WO2006087983A1 - Flame-retardant polyvinyl alcohol fiber - Google Patents

Flame-retardant polyvinyl alcohol fiber Download PDF

Info

Publication number
WO2006087983A1
WO2006087983A1 PCT/JP2006/302434 JP2006302434W WO2006087983A1 WO 2006087983 A1 WO2006087983 A1 WO 2006087983A1 JP 2006302434 W JP2006302434 W JP 2006302434W WO 2006087983 A1 WO2006087983 A1 WO 2006087983A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
flame
layered silicate
pva
polymer
Prior art date
Application number
PCT/JP2006/302434
Other languages
French (fr)
Japanese (ja)
Inventor
Ryota Komiya
Ryokei Endo
Hideki Kamada
Shunichiro Watanabe
Original Assignee
Kuraray Co., Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co., Ltd filed Critical Kuraray Co., Ltd
Priority to JP2007503639A priority Critical patent/JPWO2006087983A1/en
Publication of WO2006087983A1 publication Critical patent/WO2006087983A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/44Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/48Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds of polymers of halogenated hydrocarbons
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/44Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/50Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds of polyalcohols, polyacetals or polyketals

Definitions

  • the present invention mainly comprises a polybulal alcohol (hereinafter, sometimes referred to as PVA) -based polymer, a fluorine-containing polymer, a logene vinyl polymer (hereinafter sometimes referred to as PVX), and a layered silicate.
  • PVA polybulal alcohol
  • PVX logene vinyl polymer
  • the present invention relates to a flame retardant PVA fiber as a component.
  • flame retardant PVA fibers have not been melt drip, have high strength and have excellent washing durability, and thus have been attracting attention as various flame retardant fibers. It is known that the flame retardant PVA fiber combined with a halogen-containing polymer also exhibits a high degree of flame retardancy (see, for example, Patent Documents 3 and 4). However, these conventional flame retardant PVA fibers are still not sufficiently flame retardant, and even shrink when burned. It was. Therefore, flame retardant PVA fibers have been strongly demanded to further improve flame retardancy and suppress shrinkage during combustion.
  • PVA fibers in which layered silicates are nano-dispersed are also known (see Patent Document 9), but according to the study by the present inventors, their flame retardancy is not practical. Far away, for example, the flame retardant performance was insufficient compared to the conventional flame retardant PVA fiber composited with a halogen-containing vinyl polymer.
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-335962
  • Patent Document 2 JP-A-1-221537
  • Patent Document 3 Japanese Patent Laid-Open No. 3-126749
  • Patent Document 4 JP-A-5-78909
  • Patent Document 5 Japanese Patent Laid-Open No. 3-81364
  • Patent Document 6 JP-A-8-3818
  • Patent Document 7 Japanese Patent Laid-Open No. 10-130956
  • Patent Document 8 Japanese Unexamined Patent Publication No. 2000-095915
  • Patent Document 9 Japanese Unexamined Patent Application Publication No. 2005-9029
  • An object of the present invention is to provide a flame retardant PVA fiber having improved flame retardance that does not impair mechanical properties such as strength and elastic modulus inherent in the PVA fiber, and shrinkage during combustion. And a method of manufacturing the same.
  • the present inventors have obtained a function by combining PVX polymers and layered silicates under specific conditions. It has been found that flame retardant PV A-based fibers having improved flame retardancy and shrinkage during combustion can be produced without degrading mechanical properties. That is, the present invention comprises a PVA polymer having a polymerization degree of 1200 or more and a saponification degree of 90 mol% or more, and PVX, a layered silicate, and the average interlayer distance of the layered silicate is 20 A or more.
  • the flame retardant PVA fiber preferably 15 to 65% by mass of PVX polymer and 1 to 30% by mass of layered silicate with respect to the PVA polymer. More preferably, it relates to a flame retardant PVA fiber in which the layered silicate is a smectite clay composite or a synthetic fluorine mica.
  • the present invention provides the above flame-retardant PVA fiber characterized by spinning and drawing a spinning stock solution in which PVX and a layered silicate are uniformly dispersed in a solution in which PVA is dissolved.
  • the present invention relates to a fiber manufacturing method.
  • an efficient and low-cost PVA-based flame retardant fiber having excellent mechanical properties such as strength and elastic modulus, high flame retardancy, and suppressed shrinkage during combustion. And can be applied to a wide variety of uses.
  • the present invention will be specifically described below. First, the PVA polymer constituting the PVA fiber of the present invention will be described.
  • the degree of polymerization of the PVA polymer used in the present invention is not particularly limited, but taking into account the mechanical properties and dimensional stability of the resulting fiber, the average polymerization was also determined for the 30 ° C aqueous solution viscosity. The degree must be 1200 or more.
  • a polymer having a high degree of polymerization is preferred because it is excellent in terms of strength, heat and humidity resistance, and the like, but a polymer having an average degree of polymerization of 1500 to 5000 is preferred from the viewpoint of polymer production cost and fiberization cost.
  • the degree of saponification of the PVA polymer to be used must be 90 mol% or more, and 98 mol% or more is preferred in view of the mechanical properties and water resistance of the resulting fiber. 99 mol% The above is more preferable. 99. More than 7 mol% is particularly preferred since it has excellent hot water resistance.
  • the PVA polymer constituting the fiber of the present invention is mainly composed of a bull alcohol unit. As long as it is a minute, it is not particularly limited, and other structural units may be included. Examples of such structural units include olefins such as ethylene, propylene, and butylene, acrylic acid and its salts and acrylic esters such as methyl acrylate, methacrylic acid and its salts, and methacrylic acid such as methyl methacrylate.
  • Esters such as acrylamide and N-methyl acrylamide, methacrylamide derivatives such as methacrylamide and N-methylol methacrylamide, N-butamides such as N-Buylpyrrolidone, N-Buylformamide and N-Bulacetoamide , Aryl ethers having polyalkyleneoxide in the side chain, butyl ethers such as methyl beryl ether, nitriles such as acrylonitrile, halogenated burs such as butyl chloride, maleic acid and its salts or anhydrides thereof and the like ester Unsaturated dicarboxylic acids and the like. Such a modified unit may be introduced by copolymerization or post-reaction. Of course, as long as the effects of the present invention are not impaired, additives such as a dispersant, a stabilizer, a pH adjuster, and a special function agent may be included depending on the purpose.
  • the fiber of the present invention needs to contain PVX as the first constituent component other than the PVA polymer.
  • PVX in the present invention is a bull polymer having 50% or more of units containing a halogen element, that is, fluorine, chlorine, bromine and iodine.
  • PVX include salt vinyl polymer (PVC), salt vinylidene polymer, vinyl bromide polymer, vinyl bromide polymer, chlorinated polyolefin, brominated polyolefin, etc.
  • PVC is also preferred for its flame retardancy, thermal decomposition resistance, and cost.
  • PVX contributes to the improvement of flame retardancy, so the greater the content, the better the flame retardancy. In order to impart the desired flame retardancy, it is preferred to contain 15% by mass or more with respect to the PVA polymer, more preferably 30% by mass or more. On the other hand, if the PVX content exceeds 65 mass%, the mechanical properties of the fiber tend to be insufficient, so the PVX content is more preferably 50 mass% or less.
  • additives other than PVX that is, tin compounds such as magnesium hydroxide, aluminum hydroxide and stannic oxide, antimony compounds, phosphate compounds, iron oxides, etc.
  • the fiber of the present invention needs to contain a layered silicate as a second constituent component other than the PVA polymer.
  • a layered silicate those having a layer charge force so. 2 to 2.0 and a cation exchange capacity such that the cation exchange amount is 50 to 200 meq / 100 g are preferable.
  • smectite clay compounds such as montmorillonite, sabonite, hydelite, nontronite, hectorite, bi-mouth site and stevensite, divermicilite, trivermycillite, fluorine vermiculite, etc.
  • the content of the layered silicate As the content of the layered silicate is increased, the flame retardancy is improved, and further, the shrinkage during combustion can be suppressed. In order to obtain desired flame retardancy and combustion shrinkage suppression effects, it is preferable to contain 1% by mass or more based on the PVA polymer. However, if the content of the layered silicate exceeds 30% by mass, the mechanical properties of the fiber are likely to be impaired. Therefore, the content is preferably 1 to 30% by mass. % Is more preferable.
  • the shrinkage during combustion is evaluated by measuring the dry heat contraction rate (Dsr) by the method described in Examples described later.
  • the layered silicate used is nano-dispersed uniformly in the fiber so that the average interlayer distance is 20 A or more.
  • the interlayer distance refers to the distance between the center of gravity of the plate of the layered silicate, and is specifically determined from the peak position of the (001) plane reflection of the layered silicate detected by wide-angle X-ray diffraction.
  • the average interlayer distance is a value obtained by the method described in the examples described later.
  • Nanodispersion is a layer of layered silicate, Or, on average, a multi-layer force of 10 layers or less means a state of being dispersed finely without forming a local lump in parallel or randomly, or in a state where parallel and random are mixed.
  • a transmission electron microscope TEM
  • the improvement in flame retardancy which is one of the effects of the present invention, is considered to be because the diffusion of the volatile gas generated by the combustion of the PVA polymer is blocked by the layered silicate. .
  • the PVA polymer is intercalated between the layers of the layered silicate to expand the layers, and the layered silicate is nano-dispersed. Large area that can block diffusion.
  • the dispersion of the layered silicate is insufficient, that is, if the average interlayer distance is less than 20A, the area cannot be increased, and the desired flame retardancy cannot be obtained.
  • PVX which is the first component other than the PVA polymer described above, has a radical scavenging function, which is known to be a mechanism for improving flame retardancy.
  • the flame-retardant PVA system of the present invention exhibits remarkable flame retardancy due to the synergistic effect of PVX and the nano-dispersed layered silicate with the combustion gas diffusion blocking effect.
  • the fineness of the fiber obtained by the present invention is not particularly limited.
  • fibers having a fineness of 0.1 to LOOOOdtex, preferably 1 to LOOOdtex can be widely used.
  • the fineness of the fiber should be adjusted appropriately according to the nozzle diameter and draw ratio.
  • the flame-retardant PVA fiber of the present invention is produced by wet spinning, dry-wet spinning, or dry spinning of a spinning stock solution containing a PVA polymer, PVX, and a layered silicate.
  • Solvents used in the spinning dope include those conventionally used in the production of PVA fibers, such as water, dimethyl sulfoxide (DMSO), dimethylformamide, dimethylacetamide, or glycerin, ethylene glycol, triethylene glycol, etc.
  • DMSO dimethyl sulfoxide
  • dimethylformamide dimethylacetamide
  • glycerin glycerin
  • ethylene glycol triethylene glycol
  • water and DMSO are particularly preferable from the viewpoint of supplyability and impact on the environmental load.
  • the method for preparing the stock solution is not particularly limited.
  • PVA polymer, PVX, and layered silicate are each dissolved or dispersed in the stock solution solvent alone. Either a method of mixing the ingredients in an appropriate ratio, or a method of dissolving and dispersing them in batches in the undiluted solvent can be employed. There is no particular limitation on the order of addition.
  • the concentration of solid content in the spinning dope (total amount of PVA polymer, PVX and layered silicate) is generally in the range of 6 to 60% by mass depending on the composition and degree of polymerization of the PVA polymer and the solvent.
  • the liquid temperature at the time of discharging the spinning dope is preferably within a range where the spinning dope is not decomposed or colored, and is specifically preferably 50 to 150 ° C.
  • Wet spinning is a method in which the spinning solution is discharged directly into the solidification bath, while dry and wet spinning is in the air or in an inert gas at an arbitrary distance from the spinning nozzle. The spinning solution is discharged and then introduced into the solidification bath. The dry spinning is the spinning nozzle force. The spinning solution is discharged into the air or inert gas without passing through the solidification bath. It is a method of obtaining fibers by drying.
  • the thread formed in the solidification bath may be subjected to a wet stretching process, a drying process, a dry heat stretching process, and the like.
  • the wet draw ratio is preferably 1.5 to 5 times.
  • the dry heat drawing temperature is preferably about 200 to 250 ° C.
  • the total stretch ratio is a ratio represented by the product of the wet stretch ratio and the dry heat stretch ratio.
  • monoaldehydes such as formaldehyde, dartaldehyde, nonane dialdehyde, or derivatives thereof are used to acetalize the PVA molecule and Z or between molecules.
  • monoaldehydes such as formaldehyde, dartaldehyde, nonane dialdehyde, or derivatives thereof are used to acetalize the PVA molecule and Z or between molecules.
  • it may be crosslinked with other crosslinking agents.
  • the layered silicate must be nano-dispersed in the PVA polymer.
  • a PVA spinning stock solution prepared in advance and a layered silicate dispersion can be prepared and mixed to give a sufficient shearing force.
  • shear is applied in a relatively low-viscosity solution state, the PVA-based polymer is interlaced with the layered silicate and the nano-dispersion of the layered silicate tends to proceed.
  • PVA poly Solution viscosity at 90 ° C of a mixed solution of mer and layered silicate When rotated at 6 rpm using a B-type viscometer, it is preferred to be less than 700 boise. Is preferable. If it exceeds 700 boise, the stirring efficiency will deteriorate and it will be difficult to apply uniform shear stress to the entire solution.
  • the fiber of the present invention can be used in any fiber form such as a stable fiber, a shortcut fiber, a filament yarn, and a spun yarn.
  • the cross-sectional shape of the fiber at that time is not particularly limited even if it is a circular, hollow, or atypical cross section such as a star. Sarako may mix and use the fibers of the present invention with other fibers.
  • the fibers that can be used in combination are not particularly limited, and examples thereof include PVA fibers that do not contain a layered clay compound, polyester fibers, polyamide fibers, and cellulose fibers.
  • fiber strength, dry heat shrinkage, limiting oxygen index (LOI value), and average interlayer distance of the layered silicate are obtained by the following measurement methods.
  • the fiber fineness (dtex) was determined by the mass method.
  • PVA with an average degree of polymerization of 1700 and a key degree of 98.2 mol% was dissolved in water to a concentration of 20% by mass, and then PVC-water emulsion (40% concentration) with a degree of polymerization of 1000 was Mixing was performed so that the PVC content was 60% by mass with respect to PVA. Further, 1% by mass of boric acid and acetic acid was mixed to prepare a solution ( ⁇ ). On the other hand, 95.5 parts by weight of water and montmorillonite ( ⁇ , Kunimine Kogyo Co., Ltd. “Kunipia F”) 4.5 parts by weight of the mixture were used in a high speed mixer (Osaka Chemical Co., Ltd.
  • This spinning dope was extruded through a die with a pore size of 0.08 mm and a pore number of 1000 into a 40 ° C coagulation bath containing 20 g ZL sodium hydroxide and 350 g ZL sodium sulfate to form a thread. After treatment with lOOgZL sulfuric acid and 300gZL sodium sulfate temperature 35 ° C After neutralization through a bath, washing with water and drying, a fiber subjected to 5 times wet drawing was obtained. Thereafter, the fiber was stretched twice in a hot air oven at 230 ° C to obtain a fiber having a stretch ratio of 10 times.
  • the average interlayer distance of the layered silicate over the obtained fiber was 28 A for the fiber subjected to 5 times wet drawing, 27 A for the fiber having a draw ratio of 10 times, and in the fiber
  • the dispersion state of the layered silicate was nano-dispersed as shown in FIG. Further, the limited oxygen index value (LOI value), dry heat shrinkage (Dsr), and mechanical properties of the obtained fiber were evaluated.
  • Table 1 shows the results of fiber performance evaluation. As shown in Table 1, the fibers obtained by the above method were excellent in both flame retardancy and combustion shrinkage in addition to the mechanical properties of conventional PVA fibers.
  • Fibers were obtained by spinning under the same conditions as in Example 1 except that the amount of MMT added was 16% by mass with respect to PVA.
  • the fiber performance evaluation results are shown in Table 1.
  • the average interlaminar distance of the layered silicate in the obtained fiber is 25A for both the fiber that has been wet-stretched 5 times and the fiber that has been stretched 10 times, and the dispersion state of the layered silicate in the fiber is shown in the figure. As shown in Fig. 1, it was nano-dispersed.
  • the obtained fibers were excellent in both flame retardancy and combustion shrinkage.
  • Fibers were obtained by spinning under the same conditions as in Example 1 except that the amount of MMT added was 8% by mass with respect to PVA.
  • the fiber performance evaluation results are shown in Table 1.
  • the average interlaminar distance of the layered silicate in the obtained fiber is 28A for the fiber subjected to 5 times wet drawing and 29A for the fiber with a draw ratio of 10 times, and the dispersion state of the layered silicate in the fiber. As shown in Fig. 1, it was nano-dispersed.
  • the resulting fibers were excellent in both flame retardancy and combustion shrinkage.
  • the amount of added PVC was 30% by mass with respect to PVA, and fibers were obtained by spinning under the same conditions as in Example 1.
  • the fiber performance evaluation results are shown in Table 1.
  • the average interlayer distance of the layered silicate is 28A for both the fiber subjected to 5 times wet stretching and the fiber having a stretching ratio of 10 times, and the dispersion state of the layered silicate in the fiber is shown in FIG.
  • the obtained fibers were excellent in both flame retardancy and combustion shrinkage.
  • Spinning was carried out under the same conditions as in Example 1 without adding the MMT dispersion and PVC emulsion to obtain a fiber of polybulal alcohol alone.
  • the obtained fiber had a low LOI value, no flame retardancy, and dry heat shrinkage was extremely severe.
  • a fiber containing only PVC as a component other than polyvinyl alcohol was obtained by spinning under the same conditions as in Example 1 except that no MMT dispersion was added.
  • the obtained fiber had a low L OI value, inferior flame retardancy, and extremely severe dry heat shrinkage.
  • a fiber having only MMT was obtained by spinning in the same manner as in Example 1 except that PVC was not added.
  • the average interlaminar distance of the layered silicate in the obtained fiber was 29A for the fiber that was wet-stretched 5 times, and 28A for the fiber that was stretched 10 times.
  • the obtained fiber had a low LOI value and inferior flame retardancy, and the flame retardancy was not at a practical level.
  • Example 1 (1) fibers were obtained in the same manner as in Example 1 except that the stirring time after mixing the solution (A) and the dispersion (B) was 1 hour.
  • the resulting fiber had a short stirring time when the spinning solution was prepared, so the MMT average interlayer distance was 12 A, which was less than 20 A.
  • the fiber was inferior in drawability, and the fiber with a draw ratio of 10 times was unable to obtain severe breakage.
  • the obtained fiber was inferior in mechanical properties and flame retardancy (LOI value), and did not exhibit the effect of suppressing combustion shrinkage.
  • LOI value flame retardancy
  • the flame-retardant PVA fiber of the present invention comprising the layered silicate having an average interlayer distance of 20A or more described in Examples 1 to 4 and PVX, Excellent flame retardancy such as LOI value and combustion shrinkage.
  • PVA fibers do not contain PVX or layered silicate as in Comparative Example 1 and have no flame retardancy.
  • Comparative Example 2 when only PVX is used as a flame retardant component, the combustion shrinkage is inferior.
  • Comparative Example 3 sufficient flame retardant performance is not exhibited only with a layered silicate. I understand.
  • the flame-retardant PVA fibers of Examples 1 to 4 that satisfy the constituent requirements of the present invention achieve the flame retardancy and suppression of combustion shrinkage more than expected in the comparative example, which is a conventional technique. I can tell you.
  • Comparative Example 4 in which the average interlayer distance of the layered silicate does not satisfy the requirements of the present invention indicates that sufficient characteristics are not exhibited in terms of mechanical properties, flame retardancy, and combustion shrinkage suppression.
  • a flame-retardant PVA fiber having excellent mechanical properties such as strength and elastic modulus, high !, flame retardancy, and suppression of shrinkage during combustion is efficiently and efficiently produced. It can be provided at low cost, and can be applied to a wide variety of uses that require high flame resistance, such as flameproof clothing.
  • FIG. 1 Nano-dispersed layered silicate in the flame-retardant PVA fiber of the present invention

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Artificial Filaments (AREA)

Abstract

A flame-retardant PVA fiber, which is excellent in mechanical characteristics such as strength and elastic modulus while exhibiting high flame retardance, is efficiently obtained at low cost. This flame-retardant PVA fiber is suppressed in shrinkage when it is burnt. Specifically disclosed is a flame-retardant PVA fiber which is composed of a PVA polymer having a polymerization degree of not less than 1200 and a saponification degree of not less than 90 mol%, a halogen-containing vinyl polymer and a layered silicate. This flame-retardant PVA fiber is characterized in that the average interlayer distance of the layered silicate is not less than 20 ú.

Description

明 細 書  Specification
難燃性ポリビュルアルコール系繊維  Flame retardant polybula alcohol fiber
技術分野  Technical field
[0001] 本発明はポリビュルアルコール(以下、 PVAと記載することがある)系ポリマーと含 ノ、ロゲンビニルポリマー(以下、 PVXと記載することがある)、さらには層状ケィ酸塩を 主な構成成分とする難燃性 PVA系繊維に関するものである。  [0001] The present invention mainly comprises a polybulal alcohol (hereinafter, sometimes referred to as PVA) -based polymer, a fluorine-containing polymer, a logene vinyl polymer (hereinafter sometimes referred to as PVX), and a layered silicate. The present invention relates to a flame retardant PVA fiber as a component.
背景技術  Background art
[0002] 従来、難燃繊維としては、難燃性モノマーを共重合したアクリル繊維やポリエステル 繊維、難燃性薬剤を練り込んだり反応させたりした再生セルロース繊維、ポリマー自 身が難燃性である熱硬化性繊維ゃァラミド繊維、難燃性薬剤で後加工した木綿や羊 毛などが広く知られている(例えば特許文献 1、 2参照。;)。し力しながら、上記アクリル 繊維の場合には燃焼時シアンガスが発生すること、またポリエステル繊維の場合には メルトドリップが発生すること、熱硬化性繊維の場合には繊維強度が低いこと、ァラミド 繊維の場合には繊維自体が極めて高価であること、さらに木綿や羊毛の場合には後 加工によって風合い硬化が起こってしまうことなどの種々の問題があった。  Conventionally, as flame retardant fibers, acrylic fibers and polyester fibers copolymerized with flame retardant monomers, regenerated cellulose fibers kneaded and reacted with flame retardant agents, and polymers themselves are flame retardant. Thermosetting fiber jaramide fiber, cotton and wool post-processed with a flame retardant agent are widely known (see, for example, Patent Documents 1 and 2;). However, in the case of the acrylic fiber, cyan gas is generated during combustion, in the case of the polyester fiber, melt drip is generated, in the case of the thermosetting fiber, the fiber strength is low, and the aramid fiber. In this case, the fiber itself is very expensive, and in the case of cotton and wool, there are various problems such as texture hardening by post-processing.
[0003] これらに対し、難燃性 PVA系繊維は、メルトドリップがなく、かつ高強度で洗濯耐久 性に優れていることから、難燃繊維として注目され種々の検討がなされており、中で も含ハロゲンビュルポリマーを複合した難燃性 PVA系繊維は高度の難燃性を示すこ とが知られている(例えば、特許文献 3、 4参照。;)。し力しながら、これら従来の難燃 性 PVA系繊維も、その難燃性は未だ十分でなぐ更には燃焼時に収縮するために、 火に力ざしたときに炎が貫通することが問題となっていた。従って難燃性 PVA系繊維 では、更なる難燃性の向上と燃焼時の収縮を抑制することが強く求められていた。  [0003] On the other hand, flame retardant PVA fibers have not been melt drip, have high strength and have excellent washing durability, and thus have been attracting attention as various flame retardant fibers. It is known that the flame retardant PVA fiber combined with a halogen-containing polymer also exhibits a high degree of flame retardancy (see, for example, Patent Documents 3 and 4). However, these conventional flame retardant PVA fibers are still not sufficiently flame retardant, and even shrink when burned. It was. Therefore, flame retardant PVA fibers have been strongly demanded to further improve flame retardancy and suppress shrinkage during combustion.
[0004] また、近年、層状ケィ酸塩をポリマー材料にナノメートルレベルで複合させる、 V、わ ゆるポリマーナノコンポジットィ匕技術が盛んに研究されており、当技術によりポリマー の性能向上を図ることが提案されている。例えば、層状ケィ酸塩を含有させたポリアミ ド榭脂組成物およびフィラメント、膨潤性フッ素雲母系化合物を含有させた強化ポリ アミドで構成されたフィラメント、膨潤性フッ素雲母系化合物を均一に分散させた強化 ポリアミド榭脂で構成された人工芝生用ヤーンがそれぞれ提案されており、これらで は、ポリアミド系榭脂に層状ケィ酸塩を均一にナノ分散させることにより、繊維の寸法 安定性や耐熱性、耐熱水性が改善されることが記載されている (例えば、特許文献 5 〜7参照)。 [0004] In addition, in recent years, V, a so-called polymer nanocomposite technology that combines layered silicates with polymer materials at the nanometer level, has been actively studied, and this technology aims to improve polymer performance. Has been proposed. For example, a polyamide resin composition and filament containing a layered silicate, a filament composed of a reinforced polyamide containing a swellable fluoromica compound, and a swellable fluoromica compound were uniformly dispersed. Strengthen Artificial turf yarns composed of polyamide rosin have been proposed. In these, fiber dimensional stability, heat resistance, and heat resistance are achieved by uniformly dispersing the layered silicate in polyamide-based rosin. It is described that the aqueous property is improved (for example, see Patent Documents 5 to 7).
[0005] また、層状ケィ酸塩を難燃剤として利用することも提案されて ヽる。例えば、層状ケ ィ酸塩を含有させたポリビュルアルコール榭脂からなる難燃性成形品が提案されて おり、難燃性が改善されることが記載されて ヽる (特許文献 8参照)。  [0005] It has also been proposed to use a layered silicate as a flame retardant. For example, a flame retardant molded article made of polybulal alcohol resin containing a layered silicate has been proposed, and it is described that flame retardancy is improved (see Patent Document 8).
[0006] さらに、層状ケィ酸塩をナノ分散させた PVA系繊維も知られている (特許文献 9参 照)が、本発明者らの検討によると、その難燃性は実用レベルにはほど遠ぐ例えば、 従来技術である含ハロゲンビニルポリマーを複合した難燃性 PVA系繊維と比較して も、その難燃性能は不十分であった。 [0006] Furthermore, PVA fibers in which layered silicates are nano-dispersed are also known (see Patent Document 9), but according to the study by the present inventors, their flame retardancy is not practical. Far away, for example, the flame retardant performance was insufficient compared to the conventional flame retardant PVA fiber composited with a halogen-containing vinyl polymer.
[0007] 特許文献 1:特開 2003— 335962号公報 [0007] Patent Document 1: Japanese Patent Laid-Open No. 2003-335962
特許文献 2:特開平 1― 221537号公報  Patent Document 2: JP-A-1-221537
特許文献 3:特開平 3 - 126749号公報  Patent Document 3: Japanese Patent Laid-Open No. 3-126749
特許文献 4:特開平 5— 78909号公報  Patent Document 4: JP-A-5-78909
特許文献 5:特開平 3 - 81364号公報  Patent Document 5: Japanese Patent Laid-Open No. 3-81364
特許文献 6:特開平 8— 3818号公報  Patent Document 6: JP-A-8-3818
特許文献 7:特開平 10— 130956号公報  Patent Document 7: Japanese Patent Laid-Open No. 10-130956
特許文献 8:特開 2000— 095915号公報  Patent Document 8: Japanese Unexamined Patent Publication No. 2000-095915
特許文献 9:特開 2005 - 9029号公報  Patent Document 9: Japanese Unexamined Patent Application Publication No. 2005-9029
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] 本発明の目的は、 PVA系繊維が本来有する強度、弾性率等の機械的性能を損な うことがなぐ難燃性および燃焼時の収縮が改善された難燃性 PVA系繊維、及びそ の製造方法を提供することである。 [0008] An object of the present invention is to provide a flame retardant PVA fiber having improved flame retardance that does not impair mechanical properties such as strength and elastic modulus inherent in the PVA fiber, and shrinkage during combustion. And a method of manufacturing the same.
課題を解決するための手段  Means for solving the problem
[0009] 本発明者等は、上記した難燃性 PVA系繊維を得るべく鋭意検討を重ねた結果、 P VA系ポリマーに PVXおよび層状ケィ酸塩を特定の条件で複合することによって、機 械的特性を低下させることなく難燃性および燃焼時の収縮が改善された難燃性 PV A系繊維が製造できることを見出した。すなわち本発明は、重合度 1200以上、ケン 化度 90モル%以上の PVA系ポリマー、および PVX、層状ケィ酸塩からなり、かつ層 状ケィ酸塩の平均層間距離が 20A以上であることを特徴とする難燃性 PVA系繊維 であり、好ましくは PVA系ポリマーに対し、 PVXポリマーが 15〜65質量%、層状ケィ 酸塩が 1〜30質量%含有してなる上記の難燃性 PVA系繊維であり、より好ましくは 層状ケィ酸塩がスメクタイト系粘土ィ匕合物または合成フッ素雲母である難燃性 PVA 系繊維に関するものである。 [0009] As a result of intensive studies to obtain the above-mentioned flame-retardant PVA fibers, the present inventors have obtained a function by combining PVX polymers and layered silicates under specific conditions. It has been found that flame retardant PV A-based fibers having improved flame retardancy and shrinkage during combustion can be produced without degrading mechanical properties. That is, the present invention comprises a PVA polymer having a polymerization degree of 1200 or more and a saponification degree of 90 mol% or more, and PVX, a layered silicate, and the average interlayer distance of the layered silicate is 20 A or more. The flame retardant PVA fiber, preferably 15 to 65% by mass of PVX polymer and 1 to 30% by mass of layered silicate with respect to the PVA polymer. More preferably, it relates to a flame retardant PVA fiber in which the layered silicate is a smectite clay composite or a synthetic fluorine mica.
[0010] また本発明は、 PVAが溶解する溶液中に PVXおよび層状ケィ酸塩が均一に分散 した紡糸原液を、紡糸、延伸して製糸することを特徴とする上記の難燃性 PVA系繊 維の製造方法に関する。 [0010] Further, the present invention provides the above flame-retardant PVA fiber characterized by spinning and drawing a spinning stock solution in which PVX and a layered silicate are uniformly dispersed in a solution in which PVA is dissolved. The present invention relates to a fiber manufacturing method.
発明の効果  The invention's effect
[0011] 本発明によれば、強度、弾性率などの力学的特性に優れ、高い難燃性を有し、か つ燃焼時の収縮も抑制された PVA系難燃繊維を効率的かつ低コストで提供すること が可能であり、多岐に渡る用途に適用できる。  [0011] According to the present invention, an efficient and low-cost PVA-based flame retardant fiber having excellent mechanical properties such as strength and elastic modulus, high flame retardancy, and suppressed shrinkage during combustion. And can be applied to a wide variety of uses.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0012] 以下に本発明について具体的に説明する。まず本発明の PVA系繊維を構成する PVA系ポリマーにつ 、て説明する。本発明に用いる PVA系ポリマーの重合度は特 に限定されるものではな ヽが、得られる繊維の機械的特性や寸法安定性等を考慮す ると 30°C水溶液の粘度力も求めた平均重合度が 1200以上であることが必要である 。高重合度のものを用いると、強度、耐湿熱性等の点で優れるので好ましいが、ポリ マー製造コストや繊維化コストなどの観点から平均重合度が 1500〜5000のものが 好ましい。 [0012] The present invention will be specifically described below. First, the PVA polymer constituting the PVA fiber of the present invention will be described. The degree of polymerization of the PVA polymer used in the present invention is not particularly limited, but taking into account the mechanical properties and dimensional stability of the resulting fiber, the average polymerization was also determined for the 30 ° C aqueous solution viscosity. The degree must be 1200 or more. A polymer having a high degree of polymerization is preferred because it is excellent in terms of strength, heat and humidity resistance, and the like, but a polymer having an average degree of polymerization of 1500 to 5000 is preferred from the viewpoint of polymer production cost and fiberization cost.
[0013] 用いる PVA系ポリマーのケン化度は 90モル%以上であることが必要であり、得られ る繊維の力学物性及び耐水性と ヽぅ点で 98モル%以上が好ましぐ 99モル%以上 であると更に好ましい。 99. 7モル%以上であると耐熱水性が優れるので特に好まし い。  [0013] The degree of saponification of the PVA polymer to be used must be 90 mol% or more, and 98 mol% or more is preferred in view of the mechanical properties and water resistance of the resulting fiber. 99 mol% The above is more preferable. 99. More than 7 mol% is particularly preferred since it has excellent hot water resistance.
[0014] また本発明の繊維を構成する PVA系ポリマーは、ビュルアルコールユニットを主成 分とするものであれば特に限定されず、他の構成単位を有していてもかまわない。こ のような構造単位としては、例えば、エチレン、プロピレン、ブチレン等のォレフィン類 、アクリル酸及びその塩とアクリル酸メチルなどのアクリル酸エステル、メタクリル酸お よびその塩、メタクリル酸メチル等のメタクリル酸エステル類、アクリルアミド、 N—メチ ルアクリルアミド等のアクリルアミド誘導体、メタクリルアミド、 N—メチロールメタクリル アミド等のメタクリルアミド誘導体、 N—ビュルピロリドン、 N—ビュルホルムアミド、 N— ビュルァセトアミド等の N—ビュルアミド類、ポリアルキレンォキシドを側鎖に有するァ リルエーテル類、メチルビ-ルエーテル等のビュルエーテル類、アクリロニトリル等の 二トリル類、塩化ビュル等のハロゲン化ビュル、マレイン酸およびその塩またはその 無水物やそのエステル等の不飽和ジカルボン酸等がある。このような変性ユニットの 導入法は共重合による方法でも、後反応による方法でもよい。もちろん、本発明の効 果を損なわない程度であれば、 目的に応じて、分散剤、安定剤、 pH調整剤、特殊機 能剤などの添加剤が含まれて 、てもよ 、。 [0014] The PVA polymer constituting the fiber of the present invention is mainly composed of a bull alcohol unit. As long as it is a minute, it is not particularly limited, and other structural units may be included. Examples of such structural units include olefins such as ethylene, propylene, and butylene, acrylic acid and its salts and acrylic esters such as methyl acrylate, methacrylic acid and its salts, and methacrylic acid such as methyl methacrylate. Esters, acrylamide derivatives such as acrylamide and N-methyl acrylamide, methacrylamide derivatives such as methacrylamide and N-methylol methacrylamide, N-butamides such as N-Buylpyrrolidone, N-Buylformamide and N-Bulacetoamide , Aryl ethers having polyalkyleneoxide in the side chain, butyl ethers such as methyl beryl ether, nitriles such as acrylonitrile, halogenated burs such as butyl chloride, maleic acid and its salts or anhydrides thereof and the like ester Unsaturated dicarboxylic acids and the like. Such a modified unit may be introduced by copolymerization or post-reaction. Of course, as long as the effects of the present invention are not impaired, additives such as a dispersant, a stabilizer, a pH adjuster, and a special function agent may be included depending on the purpose.
[0015] 本発明の繊維は、上記の PVA系ポリマー以外の第一の構成成分として、 PVXを含 有することが必要である。本発明でいう PVXとは、ハロゲン元素、すなわちフッ素、塩 素、臭素、沃素を含有するユニットを 50%以上有するビュルポリマーである。 PVXと しては、例えば、塩ィ匕ビニル系ポリマー(PVC)、塩ィ匕ビユリデン系ポリマー、臭化ビ -ル系ポリマー、臭化ビ-リデン系ポリマー、塩素化ポリオレフイン、臭素化ポリオレフ インなどを挙げることができる力 その中でも、難燃性、耐熱分解性、コストの点力も P VCが好ましい。 [0015] The fiber of the present invention needs to contain PVX as the first constituent component other than the PVA polymer. PVX in the present invention is a bull polymer having 50% or more of units containing a halogen element, that is, fluorine, chlorine, bromine and iodine. Examples of PVX include salt vinyl polymer (PVC), salt vinylidene polymer, vinyl bromide polymer, vinyl bromide polymer, chlorinated polyolefin, brominated polyolefin, etc. Among these, PVC is also preferred for its flame retardancy, thermal decomposition resistance, and cost.
[0016] PVXは難燃性向上に寄与するため、含有量が多いほど難燃性は向上する。所望 の難燃性を付与するためには PVA系ポリマーに対して 15質量%以上含有すること が好ましぐ 30質量%以上含有することがより好ましい。一方、 PVXの含有量が 65質 量%を超えると繊維の機械的性質が不十分になりやすいことから、 PVXの含有量と しては、 50質量%以下であることがより好ましい。また、難燃性向上を目的に、 PVX 以外の添加剤、すなわち、水酸化マグネシウム、水酸ィ匕アルミニウム、酸化第 2スズ 等のスズ系化合物、アンチモン系化合物、リン酸化合物、鉄系酸化物等の公知の難 燃助剤を加えることも可能である。 [0017] また、本発明の繊維は上記の PVA系ポリマー以外の第二の構成成分として、層状 ケィ酸塩を含有することが必要である。用いる層状ケィ酸塩としては、その層電荷力 so . 2〜2. 0であり、また陽イオン交換量が 50〜200meq/100gであるような陽イオン 交換能力を有するものが好ましい。具体的にはモンモリロナイト、サボナイト、ハイデ ライト、ノントロナイト、ヘクトライト、バイ口サイト及びスティブンサイト等のスメクタイト系 粘土化合物や、ジ—バーミキユライト、トリ—バーミキユライト、フッ素バーミキユライト等 のバーミキユライト系粘土ィ匕合物、白雲母、ノラゴナイト、イライト等の雲母系粘土ィ匕 合物、 Li型フッ素テ-オライト、 Na型フッ素テ-オライト、合成フッ素雲母 (Li型四珪 素フッ素雲母、 Na型四珪素フッ素雲母等)等を挙げることができ、これらは、天然物 であっても合成物であってもよい。さらに本発明では、これらの層状ケィ酸塩を単独ま たは 2種以上組み合わせて用いることができる。これらの中でも、スメクタイト系粘土ィ匕 合物または合成フッ素雲母は、低コストであり、また繊維化工程性の観点や、繊維の 難燃性、燃焼収縮抑制の観点力 も特に好まし 、。 [0016] PVX contributes to the improvement of flame retardancy, so the greater the content, the better the flame retardancy. In order to impart the desired flame retardancy, it is preferred to contain 15% by mass or more with respect to the PVA polymer, more preferably 30% by mass or more. On the other hand, if the PVX content exceeds 65 mass%, the mechanical properties of the fiber tend to be insufficient, so the PVX content is more preferably 50 mass% or less. For the purpose of improving flame retardancy, additives other than PVX, that is, tin compounds such as magnesium hydroxide, aluminum hydroxide and stannic oxide, antimony compounds, phosphate compounds, iron oxides, etc. It is also possible to add a known flame retardant aid such as [0017] The fiber of the present invention needs to contain a layered silicate as a second constituent component other than the PVA polymer. As the layered silicate to be used, those having a layer charge force so. 2 to 2.0 and a cation exchange capacity such that the cation exchange amount is 50 to 200 meq / 100 g are preferable. Specifically, smectite clay compounds such as montmorillonite, sabonite, hydelite, nontronite, hectorite, bi-mouth site and stevensite, divermicilite, trivermycillite, fluorine vermiculite, etc. Vermiculite clay composites, muscovite, noragonite, illite and other mica clay composites, Li-type fluorine theolite, Na-type fluorine theolite, synthetic fluorine-mica (Li-type tetrasilicon Fluorine mica, Na-type tetrasilicon fluorine mica, and the like. These may be natural products or synthetic products. Furthermore, in the present invention, these layered silicates can be used alone or in combination of two or more. Among these, smectite clay composites or synthetic fluorinated mica are low in cost, and are particularly preferred from the viewpoint of fiberization processability, fiber flame retardancy, and suppression of combustion shrinkage.
[0018] 層状ケィ酸塩の含有量は、その量が多いほど難燃性が向上し、さらに燃焼時の収 縮を抑制することができる。所望の難燃性、燃焼収縮抑制の効果を得るためには、 P VA系ポリマーに対して 1質量%以上を含有することが好ましい。しかしながら、層状 ケィ酸塩の含有量が 30質量%を超えると、繊維の機械的特性が損なわれやすくなる ことから、その含有量は 1〜30質量%であることが好ましぐ 4〜16質量%の範囲で あることがより好ましい。  [0018] As the content of the layered silicate is increased, the flame retardancy is improved, and further, the shrinkage during combustion can be suppressed. In order to obtain desired flame retardancy and combustion shrinkage suppression effects, it is preferable to contain 1% by mass or more based on the PVA polymer. However, if the content of the layered silicate exceeds 30% by mass, the mechanical properties of the fiber are likely to be impaired. Therefore, the content is preferably 1 to 30% by mass. % Is more preferable.
なお本発明にお 、て、燃焼時の収縮は後述する実施例に記載の方法にて乾熱収 縮率 (Dsr)を測定することにより評価する。  In the present invention, the shrinkage during combustion is evaluated by measuring the dry heat contraction rate (Dsr) by the method described in Examples described later.
[0019] 本発明の繊維では、用いる層状ケィ酸塩が、繊維中に均一に、平均層間距離が 20 A以上となるようにナノ分散していることが必要である。平均層間距離が 20A未満の 場合は、ポリマーの層間へのインターカレーシヨンが不十分であり、層状ケィ酸塩が 繊維中にナノ分散されず、所望の物性も発現しない。ここで、層間距離とは層状ケィ 酸塩の平板の重心間の距離をいい、具体的には、広角 X線回折で検出される層状ケ ィ酸塩の (001)面反射のピーク位置より決定でき、平均層間距離とは後述する実施 例に記載した方法で求めた値をいう。また、ナノ分散とは、層状ケィ酸塩の層一枚、 若しくは平均的には 10層以下の多層物力 平行またはランダムに、若しくは平行とラ ンダムとが混在した状態で局所的な塊を形成することなぐ超微細に分散する状態を いう。本発明の繊維では、図 1に示すように、透過型電子顕微鏡 (TEM)によって初 めて、層状ケィ酸塩の存在形態を確認することができる。 In the fiber of the present invention, it is necessary that the layered silicate used is nano-dispersed uniformly in the fiber so that the average interlayer distance is 20 A or more. When the average interlayer distance is less than 20 A, the intercalation between the polymer layers is insufficient, the layered silicate is not nano-dispersed in the fiber, and the desired physical properties are not exhibited. Here, the interlayer distance refers to the distance between the center of gravity of the plate of the layered silicate, and is specifically determined from the peak position of the (001) plane reflection of the layered silicate detected by wide-angle X-ray diffraction. The average interlayer distance is a value obtained by the method described in the examples described later. Nanodispersion is a layer of layered silicate, Or, on average, a multi-layer force of 10 layers or less means a state of being dispersed finely without forming a local lump in parallel or randomly, or in a state where parallel and random are mixed. In the fiber of the present invention, as shown in FIG. 1, the existence form of the layered silicate can be confirmed only by a transmission electron microscope (TEM).
[0020] 本発明の効果の一つである難燃性の向上は、 PVA系ポリマーの燃焼時によって生 じた揮発性ガスの拡散が層状ケィ酸塩によって、遮断されるためであると考えられる。 本発明の繊維では、層状ケィ酸塩の層と層の間に PVA系ポリマーがインターカレー シヨンされて層間を広げ、層状ケィ酸塩がナノ分散しているため、燃焼時に生じる揮 発性ガスの拡散を遮断できる面積が大きい。一方、層状ケィ酸塩の分散が不十分な 場合、すなわち平均層間距離が 20A未満の場合、この面積を高めることができない ために、所望の難燃性を得ることができなくなる。  [0020] The improvement in flame retardancy, which is one of the effects of the present invention, is considered to be because the diffusion of the volatile gas generated by the combustion of the PVA polymer is blocked by the layered silicate. . In the fiber of the present invention, the PVA polymer is intercalated between the layers of the layered silicate to expand the layers, and the layered silicate is nano-dispersed. Large area that can block diffusion. On the other hand, if the dispersion of the layered silicate is insufficient, that is, if the average interlayer distance is less than 20A, the area cannot be increased, and the desired flame retardancy cannot be obtained.
また先に述べた PVA系ポリマー以外の第一の構成成分である PVXは、ラジカル捕 捉機能を有しており、これが難燃性向上のメカニズムであることが知られている。この ような PVXとナノ分散した層状ケィ酸塩の燃焼ガス拡散の遮断効果との相乗効果に より、本発明の難燃 PVA系は顕著な難燃性を発現する。  PVX, which is the first component other than the PVA polymer described above, has a radical scavenging function, which is known to be a mechanism for improving flame retardancy. The flame-retardant PVA system of the present invention exhibits remarkable flame retardancy due to the synergistic effect of PVX and the nano-dispersed layered silicate with the combustion gas diffusion blocking effect.
[0021] 本発明により得られる繊維の繊度は特に限定されず、例えば 0. 1〜: LOOOOdtex、 好ましくは 1〜: LOOOdtexの繊度の繊維が広く使用できる。繊維の繊度はノズル径ゃ 延伸倍率により適宜調整すればょ ヽ。  [0021] The fineness of the fiber obtained by the present invention is not particularly limited. For example, fibers having a fineness of 0.1 to LOOOOdtex, preferably 1 to LOOOdtex can be widely used. The fineness of the fiber should be adjusted appropriately according to the nozzle diameter and draw ratio.
[0022] 次に、本発明により得られる繊維の製造方法について説明する。  [0022] Next, a method for producing the fiber obtained by the present invention will be described.
本発明の難燃性 PVA系繊維は、 PVA系ポリマー、 PVX及び層状ケィ酸塩を含む 紡糸原液を湿式紡糸、乾湿式紡糸、あるいは乾式紡糸を行うことにより製造される。 紡糸原液に用いる溶媒としては、 PVA系繊維の製造に際して従来力 用いられて ヽ る溶媒、例えば、水、ジメチルスルホキシド(DMSO)、ジメチルホルムアミド、ジメチ ルァセトアミド、またはグリセリン、エチレングリコール、トリエチレングリコール等の多 価アルコール類、ジエチレントリァミン、ロダン塩などの 1種または 2種以上を組み合 わせて用いることができる。この中でも、供給性、環境負荷への影響の観点から、水 及び DMSOが特に好ましい。原液の調製方法は特に限定されるものではなぐ PVA 系ポリマー、 PVX、層状ケィ酸塩をそれぞれ単独で原液溶媒中に溶解または分散し たものを適当な割合で混合する方法、原液溶媒中に一括で仕込んだ後に、溶解、分 散させる方法、いずれも採用することができる。また、添加順序には特に限定はないThe flame-retardant PVA fiber of the present invention is produced by wet spinning, dry-wet spinning, or dry spinning of a spinning stock solution containing a PVA polymer, PVX, and a layered silicate. Solvents used in the spinning dope include those conventionally used in the production of PVA fibers, such as water, dimethyl sulfoxide (DMSO), dimethylformamide, dimethylacetamide, or glycerin, ethylene glycol, triethylene glycol, etc. One or a combination of two or more of polyhydric alcohols, diethylenetriamine, and rhodan salts can be used. Among these, water and DMSO are particularly preferable from the viewpoint of supplyability and impact on the environmental load. The method for preparing the stock solution is not particularly limited. PVA polymer, PVX, and layered silicate are each dissolved or dispersed in the stock solution solvent alone. Either a method of mixing the ingredients in an appropriate ratio, or a method of dissolving and dispersing them in batches in the undiluted solvent can be employed. There is no particular limitation on the order of addition.
。紡糸原液中の固形分濃度 (PVA系ポリマー、 PVX及び層状ケィ酸塩の合計量)は 、 PVA系ポリマーの組成や重合度、溶媒によって異なる力 6〜60質量%の範囲が 一般的である。紡糸原液の吐出時の液温は、紡糸原液が分解、着色しない範囲であ ることが好ましぐ具体的には 50〜150°Cとすることが好ましい。なお、湿式紡糸とは 、紡糸ノズル力 直接固化浴に紡糸原液を吐出する方法のことであり、一方で乾湿 式紡糸とは、紡糸ノズルからー且任意の距離の空気中あるいは不活性ガス中に紡糸 原液を吐出し、その後に固化浴に導入する方法のことであり、また、乾式紡糸とは、 紡糸ノズル力 空気中あるいは不活性ガス中に紡糸原液を吐出し、固化浴を経由せ ずに乾燥して繊維を得る方法のことである。 . The concentration of solid content in the spinning dope (total amount of PVA polymer, PVX and layered silicate) is generally in the range of 6 to 60% by mass depending on the composition and degree of polymerization of the PVA polymer and the solvent. The liquid temperature at the time of discharging the spinning dope is preferably within a range where the spinning dope is not decomposed or colored, and is specifically preferably 50 to 150 ° C. Wet spinning is a method in which the spinning solution is discharged directly into the solidification bath, while dry and wet spinning is in the air or in an inert gas at an arbitrary distance from the spinning nozzle. The spinning solution is discharged and then introduced into the solidification bath.The dry spinning is the spinning nozzle force. The spinning solution is discharged into the air or inert gas without passing through the solidification bath. It is a method of obtaining fibers by drying.
[0023] 次いで、固化浴で形成された糸篠を、湿延伸工程、乾燥工程、乾熱延伸工程等に 供すれば良い。繊維間膠着を抑制し、繊維の機械的性能を高める点からは湿延伸 倍率を 1. 5〜5倍とするのが好ましい。さらに乾熱延伸工程を経て、機械的性能を高 めるのが好ましい。十分な機械的性能を得る点力もは、全延伸倍率を 6倍以上とする のが好ましぐ乾熱延伸温度は 200〜250°C程度とするのが望ましい。なお、本発明 で 、う全延伸倍率とは湿延伸倍率と乾熱延伸倍率との積で表される倍率である。ま た、耐水性を高めるために、熱処理を行ったり、さらにホルムアルデヒド、ダルタルァ ルデヒド、ノナンジアールなどのモノアルデヒド類ゃジアルデヒド類、或いはその誘導 体により PVAの分子内および Zまたは分子間をァセタールイ匕してもよぐこれら以外 の架橋剤などにより架橋しても構わない。  [0023] Next, the thread formed in the solidification bath may be subjected to a wet stretching process, a drying process, a dry heat stretching process, and the like. In order to suppress interfiber sticking and improve the mechanical performance of the fiber, the wet draw ratio is preferably 1.5 to 5 times. Furthermore, it is preferable to improve the mechanical performance through a dry heat drawing step. As for the point force to obtain sufficient mechanical performance, it is preferable to set the total draw ratio to 6 times or more, and the dry heat drawing temperature is preferably about 200 to 250 ° C. In the present invention, the total stretch ratio is a ratio represented by the product of the wet stretch ratio and the dry heat stretch ratio. In order to increase water resistance, heat treatment is performed, and monoaldehydes such as formaldehyde, dartaldehyde, nonane dialdehyde, or derivatives thereof are used to acetalize the PVA molecule and Z or between molecules. However, it may be crosslinked with other crosslinking agents.
[0024] 前記したように、本発明では、層状ケィ酸塩が PVA系ポリマー中にナノ分散してい ることが必要である。それを達成する手段として、例えば、予め調製した PVAの紡糸 原液と、層状ケィ酸塩分散液をそれぞれ調製し、これを混合して十分なせん断力を 付与する方法を採用することができる。ここで、十分なせん断力を付与するためには 、高速の攪拌を与えるか、あるいは攪拌時間を長くするとよい。また、比較的粘度の 低 ヽ溶液状態でせん断を加えると、 PVA系ポリマーの層状ケィ酸塩へのインター力 レーシヨンや、層状ケィ酸塩のナノ分散が進行しやすくなる。具体的には PVA系ポリ マーと層状ケィ酸塩混合溶液の 90°Cでの溶液粘度力 B型粘度測定計を用いて 6r pmで回転させたときに、 700ボイズ以下であると好ましぐ 500ボイズ以下であると更 に好ましい。 700ボイズを超えると、攪拌効率が悪くなり、溶液全体に均一なせん断 応力付与が困難となる。 [0024] As described above, in the present invention, the layered silicate must be nano-dispersed in the PVA polymer. As a means for achieving this, for example, a PVA spinning stock solution prepared in advance and a layered silicate dispersion can be prepared and mixed to give a sufficient shearing force. Here, in order to give a sufficient shearing force, it is preferable to give high-speed stirring or lengthen the stirring time. In addition, when shear is applied in a relatively low-viscosity solution state, the PVA-based polymer is interlaced with the layered silicate and the nano-dispersion of the layered silicate tends to proceed. Specifically, PVA poly Solution viscosity at 90 ° C of a mixed solution of mer and layered silicate When rotated at 6 rpm using a B-type viscometer, it is preferred to be less than 700 boise. Is preferable. If it exceeds 700 boise, the stirring efficiency will deteriorate and it will be difficult to apply uniform shear stress to the entire solution.
[0025] 本発明の繊維は、ステーブルファイバー、ショートカットファイバー、フィラメントヤー ン、紡績糸などのあらゆる繊維形態で用いることができる。その際の繊維の断面形状 に関しても特に制限はなぐ円形、中空、あるいは星型等異型断面であっても力まわ ない。さら〖こは、本発明の繊維を他の繊維と混合'併用してもよい。この時、併用しう る繊維として特に限定はないが、層状粘土化合物を含有しない PVA系繊維や、ポリ エステル系繊維、ポリアミド系繊維、セルロース系繊維等を挙げることができる。  [0025] The fiber of the present invention can be used in any fiber form such as a stable fiber, a shortcut fiber, a filament yarn, and a spun yarn. The cross-sectional shape of the fiber at that time is not particularly limited even if it is a circular, hollow, or atypical cross section such as a star. Sarako may mix and use the fibers of the present invention with other fibers. At this time, the fibers that can be used in combination are not particularly limited, and examples thereof include PVA fibers that do not contain a layered clay compound, polyester fibers, polyamide fibers, and cellulose fibers.
[0026] 以下実施例により、本発明を詳細に説明するが、本発明は実施例により何等制限 されるものではない。なお、実施例において、繊維強度、乾熱収縮率、限界酸素指 数値 (LOI値)、層状ケィ酸塩の平均層間距離は以下の測定法にて得られるものとす る。  [0026] Hereinafter, the present invention will be described in detail by way of examples. However, the present invention is not limited to the examples. In Examples, fiber strength, dry heat shrinkage, limiting oxygen index (LOI value), and average interlayer distance of the layered silicate are obtained by the following measurement methods.
[0027] [繊維強度 cNZdtex]  [0027] [Fiber strength cNZdtex]
JIS L1013に準拠して、予め調湿されたヤーンを試長 20cm、初荷重 0. 25cN/ dtex及び引張強度 50%Z分の条件で測定し、 n= 5の平均値を採用した。また繊維 繊度 (dtex)は質量法により求めた。  In accordance with JIS L1013, a pre-humidified yarn was measured under the conditions of a test length of 20 cm, an initial load of 0.25 cN / dtex and a tensile strength of 50% Z, and an average value of n = 5 was adopted. The fiber fineness (dtex) was determined by the mass method.
[0028] [乾熱収縮率 (Dsr) %] [0028] [Dry heat shrinkage (Dsr)%]
JIS L1013に準拠して、試長 lmのヤーンを 300°Cの乾燥機中に 1分間滞留させ 、ヤーン繊度当たり lZlOgの荷重をかけたときの収縮率を測定した。この Dsrを測定 することにより、燃焼時の収縮性を評価した。  In accordance with JIS L1013, a yarn with a test length of lm was kept in a dryer at 300 ° C for 1 minute, and the shrinkage rate was measured when a load of lZlOg per yarn fineness was applied. By measuring this Dsr, the shrinkage during combustion was evaluated.
[0029] [限界酸素指数値 (LOI値) ] [0029] [Limited oxygen index value (LOI value)]
JIS K7201に準拠して、繊維を三つ編みにした試長 18cmの試料を作り、試料の 上端に着火したとき、試料の燃焼時間が 3分以上継続して燃焼するか、又は着火後 の燃焼長さが 5cm以上燃えつづけるのに必要な最低の酸素濃度を測定し、 n= 3の 平均値を採用した。  In accordance with JIS K7201, when making a 18 cm long sample with a braided fiber and igniting the upper end of the sample, the sample burns continuously for more than 3 minutes, or after ignition The minimum oxygen concentration required to continue burning over 5 cm in length was measured, and an average value of n = 3 was adopted.
[0030] [層状ケィ酸塩の平均層間距離 A] 繊維中に分散した層状ケィ酸塩の平均層間距離の測定は、広角 X線回折装置 (理 学電気社製「RINT2400」)にて、グラフアイトモノクロメーターで単色化された CuK α線を用い、 40mV— 100mAの条件で測定を行った。スキャンスピードは 2 Θ =1° /min、ステップ幅は 0. 01° 、走査角 2° ≤2 Θ≤10° の条件で、繊維軸に対して垂 直方向の回折強度の角度依存性を測定した。層状ケィ酸塩の(001)面からの回折 ピーク位置を平均層間距離とし、以下のブラッグの式より算出した。 [0030] [Average interlayer distance A of layered silicate] The average interlaminar distance of the layered silicate dispersed in the fiber was measured using CuK α-rays monochromatized with a graph-eye monochromator with a wide-angle X-ray diffractometer (“RINT2400” manufactured by Rigaku Corporation) Measurement was performed under the condition of 40 mV to 100 mA. Measures the angular dependence of diffraction intensity in the direction perpendicular to the fiber axis under the conditions of a scan speed of 2 Θ = 1 ° / min, a step width of 0.01 °, and a scan angle of 2 ° ≤ 2 Θ ≤ 10 °. did. The diffraction peak position from the (001) plane of the layered silicate was taken as the average interlayer distance, and calculated from the following Bragg equation.
[0031] [数 1] ά = λ / 2 s i n e [0031] [Equation 1] ά = λ / 2 s i n e
ここで  here
λ : X線波長 (1 . 5 1 4 2 Α)  λ: X-ray wavelength (1.5 1 4 2 Α)
Θ :回折角度  Θ: diffraction angle
[0032] [実施例 1] [0032] [Example 1]
(1)平均重合度 1700、ケンィ匕度 98. 2モル%の PVAを濃度が 20質量%になるよう に水に溶解し、これに重合度 1000の PVC—水ェマルジヨン(40%濃度)を、 PVC含 有量が PVAに対して 60質量%になるよう混合した。さらに 1質量%のホウ酸、酢酸を 混合し、溶液 (Α)を調製した。一方、水 95. 5質量部とモンモリロナイト(ΜΜΤ、クニ ミネ工業株式会社製「クニピア F」) 4. 5質量部の混合物を、高速ミキサー (大阪ケミカ ル株式会社製ォスタープレンダー)を用 、て 30分間高速攪拌 ( 13 lOOrpm)すること により、 MMTがナノ分散した分散液 (B)を調製した。さらに MMTの添加量が PVA に対して 12質量%になるように、溶液 (A)と分散液 (B)を混合し、上と同じ高速ミキ サ一にて 90°Cで 5時間だけ高速攪拌 ( 13 lOOrpm)することにより紡糸原液を得た。 このときの紡糸原液の溶液粘度は B型粘度計を用いて 6rpmで回転させたところ、 50 ポィズであった。  (1) PVA with an average degree of polymerization of 1700 and a key degree of 98.2 mol% was dissolved in water to a concentration of 20% by mass, and then PVC-water emulsion (40% concentration) with a degree of polymerization of 1000 was Mixing was performed so that the PVC content was 60% by mass with respect to PVA. Further, 1% by mass of boric acid and acetic acid was mixed to prepare a solution (Α). On the other hand, 95.5 parts by weight of water and montmorillonite (ΜΜΤ, Kunimine Kogyo Co., Ltd. “Kunipia F”) 4.5 parts by weight of the mixture were used in a high speed mixer (Osaka Chemical Co., Ltd. Oster Blender) Then, high-speed stirring (13 lOOrpm) for 30 minutes was performed to prepare a dispersion liquid (B) in which MMT was nano-dispersed. Further, mix solution (A) and dispersion (B) so that the amount of MMT added is 12% by mass with respect to PVA, and stir at 90 ° C for 5 hours at the same high speed mixer as above. A spinning dope was obtained by (13 lOOrpm). The solution viscosity of the spinning dope at this time was 50 poise when rotated at 6 rpm using a B-type viscometer.
(2)この紡糸原液を、 20gZLの水酸ィ匕ナトリウムと 350gZLの硫酸ナトリウムを含む 40°Cの凝固浴の中へ、孔径 0. 08mm,孔数 1000の口金を通して押し出して、糸条 形成した後、 lOOgZLの硫酸と 300gZLの硫酸ナトリウムを含む温度 35°Cの処理 浴を通して中和し、水洗、乾燥工程を経た後、 5倍の湿延伸を施した繊維を得た。さ らにその後、 230°Cの熱風炉中で 2倍の延伸を施し、 10倍の延伸倍率を施した繊維 を得た。 (2) This spinning dope was extruded through a die with a pore size of 0.08 mm and a pore number of 1000 into a 40 ° C coagulation bath containing 20 g ZL sodium hydroxide and 350 g ZL sodium sulfate to form a thread. After treatment with lOOgZL sulfuric acid and 300gZL sodium sulfate temperature 35 ° C After neutralization through a bath, washing with water and drying, a fiber subjected to 5 times wet drawing was obtained. Thereafter, the fiber was stretched twice in a hot air oven at 230 ° C to obtain a fiber having a stretch ratio of 10 times.
(3)得られた繊維にぉ ヽて層状ケィ酸塩の平均層間距離は、 5倍の湿延伸を施した 繊維では 28 A、延伸倍率 10倍の繊維では 27 Aであり、また繊維中における層状ケ ィ酸塩の分散状態は図 1に示すようにナノ分散されて!ヽた。さらに得られた繊維の限 界酸素指数値 (LOI値)、乾熱収縮率 (Dsr)、力学物性を評価した。繊維の性能評 価結果を表 1に示す。表 1に示すように、上記方法で得られた繊維は、従来の PVA 系繊維の力学物性に加えて、難燃性、燃焼収縮が共に優れるものであった。  (3) The average interlayer distance of the layered silicate over the obtained fiber was 28 A for the fiber subjected to 5 times wet drawing, 27 A for the fiber having a draw ratio of 10 times, and in the fiber The dispersion state of the layered silicate was nano-dispersed as shown in FIG. Further, the limited oxygen index value (LOI value), dry heat shrinkage (Dsr), and mechanical properties of the obtained fiber were evaluated. Table 1 shows the results of fiber performance evaluation. As shown in Table 1, the fibers obtained by the above method were excellent in both flame retardancy and combustion shrinkage in addition to the mechanical properties of conventional PVA fibers.
[0033] [実施例 2] [0033] [Example 2]
MMTの添加量が、 PVAに対し 16質量%であること以外は、実施例 1と同様な条 件で紡糸して繊維を得た。繊維の性能評価結果を表 1に示す。得られた繊維におい て層状ケィ酸塩の平均層間距離は、 5倍の湿延伸を施した繊維、延伸倍率 10倍の 繊維とも 25Aであり、また繊維中における層状ケィ酸塩の分散状態は図 1に示すよう にナノ分散されていた。さらに得られた繊維は従来の PVA系繊維の力学物性に加え て、難燃性、燃焼収縮が共に優れるものであった。  Fibers were obtained by spinning under the same conditions as in Example 1 except that the amount of MMT added was 16% by mass with respect to PVA. The fiber performance evaluation results are shown in Table 1. The average interlaminar distance of the layered silicate in the obtained fiber is 25A for both the fiber that has been wet-stretched 5 times and the fiber that has been stretched 10 times, and the dispersion state of the layered silicate in the fiber is shown in the figure. As shown in Fig. 1, it was nano-dispersed. In addition to the mechanical properties of conventional PVA fibers, the obtained fibers were excellent in both flame retardancy and combustion shrinkage.
[0034] [実施例 3] [0034] [Example 3]
MMTの添加量が、 PVAに対し 8質量%であること以外は、実施例 1と同様な条件 で紡糸して繊維を得た。繊維の性能評価結果を表 1に示す。得られた繊維において 層状ケィ酸塩の平均層間距離は、 5倍の湿延伸を施した繊維では 28A、延伸倍率 1 0倍の繊維では 29Aであり、また繊維中における層状ケィ酸塩の分散状態は図 1に 示すようにナノ分散されて ヽた。さらに得られた繊維は従来の PVA系繊維の力学物 性に加えて、難燃性、燃焼収縮が共に優れるものであった。  Fibers were obtained by spinning under the same conditions as in Example 1 except that the amount of MMT added was 8% by mass with respect to PVA. The fiber performance evaluation results are shown in Table 1. The average interlaminar distance of the layered silicate in the obtained fiber is 28A for the fiber subjected to 5 times wet drawing and 29A for the fiber with a draw ratio of 10 times, and the dispersion state of the layered silicate in the fiber. As shown in Fig. 1, it was nano-dispersed. In addition to the mechanical properties of conventional PVA fibers, the resulting fibers were excellent in both flame retardancy and combustion shrinkage.
[0035] [実施例 4] [0035] [Example 4]
PVCの添加量力 PVAに対し 30質量%であること以外は、実施例 1と同様な条件 で紡糸して繊維を得た。繊維の性能評価結果を表 1に示す。得られた繊維において 層状ケィ酸塩の平均層間距離は、 5倍の湿延伸を施した繊維、延伸倍率 10倍の繊 維とも 28Aであり、また繊維中における層状ケィ酸塩の分散状態は図 1に示すように ナノ分散されていた。さらに得られた繊維は従来の PVA系繊維の力学物性に加えて 、難燃性、燃焼収縮が共に優れるものであった。 The amount of added PVC was 30% by mass with respect to PVA, and fibers were obtained by spinning under the same conditions as in Example 1. The fiber performance evaluation results are shown in Table 1. In the obtained fiber, the average interlayer distance of the layered silicate is 28A for both the fiber subjected to 5 times wet stretching and the fiber having a stretching ratio of 10 times, and the dispersion state of the layered silicate in the fiber is shown in FIG. As shown in 1 Nano-dispersed. Furthermore, in addition to the mechanical properties of conventional PVA fibers, the obtained fibers were excellent in both flame retardancy and combustion shrinkage.
[0036] [比較例 1] [0036] [Comparative Example 1]
MMT分散液、 PVCェマルジヨンを添加せず、実施例 1と同様な条件で紡糸して、 ポリビュルアルコール単独の繊維を得た。得られた繊維は LOI値が低く難燃性を全く 有さず、さらに乾熱収縮は著しく激しいものであった。  Spinning was carried out under the same conditions as in Example 1 without adding the MMT dispersion and PVC emulsion to obtain a fiber of polybulal alcohol alone. The obtained fiber had a low LOI value, no flame retardancy, and dry heat shrinkage was extremely severe.
[0037] [比較例 2] [0037] [Comparative Example 2]
MMT分散液を添加しないこと以外は、実施例 1と同様な条件で紡糸して、ポリビ- ルアルコール以外の成分として PVCのみを含有する繊維を得た。得られた繊維は L OI値が低く難燃性に劣り、また乾熱収縮も著しく激しいものであった。  A fiber containing only PVC as a component other than polyvinyl alcohol was obtained by spinning under the same conditions as in Example 1 except that no MMT dispersion was added. The obtained fiber had a low L OI value, inferior flame retardancy, and extremely severe dry heat shrinkage.
[0038] [比較例 3] [0038] [Comparative Example 3]
PVCを添カ卩しないこと以外は、実施例 1と同様な方法で紡糸して、 MMTのみを有 する繊維を得た。得られた繊維において層状ケィ酸塩の平均層間距離は、 5倍の湿 延伸を施した繊維では 29A、延伸倍率 10倍の繊維では 28Aであり、層状ケィ酸塩 はナノ分散されていた力 PVCを添加していないため、得られた繊維は LOI値が低く 難燃性に劣り、難燃性能は実用レベルではなカゝつた。  A fiber having only MMT was obtained by spinning in the same manner as in Example 1 except that PVC was not added. The average interlaminar distance of the layered silicate in the obtained fiber was 29A for the fiber that was wet-stretched 5 times, and 28A for the fiber that was stretched 10 times. As a result, the obtained fiber had a low LOI value and inferior flame retardancy, and the flame retardancy was not at a practical level.
[0039] [比較例 4] [0039] [Comparative Example 4]
実施例 1 (1)において、溶液 (A)と分散液 (B)を混合した後の攪拌時間を 1時間と した以外は実施例 1と同様にして繊維を得た。得られた繊維は、紡糸液を調製する 際の攪拌時間が短いため、 MMTの平均層間距離が 12Aとなり、 20 A未満であつ た。そのため延伸性に劣り、また延伸倍率が 10倍の繊維は断糸が激しく得ることはで きな力つた。さらに得られた繊維は力学物性と難燃性 (LOI値)に劣り、燃焼収縮抑 制の効果も発現しな力つた。  In Example 1 (1), fibers were obtained in the same manner as in Example 1 except that the stirring time after mixing the solution (A) and the dispersion (B) was 1 hour. The resulting fiber had a short stirring time when the spinning solution was prepared, so the MMT average interlayer distance was 12 A, which was less than 20 A. As a result, the fiber was inferior in drawability, and the fiber with a draw ratio of 10 times was unable to obtain severe breakage. Furthermore, the obtained fiber was inferior in mechanical properties and flame retardancy (LOI value), and did not exhibit the effect of suppressing combustion shrinkage.
[0040] [表 1] 添加量 平均層間 繊維物性 [0040] [Table 1] Amount added Average interlayer Fiber properties
(質量%/PVA) 延伸倍率 距離 LO I Ds r  (% By mass / PVA) Stretch ratio Distance LO I Ds r
PVC MMT (倍) (A) (%)  PVC MMT (times) (A) (%)
実施例 1 60 12 5 28 2. 2 33. 7 18  Example 1 60 12 5 28 2. 2 33. 7 18
10 27 2. 4 34. 3 41  10 27 2. 4 34. 3 41
実施例 2 60 16 5 25 1. 9 34. 4 10  Example 2 60 16 5 25 1. 9 34. 4 10
10 25 3. 9 34. 8 25  10 25 3. 9 34. 8 25
実施例 3 60 8 5 28 2. 3 33. 3 28  Example 3 60 8 5 28 2. 3 33. 3 28
10 29 4. 5 33. 6 49  10 29 4. 5 33. 6 49
実施例 4 30 12 5 28 2. 8 32. 5 19  Example 4 30 12 5 28 2. 8 32. 5 19
10 28 5. 8 32. 5 43  10 28 5. 8 32. 5 43
比較例 1 0 0 5 4. 3 18. 8 63  Comparative Example 1 0 0 5 4. 3 18. 8 63
10 ― 9. 0 18. 5 76  10 ― 9. 0 18. 5 76
比較例 2 60 0 5 ― 2. 7 26. 8 61  Comparative Example 2 60 0 5 ― 2. 7 26. 8 61
10 ― 4. 6 27. 0 75  10 ― 4. 6 27. 0 75
比較例 3 0 12 5 29 4. 1 22. 8 20  Comparative Example 3 0 12 5 29 4. 1 22. 8 20
10 28 8. 9 23. 0 47  10 28 8. 9 23. 0 47
比較例 4 60 12 5 1 0. 5 29. 7 40  Comparative Example 4 60 12 5 1 0. 5 29. 7 40
10 一 断糸のため測定できず  10 Cannot measure due to broken yarn
[0041] 表 1の結果から明らかなように、実施例 1〜4に記載した平均層間距離が 20A以上 の層状ケィ酸塩、および PVXが含有されてなる本発明の難燃性 PVA繊維は、 LOI 値、燃焼収縮性などの難燃性能が極めて優れている。一方、比較例 1のような PVX や層状ケィ酸塩を含有しな 、PVA繊維は全く難燃性を有して 、な 、ことがわかる。 また比較例 2のように、難燃成分として PVXのみを有する場合には、燃焼収縮性が 劣り、一方比較例 3のように、層状ケィ酸塩のみでは十分な難燃性能が発現しないこ とがわかる。 [0041] As is apparent from the results in Table 1, the flame-retardant PVA fiber of the present invention comprising the layered silicate having an average interlayer distance of 20A or more described in Examples 1 to 4 and PVX, Excellent flame retardancy such as LOI value and combustion shrinkage. On the other hand, it can be seen that PVA fibers do not contain PVX or layered silicate as in Comparative Example 1 and have no flame retardancy. In addition, as in Comparative Example 2, when only PVX is used as a flame retardant component, the combustion shrinkage is inferior. On the other hand, as in Comparative Example 3, sufficient flame retardant performance is not exhibited only with a layered silicate. I understand.
これらの対比から、本発明の構成要件を満たす実施例 1〜4の難燃性 PVA系繊維 は、従来技術である比較例力 想到される以上の難燃性と燃焼収縮抑制が達成され ていることがわ力る。  From these contrasts, the flame-retardant PVA fibers of Examples 1 to 4 that satisfy the constituent requirements of the present invention achieve the flame retardancy and suppression of combustion shrinkage more than expected in the comparative example, which is a conventional technique. I can tell you.
更に、層状ケィ酸塩の平均層間距離が本発明の要件を満たさない比較例 4は、力 学特性、難燃性、燃焼収縮抑制ともに、十分な特性を発現していないことがわ力る。 産業上の利用可能性  Furthermore, Comparative Example 4 in which the average interlayer distance of the layered silicate does not satisfy the requirements of the present invention indicates that sufficient characteristics are not exhibited in terms of mechanical properties, flame retardancy, and combustion shrinkage suppression. Industrial applicability
[0042] 本発明によれば、強度、弾性率などの力学的特性に優れ、高!、難燃性を有し、燃 焼時の収縮が抑制された難燃性 PVA系繊維を効率的かつ低コストで提供することが 可能であり、防炎服などの高い難燃性が求められる多岐に渡る用途に適用できる。 図面の簡単な説明 [0042] According to the present invention, a flame-retardant PVA fiber having excellent mechanical properties such as strength and elastic modulus, high !, flame retardancy, and suppression of shrinkage during combustion is efficiently and efficiently produced. It can be provided at low cost, and can be applied to a wide variety of uses that require high flame resistance, such as flameproof clothing. Brief Description of Drawings
[0043] [図 1]本発明の難燃性 PVA系繊維中において層状ケィ酸塩がナノ分散している状態 を示す顕微鏡写真。 [0043] [Fig. 1] Nano-dispersed layered silicate in the flame-retardant PVA fiber of the present invention FIG.

Claims

請求の範囲 The scope of the claims
[1] 重合度 1200以上、ケン化度 90モル%以上のポリビュルアルコール系ポリマー、お よび含ハロゲンビュルポリマー、層状ケィ酸塩力 なり、かつ層状ケィ酸塩の平均層 間距離が 20A以上であることを特徴とする難燃性ポリビュルアルコール系繊維。  [1] Polybulal alcohol polymers with a polymerization degree of 1200 or more and a saponification degree of 90 mol% or more, and halogen-containing bull polymers, layered silicate strength, and the average layer distance of the layered silicate is 20A or more. A flame-retardant polybula alcohol fiber characterized by being.
[2] ポリビュルアルコール系ポリマーに対し、含ハロゲンビュルポリマーが 15〜65質量 [2] 15 to 65 mass of halogen-containing bully polymer with respect to polybulal alcohol polymer
%、層状ケィ酸塩力^〜 30質量%含有してなる請求項 1記載の難燃性ポリビニルァ ルコール系繊維。 2. The flame-retardant polyvinyl alcohol fiber according to claim 1, which comprises:
[3] 層状ケィ酸塩がスメクタイト系粘土ィ匕合物または合成フッ素雲母である請求項 1また は 2記載の難燃性ポリビュルアルコール系繊維。  [3] The flame-retardant polybulal alcohol fiber according to claim 1 or 2, wherein the layered silicate is a smectite clay composite or a synthetic fluorine mica.
[4] ポリビュルアルコール系ポリマー溶液に、含ハロゲンビュルポリマーおよび層状ケィ 酸塩が均一に分散した紡糸原液を、紡糸、延伸して製糸することを特徴とする請求 項 1〜3のいずれか 1項に記載の難燃性ポリビュルアルコール系繊維の製造方法。  [4] The spinning stock solution in which the halogen-containing polymer and the layered silicate are uniformly dispersed in the polybulualcohol-based polymer solution is spun and drawn to produce a yarn. The manufacturing method of the flame-retardant polybula alcohol fiber as described in a term.
PCT/JP2006/302434 2005-02-21 2006-02-13 Flame-retardant polyvinyl alcohol fiber WO2006087983A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007503639A JPWO2006087983A1 (en) 2005-02-21 2006-02-13 Flame retardant polyvinyl alcohol fiber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-043372 2005-02-21
JP2005043372 2005-02-21

Publications (1)

Publication Number Publication Date
WO2006087983A1 true WO2006087983A1 (en) 2006-08-24

Family

ID=36916389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/302434 WO2006087983A1 (en) 2005-02-21 2006-02-13 Flame-retardant polyvinyl alcohol fiber

Country Status (2)

Country Link
JP (1) JPWO2006087983A1 (en)
WO (1) WO2006087983A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109853070A (en) * 2019-02-28 2019-06-07 陕西师范大学 A kind of montmorillonite/polyvinyl alcohol composite flame retardant fiber

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09194508A (en) * 1996-01-24 1997-07-29 Tosoh Corp Production of vinyl chloride polymer having excellent powder fluidity
JPH09194530A (en) * 1996-01-24 1997-07-29 Tosoh Corp Production of vinyl chloride-based polymer having good powder flowability
JPH1053918A (en) * 1996-03-29 1998-02-24 Kuraray Co Ltd Polyvinyl alcohol fiber and its production
JP2005009029A (en) * 2003-06-19 2005-01-13 Kuraray Co Ltd Polyvinyl alcohol-based fiber

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2826136B2 (en) * 1989-10-11 1998-11-18 株式会社クラレ Flame retardant composition
JP2571886B2 (en) * 1991-09-12 1997-01-16 株式会社クラレ Flame retardant fiber
JPH083818A (en) * 1994-06-17 1996-01-09 Unitika Ltd Reinforced polyamide resin filament
JP2000154422A (en) * 1997-10-07 2000-06-06 Kuraray Co Ltd Polyvinyl alcohol flame-retarded fiber
JPH11286827A (en) * 1998-04-07 1999-10-19 Kuraray Co Ltd Flame-retardant polyvinyl alcohol fiber and its production

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09194508A (en) * 1996-01-24 1997-07-29 Tosoh Corp Production of vinyl chloride polymer having excellent powder fluidity
JPH09194530A (en) * 1996-01-24 1997-07-29 Tosoh Corp Production of vinyl chloride-based polymer having good powder flowability
JPH1053918A (en) * 1996-03-29 1998-02-24 Kuraray Co Ltd Polyvinyl alcohol fiber and its production
JP2005009029A (en) * 2003-06-19 2005-01-13 Kuraray Co Ltd Polyvinyl alcohol-based fiber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109853070A (en) * 2019-02-28 2019-06-07 陕西师范大学 A kind of montmorillonite/polyvinyl alcohol composite flame retardant fiber
CN109853070B (en) * 2019-02-28 2021-06-15 陕西师范大学 Montmorillonite/polyvinyl alcohol composite flame-retardant fiber

Also Published As

Publication number Publication date
JPWO2006087983A1 (en) 2008-07-03

Similar Documents

Publication Publication Date Title
KR102284847B1 (en) Graphene composite material and its manufacturing method
KR101384911B1 (en) Meta-type fully aromatic polyamide fiber having excellent high-temperature processability and method for production thereof
KR100301143B1 (en) Flame-retardant polyvinyl alcohol base fiber
TWI583651B (en) Cement reinforcing fiber and cement hardened body using the same
JP4183710B2 (en) Totally aromatic polyamide fiber and method for producing the same
WO2006087983A1 (en) Flame-retardant polyvinyl alcohol fiber
JP2007254915A (en) Meta-type aromatic polyamide fiber having excellent flame retardancy
JP2005009029A (en) Polyvinyl alcohol-based fiber
JP2010229297A (en) Method for producing wholly aromatic polyamide dope containing laminar clay mineral, and wholly aromatic polyamide fiber containig laminar clay mineral obtained from the same
JP2826136B2 (en) Flame retardant composition
JP6144078B2 (en) Sea-island type composite fiber and production method thereof, polyvinyl alcohol ultrafine fiber and production method thereof, and ultrafine carbon fiber
JP6131080B2 (en) Flame retardant polyvinyl alcohol fiber and flame retardant composite
JP4809156B2 (en) Flame retardant aromatic polyamide fiber containing inorganic carbonate
JPH0770817A (en) Flame-retardant acrylic fiber and flame-retardant fiber composite produced by using it
JP3421093B2 (en) Flame retardant fiber composite
JP6356463B2 (en) Totally aromatic polyamide fiber
JP6375125B2 (en) Polyvinyl alcohol fiber
JP2007247086A (en) Meta type aramid fiber having low shrinkage
JPH06287806A (en) Acrylic synthetic fiber improved in flame retrardancy and its production
JPH0364463B2 (en)
JP2008038268A (en) Polyvinyl alcohol-based flame retardant fiber and method for producing the same
JP2008101293A (en) Polyvinyl alcohol-based flame-retardant fiber having excellent smoke-reducing performance
JP6754109B2 (en) Reduced heat shrinkage Polyvinyl alcohol fiber
JP2007039818A (en) Low-shrinkable meta type wholly aromatic polyamide fiber and method for producing the same
KR20120048895A (en) Manufacturing method of carbon fiber

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007503639

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06713576

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6713576

Country of ref document: EP