JPH1053918A - Polyvinyl alcohol fiber and its production - Google Patents

Polyvinyl alcohol fiber and its production

Info

Publication number
JPH1053918A
JPH1053918A JP9294897A JP9294897A JPH1053918A JP H1053918 A JPH1053918 A JP H1053918A JP 9294897 A JP9294897 A JP 9294897A JP 9294897 A JP9294897 A JP 9294897A JP H1053918 A JPH1053918 A JP H1053918A
Authority
JP
Japan
Prior art keywords
fiber
cross
section
weight
pva
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9294897A
Other languages
Japanese (ja)
Inventor
Yoichi Yamamoto
洋一 山本
Yuji Ogino
祐二 荻野
Junichi Hikasa
純一 日笠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP9294897A priority Critical patent/JPH1053918A/en
Publication of JPH1053918A publication Critical patent/JPH1053918A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain the subject fiber having high non-circularity of the cross-section and excellent mechanical properties, heat-insulation, water-absorption, dyeing and weaving performance and fastness and useful for clothes, etc., by spinning a spinning dope containing a polyvinyl alcohol polymer and a specific amount of a specific phyllosilicate. SOLUTION: This polyvinyl alcohol fiber having a circular length ratio of the cross-section of >=0.85 and a ratio of (the diameter of the maximum inscribed circle)/(the diameter of the minimum inscribed circle) of the fiber cross- section of >=0.35 is produced by spinning a spinning dope containing a polyvinyl alcohol polymer and >=0.05wt.% (based on the polymer) of a swelling phyllosilicate having a cation exchange capacity of >=40mg/100g such as synthetic fluorine mica. Preferably, a fiber structure is produced by compounding the polyvinyl alcohol fiber.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、異形断面を有する
ポリビニルアルコ−ル系繊維およびその製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polyvinyl alcohol fiber having an irregular cross section and a method for producing the same.

【0002】[0002]

【従来の技術】ポリビニルアルコ−ル(PVA)系繊維
は、高強度高弾性率で親水性に富み、かつ耐アルカリ性
に優れているため、成形材料(セメント、プラスチッ
ク、ゴム、コンクリ−ト等)の補強材などに有効に利用
されている。補強繊維においては、繊維自身の機械的性
質が優れていることは重要であるが、成形体を構成する
材料との接着性が高く、素抜け等が生じにくいことも重
要であり、また、各種フィルタ−等においても、異形度
の高い繊維が望まれていた。以上のことから、繊維の機
械的性能を損なうことなく比表面積を大きくする検討が
なされており、具体的には、繊維断面形状の偏平化、異
形化や細デニ−ル化する方法が提案されている。
2. Description of the Related Art Polyvinyl alcohol (PVA) fibers have a high strength and a high elastic modulus, are highly hydrophilic, and have excellent alkali resistance. Therefore, molding materials (cement, plastic, rubber, concrete, etc.) are used. It is effectively used as a reinforcing material. In a reinforcing fiber, it is important that the mechanical properties of the fiber itself are excellent, but it is also important that the adhesiveness to the material constituting the molded article is high, and that the fiber does not easily come off. Also in filters and the like, fibers having a high degree of irregularity have been desired. From the above, studies have been made to increase the specific surface area without impairing the mechanical performance of the fiber, and specifically, a method for flattening, deforming, or deniering the fiber cross-sectional shape has been proposed. ing.

【0003】例えば、PVA系繊維の代表的な製法とし
て、脱水能を有する無機塩類を含む凝固浴中にPVA紡
糸原液を湿式紡糸する方法が挙げられるが、この方法に
よれば凝固浴中で急激な脱水がなされるため、繊維横断
面には2層構造(緻密な構造を有するスキン層と比較的
粗な構造を有するコア層)が形成され、円型ノズルから
吐出された場合であっても丸型を押し潰したような繭型
断面となる。かかる繊維は、ある程度大きな比表面積
(断面充実度50%程度、断面周長比0.8程度)を有
しているものの、さらなる改善が望まれている。
[0003] For example, as a typical method for producing PVA-based fibers, there is a method in which a PVA spinning solution is wet-spun in a coagulation bath containing inorganic salts having a dehydrating ability. Since a dehydration is performed, a two-layer structure (a skin layer having a dense structure and a core layer having a relatively rough structure) is formed in the cross section of the fiber, and even when the fiber is discharged from the circular nozzle. It becomes a cocoon-shaped cross section as if a round shape was crushed. Although such fibers have a relatively large specific surface area (cross-sectional degree of about 50%, cross-sectional circumference ratio of about 0.8), further improvement is desired.

【0004】また、Y型、+型、−型等の異形断面を有
するノズルを用いることも検討されているが、紡糸して
得られる繊維の異形度には自ずと限界があり、生産性に
も問題があった。たとえば、湿式または乾湿式紡糸法の
場合、原液濃度が低く凝固浴中で脱溶媒が急激に起こる
ため、紡糸原液をノズルから吐出すると繊維横断面及び
長さ方向に大きな収縮が発生し、さらに原液の表面張力
によって円形になろうとする力が働くため、開口部が異
形断面を有するノズルで紡糸したとしても繊維横断面の
異形度をそれほど大きくすることはできなかった。
Although the use of nozzles having irregular cross sections such as Y-type, + -type and --type has been studied, the degree of irregularity of the fiber obtained by spinning is naturally limited, and the productivity is also limited. There was a problem. For example, in the case of the wet or dry-wet spinning method, since the concentration of the stock solution is low and the solvent is rapidly removed in the coagulation bath, when the stock solution is discharged from the nozzle, a large shrinkage occurs in the fiber cross section and the length direction. Because of the surface tension, a force for forming a circular shape is exerted, so that even if the opening is spun with a nozzle having an irregular cross section, the degree of irregularity of the fiber cross section cannot be increased so much.

【0005】[0005]

【発明が解決しようとする課題】この表面張力による繊
維横断面の円形化を防止するため、原液の凝固浴からの
離浴張力を高く、すなわちバスドラフト(ノズル穴から
の原液の吐出速度と離浴速度との速度差による比)を高
くすることで、凝固時の吐出方向の収縮による断面の円
形化を阻害して異形断面形状を保持させる方法や、硼酸
を添加した紡糸原液を用いてスキン/コア構造の形成を
阻害する方法も検討されているが、やはり繊維が歪化す
るため異形度の大きなものを得ることは難しかった。本
発明は、以上の問題に鑑み、機械的物性に優れ、かつ繊
維横断面の異形度の高いPVA系繊維及びその効率的な
製造方法を提供することを目的とする。
In order to prevent the cross section of the fiber from being circularized due to the surface tension, the separation tension of the undiluted solution from the coagulation bath is increased. A method of maintaining a deformed cross-sectional shape by inhibiting the cross-section from being circularized due to contraction in the discharge direction during coagulation by increasing the ratio due to the speed difference with the bath speed, or using a spinning stock solution with boric acid added Although methods for inhibiting the formation of the core structure have been studied, it was difficult to obtain a fiber having a large degree of irregularity because the fibers were distorted. In view of the above problems, an object of the present invention is to provide a PVA-based fiber having excellent mechanical properties and a high fiber cross-sectional irregularity, and an efficient method for producing the same.

【0006】[0006]

【課題を解決するための手段】本発明は、陽イオン交換
容量40meq/100g以上の膨潤性の層状ケイ酸塩
を0.05重量%以上含み、断面周長比0.85以上、
繊維横断面の最大内接円の直径/最小外接円の直径が
0.35以下のポリビニルアルコ−ル系繊維、および陽
イオン交換容量40meq/100g以上の膨潤性の層
状ケイ酸塩を0.05重量%以上含み、断面周長比0.
85以上、繊維横断面の最大内接円の直径/最小外接円
の直径が0.35以下のポリビニルアルコ−ル系繊維を
含む繊維構造体、さらに陽イオン交換容量40meq/
100g以上の膨潤性の層状ケイ酸塩を0.05重量%
以上含むポリビニルアルコ−ル系繊維からなる繊維集合
体であって、該繊維集合体を構成する繊維の20%以上
が断面周長比0.85以上、繊維横断面の最大内接円の
直径/最小外接円の直径が0.35以下のポリビニルア
ルコ−ル系繊維であり、単繊維間で繊維横断面形状が異
なっていることを特徴とするポリビニルアルコ−ル系繊
維集合体に関し、さらにポリビニルアルコ−ル系ポリマ
−と、該ポリマ−に対して0.05重量%以上の陽イオ
ン交換容量40meq/100g以上の膨潤性の層状ケ
イ酸塩を含む紡糸原液を用いて紡糸するポリビニルアル
コ−ル系繊維の製造方法に関する。
According to the present invention, a swellable layered silicate having a cation exchange capacity of 40 meq / 100 g or more is contained in an amount of 0.05% by weight or more, and a sectional circumference ratio of 0.85 or more.
Polyvinyl alcohol fiber having a diameter of a maximum inscribed circle / a minimum circumscribed circle of 0.35 or less in a cross section of the fiber and a swellable layered silicate having a cation exchange capacity of 40 meq / 100 g or more are 0.05%. % Or more, and the cross-sectional circumference ratio is 0.
A fibrous structure containing polyvinyl alcohol-based fibers having a diameter of not less than 85 and a diameter of a maximum inscribed circle / a minimum circumscribed circle of the fiber cross section of not more than 0.35, and a cation exchange capacity of 40 meq /
0.05% by weight of swellable layered silicate of 100 g or more
A fiber aggregate made of the polyvinyl alcohol-based fiber containing the above, wherein 20% or more of the fibers constituting the fiber aggregate have a cross-sectional circumference ratio of 0.85 or more and the diameter of the largest inscribed circle of the fiber cross section / A polyvinyl alcohol-based fiber aggregate having a minimum circumscribed circle diameter of 0.35 or less, wherein the fiber cross-sectional shape is different between single fibers. Alcohol spinning using a spinning solution containing a swellable layered silicate having a cation exchange capacity of 40 meq / 100 g or more with respect to the polymer and a cation exchange capacity of 0.05 wt% or more based on the polymer. The present invention relates to a method for producing a fiber.

【0007】[0007]

【発明の実施の形態】本発明で用いられるポリビニルア
ルコ−ル(PVA)系ポリマ−は、あらゆるPVA系ポ
リマ−を使用することができ、たとえば、0.5〜20
モル%程度、主鎖または側鎖を他のモノマ−からなる重
合体またはモノマ−で変性された変性PVAや、シンジ
オタクト部位が同じ主鎖に含まれるようなPVA系ポリ
マ−等を用いることができる。ポリマ−の平均重合度
は、紡糸するための紡糸原液の取扱性及び繊維物性の点
から4000以下が好ましく、3000程度以下、30
0程度以上がより望ましい。またケン化度は96%以
上、さらに99%以上とするのが好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION As the polyvinyl alcohol (PVA) polymer used in the present invention, any PVA polymer can be used.
Use of a modified PVA in which a main chain or a side chain is modified with a polymer or a monomer composed of another monomer, or a PVA-based polymer in which a syndiotactic site is contained in the same main chain, in an amount of about mol%. Can be. The average degree of polymerization of the polymer is preferably 4,000 or less from the viewpoint of handleability of the spinning stock solution for spinning and fiber properties, and is preferably about 3,000 or less,
About 0 or more is more desirable. The saponification degree is preferably 96% or more, more preferably 99% or more.

【0008】PVA系繊維本来の性質を損なうことなく
異形度が高めるためには、陽イオン交換容量40meq
/100g以上の膨潤性の層状ケイ酸塩をPVA系ポリ
マ−に対して0.05重量%以上配合する必要がある。
該ケイ酸塩を所定量配合した紡糸原液を紡糸することに
よって、異形度が高く諸性能に優れたPVA系繊維を効
率的かつ低コストで製造することができる。すなわち、
該ケイ酸塩を含む紡糸原液をノズルより吐出すると、P
VAは凝固浴中で脱水されることで体積収縮が生じる
が、層状ケイ酸塩そのものは凝固浴で溶解したり大きく
収縮しない。従って、PVA系ポリマ−の体積収縮が起
こればそれに伴って分散している層状ケイ酸塩も凝集す
るが、ある体積以下になると層状ケイ酸塩の存在により
PVA系ポリマ−の凝集が阻害されると考えられる。こ
のため、凝固浴中で脱水された糸篠は、糸篠の横断面方
向に起こる凝固挙動がPVA系ポリマ−のみの場合に比
べて不均一となり、特に本発明においては陽イオン交換
容量40meq/100g以上の膨潤性層状ケイ酸塩を
用いているため、横断面における異形度の大きい繊維が
得られると思われる。
In order to increase the degree of irregularity without impairing the intrinsic properties of PVA-based fibers, a cation exchange capacity of 40 meq
/ 100 g or more of a swellable layered silicate must be blended in an amount of 0.05% by weight or more based on the PVA-based polymer.
By spinning a spinning dope containing a predetermined amount of the silicate, a PVA-based fiber having a high degree of irregularity and excellent in various performances can be produced efficiently and at low cost. That is,
When the spinning solution containing the silicate is discharged from the nozzle, P
Although VA is dehydrated in a coagulation bath, volume shrinkage occurs, but the layered silicate itself does not dissolve or shrink significantly in the coagulation bath. Therefore, if the volume shrinkage of the PVA-based polymer occurs, the dispersed phyllosilicate is also agglomerated, but if the volume is reduced to a certain volume or less, the presence of the phyllosilicate inhibits the aggregation of the PVA-based polymer. It is thought that. For this reason, the itoshino dehydrated in the coagulation bath has a non-uniform coagulation behavior occurring in the cross-sectional direction of the itoshino as compared with the case of only the PVA-based polymer, and in particular, in the present invention, the cation exchange capacity is 40 meq / Since the swellable layered silicate of 100 g or more is used, it is considered that a fiber having a large degree of irregularity in a cross section is obtained.

【0009】陽イオン交換容量が小さい層状ケイ酸塩を
用いた場合であってもある程度繊維断面を異形化できる
が、異形効果が小さいため断面周長比0.85以上、繊
維横断面の最大内接円の直径/最小外接円の直径(接円
直径比)が0.35以下のような異形度の大きい繊維は
得ることは困難であり、異形度を高めるために配合量を
大きくすると紡糸性が著しく低下するのみでなく繊維物
性が損なわれて所望の繊維が得られない。
[0009] Even when a layered silicate having a small cation exchange capacity is used, the fiber cross section can be deformed to some extent. It is difficult to obtain fibers having a large degree of irregularity such as the diameter of the tangent circle / the diameter of the minimum circumscribed circle (tangent diameter ratio) of 0.35 or less. Not only is significantly reduced, but also the fiber properties are impaired, and the desired fibers cannot be obtained.

【0010】本発明でいう膨潤性の層状ケイ酸塩とは、
PVAの溶媒である水、ジメチルスルホキシド(DMS
O)等の溶液に対して膨潤性を示す、すなわちこれらの
溶媒を層間に吸収することで層間距離が拡がるケイ酸塩
をいう。膨潤性の層状ケイ酸塩は溶媒を層間に吸収する
ことで層間が拡がり、あるいはさらに膨潤してへき開し
て超微粒子になる特性を示すため、異形効果が大きいの
みでなく繊維中に均一に分散されて良好な結果が得られ
る。非膨潤性の層状ケイ酸塩を用いた場合には、異形効
果がほとんど得られないのみでなく、分散性が低いため
に紡糸性が著しく低下する。
The swellable phyllosilicate referred to in the present invention is:
PVA solvent water, dimethyl sulfoxide (DMS
A silicate that shows swelling properties to a solution such as O), that is, the distance between layers is increased by absorbing these solvents between layers. The swellable layered silicate exhibits the property of absorbing the solvent between the layers to expand the layers or to further swell and cleave into ultrafine particles, which not only has a large deforming effect but also disperses uniformly in the fiber. Good results are obtained. When a non-swellable layered silicate is used, not only the deforming effect is hardly obtained but also the spinnability is remarkably reduced due to low dispersibility.

【0011】繊維物性を実質的に損なうことなく異形度
の大きい繊維を得るためには、高い陽イオン交換能力を
有しているもの(層間に分子やイオンなどを侵入させる
インタ−カレ−ト能力を有しているもの)、すなわち陽
イオン交換容量40meq/100g以上、好ましくは
50meq/100g以上、さらに好ましくは70me
q/100g以上の膨潤性の層状ケイ酸塩を使用する必
要がある。陽イオン交換容量の小さい層状ケイ酸塩を使
用した場合であっても繊維断面は異形化するが、本発明
のように異形度の大きい繊維を得ることは困難であり、
異形度を大きくするために多量の鉱物を配合すると繊維
強度・紡糸性等が著しく低下するため本発明の繊維は得
られない。繊維強度は4g/d以上、さらに5g/d以
上、特に6g/d以上であるのが好ましい。また異形効
果が高いことから、層状ケイ酸塩の層間電荷密度は0.
25以上、さらに0.6以上、特に0.9以上のものが
好ましい。
In order to obtain a fiber having a large degree of irregularity without substantially impairing the fiber properties, a fiber having a high cation exchange capacity (intercalating ability for intrusion of molecules and ions between layers). Having a cation exchange capacity of 40 meq / 100 g or more, preferably 50 meq / 100 g or more, and more preferably 70 meq / 100 g or more.
It is necessary to use a swellable layered silicate of q / 100 g or more. Even when a layered silicate having a small cation exchange capacity is used, the fiber cross section is deformed, but it is difficult to obtain a fiber having a large degree of deformity as in the present invention,
If a large amount of mineral is added to increase the degree of irregularity, the fiber of the present invention cannot be obtained because the fiber strength and spinnability are significantly reduced. The fiber strength is preferably at least 4 g / d, more preferably at least 5 g / d, particularly preferably at least 6 g / d. Further, since the deforming effect is high, the interlayer charge density of the layered silicate is 0.1.
It is preferably at least 25, more preferably at least 0.6, particularly preferably at least 0.9.

【0012】本発明に使用される陽イオン交換容量40
meq/100g以上の膨潤性の層状ケイ酸塩は、天然
に存在しているものでも、また合成されたものでもよい
が、天然のものは一般にケイ酸塩以外の不純物等を含有
する場合が多いため陽イオン交換容量が小さく本発明の
効果を発現し難いことから、精製等を行い陽イオン交換
容量の高い物質を用いることが重要である。具体的に
は、2層または3層の結晶構造からなり、かつその層間
に各種の分子やイオン、ポリマ−等を挿入することが可
能なインタ−カレ−ト能を有していることが重要であ
る。好適な層状ケイ酸塩としてはインタ−カレ−ト能を
有している層状鉱物や層状無機塩(たとえばハイドロタ
ルサイト、マガデイアイト、カネマイト)等が使用で
き、特に多くの層状粘度鉱物が好適に使用できる。具体
的な層状粘度鉱物としては、膨潤性雲母(マイカ)、ス
メクタイト鉱物(モンモリロナイト、ハイデライト、ヘ
クトライト、サポナイト、スチブンサイト等)、バ−ミ
キュライト、カオリナイト、ハロイサイト、マ−ガライ
ト、イモゴライト、及びクリントナイト等が挙げられ
る。なかでも、膨潤性合成フッ素雲母が好ましく、なか
でもタルクとナトリウム及び/又はリチウムの珪フッ化
物またはフッ化物の混合物を加熱処理して得られるフッ
化系化合物が好ましい(特開平2−149415号公報
参照)。
Cation exchange capacity 40 used in the present invention
The swellable layered silicate of meq / 100 g or more may be naturally occurring or synthesized, but the natural one generally contains impurities other than the silicate in many cases. Therefore, since the cation exchange capacity is small and it is difficult to exert the effects of the present invention, it is important to purify and use a substance having a high cation exchange capacity. Specifically, it is important to have a crystal structure of two or three layers, and to have an intercalating ability capable of inserting various molecules, ions, polymers, etc. between the layers. It is. Suitable layered silicates include layered minerals having intercalating ability and layered inorganic salts (for example, hydrotalcite, magadaite, kanemite), etc., and particularly many layered viscosity minerals are preferably used. it can. Specific layered viscosity minerals include swellable mica (mica), smectite minerals (montmorillonite, hyderite, hectorite, saponite, stevensite, etc.), vermiculite, kaolinite, halloysite, margarite, imogolite, and clint. Knight and the like. Of these, swellable synthetic fluorine mica is preferable, and a fluorinated compound obtained by heat-treating a mixture of talc and a silicide or fluoride of sodium and / or lithium is particularly preferable (Japanese Patent Application Laid-Open No. 2-149415). reference).

【0013】好適な膨潤性合成フッ素雲母の組成式は以
下の通りである。 αXF・β(aMgF2 ・bMgO)・γSiO2 なお、Xはナトリウム又はリチウム、α、β、γ、a及
びbは各々係数を示し、0.1≦α≦2、2≦β≦3.
5、3≦γ≦4、0≦a≦1、0≦b≦1、a+B=1
である。膨潤性合成フッ素雲母を用いた場合、紡糸性が
特に損なわれにくく、またより異形度が大きくかつ諸性
能に優れた繊維が得られる。
The composition of a preferred swellable synthetic fluoromica is as follows: αXF · β (aMgF 2 · bMgO) · γSiO 2 X represents sodium or lithium, α, β, γ, a and b each represent a coefficient, and 0.1 ≦ α ≦ 2, 2 ≦ β ≦ 3.
5, 3 ≦ γ ≦ 4, 0 ≦ a ≦ 1, 0 ≦ b ≦ 1, a + B = 1
It is. When swellable synthetic fluorine mica is used, spinnability is not particularly impaired, and a fiber having a larger degree of irregularity and excellent in various properties can be obtained.

【0014】紡糸原液へ添加する膨潤性の層状ケイ酸塩
は、一辺10μm以下、厚み0.5μm以下、好ましく
は1辺3μm以下、厚さ0.1μm以下に微粉化されて
いるものが分散性の点から望ましい。添加方法は特に限
定されないが、先ず層状ケイ酸塩5〜150重量%濃度
の分散液を調製し、これを紡糸原液に必要量添加する方
法が好ましく、均一濃度の原液を容易に得ることができ
る。層状物質の分散液にPVA系ポリマ−を添加して、
紡糸原液を調整しても何等差支えない。また層状ケイ酸
塩の粉体そのものを紡糸原液に必要量添加することも可
能であるが、この場合、均一分散させるため攪拌設備を
設けるのが望ましい。
The swellable layered silicate to be added to the spinning solution is finely pulverized to a side of 10 μm or less and a thickness of 0.5 μm or less, preferably 3 μm or less per side and a thickness of 0.1 μm or less. It is desirable in terms of. The method of addition is not particularly limited, but a method of first preparing a dispersion having a concentration of 5 to 150% by weight of the layered silicate and adding the necessary amount to the spinning stock solution is preferable, and a stock solution having a uniform concentration can be easily obtained. . Adding a PVA polymer to the dispersion of the layered material,
There is no problem with adjusting the spinning solution. It is also possible to add the required amount of the layered silicate powder itself to the spinning dope, but in this case, it is desirable to provide a stirrer for uniform dispersion.

【0015】膨潤性の層状ケイ酸塩の含有量は、PVA
系繊維を構成するPVA系ポリマ−重量に対して0.0
5重量%以上である必要があり、好ましくは0.08〜
35重量%,特に好ましくは2〜15重量%である。異
形化効果に優れた膨潤性の層状ケイ酸塩を使用すること
により、少量配合するだけで接円直径比0.35以下、
断面周長比は0.85以上、特に接円直径比0.30以
下、断面周長比0.90以上の異形度の大きい繊維が得
られる。繊維横断面における断面充実度は70%以下、
さらに60%以下、特に50%以下が好ましい。
The content of the swellable phyllosilicate is PVA.
0.0 based on the weight of the PVA-based polymer constituting the based fiber
It must be at least 5% by weight, preferably from 0.08 to
It is 35% by weight, particularly preferably 2 to 15% by weight. By using a swellable layered silicate excellent in deforming effect, the circumcircle diameter ratio is 0.35 or less by mixing a small amount,
Fibers having a large irregularity with a cross-sectional circumference ratio of 0.85 or more, particularly a tangent diameter ratio of 0.30 or less, and a cross-sectional circumference ratio of 0.90 or more can be obtained. The cross-sectional solidity in the fiber cross section is 70% or less,
Further, it is preferably at most 60%, particularly preferably at most 50%.

【0016】かかる繊維を製造する方法として、ポリビ
ニルアルコ−ル系ポリマ−及び膨潤性の層状ケイ酸塩を
含む紡糸原液を湿式紡糸または乾湿式紡糸する方法が挙
げられる。紡糸原液のPVA系ポリマ−濃度は、紡糸が
可能ならば特に制約はないが、濃度5〜25重量%、特
に10〜20重量%とするのが好ましい。かかる方法に
よれば、断面周長比0.85以上、繊維横断面の最大内
接円の直径/最小外接円の直径が0.35以下のポリビ
ニルアルコ−ル系繊維を20%以上含む繊維集合体が得
られ、かかる繊維集合体を構成する繊維の横断面形状は
単繊維間で異なったものとなるため、布帛等とした場合
にも風合の良好なものが得られる。断面周長比0.85
以上、接円直径比が0.35以下の繊維の割合は膨潤性
の層状ケイ酸塩の配合量等により設定することができ、
目的・用途に応じて30%以上、さらに50%以上とす
ることができる。
As a method for producing such a fiber, there is a method in which a spinning solution containing a polyvinyl alcohol-based polymer and a swellable layered silicate is wet-spun or dry-wet. The concentration of the PVA-based polymer in the spinning solution is not particularly limited as long as spinning is possible, but is preferably 5 to 25% by weight, particularly preferably 10 to 20% by weight. According to this method, a fiber assembly containing 20% or more of polyvinyl alcohol-based fibers having a cross-sectional circumference ratio of 0.85 or more and a diameter of the largest inscribed circle / minimum circumscribed circle of the fiber cross section of 0.35 or less. Since the cross-sectional shape of the fibers constituting the fiber assembly differs between single fibers, a fabric having a good feeling can be obtained even in the case of fabric or the like. Section circumference ratio 0.85
As described above, the ratio of the fibers having a tangent diameter ratio of 0.35 or less can be set by the amount of the swellable layered silicate and the like,
It can be 30% or more, and more preferably 50% or more, depending on the purpose and application.

【0017】ポリビニルアルコ−ル系ポリマ−及び膨潤
性の層状ケイ酸塩を含む紡糸原液を湿式紡糸または乾湿
式紡糸して得られる繊維集合体としては、平均断面周長
比0.85以上、さらに0.88以上、特に0.9以上
とするのが好ましく、平均接円直径比0.35以下、特
に0.30以下、平均断面充実度は70%以下、さらに
60%以下、特に50%以下とするのが好ましい。また
繊維集合体の平均繊維強度は4g/d以上、さらに5g
/d以上、特に6g/d以上とするのが好ましい。かか
る繊維集合体は単繊維間で横断面形状が異なるものであ
るが、繊維強度は単繊維間でほぼ近似の値を示す。な
お、ここに示した平均断面周長比等の値は、膨潤性の層
状ケイ酸塩を含有した紡糸原液を用いて得られる繊維集
合体の好適な範囲を示したものである。該繊維集合体
は、カットされて補強材として使用したり、糸状物(紡
績糸等)、布帛(織編物、不織布)などの繊維構造体に
加工して使用できるが、この場合、かかる繊維構造体等
を構成する多数の膨潤性の層状ケイ酸塩を含むPVA系
繊維を繊維集合体としてみなして同様に値を求める。当
然ながら、膨潤性の層状ケイ酸塩を含有する繊維集合体
にそれ以外の繊維を併用・混用してもかまわないが、こ
の場合、膨潤性の層状ケイ酸塩を含有するPVA系繊維
以外のものは除外して値を求める。
The fiber assembly obtained by wet-spinning or dry-wet spinning a spinning solution containing a polyvinyl alcohol-based polymer and a swellable layered silicate has an average cross-sectional circumference ratio of 0.85 or more, and It is preferably 0.88 or more, particularly preferably 0.9 or more, and the average tangent diameter ratio is 0.35 or less, particularly 0.30 or less, and the average cross-sectional solidity is 70% or less, further 60% or less, particularly 50% or less. It is preferred that The average fiber strength of the fiber assembly is 4 g / d or more, and further 5 g / d.
/ D or more, particularly preferably 6 g / d or more. Although such fiber aggregates have different cross-sectional shapes between single fibers, the fiber strengths show almost similar values between single fibers. The values of the average cross-sectional circumference ratio and the like shown here indicate a suitable range of the fiber aggregate obtained using the spinning solution containing the swellable layered silicate. The fiber aggregate can be cut and used as a reinforcing material, or processed into a fibrous structure such as a thread (a spun yarn or the like) or a fabric (a woven or knitted fabric, a nonwoven fabric). A PVA-based fiber containing a large number of swellable layered silicates constituting a body or the like is regarded as a fiber aggregate, and the value is similarly determined. Naturally, other fibers may be used in combination with or mixed with the fiber aggregate containing the swellable layered silicate, but in this case, other than the PVA-based fibers containing the swellable layered silicate. Exclude those and calculate the value.

【0018】繊維の横断面形状を子細に観察すると、層
状ケイ酸塩の添加量が少ない場合には波型や偏平状のも
のが多いが、添加量を増加すると偏平状の両端が接着し
たような中空状や、3本の支部を有するY型状やT型状
のものが増え、さらに添加量を増加させると、4本の支
部を有するH型状や5本以上の支部を有する多支形断面
が形成され、低濃度でみられた偏平状のものは減少する
傾向がみられる。従って、層状物質の添加量を調整する
ことにより、凝固の挙動及び異形度を制御でき、丸型キ
ャピラリ−を用いたノズルを使用した場合においても、
異形度の高い繊維を得ることができる。特に膨潤性の合
成フッ素雲母を用いた場合には、多支形断面繊維が得ら
れやすく、顕著な効果が得られる。
When the cross-sectional shape of the fiber is observed finely, when the added amount of the layered silicate is small, many are corrugated or flat, but when the added amount is increased, both ends of the flat shape are adhered. The number of hollow and Y-shaped and T-shaped members having three branches increases, and when the amount of addition is further increased, an H-shape having four branches and a multi-stem having five or more branches are obtained. A cross section is formed, and the flat shape observed at a low concentration tends to decrease. Therefore, by adjusting the addition amount of the layered substance, the behavior of solidification and the degree of irregularity can be controlled, and even when a nozzle using a round capillary is used,
Fibers with a high degree of irregularity can be obtained. In particular, when swellable synthetic fluorine mica is used, a multi-sectioned fiber is easily obtained, and a remarkable effect is obtained.

【0019】一般にPVA系ポリマ−水溶液のみからな
る従来の紡糸原液を用い、丸型キャピラリ−を有するノ
ズルから吐出して湿式紡糸を行うと、得られる糸篠の断
面形状は前述のようにスキン部とコア部からなる繭型断
面になる。一方本発明において紡糸原液に該層状物質を
添加して湿式紡糸すると、先ずスキン部が円形に形成さ
れ、その後コア部が不均一な凝固挙動によって形成され
て断面形状は著しく異形化する。得られる繊維の横断面
を光学顕微鏡で見ると、層状ケイ酸塩の添加濃度が増加
するに連れて、スキン部が次第に不明瞭となり断面全体
が光学的に均一になっていく様子が観察できる。
Generally, when a conventional spinning solution consisting solely of a PVA-based polymer aqueous solution is discharged from a nozzle having a round capillary and wet spinning is performed, the cross-sectional shape of the obtained yarn becomes as described above. And a cocoon-shaped section consisting of a core. On the other hand, in the present invention, when the layered substance is added to the spinning dope and the wet spinning is performed, first, the skin portion is formed in a circular shape, and then the core portion is formed by uneven solidification behavior, and the cross-sectional shape is significantly deformed. When the cross section of the obtained fiber is observed with an optical microscope, it can be observed that as the added concentration of the layered silicate increases, the skin portion gradually becomes unclear and the entire cross section becomes optically uniform.

【0020】以下に、水を紡糸原液の溶媒として湿式紡
糸した場合を本発明の例として詳細に述べるが、溶媒が
DMSO等の有機溶媒である場合や、紡糸方式が紡糸ノ
ズル凝固浴間に空気や不活性ガスなど満たした空間(エ
ア−ギャップ)を持つ乾湿式紡糸である場合においても
同様の効果が得られる。まず、層状ケイ酸塩及びPVA
系ポリマ−を含有する紡糸原液を前述のように調製し、
ノズルから脱水能を有する常温の無機塩類飽和凝固浴中
等に吐出する。このとき、使用するノズルは円型のキャ
ピラリ−開口部を有するものを使用すればよいが、紡糸
調子に大きな問題が生じなければ特に限定されず、丸
型、−型、Y型、+型、*型など各種の形状を有するノ
ズルが使用可能である。
In the following, the case of wet spinning using water as the solvent of the spinning stock solution will be described in detail as an example of the present invention. However, when the solvent is an organic solvent such as DMSO, or when the spinning method is air between the spinning nozzle coagulation baths. The same effect can be obtained in the case of a dry-wet spinning having a space (air-gap) filled with an inert gas or inert gas. First, layered silicate and PVA
A spinning dope containing the polymer is prepared as described above,
It is discharged from a nozzle into a saturated coagulation bath of inorganic salts at room temperature having dehydration ability. At this time, the nozzle to be used may be a nozzle having a circular capillary opening. However, the nozzle is not particularly limited as long as there is no major problem in spinning condition, and may be round, −, Y, +, * Nozzles having various shapes such as molds can be used.

【0021】凝固浴に凝固能をもたせる物質としては、
硫酸ナトリウム(芒硝)、硫酸アンモニウム、炭酸ナト
リウムなど脱水能を有する塩類が用いられ、水溶液濃度
は100g/l以上から飽和濃度までで、なるべく飽和
濃度に近い方が好ましい。凝固浴に吐出された糸篠をロ
−ラ−で引き上げるが、このときのバスドラフトは、+
200%〜−120%、さらに+100%〜−100
%、特に+50%〜−80%とするのが好ましい。
[0021] As a substance which gives a coagulation ability to a coagulation bath,
Dehydrating salts such as sodium sulfate (Glauber's salt), ammonium sulfate, and sodium carbonate are used, and the concentration of the aqueous solution is from 100 g / l or more to a saturated concentration, and it is preferable that the concentration is as close to the saturated concentration as possible. The itoshino discharged into the coagulation bath is pulled up by a roller, but the bath draft at this time is +
200% to -120%, and + 100% to -100
%, Especially + 50% to -80%.

【0022】また、層状ケイ酸塩を添加すると、前述の
ように糸篠に対して特異な凝固挙動を発現させると同時
に凝固浴中でのPVAの体積収縮が抑制されることが見
出だされた。従って層状ケイ酸塩の添加量の増加に伴っ
て糸篠の離浴張力が低下し、同じ離浴張力下ではバスド
ラフトをこれまでより大きく取ることができる。よっ
て、これまで、離浴張力により離浴後の単繊維の太さに
制限があったが、かかる方法によれば繊維デニ−ルをよ
り細くすることが可能となる。たとえば、本発明におい
ては0.06〜0.02mmのキャピラリ−径を採用す
ることができ、このときのバスドラフトを−40%〜+
200%とすれば、単繊維デニ−ル0.5〜0.01デ
ニ−ル程度の極細繊維を安定に製造することができる。
より細いデニ−ルの繊維を得ようとする場合、紡糸原液
に添加する層状ケイ酸塩の量は、吐出されたPVA系ポ
リマ−100重量部に対して1〜20重量部、特に3〜
10重量部含有させるのが好ましい。
Further, it has been found that the addition of the layered silicate causes a specific coagulation behavior to be exhibited for Itoshino as described above, and at the same time suppresses the volume shrinkage of PVA in the coagulation bath. Was. Therefore, the bathing tension of Ishino decreases with an increase in the amount of the layered silicate added, and a larger bath draft can be obtained under the same bathing tension. Therefore, the thickness of the single fiber after bathing has been limited by the bathing tension, but according to this method, the fiber denier can be made thinner. For example, in the present invention, a capillary diameter of 0.06 to 0.02 mm can be adopted, and the bass draft at this time is reduced from -40% to +
When the content is 200%, it is possible to stably produce an ultrafine fiber having a single fiber denier of about 0.5 to 0.01 denier.
In order to obtain finer denier fibers, the amount of the layered silicate to be added to the spinning solution is 1 to 20 parts by weight, especially 3 to 20 parts by weight, based on 100 parts by weight of the discharged PVA-based polymer.
It is preferred to contain 10 parts by weight.

【0023】その後定法に従ってロ−ラ−延伸、湿熱延
伸、乾燥、延伸、収縮の各工程を所望により行う。吐出
された糸篠は乾燥されるまではまだ多くの水分を含む膨
潤状態にある。従って、離浴後のロ−ラ−延伸やその後
の湿熱延伸で高度に引き伸ばされると、Y型や+型など
の異形に形づくられた枝の部分が各ロ−ラ−上で張力に
よって押し潰され、横断面全体が偏平に変形する場合が
あるので、乾燥に至るまでの湿潤状態での延伸倍率は2
〜8倍程度が好ましく、全延伸倍率6〜16倍程度にな
るように延伸するのが好ましい。高倍率で延伸すること
により高度の異形度を有する極細繊維が得られるが、こ
の場合太デニ−ル繊維と比較すると異形度は小さくなり
やすい。繊維デニ−ルは用途・目的により適宜設定すれ
ばよいが、0.01〜100d、特に0.1〜5d程度
のものが広範囲に使用できる。
Thereafter, according to a standard method, each of the steps of roller stretching, wet heat stretching, drying, stretching and shrinking is carried out as required. The discharged shinoshi is still in a swollen state containing much water until it is dried. Therefore, when the roller is stretched to a high degree by the roller stretching after the bath and the subsequent wet heat stretching, the branch portions formed into irregular shapes such as the Y type and the + type are crushed on each roller by tension. Since the entire cross section may be deformed flat, the stretching ratio in a wet state before drying is 2
The stretching ratio is preferably about 8 to about 8 times, and the stretching is preferably performed so that the total stretching ratio becomes about 6 to 16 times. An ultrafine fiber having a high degree of irregularity can be obtained by stretching at a high magnification, but in this case, the degree of irregularity tends to be smaller than that of a thick denier fiber. The fiber denier may be appropriately set according to the use and purpose, but a fiber denier of about 0.01 to 100 d, particularly about 0.1 to 5 d can be used in a wide range.

【0024】特にPVA系ポリマ−100重量部に対し
て、陽イオン交換容量の高い膨潤性ケイ酸塩を0.1〜
10重量部程度添加した紡糸原液を用いると、膨潤性ケ
イ酸塩を含まない場合に比べて延伸性が向上する傾向が
見られた。すなわち湿式紡糸された糸篠を乾燥させて、
延伸炉で糸篠が断糸する延伸倍率を測定したところ、膨
潤性ケイ酸塩の添加量によっても異なるが、3〜7重量
部添加すると未添加の場合に比べて、断糸に至る延伸倍
率が約1.5倍まで向上することがわかった。破断延伸
倍率は、糸篠を構成するPVA系ポリマ−配向度の向上
と関係があり、強度や弾性率などの繊維物性向上や延伸
中の工程安定化に繋がるなど重要なパラメ−タである。
層状ケイ酸塩を含有する原糸の繊維物性を調べると、強
度や弾性率が10〜30%上昇しており、PVA系繊維
を細デニ−ル化できると同時に、高強度・高弾性率等の
諸性能を顕著に改善できる可能性を示している。
In particular, a swellable silicate having a high cation exchange capacity is used in an amount of 0.1 to 100 parts by weight of the PVA-based polymer.
When a spinning dope added to about 10 parts by weight was used, a tendency was observed that stretchability was improved as compared with the case where no swellable silicate was contained. That is, the wet-spun itoshino is dried,
When the draw ratio at which the yarn breaks was measured in a drawing furnace, the draw ratio depending on the amount of the swellable silicate differs depending on the addition amount of the swellable silicate. Was improved up to about 1.5 times. The breaking stretch ratio is related to the improvement of the degree of orientation of the PVA-based polymer constituting the yarn, and is an important parameter such as improvement of fiber properties such as strength and elastic modulus and stabilization of the process during drawing.
Examination of the fiber properties of the yarn containing the layered silicate reveals that the strength and elastic modulus are increased by 10 to 30%, and that the PVA-based fiber can be made fine denier, and at the same time as having high strength and high elastic modulus. It shows the possibility that the various performances can be significantly improved.

【0025】また得られた原糸(未アセタ−ル化処理
糸)の繊維物性を調べると、層状ケイ酸塩を添加せずか
つ製造条件を同一として得られた繊維に比べて、耐水性
が向上していることがわかった。具体的には、膨潤性の
合成フッ素雲母の添加を無添加、5重量%及び10重量
%とした原糸の熱水収縮率及び水中軟化点を測定する
と、熱水収縮率は8%、4.7%,4%と低下し、一方
水中軟化点は102℃、107℃、110℃と上昇し
た。これは層状合成フッ素雲母がPVA系ポリマ−の補
強材としての効果を奏したためと考えられる。ちなみに
層状合成フッ素雲母を10重量%添加した原糸の縦断面
を表薄切片処理して透過型電子顕微鏡で観察すると、層
状物質が繊維長さ方向に配向している様子が確認でき
た。
The fiber properties of the obtained raw yarn (unacetalized yarn) were examined to find that the water resistance was lower than that of the fiber obtained without the addition of layered silicate and under the same production conditions. It turned out to be better. Specifically, when the addition of swellable synthetic fluorine mica was not added, the hot water shrinkage and the softening point in water were measured at 5% by weight and 10% by weight. The softening point in water increased to 102 ° C, 107 ° C and 110 ° C. This is probably because the layered synthetic fluorine mica exhibited an effect as a reinforcing material for the PVA-based polymer. By the way, when the longitudinal section of the original yarn to which 10% by weight of the layered synthetic fluorine mica was added was treated with a thin section and observed with a transmission electron microscope, it was confirmed that the layered material was oriented in the fiber length direction.

【0026】得られた原糸は、糸篠中に凝固浴の無機塩
類を含んでいるので、熱水中で洗浄除去するのが望まし
い。また糸篠の耐水性を向上させるため、PVA系繊維
に対して行われるアセタ−ル化処理、すなわちPVAの
水酸基と反応するホルムアルデヒド等の有機の還元剤を
含む水溶液中で処理して、水酸基を封鎖することで糸篠
を疎水化することも可能である。
Since the obtained raw yarn contains the inorganic salts of the coagulation bath in itoshino, it is desirable to wash and remove it in hot water. Further, in order to improve the water resistance of Itoshino, the acetalization treatment performed on the PVA-based fiber, that is, the treatment in an aqueous solution containing an organic reducing agent such as formaldehyde that reacts with the hydroxyl group of PVA, to reduce the hydroxyl group It is also possible to make itoshino hydrophobic by blocking.

【0027】また、本発明により得られたPVA系繊維
は、優れた染色性を有することが見いだされた。PVA
系繊維は、ポリエステル系繊維やナイロン繊維のような
他の汎用繊維に比して、繊維構造的に高い結晶化度や配
向度を有しており、染料による染色性及びその堅牢性は
一般的にそれほど高くない。また、カチオン染料や酸性
染料は、PVA系繊維の分子鎖中に染着座席となる反応
基の存在や、染色時(高温湿潤下)における耐水性の関
係から染色できない。以上のことから、PVA系繊維を
染色する場合には、直接染料やスレン染料が通常使用さ
れているが、その染色性や各種の堅牢度はポリエステル
繊維やナイロン繊維と比較するとやはり十分ではない。
Further, it has been found that the PVA-based fiber obtained according to the present invention has excellent dyeability. PVA
Compared with other general-purpose fibers such as polyester fibers and nylon fibers, the system fibers have a higher degree of crystallinity and orientation in terms of fiber structure, and dyeability with dyes and their fastness are common. Not so expensive. In addition, cationic dyes and acid dyes cannot be dyed due to the presence of a reactive group serving as a dyeing seat in the molecular chain of the PVA-based fiber and the water resistance at the time of dyeing (under high temperature and humidity). From the above, when dyeing PVA-based fibers, direct dyes and sllen dyes are usually used, but their dyeing properties and various fastnesses are still insufficient as compared with polyester fibers and nylon fibers.

【0028】しかしながら、層状ケイ酸塩を含有する本
発明のPVA系繊維を染色した場合、染着量や発色性、
各種の堅牢性が著しく向上することを見いだした。この
理由は不明だが、層状ケイ酸塩が鉱物自身の電荷やイン
タ−カレ−ト能力に関係して、染料との何かの結合を行
っているのか、または層状ケイ酸塩を添加することでP
VA系繊維の内部に、染料を吸着保持できる構造的な部
位が作られ、染色性や堅牢度が向上すると思われる。ま
た、本発明の繊維は熱水収縮率が低く水中軟化点が上昇
しているため耐熱性が高く、従来のPVA系繊維に比べ
て高温や長時間での染色処理が可能となり、染色処理条
件の選択幅が広がるため、より繊維中に入る染色分子の
量を増加(濃色化)することができる。
However, when the PVA fiber of the present invention containing a layered silicate is dyed, the dyeing amount,
Various robustnesses were found to be significantly improved. The reason for this is unknown, but whether the phyllosilicate has some form of binding to the dye, related to the mineral's own charge or intercalating ability, or by adding phyllosilicate. P
It is thought that a structural part capable of adsorbing and holding the dye is formed inside the VA-based fiber, and the dyeability and the fastness are improved. Further, the fiber of the present invention has a high heat resistance due to a low hot water shrinkage rate and a high softening point in water, and can be dyed at a higher temperature and for a longer time than conventional PVA-based fibers. Since the selection range of the dyes is widened, the amount of dye molecules entering the fibers can be increased (darkening).

【0029】さらに、本発明の繊維は異形断面を有して
いるため、発色性の向上や濃色化の点でより優れた効果
が得られる。これは繊維表面で反射される光が乱反射す
るため、鮮明な発色や濃色化に結び付くと思われる。特
に本発明のPVA系繊維の断面形状は、前述の如く特異
な凝固挙動に起因するため、一つの繊維断面において凹
凸等の規則性に乏しく、しかも各短繊維間の断面が大き
くばらついているため、入射光の反射は一層不規則なも
のとなり、発色性の向上や濃色化をより高めることがで
きる。
Further, since the fiber of the present invention has an irregular cross-section, a more excellent effect can be obtained in terms of improvement of coloring properties and darkening. This is thought to lead to clear color development and darkening because light reflected on the fiber surface is irregularly reflected. In particular, since the cross-sectional shape of the PVA-based fiber of the present invention is due to the unique coagulation behavior as described above, the regularity of irregularities and the like in one fiber cross-section is poor, and the cross-section between the short fibers varies greatly. In addition, the reflection of incident light becomes more irregular, so that it is possible to improve the color developing property and enhance the deeper color.

【0030】また、従来一般のPVA系繊維の横断面を
光学顕微鏡で観察すると、断面の周囲に明部として見え
るスキン部と、暗部として見えるコア部の存在が確認で
きる。これを、直接染料等で染色すると、染料はこのコ
ア部に多く存在して濃色に染まり、スキン部にはほとん
ど存在せずに染まらないことが一般的であった。このた
め、PVA系繊維の発色性はスキン部のために色がくす
み、鮮明な色調が得られていなかった。しかしながら、
PVA繊維中の層状ケイ酸塩の添加量が増加するにつれ
て、このスキン/コア構造が次第に不鮮明になっていく
ことが観察され、その結果、その繊維断面全体を染色し
鮮明に発色させることが可能となった。
Further, when the cross section of a conventional general PVA fiber is observed with an optical microscope, the presence of a skin portion which appears as a bright portion and a core portion which appears as a dark portion around the cross section can be confirmed. When this is dyed directly with a dye or the like, the dye is generally present in a large amount in the core portion and is dyed in a deep color, and is generally not present in the skin portion and is not dyed. For this reason, the color development of the PVA-based fiber was dull due to the skin portion, and a clear color tone was not obtained. However,
This skin / core structure is observed to become increasingly unclear as the amount of layered silicate added in the PVA fiber increases, so that the entire fiber cross section can be dyed and sharply colored It became.

【0031】使用できる染料としては、従来PVA系繊
維の染色に使用されている直接染料やスレン染料が好ま
しいが、カチオン染料や酸性染料等の他の染料を使用し
てもよい。染色方法は、それぞれの染料の一般的な処理
方法を施せばよく、特に新規な条件を採用する必要はな
いが、PVA系繊維の高温湿潤下での耐熱性の点から、
100℃以下で染色処理を行うことが望ましい。また、
染色性を向上させるために、一般に使用されている染色
助剤や染色に関する各種の堅牢度を向上させる後処理加
工、たとえばポリアミン水溶性樹脂を用いるフィックス
処理等を行っても良い。
As the dye that can be used, a direct dye or a slen dye conventionally used for dyeing PVA-based fibers is preferable, but other dyes such as a cationic dye or an acid dye may be used. The dyeing method may be performed by a general treatment method for each dye, and it is not necessary to adopt any particular new conditions. However, from the viewpoint of heat resistance of the PVA-based fiber under high-temperature and wet conditions,
It is desirable to perform the dyeing treatment at 100 ° C. or lower. Also,
In order to improve the dyeing properties, commonly used dyeing assistants and post-treatments for improving various fastnesses related to dyeing, for example, a fix treatment using a polyamine water-soluble resin may be performed.

【0032】本発明によれば、PVA系繊維本来の性能
を損なうことなく、異型度を高めた繊維を効率的かつ低
コストで製造することができる。また本発明の繊維は、
あらゆる形態で使用することができ、カットファイバ−
として用いても良いが、糸(フィラメントヤ−ン、紡績
糸等)、紐状物、布帛(織編物、不織布等)などの繊維
構造体として用いてもよく、また他の繊維と混合・併用
してもかまわない。このとき併用できる繊維としては特
に限定されないが、膨潤性の層状ケイ酸塩を含有しない
他のPVA系繊維や、ポリエステル繊維(全芳香族ポリ
エステル系繊維を含む)、ポリアミド系繊維、ポリオレ
フィン系繊維、セルロ−ス系繊維、綿、麻等が挙げられ
る。
According to the present invention, a fiber having an increased degree of irregularity can be produced efficiently and at low cost without impairing the intrinsic performance of PVA-based fiber. Further, the fiber of the present invention,
Can be used in any form, cut fiber
May be used, but may be used as a fibrous structure such as a yarn (filament yarn, spun yarn, etc.), a string, a cloth (woven / knitted, non-woven fabric, etc.), and mixed / used with other fibers It does not matter. The fibers that can be used in combination at this time are not particularly limited, but other PVA-based fibers containing no swellable layered silicate, polyester fibers (including wholly aromatic polyester-based fibers), polyamide-based fibers, polyolefin-based fibers, Cellulose fibers, cotton, hemp, and the like.

【0033】本発明の繊維は産資用、衣料用、医療用等
あらゆる用途に好適に使用でき、たとえば、軽量帆布、
各種フィルタ−(バグフィルタ−、濾紙等)、粘着テ−
プ用基布、農資材ペ−パ−ポット、断熱材、高保温性衣
料品、透湿はっ水性衣料、ハウスラッピングペ−パ−、
超保水ウエットテイッシュ、清掃用モップ材、ワイピン
グクロス、補強用繊維(セメント、ゴム、樹脂等)など
広く使用することができる。特に異形度が大きく比表面
積が大きいことからマトリックス(セメント、樹脂、ゴ
ム等)との接着性に優れており、補強用繊維として優れ
た効果が得られる。勿論、布帛等の構造体に加工し、こ
れを補強材として用いてもかまわない。また本発明の繊
維を用いて布帛等の構造体とした場合、異形度が大き
く、構造上の空隙率が向上することから、保温性や毛細
管現象による水や溶媒の吸水性や発散性は高まり、また
染織性及び堅牢性に優れていることから衣料用としても
優れた効果が得られ、また極細化できることから顕著な
効果が得られる。
The fiber of the present invention can be suitably used for all purposes such as industrial use, clothing, medical use, for example, lightweight canvas,
Various filters (bag filters, filter paper, etc.), adhesive tapes
Base fabric, agricultural material paper pot, heat insulating material, highly heat-retaining clothing, moisture-permeable and water-repellent clothing, house wrapping paper,
It can be widely used for super water retention wet tissue, cleaning mop material, wiping cloth, reinforcing fiber (cement, rubber, resin, etc.). In particular, since it has a large degree of irregularity and a large specific surface area, it has excellent adhesiveness to a matrix (cement, resin, rubber, etc.), and an excellent effect as a reinforcing fiber can be obtained. Of course, it may be processed into a structure such as cloth and used as a reinforcing material. Further, when a structure such as a cloth is formed by using the fiber of the present invention, since the degree of irregularity is large and the porosity in the structure is improved, the water absorption and water divergence of water and solvent due to heat retention and capillary action are increased. In addition, since it is excellent in dyeing and weaving properties and fastness, an excellent effect for clothing can be obtained, and a remarkable effect can be obtained because it can be extremely fine.

【0034】以下、実施例により本発明をより具体的に
説明するが、本発明はこれにより何等限定されるもので
はない。
Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited thereto.

【実施例】【Example】

[粘度平均重合度]JIS K−6726に準じ、30
℃におけるPVA系ポリマ−の希釈水溶液のある濃度c
における比粘度(ηsp)を5点測定し、[η]=li
m(c→0)ηsp/cにより極限粘度[η]を求め、
さらにP=([η]×104 /8.29)1.613 により
重合度Pを算出する。なお、試料の未架橋延伸繊維を1
〜10g/lの濃度になるように140℃以上の水にて
加圧溶解させて測定を行うが、試料を完全に溶解できな
くてゲル状物が少量発生した場合は、そのゲル状物を5
μmのガラスフィルタ−で濾過し、その濾過水溶液の粘
度を測定し、その水溶液濃度は残渣のゲル重量物を試料
重量から引いた補正値を用いて算出した。
[Viscosity average degree of polymerization] 30 according to JIS K-6726
A certain concentration c of a diluted aqueous solution of a PVA polymer at ℃
Was measured at 5 points, and [η] = li
The intrinsic viscosity [η] is determined from m (c → 0) ηsp / c,
Further, the polymerization degree P is calculated from P = ([η] × 10 4 /8.29) 1.613 . The uncrosslinked stretched fiber of the sample was 1
The measurement is performed by dissolving under pressure with water at 140 ° C. or higher so that the concentration becomes 10 to 10 g / l. If the sample cannot be completely dissolved and a small amount of gel is generated, the gel is removed. 5
The solution was filtered through a μm glass filter, the viscosity of the filtered aqueous solution was measured, and the concentration of the aqueous solution was calculated using a correction value obtained by subtracting the residual gel weight from the sample weight.

【0035】[陽イオン交換容量(CEC) meq/
100g]ショ−レンベルガ−の酢酸アンモニウム浸透
法を10分の1の規模に縮小した方法を採用して測定す
る。装置としては、100ml容で10mlごとに目盛
りのついた洗浄液容器、長さ4cm、内径0.3cmの
脚をもった長さ12cm、内径1.3cmの浸透管及び
受器を上中下に連結し、外気を遮断して流下式に溶液が
浸透するようにしたもの(図5)を用いる。まず、浸透
管の底部に脱脂綿の小片を支持層として入れ、その上に
濾紙パルプを5〜10mmの厚さに詰めて両面が平らな
濾過層をつくる。次に浄化液容器に中性(pH7)にし
た1Nの酢酸アンモニウム水溶液100mlを入れる。
浸透管の下端はパラフィルムで栓をし、浸透管の2/3
程度まで洗浄液容器から同酢酸アンモニウム水溶液を加
える。
[Cation exchange capacity (CEC) meq /
100 g] The measurement is performed by employing a method in which the method of Shomenberger ammonium acetate infiltration is reduced to one tenth. As a device, a washing liquid container graduated every 10 ml with a volume of 100 ml, a permeation tube having a length of 4 cm, a leg having a diameter of 0.3 cm, a length of 12 cm, an inner diameter of 1.3 cm, and a receiver are connected above and below. Then, the one in which the outside air is shut off and the solution permeates in a flow-down manner (FIG. 5) is used. First, a small piece of cotton wool is placed as a support layer at the bottom of the permeation tube, and filter paper pulp is packed thereon to a thickness of 5 to 10 mm to form a flat filter layer on both sides. Next, 100 ml of neutral (pH 7) 1N ammonium acetate aqueous solution is put into the purifying liquid container.
The lower end of the infiltration tube is plugged with parafilm and 2/3 of the infiltration tube
Add the same aqueous ammonium acetate solution from the washing solution container to the extent.

【0036】この状態で分析試料(層状粘土鉱物)の一
定量(約8〜10g)を少量ずつ気泡が入らないように
落下沈降させ充填する。浸透管の下端の栓を外して受器
に連結し、酢酸アンモニウム液を洗浄液容器から滴下し
て洗浄をはじめ、4〜20時間で浸透が終わるように滴
下速度を調節する。酢酸アンモニウム液滴下終了後、受
器を取替え、アンモニア水でpH7に調整した少量の8
0体積%エタノ−ル水溶液で浸透管の上部内壁を洗い、
浸透管から同液50mlを滴下して分析試料層を洗浄
し、過剰の酢酸アンモニウム液を除去する。再び受器を
取替え、NH4 +で飽和された分析試料に洗浄液容器か
ら10重量%の塩化カリウム水溶液100mlを滴下し
て洗浄し、吸着されているNH4 + を交換浸出する。こ
の浸出液は、200mlのメスフラスコに移し、少量の
水で洗い込み、標線まで水を加えて200mlとして混
合する。このメスフラスコから一定量(sml)を正確
にとり、水蒸気蒸留法によりNH4 + を定量し、試料1
00g当たりのミリグラム当量 (meq)として下式
により算出する。なお、NはNaOH標準液の規定度、
fはNaOH標準液の力価、bはブランク測定値(m
l)、tは浸出液についての滴定値(ml)、aは乾燥
試料の採取量(g)、sは浸出液からの採取量(g)、
kは乾燥試料重量/乾燥試料重量(105℃乾燥)であ
る。 CEC=N×f×(b−t)×(100/a)×(20
0/s)×k
In this state, a fixed amount (approximately 8 to 10 g) of an analysis sample (layered clay mineral) is dropped and settled little by little so as to prevent bubbles from entering, and filled. Remove the stopper at the lower end of the permeation tube, connect it to the receiver, and start the washing by dropping the ammonium acetate solution from the washing solution container, and adjust the dripping speed so that the permeation is completed in 4 to 20 hours. After completion of the dropping of ammonium acetate, the receiver was replaced and a small amount of 8 adjusted to pH 7 with aqueous ammonia.
Wash the upper inner wall of the permeation tube with a 0% by volume aqueous ethanol solution,
50 ml of the same solution is dropped from the permeation tube to wash the analysis sample layer, and an excess ammonium acetate solution is removed. The receiver is replaced again, and the analytical sample saturated with NH 4 + is washed by dropping 100 ml of a 10% by weight aqueous solution of potassium chloride from the washing solution container, and the adsorbed NH 4 + is exchanged and leached. This leachate is transferred to a 200 ml volumetric flask, washed with a small amount of water, and mixed with water up to the marked line to 200 ml. A certain amount (sml) was accurately taken from this volumetric flask, and NH 4 + was quantified by a steam distillation method.
It is calculated by the following formula as milligram equivalent per 00 g (meq). N is the normality of the NaOH standard solution,
f is the titer of the NaOH standard solution, b is the blank measurement value (m
l), t are titration values (ml) for the leachate, a is the amount of dry sample collected (g), s is the amount of extract from the leachate (g),
k is a ratio of dry sample weight / dry sample weight (dry at 105 ° C.). CEC = N × f × (bt) × (100 / a) × (20
0 / s) × k

【0037】[断面周長比、平均断面周長比]繊維束を
切断し、光学顕微鏡でその横断面を拡大して写真撮影
し、その後単繊維の断面積が約4〜9cm2 になるよう
に拡大描写し、次いで描写断面の周囲の長さ(周長)L
をキルビメ−タ−等を用いて測定する。次に上記記載の
描写断面の外周に対する最小外接円(直径B)を描き、
この円周長を求め、次の式により断面周長比を算出す
る。 断面周長比=L/(π×B) この測定を同一繊維束の異なる任意の単繊維20本につ
いて行った。またこれらの繊維20本の断面周長比の平
均を平均周長比とした。
[Cross Perimeter Ratio, Average Cross Perimeter Ratio] A fiber bundle is cut, its cross section is enlarged and photographed with an optical microscope, and then the cross section of the single fiber is about 4 to 9 cm 2. , And then the perimeter (perimeter) L of the depiction section
Is measured using a quilvimeter or the like. Next, draw a minimum circumscribed circle (diameter B) with respect to the outer periphery of the above described descriptive cross section,
The circumference is determined, and the cross-sectional circumference ratio is calculated by the following equation. Cross-sectional circumference ratio = L / (π × B) This measurement was carried out for 20 different single fibers of the same fiber bundle. The average of the cross-sectional circumference ratios of these 20 fibers was defined as the average circumference ratio.

【0038】[接円直径比、平均接円直径比]断面周長
比を測定した同一の単繊維に対して、上記記載の描写断
面の外周に対する最小外接円(直径B)と最大内接円
(直径C)を描き、C/Bにより算出する。この測定を
同一繊維束の異なる任意の単繊維20本(断面周長比と
同じ単繊維)について行った。またこれらの繊維20本
の接円直径比の平均を平均接円直径比とした。
[Occlusal diameter ratio, average circumcircle diameter ratio] For the same single fiber whose cross-sectional circumference ratio was measured, the minimum circumscribed circle (diameter B) and the maximum inscribed circle with respect to the outer circumference of the above-described depiction cross section Draw (diameter C) and calculate by C / B. This measurement was performed for 20 different single fibers of the same fiber bundle (single fibers having the same cross-sectional circumference ratio). The average of the circumscribed diameter ratios of these 20 fibers was defined as the average circumscribed diameter ratio.

【0039】[断面充実度 %、平均断面充実度 %]
断面周長比を測定した同一の単繊維に対して、上記記載
の描写断面の断面積Fを求める。次ぎに描写断面中の外
周に対する最小外接円(直径B)を描き、この断面積を
求め、次ぎの式により断面の充実度を算出する。 断面充実度(%)=4F/(π×B2 )×100 この測定を同一繊維束の異なる任意の単繊維20本(断
面周長比と同じ単繊維)について行った。またこれらの
繊維20本の断面充実度の平均を平均断面充実度とし
た。
[Cross section solidity%, average cross section solidity%]
With respect to the same single fiber whose cross-sectional circumference ratio has been measured, the cross-sectional area F of the above described cross-section is determined. Next, a minimum circumscribed circle (diameter B) with respect to the outer periphery in the drawn cross section is drawn, this cross sectional area is obtained, and the degree of cross section is calculated by the following equation. Cross-sectional solidity (%) = 4F / (π × B 2 ) × 100 This measurement was performed on 20 arbitrary single fibers of the same fiber bundle (single fibers having the same cross-sectional circumference ratio). Further, the average of the cross-sectional solidity of 20 of these fibers was defined as the average cross-sectional solidity.

【0040】[繊維強度 g/d]予め温度調整された
単繊維を試料長10cmになるように台紙に貼り、25
℃×60%RHで12時間以上放置し、次いで引張試験
機「インストロン1122」にて、JIS l−101
5に準拠して測定し、測定回数n≧10の平均値で示
す。なお単繊維のデニ−ル(dr)は約0.05g/d
r荷重下で90cm長にカットし、重量法によりn≧1
0の平均値で示し、デニ−ル測定後の単繊維を用いて引
張試験を行い、そのデニ−ルと対応させて1本ずつの強
度を算出した。繊維集合体を構成する単繊維20本につ
いての平均で示す。なお繊維長が短くて試料長10cm
を取ることができない場合には、最大長さを試長として
上記測定条件に従って測定を行うこととする。
[Fiber strength g / d] A single fiber whose temperature has been adjusted in advance is affixed to a mount so that the sample length becomes 10 cm.
C. × 60% RH for 12 hours or more, and then using a tensile tester “Instron 1122” in accordance with JIS 1-101.
The measurement is performed in accordance with No. 5, and the average number of times of measurement n ≧ 10 is shown. The denier (dr) of a single fiber is about 0.05 g / d.
Cut to a length of 90cm under r load, n ≧ 1 by weight method
The tensile test was performed using the single fiber after the denier measurement, and the strength of each single fiber was calculated in correspondence with the denier. The average is shown for 20 single fibers constituting the fiber assembly. The fiber length is short and the sample length is 10cm
If the maximum length cannot be obtained, the measurement is performed according to the above measurement conditions with the maximum length as the test length.

【0041】[バスドラフト %]紡糸原液がノズルの
キャピラリ−部より凝固浴へ吐出する速度と、凝固後に
糸篠が離浴した糸篠を引き取る第1ロ−ラ速度から算出
した。 バスドラフト(%)=(第1ロ−ラ速度−吐出速度)/
吐出速度×100 [熱水収縮率 %]繊維束デニ−ルが約1000デニ−
ルになるように任意に取り出し、引き揃えた上で繊維束
デニ−ルの1/500gのおもりを一端に付け、目盛板
上に他端を固定して繊維束の長さA0を測定する。これ
を100℃の熱水中に垂直になるように入れて浸漬さ
せ、30分間放置し、その後熱水中での繊維束の長さ
(A1)を目盛りから読み、A0−A1/A0×100
により収縮率を算出する。なお、本実施例及び比較例に
おいては、未アセタ−ル化繊維の熱水収縮率を記載し
た。
[Bath draft%] Calculated from the speed at which the stock spinning solution is discharged from the capillary portion of the nozzle into the coagulation bath and the first roller speed at which the yarn is removed from the bath after coagulation. Bus draft (%) = (first roller speed−discharge speed) /
Discharge speed x 100 [Hot water shrinkage%] Fiber denier is about 1000 denier
The fiber bundle is arbitrarily taken out and aligned, and a weight of 1/500 g of the fiber bundle denier is attached to one end, and the other end is fixed on a scale plate, and the length A0 of the fiber bundle is measured. This was vertically immersed in hot water at 100 ° C., immersed for 30 minutes, and then the length (A1) of the fiber bundle in the hot water was read from a scale, and A0−A1 / A0 × 100.
To calculate the contraction rate. In addition, in this example and the comparative example, the hot water shrinkage rate of the unacetalized fiber was described.

【0042】[水中軟化点 ℃]熱水収縮率と同様に繊
維束デニ−ルが約1000デニ−ルになるように任意に
取り出し、引き揃えた上で繊維束デニ−ルの1/500
gのおもりを一端で付け、目盛板上に他端を固定する。
これを常温の水の入った加圧可能なガラス管に垂直にな
るよう入れて浸漬させる。その後水温を常温から約1分
間に1℃の速度で昇温させ、繊維束が10%収縮するか
または溶断するときの温度を測定する。本実施例及び比
較例においては、未アセタ−ル化繊維の熱水収縮率を記
載した。 [原糸断面形状の分布 %]繊維集合体の横断面を顕微
鏡写真にとり、任意の40本についてその横断面形状を
観察して分類した。
[Softening point in water ° C] Like the hot water shrinkage rate, the fiber bundle denier is arbitrarily taken out so that the denier becomes about 1000 deniers, aligned and then 1/500 of the fiber bundle denier.
g is attached at one end, and the other end is fixed on the scale plate.
This is vertically immersed in a pressurizable glass tube containing water at normal temperature. Thereafter, the water temperature is raised from room temperature at a rate of 1 ° C. for about one minute, and the temperature at which the fiber bundle contracts by 10% or melts is measured. In this example and the comparative example, the hot water shrinkage of the unacetalized fiber is described. [Distribution% of original yarn cross-sectional shape] The cross-section of the fiber assembly was taken in a micrograph, and the cross-sectional shape of any 40 fibers was observed and classified.

【0043】[層状粘土鉱物(膨潤性の合成フッ素雲
母)]Mg3 Si4 10(OH)2 の組成式をもつタル
クと、珪フッ化ナトリウム(Na2 SiF6 )を加熱処
理して得られた合成膨潤性フッ素雲母(コ−プケミカル
株式会社製、「ソフシマ」ME−100、NaMg2.5
Si4 102 )を用いた。なお、層電荷密度は1であ
り、陽イオン交換容量80meq/100g、平均粒径
6μmである。
[Layered Clay Mineral (Swellable Synthetic Fluorine Mica)] A talc having a composition formula of Mg 3 Si 4 O 10 (OH) 2 and sodium silicate fluoride (Na 2 SiF 6 ) are obtained by heat treatment. Synthesized swellable fluoromica (manufactured by Corp Chemical Co., Ltd., “Sofushima” ME-100, NaMg 2.5
Si 4 O 10 F 2 ) was used. The layer charge density was 1, the cation exchange capacity was 80 meq / 100 g, and the average particle size was 6 μm.

【0044】[染着率 %]染色前後の染色溶液を水で
希釈し、その希釈水溶液の吸光度を分光光度測定器(C
−2000型日立カラ−アナライザ−)で測定し、次式
により染着率を求めた。 染着率(%)=(A−B)/A×100 ただし、Aは染色前の希釈染料水溶液の最大吸収波長に
おける吸光度、Bは染色後の希釈染料水溶液の最大吸収
波長による吸光度を示し、AとBの吸収波長は同じとし
た。
[Dyeing ratio%] The dyeing solution before and after dyeing is diluted with water, and the absorbance of the diluted aqueous solution is measured by a spectrophotometer (C
-2000 type Hitachi Color Analyzer-), and the dyeing rate was determined by the following equation. Dyeing ratio (%) = (AB) / A × 100 where A is the absorbance at the maximum absorption wavelength of the diluted dye aqueous solution before dyeing, B is the absorbance at the maximum absorption wavelength of the diluted dye aqueous solution after dyeing, A and B had the same absorption wavelength.

【0045】[発色性K/S]染色した原綿の最大吸収
波長における反射率を分光光度測定器(C−2000型
日立カラ−アナライザ−)により測定し、次式であるク
−ベルカ−ムンクの式により算出した。 K/S=(1−R)2 /2R ただし、Rは染色原綿の最大吸収波長における反射率を
示す。 [洗濯堅牢度 級]JIS−L−0844のA−2法に
て評価した。すなわち、洗濯処理による試料原綿の変褪
色、同時に洗濯処理した綿/レ−ヨンの白布の汚染度、
及び洗濯液の汚染度をそれぞれ1〜5級の5等級によっ
て示す。等級が大きいほど堅牢性は高い。
[Coloring K / S] The reflectance of the dyed raw cotton at the maximum absorption wavelength was measured with a spectrophotometer (C-2000 type Hitachi Color Analyzer). It was calculated by the equation. K / S = (1−R) 2 / 2R where R represents the reflectance at the maximum absorption wavelength of the dyed raw cotton. [Washing fastness class] It was evaluated by the A-2 method of JIS-L-0844. That is, the discoloration and discoloration of the sample raw cotton due to the washing treatment, and at the same time, the degree of contamination of the washed cotton / rayon white cloth,
And the degree of contamination of the washing liquid is indicated by 5 grades of 1 to 5 grades, respectively. The higher the grade, the higher the robustness.

【0046】[湿潤摩擦堅牢度 級]JIS−L−08
49学振型法にて評価した。1〜5級の5等級によって
示す。等級が大きいほど堅牢度が高いことを示してい
る。 [耐光堅牢度 級]JIS−L−0841の第3露光法
にて評価した。すなわち試料をカ−ボンア−クのフェ−
ドメ−タ−にて所定時間露光させ、ブル−スケ−ルによ
って変色程度を1〜5級の5等級によって示す。等級は
大きいほど堅牢度が高いことを示している。
[Wet friction fastness class] JIS-L-08
It was evaluated by the 49 gakushin method. Indicated by 1st to 5th grade. A higher rating indicates a higher robustness. [Light fastness class] Evaluated by the third exposure method of JIS-L-0841. That is, the sample was transferred to a carbon arc screen.
Exposure was carried out for a predetermined time by a dometer, and the degree of discoloration was indicated by a blue scale. A higher rating indicates a higher robustness.

【0047】[実施例1〜5、比較例1]合成膨潤性フ
ッ素雲母を約1μmの粒径まで湿式粉砕して7重量%の
分散水溶液とした後、重合度1750、ケン化度99.
9モル%のPVA100重量部に対して、合成膨潤性フ
ッ素雲母が0.1重量部(実施例1)、1重量部(実施
例2)、3重量部(実施例3)、5重量部(実施例
4)、10重量部(実施例5)および0重量部(比較例
1)となるように該フッ素雲母水分散液を加えて、PV
A濃度16重量%の水溶液を調製して紡糸原液とした。
この紡糸原液を、直径0.08mmの丸型キャピラリ
−、穴数2000を有するノズルより常温の飽和芒硝浴
へ−60%のバスドラフトにて吐出させて糸篠を形成さ
せた。
Examples 1 to 5 and Comparative Example 1 A synthetic swellable fluoromica was wet-pulverized to a particle size of about 1 μm to obtain a 7% by weight aqueous dispersion.
0.1 part by weight (Example 1), 1 part by weight (Example 2), 3 parts by weight (Example 3), 5 parts by weight (Example 1), 100 parts by weight of 9 mol% of PVA Example 4) The fluoromica aqueous dispersion was added so as to be 10 parts by weight (Example 5) and 0 parts by weight (Comparative Example 1), and PVA was added.
An aqueous solution having an A concentration of 16% by weight was prepared and used as a spinning dope.
This spinning stock solution was discharged from a round capillary having a diameter of 0.08 mm and a nozzle having 2,000 holes into a saturated sodium sulfate bath at room temperature by a -60% bath draft to form a thread.

【0048】その後6m/分のロ−ラ−速度で離浴さ
せ、2.5倍のロ−ラ−延伸後、芒硝濃度350g/l
(90℃)の浴中で1.5倍の湿熱延伸を行った。さら
に乾燥後、全延伸倍率が10倍になるように延伸し、5
%の収縮処理を行って捲き取った。得られた紡糸原糸を
10g枷状にとり、ホルムアルデヒド30g/l、硫酸
270g/d、芒硝150g/lからなる70℃の水溶
液に20分間浸漬させ、水洗し乾燥することでアセタ−
ル化処理を行った。結果を表1、表2に示す。なお表中
のAは任意の繊維20本中、断面充実度0.85以上、
接円比0.35以下の繊維が占める割合(%)を示した
ものである。
Thereafter, the bath was separated at a roller speed of 6 m / min, and after stretching the roller 2.5 times, the concentration of sodium sulfate was 350 g / l.
The film was stretched by 1.5 times in wet heat at 90 ° C. in a bath. After further drying, stretching is performed so that the total stretching ratio becomes 10 times, and
% Shrinkage treatment and wound up. 10 g of the obtained spun yarn is shackled, immersed in an aqueous solution of 30 g / l of formaldehyde, 270 g / d of sulfuric acid, and 150 g / l of sodium sulfate for 20 minutes, washed with water and dried to obtain an acetate.
Was performed. The results are shown in Tables 1 and 2. Note that A in the table indicates that among 20 arbitrary fibers, the cross-sectional solidity is 0.85 or more,
It shows the ratio (%) occupied by fibers having a tangent ratio of 0.35 or less.

【0049】[実施例6]PVA100重量部に対して
合成膨潤性フッ素雲母30重量部となるようにフッ素雲
母の水分散液を添加し、PVA12重量%の水溶液に調
整したものを紡糸原液とし、全延伸倍率を8倍となるよ
うに延伸した後、収縮率5%の処理を行った以外は実施
例1と同様に行った。結果を表1、表2に示す。 [比較例2]非膨潤性である白雲母(陽イオン交換容量
0meq/100g)を約2μm以下の粒径まで湿式粉
砕して、重合度1750、けん化度99.9モル%のP
VA100重量部に対して5重量部となるように加え
て、PVA濃度16重量%の水溶液を調製して紡糸原液
とした以外は実施例4と同様に行って紡糸原糸を得た。
結果を表1及び表2に示す。
Example 6 An aqueous dispersion of fluorine mica was added to 30 parts by weight of synthetic swellable fluorine mica with respect to 100 parts by weight of PVA, and an aqueous solution of 12% by weight of PVA was prepared as a spinning solution. After stretching so that the total stretching ratio was 8 times, the same procedure as in Example 1 was carried out except that a treatment was performed at a shrinkage ratio of 5%. The results are shown in Tables 1 and 2. Comparative Example 2 Non-swelling muscovite (cation exchange capacity: 0 meq / 100 g) was wet-pulverized to a particle size of about 2 μm or less to obtain P having a polymerization degree of 1750 and a saponification degree of 99.9 mol%.
A raw spun yarn was obtained in the same manner as in Example 4 except that an aqueous solution having a PVA concentration of 16% by weight was prepared and used as a spinning dope in addition to 5 parts by weight with respect to 100 parts by weight of VA.
The results are shown in Tables 1 and 2.

【0050】[実施例7、実施例8]直径0.07mm
の丸型キャピラリ−、穴数6000を有するノズルより
常温の飽和芒硝浴へ−30%(実施例7)、+40%
(実施例8)のバスドラフトにて吐出させて糸篠を形成
させ、全延伸倍率9倍となるように延伸した後、5%の
収縮処理を行った以外は実施例4と同様に行って紡糸原
糸を製造した。得られた原糸を10g枷状にとり、ホル
ムアルデヒド30g/l、硫酸270g/l、芒硝15
0g/lからなる70℃の水溶液に20分浸漬させ、水
洗し乾燥させることでアセタ−ル化処理を行った。結果
を表3、表4に示す。
[Embodiments 7 and 8] 0.07 mm in diameter
-30% (Example 7), + 40% from a nozzle having 6000 holes to a saturated sodium sulfate bath at room temperature from a nozzle having 6000 holes
The same procedure as in Example 4 was carried out except that the yarn was formed by discharging with the bath draft of Example 8 and then stretched to a total draw ratio of 9 and then subjected to a 5% shrinkage treatment. A spun yarn was produced. 10 g of the obtained yarn is shackled, formaldehyde 30 g / l, sulfuric acid 270 g / l, sodium sulfate 15 g / l
It was dipped in an aqueous solution of 0 g / l at 70 ° C. for 20 minutes, washed with water and dried to perform an acetalization treatment. The results are shown in Tables 3 and 4.

【0051】[比較例3]直径0.07mmの丸型キャ
ピラリ−、穴数6000を有するノズルより常温の飽和
芒硝浴へ+40%のバスドラフトにて吐出させて糸篠を
形成させ、全延伸倍率9倍となるように延伸した後、5
%の収縮処理を行った以外は比較例1と同様に行って紡
糸原糸を製造した。しかしながら、ノズル部より糸篠が
安定に引き取れず、かつ延伸工程で断糸が起こり、試料
を採取できなかった。
Comparative Example 3 A round capillary having a diameter of 0.07 mm and a nozzle having 6000 holes were discharged into a saturated sodium sulfate bath at room temperature by a + 40% bath draft to form a thread. After stretching to 9 times, 5
The same procedure as in Comparative Example 1 was carried out except that the shrinkage treatment was carried out to produce a spun yarn. However, the yarn could not be pulled out stably from the nozzle portion, and the yarn was broken in the stretching step, and the sample could not be collected.

【0052】[比較例4、比較例5]重合度1750、
ケン化度99.9モル%のPVAに対して、硼酸1.5
重量%、酢酸0.3重量%を加えて共に溶解し、PVA
濃度16.5重量%の水溶液を調製し紡糸原液とした。
この紡糸原液を、直径0.08mmの丸型キャピラリ
−、穴数1000を有するノズルより苛性ソ−ダ30g
/l、芒硝340g/lの80℃の凝固浴中にバスドラ
フト−80%(比較例4)、−60%(比較例5)にな
るようにそれぞれ吐出量を変更して吐出させ糸篠を形成
させた。その後、糸篠を凝固浴から離浴させ、2.5倍
のロ−ラ−延伸後、中和し、芒硝濃度350g/lで9
0℃の浴中で2倍湿熱延伸し、残存硼酸が0.3重量%
/PVAになるように水洗した。さら収束処理を行って
湿潤状態で全延伸倍率を7倍とし、乾燥後全延伸倍率2
0倍になるように延伸して、2%の収縮処理を行って捲
き取った。繊維の断面はほぼ楕円状になり本発明の異形
断面繊維は得られなかった。結果を表3、表4に示す。
[Comparative Example 4 and Comparative Example 5]
For PVA having a saponification degree of 99.9 mol%, boric acid 1.5
% By weight, and 0.3% by weight of acetic acid.
An aqueous solution having a concentration of 16.5% by weight was prepared and used as a spinning dope.
30 g of caustic soda was fed from a nozzle having a round capillary having a diameter of 0.08 mm and a number of holes of 1000 with this spinning stock solution.
In a coagulation bath at 80 ° C. of 340 g / l and Glauber's salt 340 g / l, the discharge amount was changed so that the bath draft became −80% (Comparative Example 4) and −60% (Comparative Example 5). Formed. After that, the shinosino was separated from the coagulation bath, roll-stretched 2.5 times, neutralized, and concentrated at a sodium sulfate concentration of 350 g / l.
Stretched by 2 times wet heat in a bath at 0 ° C, and residual boric acid was 0.3% by weight.
/ PVA. Further, a convergence process is performed to make the total stretching ratio 7 times in a wet state, and after drying, the total stretching ratio 2
The film was stretched so as to be 0 times, subjected to a shrinkage treatment of 2%, and wound up. The cross section of the fiber was almost elliptical, and the modified cross-section fiber of the present invention could not be obtained. The results are shown in Tables 3 and 4.

【0053】[実施例9]膨潤性合成フッ素雲母を約1
μmの粒径まで湿式粉砕して7重量%の分散水溶液とし
た後、重合度1750、ケン化度99.9モル%のPV
A100重量部に対して5重量部となるようにフッ素雲
母水分散液を添加し、PVA濃度14重量%の水溶液を
調製して紡糸原液とした。この紡糸原液を、直径0.0
6mmの丸形キャピラリ−、穴数6000を有するノズ
ルより常温の飽和芒硝浴へ+50%のバスドラフトにて
吐出させて糸篠を形成させ、全延伸倍率8倍とした以外
は実施例4と同様に行った。結果を表3、表4に示す。
Example 9 About 1 swellable synthetic fluoromica was used.
After wet pulverization to a particle size of μm to obtain a 7% by weight aqueous dispersion, PV having a polymerization degree of 1750 and a saponification degree of 99.9 mol% was obtained.
Aqueous fluorine mica dispersion was added so as to be 5 parts by weight with respect to 100 parts by weight of A, and an aqueous solution having a PVA concentration of 14% by weight was prepared as a spinning dope. This spinning dope is used for a diameter of 0.0
Same as Example 4 except that a 6 mm round capillary, a nozzle having 6000 holes, was discharged into a saturated sodium sulfate bath at room temperature by a + 50% bath draft to form a shinoshi, and the total stretching ratio was 8 times. I went to. The results are shown in Tables 3 and 4.

【0054】[実施例10]親水性の合成スメクタイト
(コ−プケミカル株式会社製、「ル−センタイトSW
N」、層間電荷密度0.33、陽イオン交換容量101
meq/100g、平均粒径52nm)を2重量%含む
水分散液を、PVA(重合度1750、ケン化度99.
9mol%)100重量部に対して合成スメクタイトが
5重量部になるように溶解させ、PVA濃度が16重量
%の水溶液を紡糸原液とした以外は実施例1と同様に行
った。膨潤性合成フッ素雲母を用いた場合に比して、異
形度が小さく多支形断面を有するものが少なかったが良
好な結果が得られた。結果を表3、表4に示す。
[Example 10] Hydrophilic synthetic smectite ("Lucentite SW" manufactured by Corp Chemical Co., Ltd.)
N ", interlayer charge density 0.33, cation exchange capacity 101
An aqueous dispersion containing 2% by weight of meq / 100 g and an average particle size of 52 nm was subjected to PVA (polymerization degree 1750, saponification degree 99.
(9 mol%) Synthetic smectite was dissolved in 100 parts by weight so as to be 5 parts by weight, and the same procedure was performed as in Example 1 except that an aqueous solution having a PVA concentration of 16% by weight was used as a spinning solution. As compared with the case of using the swellable synthetic fluoromica, the degree of irregularity was small and the number of polyhedral cross sections was small, but good results were obtained. The results are shown in Tables 3 and 4.

【0055】[実施例11〜14、比較例6,7]実施
例4、実施例6、比較例1で得られたアセタ−ル化処理
を行った原糸を各20g枷状にして染色用の試料原綿と
し、直接染料(住友化学工業株式会社製、「sumilight Vi
olet BB」) 2%owfと芒硝15.0%owfを溶解し
た水溶液を70℃又は90℃に調整して染浴とした。こ
の染浴1000ccに該試料原綿を入れて、浴比1:5
0とし60分間染色処理後、原綿を水洗した。次いで、
洗剤「アミラジン D」1g/lを含む60℃水溶液中
に20分間浸漬して余剰の染料を原綿から除去し、乾燥
した(ソ−ピング処理)。得られた原綿の染色性を表5
に示す。
[Examples 11 to 14, Comparative Examples 6 and 7] Each of the acetalized raw yarns obtained in Examples 4, 6 and Comparative Example 1 was made into a 20 g shackle shape for dyeing. Sample raw cotton and direct dye (Sumitomo Chemical Co., Ltd., "sumilight Vi
olet BB ”) An aqueous solution in which 2% owf and 15.0% owf were dissolved was adjusted to 70 ° C. or 90 ° C. to prepare a dye bath. The sample raw cotton is put in 1000 cc of this dyeing bath, and the bath ratio is 1: 5.
After dyeing treatment for 60 minutes, the raw cotton was washed with water. Then
Excess dye was removed from the raw cotton by immersing it in a 60 ° C. aqueous solution containing 1 g / l of the detergent “Amilazine D” for 20 minutes and dried (soaping treatment). Table 5 shows the dyeability of the obtained raw cotton.
Shown in

【0056】[実施例15、16、比較例8]実施例
4、実施例6、比較例1で得られたアセタ−ル化処理を
行った原糸を各20gを枷状にして染色用の試料原綿と
し、スレン染料(三井東圧化学株式会社製、「Mikethren
e Brill Blue R」 )2%owfに30重量%の苛性ソ−
ダ水溶液22cc/l、ハイドロサルファイトナトリウ
ム(Na2 2 4 )6g/l、デキストリン2g/l
を加えて80℃の染浴に調整した。この染浴1000c
cに試料原綿を入れて浴比1:50とし、80℃で60
分間染色処理後、原綿を水洗した。その後、洗剤「マル
セル石鹸」2g/lと0.5cc/lの過酸化水素水を
含む80℃水溶液中に20分間浸漬して余剰の染料を原
綿から除去し乾燥した(ソ−ピング処理)。得られた原
綿の染色性を表5に示す。
Examples 15 and 16 and Comparative Example 8 Each of the acetalized raw yarns obtained in Examples 4 and 6 and Comparative Example 1 was dyed by binding 20 g of each yarn. The sample raw cotton is used as sllen dye (Mikethren Chemical Co., Ltd., “Mikethren
e Brill Blue R ") 2% owf and 30% by weight of caustic
Aqueous solution 22 cc / l, sodium hydrosulfite (Na 2 S 2 O 4 ) 6 g / l, dextrin 2 g / l
And adjusted to a dyeing bath at 80 ° C. This dyeing bath 1000c
c. Put the raw cotton wool into the bath at a bath ratio of 1:50.
After dyeing for 1 minute, the raw cotton was washed with water. Thereafter, it was immersed in an 80 ° C. aqueous solution containing 2 g / l of detergent “Marcel soap” and 0.5 cc / l of hydrogen peroxide solution for 20 minutes to remove excess dye from the raw cotton and dried (soaping treatment). Table 5 shows the dyeability of the obtained raw cotton.

【0057】[実施例17〜20、比較例9]実施例
3、4、6、7、比較例1で得られたアセタ−ル化処理
を行った原糸を各20gを枷状にして染色用の試料原綿
とし、直接染料(住友化学工業株式会社製、「Sumilight
Violet BB」)1.7%owfと芒硝8%owfを溶解し
た水溶液を70℃に調整して染浴とした。染浴1000
ccに試料原綿を入れて浴比1:50とし、60分間染
色処理した後原綿を水洗した。次いで、洗剤「アミラジ
ン D]1g/lを含む60℃水溶液中で20分間浸漬
して余剰の染料を原綿から除去し乾燥した(ソ−ピング
処理)。結果を表6に示す。
Examples 17 to 20, Comparative Example 9 Each of the acetalized raw yarns obtained in Examples 3, 4, 6, 7 and Comparative Example 1 was dyed by binding 20 g each of the yarns. Sample raw cotton for direct dyeing (Sumitomo Chemical Co., Ltd., “Sumilight
Violet BB ") An aqueous solution in which 1.7% owf and 8% owf dissolved in Glauber's salt was adjusted to 70 ° C to prepare a dye bath. Dyeing bath 1000
Sample raw cotton was put into cc to make a bath ratio of 1:50, and after dyeing treatment for 60 minutes, the raw cotton was washed with water. Next, the dye was immersed in a 60 ° C. aqueous solution containing 1 g / l of the detergent “Amilazine D” for 20 minutes to remove the excess dye from the raw cotton and dried (soaping treatment).

【0058】[実施例21〜24,比較例10]実施例
3、4、6、7及び比較例1で得たアセタ−ル化処理を
行った原糸を各20g枷状にして染色用の試料原綿と
し、スレン染料(三井東圧化学株式会社製、「Mikethren
e Gold Orange G」) 2%owfで室温の染浴を調整し
た。この染浴1000ccに試料原綿を入れて浴比1:
50とし、室温で15分間処理した後、30重量%の苛
性ソ−ダ水溶液22cc/lを加えて5分間処理し、つ
いでハイドロサルファイトナトリウム(Na2
2 4 )2g/lを加えて5分間処理、その後さらにハ
イドロサルファイトナトリウム(Na2 2 4 )2g
/lを加えて染浴を60℃として60分間処理した後、
原綿を水洗した。次いで洗剤「マルセル石鹸」2g/l
を含む60℃水溶液中に30分間浸漬して余剰の染料を
原綿から除去し乾燥した(ソ−ピング処理)。結果を表
6に示す。
[Examples 21 to 24, Comparative Example 10] Each of the acetalized raw yarns obtained in Examples 3, 4, 6, 7 and Comparative Example 1 was made into a 20 g shackle shape for dyeing. The sample raw cotton is used as sllen dye (Mikethren Chemical Co., Ltd., “Mikethren
e Gold Orange G ") A dye bath at room temperature was adjusted with 2% owf. A sample raw cotton is put in 1000 cc of this dyeing bath, and a bath ratio of 1:
After treating at room temperature for 15 minutes, 22 cc / l of a 30% by weight aqueous solution of caustic soda was added, followed by treatment for 5 minutes, and then sodium hydrosulfite (Na 2 S).
2 g / l of 2 O 4 ) was added and treated for 5 minutes, and then 2 g of sodium hydrosulfite (Na 2 S 2 O 4 )
/ L and the dyeing bath is treated at 60 ° C. for 60 minutes,
The raw cotton was washed with water. Next, detergent "Marcel soap" 2 g / l
The excess dye was removed from the raw cotton by immersing it in a 60 ° C. aqueous solution containing for 30 minutes and dried (soaping treatment). Table 6 shows the results.

【0059】[0059]

【表1】 [Table 1]

【0060】[0060]

【表2】 [Table 2]

【0061】[0061]

【表3】 [Table 3]

【0062】[0062]

【表4】 [Table 4]

【0063】[0063]

【表5】 [Table 5]

【0064】[0064]

【表6】 [Table 6]

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施例3により得られる本発明の未アセタ−
ル化PVA系繊維の横断面を撮影した顕微鏡写真。
FIG. 1 shows a non-acetater of the present invention obtained by Example 3.
5 is a photomicrograph of a cross section of a lubricated PVA-based fiber.

【図2】 実施例4により得られる本発明の未アセタ−
ル化PVA系繊維の横断面を撮影した顕微鏡写真。
FIG. 2 shows a non-acetator of the present invention obtained by Example 4.
5 is a photomicrograph of a cross section of a lubricated PVA-based fiber.

【図3】 実施例5により得られる本発明の未アセタ−
ル化PVA系繊維の横断面を撮影した顕微鏡写真。
FIG. 3 shows a non-acetator of the present invention obtained by Example 5.
5 is a photomicrograph of a cross section of a lubricated PVA-based fiber.

【図4】 比較例1により得られる従来の繭型断面を有
する未アセタ−ル化PVA系繊維の横断面を撮影した顕
微鏡写真。
FIG. 4 is a photomicrograph of a cross section of a non-acetalized PVA-based fiber having a conventional cocoon-shaped cross section obtained in Comparative Example 1.

【図5】 陽イオン交換容量(CEC)の測定に使用す
る装置を示した模式図。
FIG. 5 is a schematic diagram showing an apparatus used for measuring a cation exchange capacity (CEC).

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 陽イオン交換容量40meq/100g
以上の膨潤性の層状ケイ酸塩を0.05重量%以上含
み、断面周長比0.85以上、繊維横断面の最大内接円
の直径/最小外接円の直径が0.35以下のポリビニル
アルコ−ル系繊維。
1. Cation exchange capacity 40 meq / 100 g
Polyvinyl containing the above swellable layered silicate in an amount of 0.05% by weight or more, a cross-sectional circumference ratio of 0.85 or more, and a diameter of a maximum inscribed circle / minimum circumscribed circle of a fiber cross section of 0.35 or less. Alcohol-based fiber.
【請求項2】 陽イオン交換容量40meq/100g
以上の膨潤性の層状ケイ酸塩を0.05重量%以上含
み、断面周長比0.85以上、繊維横断面の最大内接円
の直径/最小外接円の直径が0.35以下のポリビニル
アルコ−ル系繊維を含む繊維構造体。
2. Cation exchange capacity 40 meq / 100 g
Polyvinyl containing the above swellable layered silicate in an amount of 0.05% by weight or more, a cross-sectional circumference ratio of 0.85 or more, and a diameter of a maximum inscribed circle / minimum circumscribed circle of a fiber cross section of 0.35 or less. A fiber structure containing alcohol-based fibers.
【請求項3】 陽イオン交換容量40meq/100g
以上の膨潤性の層状ケイ酸塩を0.05重量%以上含む
ポリビニルアルコ−ル系繊維からなる繊維集合体であっ
て、該繊維集合体を構成する繊維の20%以上が断面周
長比0.85以上、繊維横断面の最大内接円の直径/最
小外接円の直径が0.35以下のポリビニルアルコ−ル
系繊維であり、単繊維間で繊維横断面形状が異なってい
ることを特徴とするポリビニルアルコ−ル系繊維集合
体。
3. Cation exchange capacity 40 meq / 100 g
A fiber aggregate comprising polyvinyl alcohol-based fibers containing 0.05% by weight or more of the above-mentioned swellable layered silicate, wherein 20% or more of the fibers constituting the fiber aggregate have a cross-sectional circumference ratio of 0%. A polyvinyl alcohol-based fiber having a diameter of not less than 85 and a diameter of a maximum inscribed circle / a diameter of a minimum circumscribed circle of the fiber cross section of 0.35 or less, characterized in that the fiber cross section is different between single fibers. Polyvinyl alcohol fiber aggregate.
【請求項4】 ポリビニルアルコ−ル系ポリマ−と、該
ポリマ−に対して0.05重量%以上の陽イオン交換容
量40meq/100g以上の膨潤性の層状ケイ酸塩を
含む紡糸原液を用いて紡糸するポリビニルアルコ−ル系
繊維の製造方法。
4. A spinning dope containing a polyvinyl alcohol-based polymer and a swellable layered silicate having a cation exchange capacity of 40 meq / 100 g or more in an amount of 0.05% by weight or more based on the polymer. A method for producing a polyvinyl alcohol-based fiber to be spun.
JP9294897A 1996-03-29 1997-03-26 Polyvinyl alcohol fiber and its production Pending JPH1053918A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9294897A JPH1053918A (en) 1996-03-29 1997-03-26 Polyvinyl alcohol fiber and its production

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-104182 1996-03-29
JP10418296 1996-03-29
JP9294897A JPH1053918A (en) 1996-03-29 1997-03-26 Polyvinyl alcohol fiber and its production

Publications (1)

Publication Number Publication Date
JPH1053918A true JPH1053918A (en) 1998-02-24

Family

ID=26434312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9294897A Pending JPH1053918A (en) 1996-03-29 1997-03-26 Polyvinyl alcohol fiber and its production

Country Status (1)

Country Link
JP (1) JPH1053918A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10115941B4 (en) * 2000-04-04 2006-07-27 Mi Soo Seok Process for the production of fibers with functional mineral powder and fibers made therefrom
WO2006087983A1 (en) * 2005-02-21 2006-08-24 Kuraray Co., Ltd Flame-retardant polyvinyl alcohol fiber
CN103060940A (en) * 2011-10-18 2013-04-24 中国石油化工集团公司 Preparation method of medium modulus polyvinyl alcohol fiber
CN109853070A (en) * 2019-02-28 2019-06-07 陕西师范大学 A kind of montmorillonite/polyvinyl alcohol composite flame retardant fiber
CN111051584A (en) * 2017-09-08 2020-04-21 株式会社可乐丽 Polyvinyl alcohol fiber
CN112805420A (en) * 2018-11-01 2021-05-14 株式会社可乐丽 Polyvinyl alcohol fiber

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10115941B4 (en) * 2000-04-04 2006-07-27 Mi Soo Seok Process for the production of fibers with functional mineral powder and fibers made therefrom
WO2006087983A1 (en) * 2005-02-21 2006-08-24 Kuraray Co., Ltd Flame-retardant polyvinyl alcohol fiber
CN103060940A (en) * 2011-10-18 2013-04-24 中国石油化工集团公司 Preparation method of medium modulus polyvinyl alcohol fiber
CN111051584A (en) * 2017-09-08 2020-04-21 株式会社可乐丽 Polyvinyl alcohol fiber
JPWO2019049757A1 (en) * 2017-09-08 2020-10-08 株式会社クラレ Polyvinyl alcohol fiber
EP3666941A4 (en) * 2017-09-08 2020-11-11 Kuraray Co., Ltd. Fibers based on poly(vinyl alcohol)
CN112805420A (en) * 2018-11-01 2021-05-14 株式会社可乐丽 Polyvinyl alcohol fiber
CN112805420B (en) * 2018-11-01 2024-02-06 株式会社可乐丽 Polyvinyl alcohol fiber
CN109853070A (en) * 2019-02-28 2019-06-07 陕西师范大学 A kind of montmorillonite/polyvinyl alcohol composite flame retardant fiber
CN109853070B (en) * 2019-02-28 2021-06-15 陕西师范大学 Montmorillonite/polyvinyl alcohol composite flame-retardant fiber

Similar Documents

Publication Publication Date Title
CA2015406C (en) Synthetic polyvinyl alcohol fiber and process for its production
US5417752A (en) Product containing silicon dioxide and a method for its preparation
JPH10204719A (en) Production of cellulosic fiber and cellulosic fiber
EP0150513B1 (en) High-tenacity, fine-denier polyvinyl alcohol fiber and a method for production thereof
US5609957A (en) Fiber
IE44104B1 (en) Hygroscopic fibres and filaments of synthetic polymers
JP2020504791A (en) Lyocell fiber, nonwoven fiber aggregate including the same, and mask pack sheet including the same
US4810449A (en) Process for the production of hydrophilic polyacrylonitrile filaments or fibers
US5133916A (en) Polyvinyl alcohol fiber having excellent resistance to hot water and process for producing the same
CN1081686C (en) Wet PVA-crosslinking spinning technology
JPH1053918A (en) Polyvinyl alcohol fiber and its production
JPS60126312A (en) High-strength and high-modulus polyvinyl alcohol based fiber and production thereof
JPH10504593A (en) Manufacturing method of cellulose extrudate
Liu et al. Fiber formation via solution spinning of the cellulose/ammonia/ammonium thiocyanate system
JPS6021905A (en) Acrylic fiber having high strength and elastic modulus and its manufacture
RU2194101C2 (en) Liquid crystal-origin cellulose fibers with strong rupture elongation and methods for manufacture thereof
KR980009550A (en) Manufacturing method of sweat-absorbent quick-drying polyester fiber
JPH09256216A (en) Regenerated cellulose fiber and its production
KR100224474B1 (en) A manufacturing method for polyvinyl alcohol fiber with high absorptiveness and intensivity
KR100483810B1 (en) Method for producing fabric of Rayon/Deep color polyester composite yarn
JP3466279B2 (en) Polyvinyl alcohol fiber excellent in dimensional stability in wet and dry conditions and method for producing the same
JPH0665815A (en) Polyvinyl alcohol-based polarizing fiber and its production
JPS6065109A (en) Porous acrylonitrile synthetic fiber
JP3960510B2 (en) Polyester multifilament yarn, production method thereof and woven / knitted fabric thereof
KR100466879B1 (en) Method for polyester having a deep color

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20040707

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040810

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041207