JP2000154422A - Polyvinyl alcohol flame-retarded fiber - Google Patents

Polyvinyl alcohol flame-retarded fiber

Info

Publication number
JP2000154422A
JP2000154422A JP27056998A JP27056998A JP2000154422A JP 2000154422 A JP2000154422 A JP 2000154422A JP 27056998 A JP27056998 A JP 27056998A JP 27056998 A JP27056998 A JP 27056998A JP 2000154422 A JP2000154422 A JP 2000154422A
Authority
JP
Japan
Prior art keywords
fiber
spinning
solution
pva
island
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27056998A
Other languages
Japanese (ja)
Inventor
Shinya Inada
真也 稲田
Masahiro Sato
政弘 佐藤
Toshinori Yoshimochi
駛視 吉持
Akio Omori
昭夫 大森
Isao Tokunaga
勲 徳永
Akira Kubotsu
彰 窪津
Shoichi Nishiyama
正一 西山
Tomoyuki Sano
友之 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP27056998A priority Critical patent/JP2000154422A/en
Publication of JP2000154422A publication Critical patent/JP2000154422A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a polyvinyl alcohol flame-retarded fiber useful for clothes and industrial and house hold materials, producible at low cost, and excellent in spinning stability and dimensional stability in hot water. SOLUTION: This fiber is obtained by dissolving a vinyl alcohol-based polymer and halogenated vinyl-based polymer in dimethyl sulfoxide to form a spinning solution with droplets (1 to 50 μm in diameter) of the halogenated vinyl- based polymer solution dispersed in the vinyl alcohol-based polymer solution; and spinning the spinning solution into a low-temperature solidification bath containing a solidification solvent (e.g. methanol) and dimethyl sulfoxide; the raw fiber thus produced being treated by extraction, drying, drawing under dry heating, and, as required, thermal shrinkage and further acetalization. The fiber thus produced is composed of the sea phase of the vinyl alcohol-based polymer having a degree of crystallinity of 65 to 85% and island phase of the halogenated vinyl polymer of 0.1 to 3 μm in diameter.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、工業的に安価に製
造可能でかつ紡糸安定性に優れたビニルアルコール系ポ
リマー(以下PVAと略記)系難燃繊維に関するもので
あり、防護服などの衣料、カーテンやカーペットなどの
リビング素材、カーシートなどの産業資材などに好適に
用いることのできる繊維に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vinyl alcohol polymer (hereinafter abbreviated as PVA) flame retardant fiber which can be industrially manufactured at low cost and has excellent spinning stability. The present invention relates to a fiber which can be suitably used for living materials such as curtains and carpets, and industrial materials such as car seats.

【0002】[0002]

【従来の技術】難燃性繊維として、難燃性モノマーを共
重合したアクリル繊維やポリエステル繊維および難燃性
薬剤を練り込んだり反応させたりしたレーヨン繊維、ポ
リマー自体が難燃性である熱硬化性繊維やアラミド繊
維、また難燃性薬剤で後加工した綿や羊毛などが知られ
ている。アクリル繊維は燃焼時シアンガスを発生し、ポ
リエステル繊維はメルトドリップし、熱硬化性繊維は繊
維強度が低く、アラミド繊維は高価であり、綿や羊毛は
後加工による風合硬化や洗濯耐久性などの問題があり、
それぞれ改善の検討がなされている。
2. Description of the Related Art As flame-retardant fibers, acrylic and polyester fibers copolymerized with a flame-retardant monomer, rayon fibers into which a flame-retardant agent has been kneaded or reacted, and thermosetting in which the polymer itself is flame-retardant Synthetic fibers, aramid fibers, and cotton and wool post-processed with a flame retardant are known. Acrylic fiber generates cyan gas when burned, polyester fiber melt drip, thermosetting fiber has low fiber strength, aramid fiber is expensive, cotton and wool have post-processing hardening and washing durability etc. There is a problem,
Each is being considered for improvement.

【0003】一方、PVA系難燃繊維に関しても、例え
ば特公昭37−12920号、特公昭49−10823
号、特公昭51−19494号等の公報などで知られて
おり、消防服や作業服などの衣料分野やカーペットなど
のリビング分野、カーシートなどの産業資材分野などに
用いられているが、用途によっては高価であることが問
題となって量的拡大が困難な状況にある。
On the other hand, PVA-based flame retardant fibers are also disclosed in, for example, JP-B-37-12920 and JP-B-49-10823.
And used in the field of clothing such as firefighting clothes and work clothes, the field of living such as carpets, and the field of industrial materials such as car seats. In some cases, it is difficult to expand quantitatively due to the problem of high cost.

【0004】また、従来のPVA系難燃繊維は、塩化ビ
ニル系ポリマー(以下PVCと略記する)水系エマルジ
ョンをPVA水溶液に添加しこの紡糸原液を紡糸したも
のであるが、PVCは水には溶解しないため、従来の水
を紡糸原液の溶媒とする方法では安価な市販PVCであ
る粉末状のPVCを使用することが困難であり、粉末P
VCより数倍高価なPVCエマルジョンを使用してい
る。PVA系繊維を難燃化するためには、この高価なP
VCをPVAに対して数10%使用せねばならず、PV
A系難燃繊維の製造コストを高くしていた。またPVA
とPVCエマルジョンの混合水溶液は紡糸温度近辺の7
0〜100℃で安定でなく、特にギアポンプを通過する
際の機械的安定性が不十分であり、安定化のため界面活
性剤などを添加する必要があり、さらにコストを高くし
ている。
A conventional PVA-based flame-retardant fiber is obtained by adding a vinyl chloride-based polymer (hereinafter abbreviated as PVC) aqueous emulsion to an aqueous PVA solution and spinning the undiluted spinning solution. PVC is dissolved in water. Therefore, it is difficult to use inexpensive commercially available PVC powdered PVC by a conventional method using water as a solvent for the spinning stock solution.
It uses a PVC emulsion that is several times more expensive than VC. In order to make the PVA fiber flame-retardant, this expensive P
VC must be used for several tens of percent of PVA.
The production cost of the A-based flame retardant fiber has been increased. Also PVA
Aqueous solution of PVC and PVC emulsion at 7
It is not stable at 0 to 100 ° C., and its mechanical stability, particularly when passing through a gear pump, is insufficient, and it is necessary to add a surfactant or the like for stabilization, which further increases the cost.

【0005】また従来のPVA系難燃繊維では、エマル
ジョン粒径が0.01〜0.08μmのポリ塩化ビニル
の水系エマルジョンとPVA水溶液を混合し、さらに必
要に応じ難燃剤として錫化合物やアンチモン化合物の水
分散液を添加した液を紡糸原液とし、芒硝水溶液からな
る固化浴に湿式紡糸し、乾燥、乾熱延伸、熱処理し、さ
らに必要に応じて耐熱水性改善のためホルマリンなどに
よりアセタール化処理して製造されている。また高強度
繊維を得るためにPVAとPVCエマルジョン混合水溶
液に硼酸を添加した紡糸原液を苛性ソーダと芒硝の混合
水溶液からなる固化浴に吐出し、硼酸架橋紡糸すること
も行われている。しかしいずれの方法においても脱水性
塩類である芒硝を固化浴として使用するため固化直後繊
維表面に緻密なスキン層が形成され、断面は不均一なス
キン・コア構造となり、コア部は配向・結晶化が不十分
となりやすい。実際、この繊維のPVAの結晶化度は5
0〜60%と小さく、従ってホルマール化などの耐熱水
性改善処理を行っても寸法安定性、特に乾湿寸法安定性
に改良の余地がある。
In a conventional PVA-based flame retardant fiber, an aqueous emulsion of polyvinyl chloride having an emulsion particle size of 0.01 to 0.08 μm and an aqueous PVA solution are mixed, and if necessary, a tin compound or an antimony compound is used as a flame retardant. The solution to which the aqueous dispersion was added was used as a spinning stock solution, wet-spun into a solidification bath composed of an aqueous sodium sulfate solution, dried, dry-heat stretched, heat-treated, and, if necessary, acetalized with formalin to improve hot water resistance. Manufactured. Further, in order to obtain high-strength fibers, a spinning solution obtained by adding boric acid to a mixed aqueous solution of PVA and a PVC emulsion is discharged to a solidification bath composed of a mixed aqueous solution of caustic soda and sodium sulfate to perform boric acid cross-linking spinning. However, in all of the methods, glaze salt, which is a dehydrated salt, is used as a solidification bath, so that a dense skin layer is formed on the fiber surface immediately after solidification, the cross section becomes an uneven skin-core structure, and the core part is oriented and crystallized. Tends to be insufficient. In fact, the PVA crystallinity of this fiber is 5
It is as small as 0 to 60%, and therefore, there is room for improvement in dimensional stability, especially dimensional stability in dry and wet conditions, even if a treatment for improving hot water resistance such as formalization is performed.

【0006】[0006]

【発明が解決しようとする課題】以上のように従来のP
VA系難燃繊維は、他の難燃性繊維に比較すると優れた
点はあるものの、製造コストが高いことや寸法安定性が
不十分であること等の点で用途が制限されていた。本発
明の課題は、工業的に安価に製造することができ、かつ
紡糸安定性に優れたPVA系難燃繊維を提供すること、
さらに従来のPVA系難燃性繊維は、熱水中での寸法安
定性に劣るという欠点を有しているが、本発明はこの欠
点を解消することにある。
As described above, the conventional P
Although VA-based flame-retardant fibers are superior to other flame-retardant fibers, their applications have been limited due to high production costs and insufficient dimensional stability. An object of the present invention is to provide a PVA-based flame-retardant fiber that can be industrially manufactured at low cost and has excellent spinning stability.
Furthermore, the conventional PVA-based flame-retardant fiber has a drawback of being inferior in dimensional stability in hot water, and the present invention is to solve this drawback.

【0007】[0007]

【課題を解決するための手段】以上のような状況に鑑
み、本発明者等は、安価な市販PVC粉末を用いてPV
A系難燃繊維とすることを鋭意検討し、本発明に到達し
た。すなわち本発明は、重合度1000以上、ケン化度
98モル%以上のPVA(1)と、含ハロゲンビニルポ
リマー(以下PVXと略す)(2)よりなり、(1)が
海成分、(2)が島成分の海島繊維であり、繊維横断面
における(2)の島の大きさが0.1〜3μmであり、
更に(1)の結晶化度が65〜85%であることを特徴
とするPVA系難燃繊維である。好ましくは、繊維中
に、ケン化度50〜90モル%のPVA (3)が(2)に
対して0.1〜10重量%含有されている繊維であり、
またPVXがPVCである繊維であり、また(1)と
(2)の混合重量割合が95:5〜55:45である繊
維であり、更に錫化合物およびアンチモン化合物からな
る群から選ばれる少なくとも1種の化合物をポリマー総
重量に対して0.1〜15%含有している繊維である。
SUMMARY OF THE INVENTION In view of the above situation, the present inventors have developed an inexpensive PV powder using inexpensive commercial PVC powder.
The present inventors have intensively studied the use of A-based flame-retardant fibers, and have reached the present invention. That is, the present invention comprises PVA (1) having a degree of polymerization of at least 1,000 and a degree of saponification of at least 98 mol%, and a halogen-containing vinyl polymer (hereinafter abbreviated as PVX) (2), wherein (1) is a sea component, and (2) Is a sea-island fiber of an island component, and the size of the island of (2) in the fiber cross section is 0.1 to 3 μm;
Further, the PVA-based flame-retardant fiber is characterized in that the crystallinity of (1) is 65 to 85%. Preferably, the fiber contains 0.1 to 10% by weight of PVA (3) having a saponification degree of 50 to 90 mol% with respect to (2).
Further, PVX is a fiber in which PVC is PVC, a fiber in which the mixing weight ratio of (1) and (2) is 95: 5 to 55:45, and at least one selected from the group consisting of a tin compound and an antimony compound. Fibers containing from 0.1 to 15% by weight of the compound, based on the total weight of the polymer.

【0008】また本発明は、上記(1)と(2)を共通
の溶媒に溶解し、得られた紡糸原液を(1)に対して固
化能を有する固化溶媒と原液溶媒とを混合した固化浴に
湿式または乾湿式紡糸し、湿延伸した後、繊維中に含有
されている原液溶媒を抽出除去し、そして乾燥し、さら
に乾熱延伸し、更に必要に応じて熱処理やアセタール化
してPVA系難燃繊維を製造するにあたり、紡糸原液
が、(1)の溶液中に(2)の溶液が島状態で存在して
いる海島構造を有し、かつ(2)の溶液の島径が1〜5
0μmであることを特徴とするPVA系難燃繊維の製造
方法である。好ましくは、紡糸原液中の(2)の溶液の
島径変化速度が1μm/hr以上の場合、紡糸原液が形
成されてから紡糸までの間、紡糸原液を連続撹拌する上
記製造方法であり、また紡糸原液が(1)、(2)および
(3)を、(3)が(2)に対して0.1〜10重量%となる
ように(1)と(2)と(3)の共通の溶媒に溶解して得られ
たものである上記製造方法であり、また(2)及び(3)の
少なくとも一部として、含ハロゲンビニルモノマーの重
合時に該モノマーに対して(3)を0.1〜3重量%添加
して得られる(3)含有(2)を用いる上記製造方法であ
り、また(3)の一部として含ハロゲンビニルモノマーの
重合時に該モノマーに対して(3)を0.1〜3重量%添
加して得られる(3)含有(2)を用い、(3)の残りを紡糸
原液の調製時に添加して、紡糸原液中の(3)の量が紡糸
原液中のポリマー総重量に対して0.1〜8重量%とす
る上記の製造方法である。さらに紡糸原液に錫化合物お
よびアンチモン化合物からなる群から選ばれる少なくと
も1種の化合物がポリマー総重量に対して0.1〜15
重量%混合されている上記製造方法である。
In the present invention, the above-mentioned (1) and (2) are dissolved in a common solvent, and the obtained spinning dope is solidified by mixing a solidifying solvent having a solidifying ability with (1) and a stock solution solvent. After wet or dry-wet spinning in a bath and wet-drawing, the solvent of the stock solution contained in the fiber is extracted and removed, dried, and further subjected to dry-heat drawing, and if necessary, heat-treated or acetalized to obtain a PVA-based fiber. In producing the flame-retardant fiber, the spinning dope has a sea-island structure in which the solution of (2) exists in an island state in the solution of (1), and the island diameter of the solution of (2) is 1 to 1. 5
A method for producing a PVA-based flame-retardant fiber, which is characterized by having a thickness of 0 μm. Preferably, when the island diameter change rate of the solution of (2) in the spinning dope is 1 μm / hr or more, the above-mentioned production method wherein the spinning dope is continuously stirred during the period from when the spinning dope is formed to when spinning is performed. The spinning solution is (1), (2) and
(3) is obtained by dissolving (3) in a common solvent of (1), (2) and (3) so that (3) is 0.1 to 10% by weight with respect to (2). The above-mentioned production method, wherein at least a part of (2) and (3) is obtained by adding 0.1 to 3% by weight of (3) to the halogen-containing vinyl monomer at the time of polymerization of the monomer ( 3) The above production method using the content (2), which is obtained by adding 0.1 to 3% by weight of (3) to the halogen-containing vinyl monomer during polymerization of the monomer as a part of (3). (3) Using the content (2), the remainder of (3) is added at the time of preparing the spinning dope, and the amount of (3) in the spinning dope is 0.1 to 8 with respect to the total weight of the polymer in the spinning dope. It is the above-mentioned production method in which the weight% is used. Further, at least one compound selected from the group consisting of tin compounds and antimony compounds is contained in the spinning dope in an amount of 0.1 to 15% based on the total weight of the polymer.
It is the above-mentioned production method in which the weight% is mixed.

【0009】以下に本発明の難燃繊維について詳細に説
明する。本発明繊維の海成分すなわちマトリックス成分
は重合度1000以上、ケン化度98モル%以上のPV
Aでなければならない。難燃性を付与するPVXと共通
の溶媒を有し、かつ強度の高い海島繊維を可能とする水
酸基による強固な分子間水素結合を形成しうる汎用ポリ
マーはPVAのみである。
Hereinafter, the flame-retardant fiber of the present invention will be described in detail. The sea component, ie, the matrix component, of the fiber of the present invention is a PV having a degree of polymerization of 1000 or more and a saponification degree of 98 mol% or more.
Must be A. PVA is the only general-purpose polymer that has a common solvent with PVX that imparts flame retardancy, and that can form strong intermolecular hydrogen bonds with hydroxyl groups that enable high strength sea-island fibers.

【0010】本発明でいうPVA(1)とは、ビニルアル
コールユニットを全構成ユニットの70モル%以上有す
るポリマーを意味しており、したがってエチレン、イタ
コン酸、ビニルアミン、アクリルアミド、無水マレイン
酸、スルホン酸含有ビニル化合物などのモノマーが30
モル%未満の割合で共重合されていてもよい。ケン化度
は、高強度繊維とするためには98モル%以上でなけれ
ばならず、好ましくは99モル%以上、より好ましくは
99.8モル%以上である。上限値はもちろん100モ
ル%である。従ってPVA(1)には、ケン化可能なビニ
ルユニット、例えば酢酸ビニルユニットやピバリン酸ビ
ニルユニットが、ビニルアルコールユニットとケン化可
能ビニルユニットの合計量に対して0〜2モル%の割合
で共重合されていても良い。PVAの重合度に関して
も、同様の理由で重合度1000以上でなければなら
ず、好ましくは1500以上である。ただし、重合度2
0000以上のPVAは工業的に製造することが難し
い。また耐水性改善のため繊維化後の後反応により、ホ
ルムアルデヒド、グルタルアルデヒド、ノナンジアール
などのモノアルデヒド類やジアルデヒド類或いはその誘
導体によりPVAの分子内および/または分子間がアセ
タール化されていてもよく、さらにこれら以外の架橋性
薬剤などにより分子内および/または分子間が架橋され
ていてもよい。
In the present invention, PVA (1) means a polymer having a vinyl alcohol unit in an amount of 70 mol% or more of all the constituent units. Therefore, ethylene, itaconic acid, vinylamine, acrylamide, maleic anhydride, sulfonic acid 30 monomers such as vinyl compounds
It may be copolymerized in a proportion of less than mol%. The degree of saponification must be 98 mol% or more, preferably 99 mol% or more, more preferably 99.8 mol% or more in order to obtain a high-strength fiber. The upper limit is of course 100 mol%. Therefore, in PVA (1), a saponifiable vinyl unit, for example, a vinyl acetate unit or a vinyl pivalate unit, is used in a proportion of 0 to 2 mol% based on the total amount of the vinyl alcohol unit and the saponifiable vinyl unit. It may be polymerized. Regarding the degree of polymerization of PVA, the degree of polymerization must be 1000 or more for the same reason, and preferably 1500 or more. However, polymerization degree 2
It is difficult to produce PVA of 0000 or more industrially. In order to improve water resistance, PVA may be acetalized in the molecule and / or between molecules of PVA by post-reaction after fibrillation, such as formaldehyde, glutaraldehyde, and nonaldehyde, or monoaldehydes or dialdehydes or derivatives thereof. Further, the inside and / or between the molecules may be cross-linked by a cross-linking agent other than these.

【0011】本発明繊維の島成分はPVXでなければな
らない。島成分にPVXを用いることによりはじめて本
発明繊維を難燃繊維とすることができる。本発明にいう
PVXとは、ハロゲン元素すなわち弗素、塩素、臭素、
沃素のいずれかを含有するビニルユニットを全ビニルユ
ニットの50〜100モル%有するビニルポリマーであ
る。例えば、塩化ビニル系ポリマー(PVC)、塩化ビ
ニリデン系ポリマー、臭素ビニル系ポリマー、臭化ビニ
リデン系ポリマー、塩素化ポリオレフィン、臭素化ポリ
オレフィンなどが包含される。中でも難燃性、耐熱分解
性、コストのバランスなどの点でPVCが好ましい。ま
た本発明において、PVXは難燃性を大きく損なわない
範囲でビニルユニット以外のモノマーが共重合されてい
てもよい。PVXは結晶性が低く、繊維形成能がないか
あるいは繊維化しても低強度のものしか得られず、特に
ステープル繊維のコストパーフォマンスに優れた製造法
である湿式紡糸法ではPVXの繊維は製造されていな
い。本発明繊維では島成分としてPVXを含有させ、繊
維が高温に曝され燃焼した時ハロゲン化水素ガスを生成
し、燃焼時発生のラジカルを捕捉して燃焼を抑制させる
ことができる機能性成分としての役割を果させる。
The island component of the fiber of the present invention must be PVX. Only when PVX is used as the island component can the fiber of the present invention be a flame-retardant fiber. PVX referred to in the present invention is a halogen element, ie, fluorine, chlorine, bromine,
It is a vinyl polymer having a vinyl unit containing any of iodine in an amount of 50 to 100 mol% of the total vinyl unit. For example, vinyl chloride polymer (PVC), vinylidene chloride polymer, vinyl bromide polymer, vinylidene bromide polymer, chlorinated polyolefin, brominated polyolefin and the like are included. Among them, PVC is preferred in terms of flame retardancy, heat decomposition resistance, cost balance and the like. In the present invention, a monomer other than a vinyl unit may be copolymerized in the PVX as long as the flame retardancy is not significantly impaired. PVX has low crystallinity and does not have fiber forming ability or has low strength even if it is formed into fibers. In particular, PVX fibers are produced by wet spinning, which is a production method excellent in cost performance of staple fibers. Not. The fiber of the present invention contains PVX as an island component, generates a hydrogen halide gas when the fiber is exposed to high temperature and burns, and captures radicals generated during burning to suppress combustion. Play a role.

【0012】更に本発明繊維には、ケン化度が50〜9
0モル%のPVA(3)が、PVX(2)に対し0.1
〜10重量%含有されていると好ましい。(1)の溶液
と(2)の溶液とのブレンド原液は、放置により経時的
に(2)の溶液からなる島の凝集が生じ、曳糸性が悪化
し紡糸困難となるのに対し、(3)の存在により、原液
を放置しても(2)の溶液からなる島の凝集が起こりに
くくなる。PVXとPVAは本質的に相溶性が悪いが、
(3)は含有酢酸基が多いため界面活性能が強く、その
ため(2)との親和性も高い。従って、このような界面
活性能の高い(3)は、(1)と(2)の仲を取り持つ
相溶化剤としてはたらき、結果として(2)の溶液から
なる島の分散安定性が向上するのである。
Further, the fiber of the present invention has a saponification degree of 50-9.
0 mol% of PVA (3) is 0.1% to PVX (2).
Preferably, the content is 10 to 10% by weight. The undiluted solution of the solution of (1) and the solution of (2) causes agglomeration of the islands composed of the solution of (2) with time, resulting in poor spinnability and difficulty in spinning. Due to the presence of 3), the aggregation of the islands composed of the solution of (2) hardly occurs even when the stock solution is left. PVX and PVA are inherently poorly compatible,
(3) has a high surface activity due to a large amount of acetic acid groups, and therefore has a high affinity with (2). Accordingly, (3) having such a high surface activity acts as a compatibilizing agent which mediates between (1) and (2), and as a result, the dispersion stability of the island composed of the solution of (2) is improved. is there.

【0013】このような相溶化剤としてはたらくPVA
としては、界面活性能の高いものが好ましく、そのため
には低ケン化度のPVAが好ましい。ケン化度は低いほ
どPVX溶液からなる島成分の分散安定性は向上する
が、低すぎると逆に分散安定性は悪くなる。したがって
(3)のケン化度は50〜90モル%が好ましく、更に好
ましくは60〜88モル%、もっとも好ましくは70〜
80モル%である。また相溶化剤として用いるPVA
(3)の重合度に特別な限定はなく、500以上ならば使
用可能であるが、重合度が1700以上になると更に好
ましくなる。しかし重合度が20000を越えるPVA
は工業的に製造することが困難である。更に、ここでい
うケン化度50〜90モル%のPVAとは、ビニルアル
コールユニットをケン化前のケン化可能ユニットの総量
に対して50〜90モル%有するポリマーを意味してお
り、従ってケン化可能ユニットである酢酸ビニルやピバ
リン酸ビニルユニットを10〜50モル%有している。
さらにこれ意外に、エチレン、イタコン酸、ビニルアミ
ン、アクリルアミド、無水マレイン酸、スルホン酸含有
ビニル化合物などのモノマーが10〜30モル%の割合
で共重合されていてもよい。
PVA acting as such a compatibilizer
As such, those having high surface activity are preferable, and for that purpose, PVA having a low saponification degree is preferable. The lower the degree of saponification, the higher the dispersion stability of the island component composed of the PVX solution. However, if it is too low, the lower the saponification, the worse the dispersion stability. Therefore
The saponification degree of (3) is preferably 50 to 90 mol%, more preferably 60 to 88 mol%, and most preferably 70 to 90 mol%.
80 mol%. PVA used as a compatibilizer
The degree of polymerization of (3) is not particularly limited and can be used if the degree of polymerization is 500 or more, but it is more preferable if the degree of polymerization is 1700 or more. However, PVA whose degree of polymerization exceeds 20,000
Is difficult to manufacture industrially. Further, the PVA having a saponification degree of 50 to 90 mol% as used herein means a polymer having 50 to 90 mol% of a vinyl alcohol unit based on the total amount of the saponifiable units before saponification. It has 10 to 50 mol% of vinyl acetate and vinyl pivalate units which are functionalizable units.
Surprisingly, monomers such as ethylene, itaconic acid, vinylamine, acrylamide, maleic anhydride, and a sulfonic acid-containing vinyl compound may be copolymerized at a ratio of 10 to 30 mol%.

【0014】重合度1000以上、ケン化度98モル%
以上のPVA(1)を海成分、PVX(2)を島成分と
するには、(1)と(2)の合計量に対して該(1)が
55重量%以上であるのが好ましい。該(1)が55重
量%未満では、一部の(2)が海成分となる場合があ
り、強度が低下したり、抽出浴に(2)が溶出したりし
て性能的にも工程通過性の面でも好ましくない。一方、
該(1)の量が95重量%を越える場合では、繊維中の
ハロゲン量が少なく難燃性が不十分となるので好ましく
ない。したがって(1)/(2)の混合重量割合は95
/5〜55/45の範囲が採用され、難燃性、強度など
のバランスより90/10〜55/45が好ましく、8
0/20〜60/40であるとさらに好ましい。なお本
発明において、本発明の目的を損なわない範囲内でPV
AとPVX以外のポリマーが添加されていてもよい。さ
らに各種安定剤や着色剤が添加されていてもよい。
Degree of polymerization: 1000 or more, degree of saponification: 98 mol%
In order for the PVA (1) to be a sea component and the PVX (2) to be an island component, it is preferable that (1) is 55% by weight or more based on the total amount of (1) and (2). If (1) is less than 55% by weight, a part of (2) may become a sea component, and the strength may decrease, or (2) may be eluted in the extraction bath, and the process may pass through the process. It is not preferable in terms of sex. on the other hand,
If the amount of (1) exceeds 95% by weight, the amount of halogen in the fiber is small, and the flame retardancy becomes insufficient. Therefore, the mixed weight ratio of (1) / (2) is 95
The range of / 5 to 55/45 is adopted, and 90/10 to 55/45 is preferable from the balance of flame retardancy, strength and the like.
More preferably, it is 0/20 to 60/40. In the present invention, the PV is set within a range that does not impair the object of the present invention.
A polymer other than A and PVX may be added. Further, various stabilizers and coloring agents may be added.

【0015】また繊維中のPVXの島の大きさは0.1
〜3μmでなければならない。本発明にいうPVXの島
の大きさとは、繊維サンプルを定長状態でホルマール化
処理してPVAを不溶化した後、エポキシ樹脂処理し
て、超薄切片(厚み約800nm)を作製し、Ru04
蒸気染色を行い、得られた繊維横断面の超薄切片を透過
型電子顕微鏡(以下TEMと略記)で20,000倍に
拡大して観察し、得られた電子顕微鏡写真より任意に選
び出したPVXの島径を少なくとも50ケ実測した時の
平均値である。
The size of PVX islands in the fiber is 0.1
3 μm. The size of the islands of PVX in the present invention, after the insolubilized PVA treated formalized fiber sample in a constant length state, the epoxy resin treatment, to prepare an ultrathin section (thickness about 800 nm), Ru0 4
After performing steam staining, the obtained ultrathin section of the cross section of the fiber was observed at a magnification of 20,000 times with a transmission electron microscope (hereinafter abbreviated as TEM), and PVX was arbitrarily selected from the obtained electron micrograph. Is an average value when at least 50 island diameters are actually measured.

【0016】本発明繊維断面の20000倍TEM写真
の一例を図1として示した。また参考のために、従来の
PVCエマルジョンを混合した水系のPVA系難燃性繊
維の断面を同様に撮影した電子顕微鏡写真を図2に示し
た。図1及び図2において、灰色の分散成分がPVCで
あり、それより白っぽく見える分散媒成分がPVAであ
り、そして黒色の物質がメタ錫酸であり、この黒色の物
質がメタ錫酸であることはEDX分析により確認した。
なおこれら図面の2cmが実際の1μmに相当する。
FIG. 1 shows an example of a 20,000 × TEM photograph of the cross section of the fiber of the present invention. For reference, FIG. 2 shows an electron micrograph of a cross section of a water-based PVA-based flame-retardant fiber mixed with a conventional PVC emulsion. In FIGS. 1 and 2, the gray dispersion component is PVC, the dispersion medium component that looks whitish is PVA, and the black substance is metastannic acid, and the black substance is metastannic acid. Was confirmed by EDX analysis.
Note that 2 cm in these drawings corresponds to an actual 1 μm.

【0017】従来のPVA系難燃繊維のPVCの島径は
0.1μm未満がほとんどで0.2μm以上は皆無であ
るのに対し、本発明のPVA系難燃繊維のPVXの島径
は0.2〜1.5μmである。従来のPVA系難燃繊維
は、粒子径が0.01〜0.08μmのPVCエマルジ
ョンを原料PVCとして使用しており、製造工程中で高
温で延伸され、さらに細径化するので、得られる繊維中
のPVC島の大きさは0.08μmを越えることはな
く、0.05μm以下が一般的である。これに対し、本
発明においては、安価な市販PVX粉末をPVA系難燃
繊維の成分として用いるべく従来の発想を転換して鋭意
検討した結果、PVAとPVX粉末の共通溶媒を紡糸原
液の溶媒として用い、PVAを海成分、PVXを島成分
とする海島相分離溶液を紡糸原液とし、固化浴中に紡糸
し、抽出、乾燥、乾熱延伸、必要に応じて熱処理を行う
ことにより安価なPVX粉末を一成分とする本発明繊維
を得た。本発明では、(1)と(2)のポリマー相分離によ
り(2)が島を形成するため、紡糸原液中でのPVX溶液
の島の大きさが1〜50μmの場合、乾熱延伸後の繊維
のPVXの島径は0.1〜3μmとなる。従来のPVA
系難燃繊維に用いるPVCエマルジョンの粒径である
0.01〜0.08μmでは、本発明繊維に用いる紡糸
原液のPVXの島径としては小さ過ぎ、紡糸原液が不安
定となり、安定な紡糸が困難である。
While the conventional PVA-based flame-retardant fiber has a PVC island diameter of less than 0.1 μm and almost no 0.2 μm or more, the PVA-based flame-retardant fiber of the present invention has a PVX island diameter of 0 μm. 0.2 to 1.5 μm. The conventional PVA-based flame-retardant fiber uses a PVC emulsion having a particle diameter of 0.01 to 0.08 μm as a raw material PVC, and is stretched at a high temperature during the production process and further reduced in diameter. The size of the middle PVC island does not exceed 0.08 μm, and is generally 0.05 μm or less. On the other hand, in the present invention, as a result of diligently examining and changing the conventional idea to use inexpensive commercial PVX powder as a component of the PVA-based flame-retardant fiber, the common solvent of PVA and PVX powder was used as the solvent of the spinning solution. Inexpensive PVX powder by using a sea-island phase separation solution containing PVA as a sea component and PVX as an island component as a spinning solution, spinning in a solidification bath, and performing extraction, drying, dry heat drawing and, if necessary, heat treatment. Was obtained as one component. In the present invention, since (2) forms an island by polymer phase separation of (1) and (2), when the size of the island of the PVX solution in the spinning stock solution is 1 to 50 μm, after the dry heat drawing, The PVX island diameter of the fiber is 0.1 to 3 μm. Conventional PVA
In the case of 0.01 to 0.08 μm, which is the particle size of the PVC emulsion used for the flame-retardant fiber, the island diameter of PVX of the spinning dope used for the fiber of the present invention is too small, and the spinning dope becomes unstable and stable spinning is performed. Have difficulty.

【0018】更に、本発明繊維において、重合度100
0以上、ケン化度98モル%の海成分PVA(1)の結晶
化度は65〜85%である。このことが、本発明繊維の
製造において重要な特徴のひとつである。前述したよう
に、脱水凝固で形成される従来のPVA系難燃繊維は断
面がスキンコア構造をとるため、結晶化度は50〜60
%と低く、乾湿寸法安定性に問題があったのに対し、本
発明繊維の形成は冷却ゲル化による均一固化であるた
め、結晶化度が65〜85%と高く、強度や乾湿寸法安
定性が従来に比べ大きく向上するのである。
Further, in the fiber of the present invention, the polymerization degree is 100
The crystallization degree of the sea component PVA (1) having a degree of saponification of 0 or more and 98 mol% is 65 to 85%. This is one of the important features in the production of the fiber of the present invention. As described above, the conventional PVA-based flame-retardant fiber formed by dewatering and coagulation has a crystallinity of 50 to 60 because its cross section has a skin core structure.
%, And there was a problem in the dimensional stability of wet and dry. On the other hand, the formation of the fiber of the present invention is uniform solidification by cooling gelation. Is greatly improved as compared with the prior art.

【0019】また、本発明PVA系難燃繊維において、
錫化合物およびアンチモン化合物からなる群から選ばれ
る少なくとも1種の化合物をポリマー総重量に対して
0.1〜15重量%含有する場合には、難燃性がより一
層改善され好ましい。本発明にいう錫化合物とは、錫元
素を含む化合物なら特別な限定はないが、工程通過性、
コストパーフォマンスの点で酸化錫やメタ錫酸などの無
機酸化物が好ましい。またアンチモン化合物としてはア
ンチモン元素を含む化合物なら特別の限定はないが、錫
化合物と同様に三酸化アンチモンや五酸化アンチモンな
どの酸化物が好ましい。これらの化合物は、繊維が高温
に曝されPVXが分解して生成したハロゲン化水素ガス
と反応し、ハロゲン化錫やハロゲン化アンチモンを生
じ、これが燃焼中のラジカルを捕捉して酸化反応を抑制
したり、PVAの脱水炭化反応を促進させたりすること
により燃焼反応を抑制し、難燃性を向上させると推定さ
れる。錫化合物やアンチモン化合物の含有量が0.5〜
10重量%であると難燃性と工程通過性の点でさらに好
ましく、1〜7重量%であるともっと好ましい。紡糸原
液への分散方法は特に制約はなく、PVAとPVXを共
通溶媒に投入し溶解する際に、錫化合物またはアンチモ
ン化合物も同時に投入すればよい。
Further, in the PVA-based flame-retardant fiber of the present invention,
When at least one compound selected from the group consisting of tin compounds and antimony compounds is contained in an amount of 0.1 to 15% by weight based on the total weight of the polymer, the flame retardancy is further improved, which is preferable. The tin compound referred to in the present invention is not particularly limited as long as it is a compound containing a tin element.
In terms of cost performance, inorganic oxides such as tin oxide and metastannic acid are preferred. The antimony compound is not particularly limited as long as it is a compound containing an antimony element, but is preferably an oxide such as antimony trioxide or antimony pentoxide, like the tin compound. These compounds react with the hydrogen halide gas generated when the fiber is exposed to high temperature and PVX is decomposed to produce tin halide and antimony halide, which trap the radicals during combustion and suppress the oxidation reaction. It is presumed that the combustion reaction is suppressed by promoting the dehydration and carbonization reaction of PVA, and the flame retardancy is improved. The content of the tin compound or antimony compound is 0.5 to
When the content is 10% by weight, flame retardancy and process passability are more preferable, and when it is 1 to 7% by weight, it is more preferable. There is no particular limitation on the method of dispersing the mixture in the spinning dope, and when PVA and PVX are charged and dissolved in a common solvent, a tin compound or an antimony compound may be charged at the same time.

【0020】次に本発明繊維の製造方法について説明す
る。まずPVAとPVXを共通溶媒に溶解し紡糸原液と
する。共通の溶媒としては、ジメチルスルホキシド(以
下DMSOと略記)、ジメチルアセトアミド、ジメチル
ホルムアミドなどの極性有機溶媒があげられる。特に低
温溶解性、ポリマー低分解性などの点よりDMSOが好
ましい。原液中のポリマー濃度としては、10〜30重
量%の範囲が好ましい。
Next, a method for producing the fiber of the present invention will be described. First, PVA and PVX are dissolved in a common solvent to prepare a spinning solution. Examples of the common solvent include polar organic solvents such as dimethylsulfoxide (hereinafter abbreviated as DMSO), dimethylacetamide, and dimethylformamide. Particularly, DMSO is preferred from the viewpoint of low-temperature solubility, low polymer decomposability and the like. The concentration of the polymer in the stock solution is preferably in the range of 10 to 30% by weight.

【0021】また紡糸原液は、PVA溶液中にPVXの
溶液からなる1〜50μmの粒子系の島が存在している
相構造を有していることが重要である。このような原液
を紡糸することで、PVX島の大きさが0.1〜3μm
である繊維を得ることができる。本発明で言う紡糸原液
の相構造とは、紡糸原液をスライドガラス上に約200
μmの厚さに滴下し、オリンパス光学製微分干渉顕微鏡
装置BX−60型を用いて写真撮影し、測定した値であ
る。また本発明でいう粒子径とは、上記した微分干渉顕
微鏡で観察した場合に判別できる粒子を少なくとも50
ケ実測した時の平均値である。PVX溶液の島径の大多
数が50μmを越える場合には、工程通過性の点で好ま
しくなく、さらに長期間安定に紡糸することができな
い。また、大多数が1μm未満であるとPVAが明確な
海相を形成することができなくなる。好ましくは1〜4
0μmの粒子径を有している相構造であり、1〜30μ
mだと更に好ましい。
It is important that the spinning dope has a phase structure in which a PVA solution has 1 to 50 μm particle-based islands composed of a PVX solution. By spinning such a stock solution, the size of the PVX island is 0.1 to 3 μm.
Can be obtained. The phase structure of the spinning solution referred to in the present invention means that the spinning solution is placed on a slide glass for about 200 hours.
It is a value measured by dropping a liquid to a thickness of μm, taking a photograph using a differential interference microscope (BX-60) manufactured by Olympus Optical Co., Ltd. The particle size as referred to in the present invention means that particles that can be discriminated when observed with a differential interference microscope are at least 50 particles.
It is the average value when the actual measurement was performed. When the majority of the PVX solution has an island diameter of more than 50 μm, it is not preferable in terms of processability, and spinning cannot be performed stably for a long period of time. If the majority is less than 1 μm, PVA cannot form a clear sea phase. Preferably 1-4
A phase structure having a particle size of 0 μm;
m is more preferable.

【0022】また、紡糸原液を80℃で静置した場合
に、PVX島径変化速度が1μm/hr以上となる場合
には、紡糸原液形成から紡糸までの間、紡糸原液を連続
して撹拌するのが好ましい。PVAとPVXは本質的に
相溶性が悪いため、PVXによっては放置により経時的
にPVX島の凝集が生じ、曳糸性が悪化し紡糸困難とな
るからである。島径変化速度とは、原液溶解終了直後お
よび15hr放置後のPVC平均島径の差を放置時間で
除した値で、PVC島の凝集のしやすさを意味する。従
って、PVX島分散安定性の向上が重要であり、それに
より放置脱泡を可能にするのが前記したようにケン化度
50〜90モル%のPVA(3)なのである。
When the spinning stock solution is allowed to stand at 80 ° C. and the PVX island diameter change rate is 1 μm / hr or more, the spinning stock solution is continuously agitated from the formation of the spinning stock solution to spinning. Is preferred. This is because PVA and PVX have essentially poor compatibility, and depending on the PVX, aggregation of PVX islands occurs over time, resulting in poor spinnability and difficulty in spinning. The island diameter change rate is a value obtained by dividing the difference between the average PVC island diameters immediately after the dissolution of the undiluted solution and after standing for 15 hours by the standing time, and means the ease of aggregation of PVC islands. Therefore, it is important to improve the dispersion stability of the PVX island, and it is the PVA (3) having a saponification degree of 50 to 90 mol% as described above that enables defoaming on standing.

【0023】ケン化度50〜90モル%のPVA(3)
の存在が、紡糸原液中でのPVX(2)の島分散安定性
に大きく寄与するため、その導入方法も重要である。導
入方法としては、(2)の懸濁重合時に添加する方法
と、紡糸原液溶解時に添加する方法がある。前者の方法
は、重合時に(3)が(2)と結合するため、少量の添
加でも効率的に(2)の島分散安定化に寄与することが
できる。しかしながら添加量が多いと重合後洗浄時の発
泡が大となる問題が生じ、従って添加量としては含ハロ
ゲンビニル系モノマーに対して0.1〜3重量%の範囲
が好ましい。一方後者の方法は、選択的に(3)をマトリ
ックスPVA(1)と(2)の界面に導入することがで
きないため、前者の方法に比べ(3)の必要とする量は
多くなる傾向があるが、発泡の問題がないため添加量を
多くできる。しかしながら、添加量があまりに多いと得
られる繊維の耐水性が低下するため好ましくない。添加
量としては、(2)に対して0.1〜10重量%が好ま
しく、特に好ましくは2〜10重量%である。また前者
と後者の両方を同時に用いることも可能である。この方
法では、各方法の有する問題、すなわち重合時の発泡お
よび耐水性の低下がそれぞれ低減できるため、好まし
い。この場合、(3)の量は、全体で(2)に対して
0.1〜8重量%と総量を少なくできるため好ましい。
PVA (3) having a saponification degree of 50 to 90 mol%
Is greatly contributed to the island dispersion stability of PVX (2) in the spinning dope, and therefore, its introduction method is also important. As a method of introduction, there are a method of adding at the time of suspension polymerization of (2) and a method of adding at the time of dissolving a spinning stock solution. In the former method, (3) is combined with (2) at the time of polymerization, so that even a small amount of addition can efficiently contribute to the stabilization of island dispersion of (2). However, when the amount of addition is large, there arises a problem that foaming during washing after polymerization becomes large. Therefore, the amount of addition is preferably in the range of 0.1 to 3% by weight based on the halogen-containing vinyl monomer. On the other hand, in the latter method, since (3) cannot be selectively introduced into the interface between the matrix PVA (1) and (2), the required amount of (3) tends to be larger than the former method. However, since there is no foaming problem, the amount of addition can be increased. However, an excessively large amount is not preferable because the water resistance of the obtained fiber is reduced. The addition amount is preferably from 0.1 to 10% by weight, particularly preferably from 2 to 10% by weight, based on (2). It is also possible to use both the former and the latter simultaneously. This method is preferable because the problems of each method, that is, foaming and reduction in water resistance during polymerization can be reduced. In this case, the amount of (3) is preferable because the total amount can be reduced to 0.1 to 8% by weight based on (2).

【0024】また原液温度は100℃以下が好ましい。
100℃を超えると、PVCの溶解性は向上するが分解
速度が著しく増加し、着色が顕著となり、また重合度低
下も併発する。そのため、温度は低い方が良いが、低す
ぎるとPVCおよびPVAの極性有機溶媒への溶解性が
悪くなる。したがって40℃以上90℃以下の原液温度
が好ましい。更に好ましくは50℃以上80℃以下であ
る。紡糸原液の粘度としては、湿式紡糸する場合には1
0〜400ポイズ、乾湿式紡糸する場合には50〜20
00ポイズの範囲が好ましい。
The temperature of the stock solution is preferably 100 ° C. or less.
When the temperature exceeds 100 ° C., the solubility of PVC is improved, but the decomposition rate is remarkably increased, coloring is remarkable, and the degree of polymerization is reduced. Therefore, the lower the temperature, the better. However, if the temperature is too low, the solubility of PVC and PVA in the polar organic solvent deteriorates. Therefore, a stock solution temperature of 40 ° C. or more and 90 ° C. or less is preferable. More preferably, it is 50 ° C or higher and 80 ° C or lower. The viscosity of the spinning solution is 1 when wet spinning.
0 to 400 poise, 50 to 20 for dry-wet spinning
A range of 00 poise is preferred.

【0025】ポリマーの溶解方法は特に限定されない
が、一方のポリマーを溶解した溶液に他方のポリマーを
添加して溶解する方法、各ポリマーを同時に溶解する方
法、各ポリマーをそれぞれ単独で原液溶媒に溶解したも
のを混合する方法などいずれも採用することができる。
また紡糸原液にはポリマーの安定化剤として酸類や酸化
防止剤などを併用することは何ら差し支えない。
The method for dissolving the polymer is not particularly limited, but a method in which one polymer is dissolved in a solution in which the other polymer is dissolved, a method in which each polymer is dissolved simultaneously, and a method in which each polymer is dissolved alone in a stock solution solvent. Any of the above methods can be employed.
In addition, the spinning solution may be used in combination with an acid or an antioxidant as a polymer stabilizer.

【0026】このようにして得られた紡糸原液を紡糸ノ
ズルを通して固化浴中に湿式紡糸、あるいは乾湿式紡糸
する。固化浴を紡糸ノズルに直接接触させる湿式紡糸方
法は、ノズル孔ピッチを狭くしても繊維同士が膠着せず
に紡糸できるため、多孔ノズルを用いた紡糸に適してお
り、一方固化浴と紡糸ノズルの間にエアギャップを設け
る乾湿式紡糸の場合は、エアギャップ部での伸びが大き
いことより、高速紡糸に適している。本発明において
は、湿式紡糸方法と乾湿式紡糸方法のいずれを用いるか
については目的や用途に応じて適宜選択することができ
る。
The spinning solution thus obtained is wet-spun or dry-wet spinning through a spinning nozzle into a solidification bath. The wet spinning method, in which the solidification bath is brought into direct contact with the spinning nozzle, is suitable for spinning using a multi-hole nozzle because the fibers can be spun without causing the fibers to stick together even if the nozzle hole pitch is narrowed. Dry-wet spinning with an air gap between them is suitable for high-speed spinning because the elongation at the air gap is large. In the present invention, which of the wet spinning method and the dry-wet spinning method is used can be appropriately selected depending on the purpose and application.

【0027】本発明において用いる固化浴は固化溶媒と
原液溶媒からなる混合液である。そして固化溶媒として
は、メタノール、エタノールなどのアルコール類、アセ
トン、メチルエチルケトンなどのケトン類などのPVA
に対して固化能を有する有機溶媒が好ましく、かつ固化
浴中での固化溶媒/原液溶媒の組成重量比は25/75
〜85/15である。また固化浴の温度は30℃以下が
好ましく、均一冷却ゲル化のためには20℃以下、さら
に15℃以下が好ましい。しかし、―20℃より低くす
るとその後に行う繊維の湿延伸が困難となるため−20
℃以上が好ましい。本発明繊維はPVXを含有するため
高温で曝されると着色し易いが、固化が断面方向に均一
であるため乾熱延伸するのみでPVAが配向結晶化する
傾向にあり、一般のPVA繊維に採用されているよう
な、乾熱延伸後においてより高温での熱処理を施さなく
ともPVAが十分に配向結晶化された繊維が得られる。
そのため高温に曝される機会が少ないので着色を抑える
ことができる。ただし、本発明において、耐水性をさら
に改善するため、乾熱処理やさらにホルマール化処理な
どを施こすことを妨げるものではないことはもちろんで
ある。
The solidification bath used in the present invention is a mixed solution comprising a solidification solvent and a stock solution solvent. Examples of the solidifying solvent include PVA such as alcohols such as methanol and ethanol, and ketones such as acetone and methyl ethyl ketone.
Is preferable, and the composition weight ratio of the solidification solvent / stock solution solvent in the solidification bath is 25/75.
8585/15. The temperature of the solidification bath is preferably 30 ° C. or lower, and is preferably 20 ° C. or lower, more preferably 15 ° C. or lower for uniform cooling and gelation. However, if the temperature is lower than −20 ° C., it is difficult to perform the subsequent wet drawing of the fiber, so that the temperature is −20 ° C.
C. or higher is preferred. Since the fiber of the present invention contains PVX, it is liable to be colored when exposed to high temperatures.However, since solidification is uniform in the cross-sectional direction, PVA tends to be oriented and crystallized only by drawing under dry heat. A fiber in which PVA is sufficiently oriented and crystallized can be obtained without performing a heat treatment at a higher temperature after the dry heat drawing as employed.
Therefore, there is little opportunity to be exposed to a high temperature, so that coloring can be suppressed. However, in the present invention, it is a matter of course that the dry heat treatment or the formalization treatment is not prevented in order to further improve the water resistance.

【0028】本発明において、固化レベルを適正に維持
するために、固化浴中の有機溶媒系固化溶媒と原液溶媒
の組成比は重要であり、本発明では重量比で25/75
〜85/15の範囲が採用される。固化浴中での原液溶
媒濃度が15重量%より少ないと凝固能が高すぎ、ノズ
ル切れとなり紡糸調子が不良となり、更に得られる繊維
の強度・ヤング率等の性能が低下する傾向にある。一
方、固化浴中での原液溶媒濃度が75重量%より多いと
十分な固化ができず、これまた紡糸工程通過性が悪く、
強度などの点で満足できる性能の繊維を得ることができ
ない。より好ましい固化浴中の原液溶媒の濃度は20〜
70重量%であり、25〜65重量%が最も好ましい。
なお本発明においては、固化浴は上記したように、固化
溶媒と原液溶媒との混合液が用いられるが、もちろん少
量ならばこれら以外の液体や固体が溶解されて存在して
もよい。本発明において、固化溶媒と原液溶媒の最も好
ましい組み合わせはメタノールとDMSOの組み合わせ
である。
In the present invention, in order to properly maintain the solidification level, the composition ratio between the organic solvent-based solidifying solvent and the stock solution solvent in the solidification bath is important, and in the present invention, the weight ratio is 25/75.
A range of ~ 85/15 is employed. If the concentration of the undiluted solvent in the solidification bath is less than 15% by weight, the coagulation ability is too high, the nozzle breaks, the spinning condition becomes poor, and the performance of the obtained fiber such as strength and Young's modulus tends to decrease. On the other hand, if the concentration of the undiluted solvent in the solidification bath is more than 75% by weight, sufficient solidification cannot be performed, and the spinning process is poor in passage.
Fibers having satisfactory performance in terms of strength and the like cannot be obtained. A more preferable concentration of the undiluted solvent in the solidification bath is 20 to
70% by weight, most preferably 25-65% by weight.
In the present invention, as described above, the solidification bath is a mixture of the solidification solvent and the undiluted solvent. However, if the amount is small, other liquids and solids may be dissolved therein. In the present invention, the most preferable combination of the solidifying solvent and the stock solution is a combination of methanol and DMSO.

【0029】固化浴で形成された糸条は、湿延伸、原液
溶媒の抽出、乾燥と経て、乾熱延伸工程に送られる。本
発明方法においては、湿延伸倍率としては1.5〜5倍
の範囲が好ましい。そして湿延伸した繊維をメタノール
やケトン等の浴に浸漬して、繊維中に含まれている原液
溶媒を抽出除去する。その後に乾燥する。もちろん乾燥
前に、繊維に油剤等を付与してもよい。そして全延伸倍
率が6倍以上となるように乾熱延伸を行うことが必要で
ある。乾熱延伸は通常180〜250℃の温度条件下で
行われる。なお本発明でいう全延伸倍率とは、湿延伸倍
率と乾熱延伸倍率との積で表される倍率であり、全延伸
倍率が6倍未満の場合には強度・ヤング率の優れた繊維
を得ることができない。ただし全延伸倍率が30倍を越
えるような延伸は工業的には難しい。通常10〜20倍
の全延伸倍率が用いられる。
The yarn formed in the solidifying bath is sent to a dry heat drawing step after wet drawing, extraction of a stock solution solvent, and drying. In the method of the present invention, the wet stretching ratio is preferably in the range of 1.5 to 5 times. Then, the wet-drawn fiber is immersed in a bath of methanol, ketone or the like to extract and remove the stock solution solvent contained in the fiber. Then dry. Of course, an oil agent or the like may be applied to the fiber before drying. And it is necessary to perform dry heat stretching so that the total stretching ratio becomes 6 times or more. Dry heat stretching is usually performed under a temperature condition of 180 to 250 ° C. The total draw ratio in the present invention is a ratio represented by a product of a wet draw ratio and a dry heat draw ratio, and when the total draw ratio is less than 6, a fiber having excellent strength and Young's modulus is used. I can't get it. However, it is industrially difficult to perform the stretching so that the total stretching ratio exceeds 30 times. Usually, a total draw ratio of 10 to 20 times is used.

【0030】[0030]

【実施例】次に本発明を実施例にてさらに説明するが、
本発明はこれら実施例に限定されるものではない。な
お、実施例中の繊維の強伸度はJIS L−1013、
難燃指数(LOI値)はJIS K−7201にそれぞ
れ準拠して測定した。また本発明にいう煮沸水収縮率
(以後WSrと略記)とは、サンプル繊維に2mg/d
rの荷重を吊り下げ、所定長L0(例えば1.00m)
を正確に採取し、フリー状態で30分間100℃で煮沸
し、次いで風乾し、風乾後のサンプルに再び2mg/d
rの荷重を吊り下げ同様に糸長を正確に測定(L1
し、次式によりWSrを算出する。 WSr=[(L0−L1)/L0]×100(%) また実施例中、%や比率は特に断りがない限り重量に基
づく値である。
Next, the present invention will be further described with reference to Examples.
The present invention is not limited to these examples. The strength and elongation of the fibers in the examples are JIS L-1013,
The flame retardancy index (LOI value) was measured according to JIS K-7201. The boiling water shrinkage ratio (hereinafter abbreviated as WSr) in the present invention is 2 mg / d to the sample fiber.
The load of r is suspended, and a predetermined length L 0 (for example, 1.00 m)
Is accurately collected, boiled at 100 ° C. for 30 minutes in a free state, then air-dried, and the sample after air-drying is again 2 mg / d.
Measure the yarn length exactly as with hanging the load of r (L 1 )
Then, WSr is calculated by the following equation. WSr = [(L 0 −L 1 ) / L 0 ] × 100 (%) In the examples,% and ratio are values based on weight unless otherwise specified.

【0031】実施例1 重合度1750、ケン化度99.8モル%のPVA、重
合度400のPVC粉末、メタ錫酸をDMSO中窒素気
流下80℃で5時間撹拌溶解し、PVA/PVC=65
/35、(PVA+PVC)のポリマー濃度18%、メ
タ錫酸5%/ポリマーの組成を有する紡糸原液を得た。
溶解直後の紡糸原液を微分干渉顕微鏡で観察したとこ
ろ、PVA溶液中にPVC溶液が平均粒径約25μmの
島径からなる島相を形成している相構造を有しているこ
とがわかった。しかしこの原液のPVC島径変化速度は
2.4μm/hrと大きく、80℃で15時間放置脱泡
すると曳糸性はかなり不良で、紡糸不能であった。そこ
で溶解始めから紡糸終了まで連続して撹拌することで紡
糸可能となった。得られた紡糸原液を孔径0.08m
m、孔数2000ホールのノズルを通して、メタノール
/DMSOの重量比が70/30である5℃の固化浴中
に湿式紡糸した。次いでメタノールでDMSOを抽出し
ながら3.5倍に湿延伸し、100℃の熱風でメタノー
ルを乾燥し、228℃で4.0倍乾熱延伸を施し、単繊
維太さが1.8デニールの繊維を得た。この繊維の製造
(紡糸)を24時間連続して行ったところ、何らトラブルな
く極めて安定に紡糸することができた。得られた繊維の
断面の20,000倍のTEM写真を図1に示す。この
写真よりPVCが約0.9μmの大きさの島を形成する
海島繊維であることがわかった。本繊維のLOI値は3
9と高く、高難燃繊維であった。また本繊維の海成分P
VAの結晶化度は71%と高く、そのため強度は8.3
g/dと高いものであり、またWSrは2.4%と低
く、乾熱延伸後でも耐湿寸法安定性に優れたものであっ
た。色相は若干黄桃色に着色していたものの従来のPV
A系難燃繊維の着色より軽度であった。
Example 1 PVA having a polymerization degree of 1750 and a saponification degree of 99.8 mol%, PVC powder having a polymerization degree of 400, and metastannic acid were stirred and dissolved in DMSO under a nitrogen stream at 80 ° C. for 5 hours. 65
/ 35, a polymer concentration of (PVA + PVC) 18%, and a spinning dope having a composition of metastannic acid 5% / polymer were obtained.
Observation of the spinning dope immediately after dissolution with a differential interference microscope revealed that the PVC solution had a phase structure in which the PVA solution formed an island phase having an island diameter of about 25 μm in average particle diameter. However, the PVC island diameter change rate of this stock solution was as large as 2.4 μm / hr, and when left to defoam at 80 ° C. for 15 hours, the spinnability was considerably poor and spinning was impossible. Therefore, spinning was possible by continuously stirring from the start of melting to the end of spinning. The obtained spinning dope was used with a pore size of 0.08 m.
m, through a nozzle having 2,000 holes, and wet spinning into a 5 ° C. solidification bath having a weight ratio of methanol / DMSO of 70/30. Next, while DMSO is being extracted with methanol, the film is wet-stretched 3.5 times, the methanol is dried with hot air at 100 ° C., dry-heat-stretched at 228 ° C. 4.0 times, and the single fiber thickness is 1.8 denier. Fiber was obtained. Production of this fiber
When (spinning) was performed continuously for 24 hours, it was possible to spin very stably without any trouble. FIG. 1 shows a 20,000-times TEM photograph of the cross section of the obtained fiber. From this photograph, it was found that PVC was a sea-island fiber forming an island having a size of about 0.9 μm. LOI value of this fiber is 3
9 and high flame-retardant fiber. The sea component P of the fiber
The crystallinity of VA is as high as 71%, so that the strength is 8.3.
g / d, and the WSr was as low as 2.4%, and was excellent in dimensional stability against humidity even after dry heat drawing. Although the hue was slightly yellow-pink, the conventional PV
It was lighter than the coloring of the A-based flame-retardant fiber.

【0032】比較例1 粒径0.06μmのPVCエマルジョン、重合度175
0、ケン化度98.5モル%のPVA、メタ錫酸および
硼酸を水中90℃で5時間撹拌溶解し、PVA/PVC
=65/35、(PVA+PVC)のポリマー濃度20
%、メタ錫酸5%/ポリマー、硼酸2.5%/PVAの
組成を有する紡糸原液を得た。この紡糸原液を実施例1
と同様微分干渉顕微鏡で観察したが、PVC粒子はあま
りに小さく観察することはできなかった。得られた紡糸
原液を孔径0.08μm、孔数2000ホールのノズル
を通して、苛性ソーダ20g/lと芒硝350g/lを
含有する45℃の水溶液よりなる固化浴中に湿式紡糸し
た。次いで1.5倍のローラー延伸、硫酸と芒硝の水溶
液からなる中和浴にて中和、95℃の飽和芒硝水溶液中
で2.3倍の湿延伸、30℃の水洗浴で硼酸洗浄、30
0g/lの芒硝水溶液で芒硝置換、100℃で乾燥、2
28℃で4.0倍の乾熱延伸、230℃で5%の乾熱収
縮を施こして、水系紡糸法によりPVA系難燃繊維を得
た。得られた繊維の断面の20,000倍TEM写真を
図2に示す。この写真より観測したPVCの径は約0.
05μmであった。本繊維のLOI値は39で実施例1
と同等であった。一方本繊維の海成分PVAの結晶化度
は56%と低く、そのため強度は5.9g/dと低く、
またWSrは11.5%と高く耐湿寸法安定性も不十分
であった。本繊維をさらに10%のホルムアルデヒドと
10%硫酸を含む溶液で70℃×30分ホルマール化反
応させた。得られた繊維のWSrは3.5%と改善され
たが、LOI値は36と実施例1のものより低かった。
また強度は5.9g/dであった。
Comparative Example 1 PVC emulsion having a particle size of 0.06 μm, degree of polymerization 175
0, 98.5 mol% of saponification degree PVA, metastannic acid and boric acid were stirred and dissolved in water at 90 ° C for 5 hours, and PVA / PVC was dissolved.
= 65/35, polymer concentration 20 of (PVA + PVC)
%, 5% metastannic acid / polymer, 2.5% boric acid / PVA, to obtain a spinning dope. This spinning dope was used in Example 1
Observation was performed with a differential interference microscope in the same manner as described above, but the PVC particles could not be observed to be too small. The obtained spinning dope was wet-spun through a nozzle having a hole diameter of 0.08 μm and a number of 2,000 holes into a solidification bath comprising a 45 ° C. aqueous solution containing 20 g / l of caustic soda and 350 g / l of sodium sulfate. Then, the roller was stretched 1.5 times, neutralized in a neutralization bath consisting of an aqueous solution of sulfuric acid and sodium sulfate, wet stretched 2.3 times in a saturated aqueous solution of sodium sulfate at 95 ° C., and washed with boric acid in a 30 ° C. washing bath.
Replace with Glauber's salt with 0 g / l aqueous solution of Glauber's salt, dry at 100 ° C, 2
The film was stretched 4.0 times at 28 ° C. by dry heat, and subjected to 5% dry heat shrinkage at 230 ° C. to obtain a PVA-based flame-retardant fiber by a water-based spinning method. FIG. 2 shows a 20,000-fold TEM photograph of the cross section of the obtained fiber. The diameter of PVC observed from this photograph is about 0.
It was 05 μm. The LOI value of this fiber was 39 and Example 1 was used.
Was equivalent to On the other hand, the crystallinity of the sea component PVA of this fiber is as low as 56%, and therefore the strength is as low as 5.9 g / d.
Further, WSr was as high as 11.5%, and the dimensional stability against moisture was insufficient. This fiber was further subjected to a formalization reaction at 70 ° C. for 30 minutes with a solution containing 10% formaldehyde and 10% sulfuric acid. Although the WSr of the obtained fiber was improved to 3.5%, the LOI value was 36, which was lower than that of Example 1.
The strength was 5.9 g / d.

【0033】実施例2 重合度1750でケン化度99.8モル%のPVAと、
重合度2400でケン化度80モル%のPVAを塩化ビ
ニルモノマー当たり0.6重量%添加して重合した重合
度400のPVCを、メタ錫酸とともにDMSOに投入
し、80℃で5時間窒素気流下で攪拌溶解し、PVA/
PVCの重量比が67/33、ポリマー濃度が18重量
%、メタ錫酸が1重量%の混合紡糸原液を得た。ここで
使用したPVCをNMRで分析したところ、重合度24
00でケン化度80モル%のPVAがPVC当たり0.
3重量%含有していることを確認した。この原液を微分
干渉顕微鏡で観察したところ、PVA溶液中にPVC溶
液が平均粒径約11μmの島径からなる島成分として存
在している相構造を有していることがわかった。またP
VC島径変化速度は0.3μm/hrと小さく、80℃
で15時間放置脱泡後の曳糸性は溶解直後と変わらず、
紡糸調子はきわめて良好であった。得られた80℃の紡
糸原液を、孔数2000ホール、孔径0.08mmの紡
糸口金を通して、メタノール/DMSOの重量比が70
/30、温度が0℃の固化浴中に湿式紡糸した。つい
で、メタノールでDMSOを抽出しながら、3.5倍の
湿延伸を施し、100℃の熱風で乾燥したのち、228
℃で4.0倍乾熱延伸を施した。この繊維の製造(紡糸)
を24時間連続して行ったところ、何らトラブルなく極
めて安定に紡糸することができた。得られた繊維は、断
面のTEM写真よりPVCが約0.4μmの大きさの島
を形成する海島繊維であることがわかった。本繊維のL
OI値は39であった。また本繊維の海成分PVAの結
晶化度は70%と高く、そのため強度は8.6g/d、
WSrは2.6%と優れたものであった。色相は実施例
1と同程度であった。
Example 2 PVA having a polymerization degree of 1750 and a saponification degree of 99.8 mol%,
A PVC having a polymerization degree of 400 obtained by adding 0.6% by weight of PVA having a polymerization degree of 2400 and a saponification degree of 80 mol% per vinyl chloride monomer was added to DMSO together with metastannic acid, and a nitrogen stream was applied at 80 ° C. for 5 hours. Dissolve with stirring under PVA /
A mixed spinning dope having a PVC weight ratio of 67/33, a polymer concentration of 18% by weight, and metastannic acid of 1% by weight was obtained. When the PVC used here was analyzed by NMR, the degree of polymerization was 24.
PVA having a degree of saponification of 80 mol% and a pH of 0.000 per PVC.
It was confirmed that the content was 3% by weight. When the undiluted solution was observed with a differential interference microscope, it was found that the PVC solution had a phase structure in which the PVC solution was present as an island component having an island diameter of about 11 μm in the PVA solution. Also P
VC island diameter change rate is as small as 0.3 μm / hr, 80 ° C.
The spinnability after defoaming for 15 hours is the same as immediately after dissolution,
The spinning condition was very good. The obtained spinning dope at 80 ° C. was passed through a spinneret having 2,000 holes and a hole diameter of 0.08 mm, and the methanol / DMSO weight ratio was 70%.
/ 30, wet spinning in a solidification bath at a temperature of 0 ° C. Then, while extracting DMSO with methanol, it was subjected to 3.5 times wet stretching and dried with hot air at 100 ° C.
The film was stretched 4.0 times at 100 ° C. Production of this fiber (spinning)
Was carried out continuously for 24 hours. As a result, it was possible to spin very stably without any trouble. From the TEM photograph of the cross section, the obtained fiber was found to be a sea-island fiber in which PVC formed an island having a size of about 0.4 μm. L of this fiber
The OI value was 39. Further, the crystallinity of the sea component PVA of the present fiber is as high as 70%, so that the strength is 8.6 g / d,
WSr was as excellent as 2.6%. The hue was similar to that of Example 1.

【0034】実施例3 重合度1750でケン化度99.8モル%のPVAと、
PVAを添加せず重合した重合度400のPVCの重量
比が67/33で、更に重合度2400でケン化度80
モル%のPVAをPVC当たり0.6重量%添加する以
外は実施例2と同様に原液溶解、紡糸、延伸を行った。
得られた紡糸原液を微分干渉顕微鏡で観察したところ、
PVA溶液中にPVC溶液が平均粒径約18μmの島径
からなる島成分となって存在している相構造を有してい
ることがわかった。またPVC島径変化速度は0.5μ
m/hrで、実施例2よりは島径変化速度が大きいもの
の、80℃で15時間放置脱泡後も曳糸性は溶解直後と
ほとんど変わらず、紡糸調子は実施例2と同様に極めて
良好であった。得られた繊維は、断面のTEM写真より
PVCが約0.5μmの大きさの島を形成する海島繊維
であることがわかった。本繊維のLOI値は38であっ
た。また本繊維の海成分PVAの結晶化度は71%と高
く、そのため強度は8.3g/d、WSrは2.5%と
優れたものであった。色相は実施例1と同程度であっ
た。
Example 3 PVA having a degree of polymerization of 1750 and a degree of saponification of 99.8 mol%,
The weight ratio of PVC having a polymerization degree of 400 obtained by polymerization without adding PVA is 67/33, and the polymerization degree is 2400 and the saponification degree is 80.
The stock solution was dissolved, spun and stretched in the same manner as in Example 2, except that mol% of PVA was added at 0.6% by weight per PVC.
When the obtained spinning solution was observed with a differential interference microscope,
It was found that the PVC solution had a phase structure in which the PVC solution was present as island components having island diameters with an average particle size of about 18 μm. The rate of change in PVC island diameter is 0.5μ.
At m / hr, although the island diameter change rate was higher than in Example 2, the spinnability was almost the same as immediately after dissolution even after defoaming at 80 ° C. for 15 hours, and the spinning condition was extremely good as in Example 2. Met. From the TEM photograph of the cross section, the obtained fiber was found to be a sea-island fiber in which PVC formed an island having a size of about 0.5 μm. The LOI value of this fiber was 38. The crystallinity of the sea component PVA of the present fiber was as high as 71%, so that the strength was 8.3 g / d and the WSr was excellent at 2.5%. The hue was similar to that of Example 1.

【0035】実施例4 重合度1750でケン化度99.8モル%のPVAと、
酢酸ビニルが5重量%、ヒドロキシプロピルアクリレー
トが2.5重量%共重合された、PVAを添加せず重合
した重合度400のPVCとを重量比が67/33で、
更に重合度2400でケン化度80モル%のPVAをP
VC当たり0.5重量%添加する以外は実施例2と同様
に原液溶解、紡糸、延伸を行った。得られた紡糸原液を
微分干渉顕微鏡で観察したところ、PVA溶液中にPV
C溶液が平均粒径約10μmの島径からなる島成分とし
て存在している相構造を有していることがわかった。こ
の原液のPVC島径変化速度は0.3μm/hrと小さ
く、80℃で15時間放置脱泡しても曳糸性は溶解直後
と変わらず、紡糸調子は実施例2と同様に極めて良好で
あった。得られた繊維は、断面のTEM写真よりPVC
が約0.4μmの大きさの島を形成する海島繊維である
ことがわかった。本繊維の海成分PVAの結晶化度は7
0%と高く、そのため強度は8.4g/d、WSrは
2.7%と優れたものであったが、LOI値はPVCが
コポリマーのため37と若干低かった。一方色相は実施
例1よりも優れていた。
Example 4 PVA having a degree of polymerization of 1750 and a degree of saponification of 99.8 mol%,
A weight ratio of vinyl acetate of 5% by weight, hydroxypropyl acrylate of 2.5% by weight, and a polymerization degree of 400 obtained by copolymerization without adding PVA, is 67/33,
Further, PVA having a degree of polymerization of 2400 and a saponification degree of 80 mol% is converted to P
The stock solution was dissolved, spun and stretched in the same manner as in Example 2 except that 0.5% by weight of VC was added. Observation of the obtained spinning dope with a differential interference microscope revealed that PVA was contained in the PVA solution.
It was found that the C solution had a phase structure in which an island component having an average diameter of about 10 μm was present as an island component. The PVC island diameter change rate of this stock solution was as small as 0.3 μm / hr, and the spinning property was the same as that immediately after dissolution even after defoaming at 80 ° C. for 15 hours, and the spinning condition was extremely good as in Example 2. there were. The obtained fiber is PVC from the cross-sectional TEM photograph.
Was found to be sea-island fibers forming islands of about 0.4 μm in size. The crystallinity of the sea component PVA of this fiber is 7
Although the strength was as high as 0%, the strength was excellent at 8.4 g / d and the WSr was 2.7%, but the LOI value was slightly lower at 37 because PVC was a copolymer. On the other hand, the hue was better than that of Example 1.

【0036】実施例5 メタ錫酸と三酸化アンチモンのDMSO分散液に重合度
1750、ケン化度99.8モル%のPVAを加えて8
0℃×5hr窒素気流下80℃で5時間撹拌溶解し、P
VA20%、メタ錫酸6%/PVA、三酸化アンチモン
1.5%/PVAの溶液を得た。別の溶解機で重合度4
00のPVC粉末に重合度2400でケン化度80モル
%のPVAをPVC当たり0.5重量%添加し、これを
DMSOに窒素気流下70℃×5時間撹拌溶解し、PV
C20%の溶液を得た。得られたPVA溶液とPVC溶
液を各々ギアポンプで計量しながら混合し、特殊機化工
業株式会社製T.K.パイプラインホモミキサーで配管
途中で毎分3000回転で撹拌混合した。混合液は、P
VA/PVC比67/33、トータルポリマー濃度20
%、メタ錫酸は4%/ポリマー、三酸化アンチモンは1
%/ポリマーであり、微分干渉顕微鏡で観察するとPV
A溶液中にPVC溶液が平均粒径約37μmの島径から
なる島相を形成している相構造を有していることがわか
った。この混合原液を実施例1と同様に紡糸、湿延伸、
抽出、乾燥、さらに熱延伸を施こし、そしてさらに23
0℃で5%の乾熱収縮処理を施こした。得られた繊維
は、断面のTEM写真よりPVCが約1.4μmの島を
形成する海島繊維であることがわかった。本繊維は実施
例1の繊維より色相は優れていた。本繊維のLOI値は
37であった。また本繊維の海成分PVAの結晶化度は
70%で、強度は7.6g/d、WSrは2.0%であ
った。この実施例の方法を24時間連続して行ったとこ
ろ、紡糸安定性よく繊維を製造することができた。
Example 5 A DMSO dispersion of metastannic acid and antimony trioxide was added with PVA having a polymerization degree of 1750 and a saponification degree of 99.8 mol% to give 8
Stir and dissolve at 80 ° C for 5 hours in a nitrogen stream at 0 ° C for 5 hours.
A solution of 20% VA, 6% metastannic acid / PVA, 1.5% antimony trioxide / PVA was obtained. Degree of polymerization 4
PVA having a degree of polymerization of 2400 and a saponification degree of 80 mol% was added to the PVC powder of No. 00 by 0.5% by weight per PVC, and this was stirred and dissolved in DMSO under a nitrogen stream at 70 ° C. for 5 hours.
A solution of 20% C was obtained. The obtained PVA solution and PVC solution were mixed while being measured with a gear pump, respectively, and T.K. K. The mixture was stirred and mixed at 3000 revolutions per minute in the middle of the pipe by a pipeline homomixer. The mixture is P
VA / PVC ratio 67/33, total polymer concentration 20
%, Metastannic acid 4% / polymer, antimony trioxide 1
% / Polymer, and when observed with a differential interference microscope, PV
It was found that in the solution A, the PVC solution had a phase structure forming an island phase having an island diameter of about 37 μm in average particle size. This mixed stock solution was spun, wet drawn, and treated in the same manner as in Example 1.
Extraction, drying, hot stretching and further 23
A 5% dry heat shrink treatment was performed at 0 ° C. From the TEM photograph of the cross section, the obtained fiber was found to be a sea-island fiber forming an island having a PVC of about 1.4 μm. This fiber was superior in hue to the fiber of Example 1. The LOI value of this fiber was 37. The sea component PVA of the present fiber had a crystallinity of 70%, a strength of 7.6 g / d and a WSr of 2.0%. When the method of this example was continuously performed for 24 hours, fibers could be produced with good spinning stability.

【0037】比較例2 上記実施例5において、 PVC粉末に重合度2400
でケン化度80モル%のPVAをPVC添加しない以外
は、実施例5と同様にしてPVA系難燃繊維を製造し
た。紡糸原液を微分干渉顕微鏡で観察すると、PVA溶
液中にPVC溶液が平均粒径約70μmの島径からなる
島相を形成していることが判明した。実施例5と同様に
連続して紡糸したところ、3時間までは問題なかった
が、3時間を越えた時点で紡糸性が悪化し、6時間経過し
た時点で紡糸を中止せざるを得なかった。
Comparative Example 2 In Example 5, the degree of polymerization was 2400
, A PVA-based flame-retardant fiber was produced in the same manner as in Example 5 except that PVA having a saponification degree of 80 mol% was not added to PVC. Observation of the spinning dope with a differential interference microscope revealed that the PVC solution formed an island phase having an average diameter of about 70 μm in the PVA solution. Continuous spinning was carried out in the same manner as in Example 5, but there was no problem up to 3 hours, but the spinnability deteriorated after 3 hours, and the spinning had to be stopped after 6 hours. .

【0038】[0038]

【発明の効果】本発明繊維は、難燃性アクリル繊維、難
燃性ポリエステル繊維、熱硬化性繊維、アラミド繊維、
難燃性綿、難燃性羊毛などのPVA系以外の難燃繊維素
材に比べ、燃焼ガス毒性、メルトドリップ性、強度、コ
スト、耐洗濯耐久性、風合などの点に優れるPVA系難
燃繊維のさらなるコストパーフォマンスの改善を目指し
たものである。従来のPVA系難燃繊維は、難燃性を得
るためのPVXとして特殊で高価なPVCエマルジョン
水溶液を用い、PVA水溶液と混合した紡糸原液を芒硝
を含む水溶液中に紡糸し、延伸、熱処理、ホルマール化
して得ていたが、本発明繊維は、PVCとして市販の安
価なPVX粉末を用い、PVXとPVAの共通溶媒に溶
解してPVA溶液中にPVX溶液が特定の大きさの島相
を形成する相構造の混合溶液を紡糸原液とし、これを低
温のメタノールなどを含有する固化浴中に冷却ゲル紡糸
し、延伸、必要に応じて熱処理、アセタール化処理して
得られるものである。このようにして得た繊維の結晶化
度は、従来のPVA系難燃繊維が50〜60%と低いの
に比べて65〜85%と高い点が従来のPVA系難燃繊
維と異なる。また紡糸安定性にも極めて優れている。従
って、数10%と多量に用いなければならないPVXに
PVCエマルジョンより数倍安価なPVX粉末を用いる
ことができ、しかもPVA相を高度に配向結晶化できる
ので、コストパーフォマンスの優れたPVA系難燃繊維
とすることができる。本発明繊維は、戦闘服や消防服な
どの防護衣料分野、カーシートや車両バネ受材やエアフ
ィルターなどの産業資材分野、カーテン、カーペット、
毛布、フトン側地、シーツカバー、中入綿などの生活資
材分野に有効に用いることができる。
The fibers of the present invention are flame-retardant acrylic fibers, flame-retardant polyester fibers, thermosetting fibers, aramid fibers,
Compared to non-PVA flame retardant fiber materials such as flame retardant cotton and flame retardant wool, PVA flame retardants are superior in terms of combustion gas toxicity, melt drip properties, strength, cost, washing durability, hand feeling, etc. It aims to further improve the cost performance of the fiber. The conventional PVA-based flame-retardant fiber uses a special and expensive PVC emulsion aqueous solution as PVX for obtaining flame retardancy, and spins a spinning stock solution mixed with a PVA aqueous solution into an aqueous solution containing sodium sulfate, drawing, heat treatment, and formal. The fiber of the present invention uses commercially available inexpensive PVX powder as PVC, and is dissolved in a common solvent of PVX and PVA to form an island phase of a specific size in the PVA solution in the PVA solution. A mixed solution having a phase structure is used as a spinning stock solution, which is subjected to cooling gel spinning in a solidification bath containing low-temperature methanol and the like, stretched, heat-treated as necessary, and acetalized. The degree of crystallinity of the fiber thus obtained is different from the conventional PVA-based flame-retardant fiber in that the PVA-based flame-retardant fiber is as high as 65-85% compared with the conventional PVA-based flame-retardant fiber as low as 50-60%. Also, the spinning stability is extremely excellent. Therefore, PVX powder which is several times cheaper than PVC emulsion can be used for PVX which must be used in a large amount of several tens of percent, and the PVA phase can be highly oriented and crystallized, so that a PVA-based flame retardant excellent in cost performance can be obtained. It can be a fiber. The fibers of the present invention are used in the field of protective clothing such as combat uniforms and firefighting suits, industrial materials such as car seats and vehicle spring receiving materials and air filters, curtains, carpets,
It can be effectively used in the field of living materials such as blankets, futon side sheets, sheet covers, and cotton filling.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の繊維の断面形状の1例を示した透過型
電子顕微鏡写真。
FIG. 1 is a transmission electron micrograph showing an example of a cross-sectional shape of a fiber of the present invention.

【図2】従来の難燃繊維の断面形状の1例を示した透過
型電子顕微鏡写真。
FIG. 2 is a transmission electron micrograph showing an example of a cross-sectional shape of a conventional flame-retardant fiber.

フロントページの続き (72)発明者 大森 昭夫 岡山県倉敷市酒津1621番地 株式会社クラ レ内 (72)発明者 徳永 勲 岡山県倉敷市酒津1621番地 株式会社クラ レ内 (72)発明者 窪津 彰 岡山県倉敷市酒津2045番地の1 株式会社 クラレ内 (72)発明者 西山 正一 岡山市海岸通1丁目2番1号 株式会社ク ラレ内 (72)発明者 佐野 友之 岡山市海岸通1丁目2番1号 株式会社ク ラレ内 Fターム(参考) 4L035 AA04 AA07 BB03 BB04 BB85 CC20 DD01 EE01 EE08 EE20 FF01 FF04 JJ04 Continued on the front page (72) Inventor Akio Omori 1621 Sakurazu, Kurashiki-shi, Okayama Prefecture Kuraray Co., Ltd. (72) Inventor Isao Tokunaga 1621 Sakurazu, Kurashiki-shi, Okayama Prefecture Kuraray Co., Ltd. 2045, Sakurazu, Kurashiki Prefecture, Japan Kuraray Co., Ltd. (72) Inventor Shoichi Nishiyama 1-2-1, Kaigan-dori, Okayama-shi Kuraray Co., Ltd. No.1 F-term in Kuraray Co., Ltd. (Reference) 4L035 AA04 AA07 BB03 BB04 BB85 CC20 DD01 EE01 EE08 EE20 FF01 FF04 JJ04

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】重合度1000以上、ケン化度98モル%
以上のビニルアルコール系ポリマー(1)と、含ハロゲ
ンビニルポリマー(2)よりなり、(1)が海成分、
(2)が島成分となっている海島繊維であり、繊維横断
面における(2)の島の大きさが0.1〜3μmであ
り、更に(1)の結晶化度が65〜85%であることを
特徴とするポリビニルアルコール系難燃繊維。
1. A polymerization degree of 1,000 or more and a saponification degree of 98 mol%.
It comprises the above vinyl alcohol polymer (1) and a halogen-containing vinyl polymer (2), wherein (1) is a sea component,
(2) is a sea-island fiber which is an island component, and the size of the island of (2) in the fiber cross section is 0.1 to 3 μm, and the crystallinity of (1) is 65 to 85%. A polyvinyl alcohol-based flame-retardant fiber.
【請求項2】繊維中に、ケン化度50〜90モル%のビ
ニルアルコール系ポリマー(3)が(2)に対して0.1〜
10重量%含有されている請求項1に記載の繊維。
2. The fiber contains a vinyl alcohol-based polymer (3) having a saponification degree of 50 to 90 mol% in an amount of 0.1 to 0.1% based on (2).
The fiber according to claim 1, which is contained in an amount of 10% by weight.
【請求項3】錫化合物およびアンチモン化合物からなる
群から選ばれる少なくとも1種の化合物をポリマー総重
量に対して0.1〜15%含有する請求項1または2に
記載の繊維。
3. The fiber according to claim 1, wherein the fiber contains at least one compound selected from the group consisting of a tin compound and an antimony compound in an amount of 0.1 to 15% based on the total weight of the polymer.
【請求項4】重合度1000以上、ケン化度98モル%
以上のビニルアルコール系ポリマー(1)と含ハロゲン
ビニルポリマー(2)を共通の溶媒に溶解し、得られた
紡糸原液を(1)に対して固化能を有する固化溶媒と原
液溶媒とを混合した固化浴に湿式または乾湿式紡糸し、
湿延伸した後、繊維中の溶媒を抽出し、そして乾燥し、
さらに乾熱延伸し、更に必要に応じて熱処理やアセター
ル化して、ポリビニルアルコール系難燃繊維を製造する
にあたり、紡糸原液が、(1)の溶液中に(2)の溶液
が島状態で存在している海島構造を有し、かつ(2)の
溶液の島径が1〜50μmであることを特徴とするポリ
ビニルアルコール系難燃繊維の製造方法。
4. A polymerization degree of at least 1,000 and a saponification degree of 98 mol%.
The above vinyl alcohol polymer (1) and the halogen-containing vinyl polymer (2) were dissolved in a common solvent, and the obtained spinning dope was mixed with a solidifying solvent having a solidifying ability with respect to (1) and a stock solvent. Wet or dry-wet spinning in a solidification bath,
After wet drawing, the solvent in the fiber is extracted and dried,
In order to produce polyvinyl alcohol-based flame-retardant fibers by further performing dry heat drawing, and further performing heat treatment or acetalization as necessary, the spinning stock solution contains the solution (2) in the solution (1) in an island state. A method for producing a polyvinyl alcohol-based flame-retardant fiber, characterized in that the solution has a sea-island structure and the island diameter of the solution of (2) is 1 to 50 μm.
【請求項5】紡糸原液において、(2)の溶液の島径変
化速度が1μm/hr以上の場合には、紡糸原液が形成
されてから紡糸までの間、紡糸原液を連続撹拌する請求
項4に記載の製造方法。
5. In the spinning dope, when the island diameter change rate of the solution (2) is 1 μm / hr or more, the spinning dope is continuously stirred from the formation of the spinning dope to spinning. The production method described in 1.
【請求項6】紡糸原液が、(1)、(2)およびケン化度5
0〜90モル%のビニルアルコール系ポリマー(3)を、
(3)が(2)に対して0.1〜10重量%となるように
(1)と(2)と(3)の共通の溶媒に溶解して得られたもの
である請求項4に記載の製造方法。
6. The spinning dope comprises (1), (2) and a saponification degree of 5.
0 to 90 mol% of a vinyl alcohol polymer (3)
(3) should be 0.1 to 10% by weight based on (2).
The production method according to claim 4, which is obtained by dissolving in a common solvent of (1), (2) and (3).
【請求項7】(2)及び(3)の少なくとも一部として、含
ハロゲンビニルモノマーの重合時に該モノマーに対して
(3)を0.1〜3重量%添加して得られる(3)含有(2)
を用いる請求項4に記載の製造方法。
7. The method according to claim 1, wherein at least a part of (2) and (3) is used for polymerization of the halogen-containing vinyl monomer during polymerization.
(3) containing (2) obtained by adding 0.1 to 3% by weight of (3)
The production method according to claim 4, wherein
【請求項8】(3)の一部として請求項7記載の(3)含有
(2)を用い、(3)の残りを紡糸原液の調製時に添加し
て、紡糸原液中の(3)の量が紡糸原液中のポリマー総重
量に対して0.1〜8重量%とする請求項4に記載の製
造方法。
8. The content of (3) according to claim 7, as a part of (3).
Using (2), the remainder of (3) is added at the time of preparing the spinning dope so that the amount of (3) in the spinning dope is 0.1 to 8% by weight based on the total weight of the polymer in the spinning dope. The method according to claim 4.
【請求項9】紡糸原液に、錫化合物及びアンチモン化合
物からなる群から選ばれる少なくとも1種の化合物が、
ポリマー総重量に対して0.1〜15重量%混合されて
いる請求項4〜8のいずれかに記載の製造方法。
9. The spinning dope contains at least one compound selected from the group consisting of tin compounds and antimony compounds,
The method according to any one of claims 4 to 8, wherein the content is 0.1 to 15% by weight based on the total weight of the polymer.
JP27056998A 1997-10-07 1998-09-07 Polyvinyl alcohol flame-retarded fiber Pending JP2000154422A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27056998A JP2000154422A (en) 1997-10-07 1998-09-07 Polyvinyl alcohol flame-retarded fiber

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP29165397 1997-10-07
JP9-291653 1997-10-07
JP18314598 1998-06-30
JP10-183145 1998-06-30
JP27056998A JP2000154422A (en) 1997-10-07 1998-09-07 Polyvinyl alcohol flame-retarded fiber

Publications (1)

Publication Number Publication Date
JP2000154422A true JP2000154422A (en) 2000-06-06

Family

ID=27325257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27056998A Pending JP2000154422A (en) 1997-10-07 1998-09-07 Polyvinyl alcohol flame-retarded fiber

Country Status (1)

Country Link
JP (1) JP2000154422A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2006087983A1 (en) * 2005-02-21 2008-07-03 株式会社クラレ Flame retardant polyvinyl alcohol fiber
JP2018035478A (en) * 2016-09-02 2018-03-08 国立大学法人信州大学 Composite nanofiber, manufacturing method of the same, and mask

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2006087983A1 (en) * 2005-02-21 2008-07-03 株式会社クラレ Flame retardant polyvinyl alcohol fiber
JP2018035478A (en) * 2016-09-02 2018-03-08 国立大学法人信州大学 Composite nanofiber, manufacturing method of the same, and mask

Similar Documents

Publication Publication Date Title
KR100301143B1 (en) Flame-retardant polyvinyl alcohol base fiber
IE44104B1 (en) Hygroscopic fibres and filaments of synthetic polymers
US3963790A (en) Non-inflammable filaments comprising acrylonitrile/vinylidene chloride copolymers
US4383086A (en) Filaments and fibers of acrylonitrile copolymer mixtures
US3932577A (en) Method for making void-free acrylic fibers
JP2000154422A (en) Polyvinyl alcohol flame-retarded fiber
US4658004A (en) Polyacrylonitrile fiber with high strength and high modulus of elasticity
JPS6021905A (en) Acrylic fiber having high strength and elastic modulus and its manufacture
JPH10273821A (en) Water absorbing acrylic fiber
JPH11107047A (en) Polyvinyl alcohol-based flame-retardant yarn and its production
JPH11107044A (en) Polyvinyl alcohol-based flame-retardant yarn and its production
JPH11200152A (en) Polyvinyl alcohol-based flame retardant fiber and its production
JP2001226819A (en) Method of producing flame-retardant polyvinyl alcohol fiber
JP2000212828A (en) Polyvinyl alcohol-based fiber and its production
JPH11107045A (en) Polyvinyl alcohol-based flame-retardant yarn and its production
JP2601775B2 (en) Flame retardant acrylic composite fiber
JP2515260B2 (en) Flame-retardant acrylic composite fiber
JP3544057B2 (en) Method for producing polyvinyl alcohol-based flame retardant fiber
JP3370395B2 (en) Highly flame-retardant acrylic composite fiber
JPH10158928A (en) Splittable acrylic synthetic yarn and its production
JPH0770817A (en) Flame-retardant acrylic fiber and flame-retardant fiber composite produced by using it
JPS6335820A (en) Production of polyacrylonitrile fiber having high tenacity
JP2601774B2 (en) Flame retardant acrylic composite fiber
JP2001355122A (en) Flame-retardant fiber and method for producing the same
JPH05148709A (en) Acrylic modified cross section fiber and its production