L
長 Lcを λ οΖ2、 λ ο、 3 λ οΖ2となるように構成された 3つの構造体の透過スぺタト ルを示したものである。この構成では、いずれも基本格子は欠陥層の両端でそれぞ れ 1. 5周期(3層)としており、欠陥層の厚みのみを変えている。
[0074] 図 11は欠陥層の光路長によって、狭帯域通過モードの帯域幅を制御できることを 示している。狭帯域通過モードの帯域幅は、欠陥層の光路長を増やすほど狭まって おり、図 11の範囲では、ピーク半値幅が 2. lGHz〜4. 3GHzの間で変化している。 このとき狭帯域通過モードの透過率は 5. 3dBから 6. 2dBであり、欠陥層の光路 長を λ οΖ2より小さくした図 10のく L /L = 3. 3 >の結果と比較して同程度の透
H L
過率が得られている。よって、欠陥層の光路長を λ οΖ2よりも大きくした場合は、透 過率を大きく減衰させることなぐ狭帯域通過モードの帯域幅を制御することができる 但し、欠陥層の光路長を λ οΖ2より大きくした場合は、素子厚低減のメリットが得ら れな 、点に留意する必要がある。
[0075] この実施形態の作用'効果について次に述べる。
この実施形態では、基本格子の光路長比率 L ZLの値を 1より大きくすることで、
H L
反射波の位相整合条件が満たされにくい状態を形成することができ、それによつて内 部で局在化した電磁波が基本格子層で多重反射されて損失となる割合を減らすこと ができる。
[0076] この実施形態では L /Lの値を 1より大きくした場合についての結果を示したが、
H L
局在化した電磁波が外部に抜けやす!、ようにするためには、基本格子層での反射波 の位相整合条件を崩せばよいので、 L /Lの値が 1より少ない場合についても同様
H L
の検討を行う必要がある。そこで、図 12に、 L /Lの値を 0. 15〜7. 03まで変化さ
H L
せたときの狭帯域通過モードの最大透過率 (Tmax)と阻止帯域の最小透過率 (Tmi n)をシミュレーションにより求めた値(図中中抜きの点)と、前述した実験結果の値(図 中塗り潰しの点)を示す。
[0077] 狭帯域通過モードの最大透過率は L /L = 1. 0の場合に最小値をとつており、
H L
L /L > 1のこの実施形態はシミュレーション結果と実験結果はよく一致している。
H L
[0078] L ZLの値が 1以下の場合については、シミュレーション上では L ZL > 1の場
H L H L
合と同様の傾向になっているが、注意しなければならないのは、この場合系全体の平 均屈折率が低下するため、それに伴 、素子厚を厚くしなければならな 、と 、うことで ある。これは、誘電体中を伝搬する電磁波の波長えと誘電体の厚さ dとの関係が、前 記記載のように同じ波長 λであれば平均屈折率の値が大きい方が dの値を小さくで きること〖こ起因する。この L /Lく 1の場合と L /L > 1の場合とで、ほぼ同じ透過
H L H L
強度が得られる条件(図 12中 Aと Α' )においてその素子厚を計算すると、その差は およそ 2倍になる。このように素子厚が大幅に増大することは素子厚低減のメリットが 失われることなどから、 L /L > 1とする方が有利である。
H L
[0079] 同じ狭帯域通過モードの中心周波数 foを指定したときの素子厚に関しては、 fo = l 50GHzとした前述の試料において、 L /L = 1. 0では 844 mとなる力 この実
H L
施形態の一例である L /L = 7. 6では 455 mと約 5割薄型化することが可能で ある。これにより、作製プロセスの簡略化と素子の小型化が図れる。
[0080] また、この実施形態では電磁波の共振領域を欠陥層の近傍に広げることで、局在 領域が欠陥層内だけに限定されな 、ようになり、従来技術で問題となって 、た両側 の基本格子層で電磁波が多重反射して損失になる割合を低減することができる。
[0081] 以上に示したように、この実施形態では少ない層数および薄い素子厚による誘電 体多層周期構造の構成で、所望の周波数の電磁波を選択的に透過させることができ る狭帯域通過フィルタの透過強度向上を図る事ができる。
[0082] なお、この実施形態では欠陥層の厚みを変えることで光路長を変更しているが、光 路長を変える手段としては厚みだけに限られるものではなぐ屈折率を変えることによ つても光路長を変更できることは言うまでもな 、。
[0083] 次に、第 2の実施形態に係る誘電体多層周期構造体について、図 13·図 14を参照 して説明する。
図 13は第 2の実施形態に係る誘電体多層周期構造体の基本構造図である。この 第 2の実施形態は、第 1の実施形態と同様に、屈折率 n、膜厚 dの高屈折率誘電体
H H
層 9と、屈折率 n、膜厚 dの低屈折率誘電体層 10をそれぞれ 1層ずつ交互に積層し
し し
、その 2層を単位基本格子 11とする誘電体多層構造であり、誘電体多層周期構造体 の最外部の基本格子 11のうち、外側の誘電体層 13を取り除 、た構造となって ヽる。
[0084] また、図 13の構造は第 1の実施形態で示した図 6 (A)と同様に、基本格子の光路 長に対して薄い光路長を有する欠陥層 12を多層周期構造体 101の中央に挿入し、 それにより狭帯域通過フィルタの機能を得るものである。
[0085] 上記誘電体多層周期構造体の作用'効果は次のとおりである。
この第 2の実施形態では、フォトニックバンドギャップの発現に関して、その作用が 小さい端面の層を意図的に取り除く事により、全体の層数を抑え、透過率の向上を図 ることができる。それにより、第 1の実施形態の場合と同様の阻止帯域を有し、かつ強
V、透過率を有する狭帯域通過モードを得る事が出来る。
[0086] 図 14は、この第 2の実施形態に従い、約 150GHzを狭帯域通過モードの中心周波 数 foとし、 L ZL =3. 4として設計、作製した 7層多層構造体の透過特性を示した
H L
ものである。同図には、 L ZLの値がほぼ同じである第 1の実施形態 (L /L =3 . 3)の結果も併せて示しており、図中下向き三角記号は狭帯域通過モードを示して いる。高屈折率誘電体層 9には TiO、低屈折率誘電体層 10には Al O、欠陥層 12
2 2 3 には Al Oを用いており、各層の光路長については、高屈折率誘電体層の光路長 L
2 3
= 620 m、低屈折率誘電体層の光路長 L = 180 mとしている。また、欠陥
H L
層の光路長は、 λ οΖ2の値(968 μ m)より小さい Lc = 25 μ mとしている。
[0087] なお、この第 2の実施形態では、欠陥層 12に低屈折率材料を用いたが、第 1の実 施形態で示した例のように、欠陥層に高屈折率材料を用いてもょ 、。
[0088] 欠陥層 12の光路長は、同じ誘電体材料から成る基本格子を構成する 1層の光路 長よりも少なくすることができ、欠陥層に低屈折率材料を使用した本実施例の場合で も、前記記載の光路長の値からわ力るように、欠陥層の光路長 Lcは同じ Al Oから
2 3 成る基本格子を構成する 1層の光路長 Lよりも短くなる。
[0089] この構造においては、最大透過率 4dBの狭帯域通過モードが得られる。この最 大透過率の値は、第 1の実施形態 (L ZLの値が第 2の実施形態で示したものとほ
H L
ぼ等しい L /L = 3. 3のもの)で示した最大透過率の値(一 6dB)に対して約 30%
H L
向上している。
[0090] なお、この第 2の実施形態における電磁波局在化の効果は第 1の実施形態の場合 と同様である。
[0091] 次に、第 1 ·第 2の実施形態で示した誘電体多層周期構造体の製造方法を第 3の 実施形態として説明する。
図 15はその製造工程を示す図である。
まず、図 15の (A)に示すように、高屈折率誘電体層となるべき高屈折率誘電体材 料のセラミックグリーンシート と、低屈折率誘電体層となるべき低屈折率誘電体セ ラミックのグリーンシート 6' とをそれぞれ交互に配置した基本格子と、欠陥層となる べき高屈折率誘電体材料、低屈折率誘電体材料または基本格子を構成する材料と は異なる第 3の誘電体材料のセラミックグリーンシート 8' を基本格子の間に配置して 積層、圧着し、同図の(B)に示すようにセラミックグリーンシートの積層体 10( を構 成する。
[0092] この際、高屈折率誘電体層、低屈折率誘電体層および欠陥層の光路長が所定寸 法となるようにセラミックグリーンシート 5' , 6' , 8' の厚みを調節する。
その後、(C)に示すように、上記積層体 10( から所定サイズのチップ 100〃を切 り出し、所定の雰囲気中で焼成して完成素子 100とする。
なお、図 15 (B)〜(D)では第 1の実施例の 9層構造となっている力 第 2の実施例 の場合は 7層にすればょ 、ことは言うまでもな!/、。

Claims

請求の範囲
[1] 屈折率が異なる 2種類の誘電体層を積層した基本格子を、周期構造をなして複数 備えた誘電体多層周期構造体であって、
前記 2種類の誘電体層のうち、屈折率の高い誘電体層の光路長を L、屈折率の低
H
い誘電体層の光路長を Lで表したとき、 L /L > 1となる関係を満たし、
L H L
前記基本格子同士で挟まれる位置に、前記基本格子を構成する前記 2種類の誘 電体層とは異なる光路長を有する誘電体層を欠陥層として設けた誘電体多層周期 構造体。
[2] 前記 2種類の誘電体層のうち、前記屈折率の高い誘電体層と、前記屈折率の低い 誘電体層との屈折率比を 2以上とした請求項 1に記載の誘電体多層周期構造体。
[3] 前記欠陥層の光路長を狭帯域通過帯の中心波長の 1Z2より小さくした請求項 1ま たは 2に記載の誘電体多層周期構造体。
[4] 前記欠陥層の光路長を、前記基本格子を構成する誘電体層のうち、前記欠陥層と 同じ誘電体材料力 成る誘電体層の光路長よりも小さくした請求項 1〜3のうちいず れかに記載の誘電体多層周期構造体。
[5] 前記誘電体多層周期構造体の最外部の基本格子のうち、外側の誘電体層を取り 除いた構造とした請求項 1〜4のうちいずれかに記載の誘電体多層周期構造体。
[6] 前記誘電体多層周期構造体による狭帯域通過モードが、周波数 50GHz〜3THz のミリ波帯またはテラへルツ帯の周波数域に生じるものである請求項 1〜5のうちいず れかに記載の誘電体多層周期構造体。
[7] 前記誘電体多層周期構造体は、屈折率の異なる複数の誘電体セラミックスのダリー ンシートを周期構造をなすように所定の順序で積層した積層体を同時焼成したもの である請求項 1〜6のうちいずれかに記載の誘電体多層周期構造体。
PCT/JP2006/302875 2005-02-18 2006-02-17 誘電体多層周期構造体 WO2006088155A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007503757A JPWO2006088155A1 (ja) 2005-02-18 2006-02-17 誘電体多層周期構造体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-041867 2005-02-18
JP2005041867 2005-02-18

Publications (1)

Publication Number Publication Date
WO2006088155A1 true WO2006088155A1 (ja) 2006-08-24

Family

ID=36916552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/302875 WO2006088155A1 (ja) 2005-02-18 2006-02-17 誘電体多層周期構造体

Country Status (2)

Country Link
JP (1) JPWO2006088155A1 (ja)
WO (1) WO2006088155A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008138548A1 (de) * 2007-05-10 2008-11-20 Martin Koch Vorrichtung zum reflektieren elektromagnetischer strahlung
JP2012042726A (ja) * 2010-08-19 2012-03-01 Nippon Shinku Kogaku Kk テラヘルツ帯光学素子
JP2012221141A (ja) * 2011-04-07 2012-11-12 Seiko Epson Corp 画像取得装置、生体認証装置、電子機器
JP2018508012A (ja) * 2014-12-23 2018-03-22 マックス プランク ゲゼルシャフト ツゥアー フェデルゥン デル ヴィッセンシャフテン エー フォー 2dナノシート材料に基づくガス及び蒸気検知デバイス
CN109669227A (zh) * 2019-02-27 2019-04-23 湖北科技学院 一种对缺陷模反射率增强的光子晶体
CN116073097A (zh) * 2023-03-14 2023-05-05 福州大学 一种基于双层超材料的太赫兹宽带滤波器及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05341243A (ja) * 1992-06-04 1993-12-24 Oki Electric Ind Co Ltd モード変換器及び光フィルタ
JP2001091911A (ja) * 1999-09-24 2001-04-06 Sony Corp 機能性材料および機能素子
JP2001350040A (ja) * 2000-06-06 2001-12-21 Tokin Corp 光フィルタ
JP2004502978A (ja) * 2000-07-10 2004-01-29 テヒニシェ・ウニベルジテート・ブラウンシュバイク・カロロ−ビルヘルミナ 光学素子
WO2004059784A1 (ja) * 2002-12-26 2004-07-15 Matsushita Electric Industrial Co., Ltd. 誘電体フィルタ

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6040722B2 (ja) * 1979-12-17 1985-09-12 三菱電機株式会社 分波装置
JPS5842002A (ja) * 1981-09-05 1983-03-11 Nippon Telegr & Teleph Corp <Ntt> 多層誘電体膜フイルタ装置
JPH10290109A (ja) * 1997-04-15 1998-10-27 Sumitomo Metal Ind Ltd 誘電体多層基板、マイクロ波および/またはミリ波用フィルタならびにそれらの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05341243A (ja) * 1992-06-04 1993-12-24 Oki Electric Ind Co Ltd モード変換器及び光フィルタ
JP2001091911A (ja) * 1999-09-24 2001-04-06 Sony Corp 機能性材料および機能素子
JP2001350040A (ja) * 2000-06-06 2001-12-21 Tokin Corp 光フィルタ
JP2004502978A (ja) * 2000-07-10 2004-01-29 テヒニシェ・ウニベルジテート・ブラウンシュバイク・カロロ−ビルヘルミナ 光学素子
WO2004059784A1 (ja) * 2002-12-26 2004-07-15 Matsushita Electric Industrial Co., Ltd. 誘電体フィルタ

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008138548A1 (de) * 2007-05-10 2008-11-20 Martin Koch Vorrichtung zum reflektieren elektromagnetischer strahlung
JP2012042726A (ja) * 2010-08-19 2012-03-01 Nippon Shinku Kogaku Kk テラヘルツ帯光学素子
JP2012221141A (ja) * 2011-04-07 2012-11-12 Seiko Epson Corp 画像取得装置、生体認証装置、電子機器
JP2018508012A (ja) * 2014-12-23 2018-03-22 マックス プランク ゲゼルシャフト ツゥアー フェデルゥン デル ヴィッセンシャフテン エー フォー 2dナノシート材料に基づくガス及び蒸気検知デバイス
JP2019191191A (ja) * 2014-12-23 2019-10-31 マックス プランク ゲゼルシャフト ツゥアー フェデルゥン デル ヴィッセンシャフテン エー フォー 2dナノシート材料に基づくガス及び蒸気検知デバイス
CN109669227A (zh) * 2019-02-27 2019-04-23 湖北科技学院 一种对缺陷模反射率增强的光子晶体
CN109669227B (zh) * 2019-02-27 2024-04-05 湖北科技学院 一种对缺陷模反射率增强的光子晶体
CN116073097A (zh) * 2023-03-14 2023-05-05 福州大学 一种基于双层超材料的太赫兹宽带滤波器及其制备方法

Also Published As

Publication number Publication date
JPWO2006088155A1 (ja) 2008-07-03

Similar Documents

Publication Publication Date Title
US20080252979A1 (en) Terahertz-Band Optical Filter, Designing Method Thereof, and Manufacturing Method Thereof
JP3133765B2 (ja) 多層薄膜バンドパスフィルタ
US6624945B2 (en) Thin film filters using omnidirectional reflectors
JP6432270B2 (ja) 波長選択フィルター及び光照射装置
US7319559B2 (en) Spectral optical element
WO2006088155A1 (ja) 誘電体多層周期構造体
US7333266B2 (en) CWDM filter
US6407863B1 (en) Dual transmission band interference filter
Trabelsi et al. Microwave transmission through one-dimensional hybrid quasi-regular (Fibonacci and Thue-Morse)/periodic structures
US20090034900A1 (en) Band-pass filter and method for making photonic crystal for the band-pass filter
Scalora et al. Laminated photonic band structures with high conductivity and high transparency: metals under a new light
JP4339755B2 (ja) 光学多層膜バンドパスフィルタ
US7355792B2 (en) CWDM filter for eliminating noise
CN106772798B (zh) 一种基于波导布拉格光栅的反射型窄带滤波器
US11226503B2 (en) Tunable spectral filters
WO2021115069A1 (zh) 一种宽带反射器及电磁波反射方法
JP2007178886A (ja) テラヘルツ帯光学フィルタおよびその製造方法
Belyaev et al. One-dimensional photonic crystal bandpass filters
JP5061876B2 (ja) バンドパスフィルタ
JP2001350040A (ja) 光フィルタ
US7580188B2 (en) CWDM filter
KR20160119310A (ko) 광필터
CN108919401B (zh) 一种导模共振滤波器
Kee et al. Tunable resonant transmission of electromagnetic waves through a magnetized plasma
CN113848602B (zh) 基于级联式准周期多层膜的超宽带全向高反射方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007503757

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06714016

Country of ref document: EP

Kind code of ref document: A1