WO2006082879A1 - 酸化物透明導電膜およびアルカリ金属含有酸化物透明導電膜の成膜方法ならびにその酸化物透明導電膜を利用した有機光装置 - Google Patents

酸化物透明導電膜およびアルカリ金属含有酸化物透明導電膜の成膜方法ならびにその酸化物透明導電膜を利用した有機光装置 Download PDF

Info

Publication number
WO2006082879A1
WO2006082879A1 PCT/JP2006/301747 JP2006301747W WO2006082879A1 WO 2006082879 A1 WO2006082879 A1 WO 2006082879A1 JP 2006301747 W JP2006301747 W JP 2006301747W WO 2006082879 A1 WO2006082879 A1 WO 2006082879A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide
conductive film
transparent conductive
alkali metal
oxide transparent
Prior art date
Application number
PCT/JP2006/301747
Other languages
English (en)
French (fr)
Inventor
Takayuki Uchida
Original Assignee
Matsubo Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsubo Corporation filed Critical Matsubo Corporation
Publication of WO2006082879A1 publication Critical patent/WO2006082879A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/828Transparent cathodes, e.g. comprising thin metal layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/302Details of OLEDs of OLED structures
    • H10K2102/3023Direction of light emission
    • H10K2102/3031Two-side emission, e.g. transparent OLEDs [TOLED]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes

Definitions

  • the present invention relates to an organic light emitting device such as an organic electoluminescence (EL) and an organic light input device such as an organic solar cell, an organic light sensor, and an organic image sensor (hereinafter referred to as an organic light emitting device and an organic light emitting device).
  • Organic light input device is generically referred to as organic light device.
  • the present invention relates to an organic optical device used for the above.
  • An oxide transparent conductive film typified by indium tin oxide is a light-receiving portion of an organic light input device such as an organic solar cell, an organic light sensor, or an organic image sensor.
  • ITO indium tin oxide
  • it is widely used as an electrode for extracting light from a flat display such as an electrode or organic electroluminescence, and a substrate with a transparent electrode film.
  • the evaluation index of a transparent oxide conductive film is transparency, conductivity (or sheet resistance), and flatness, and energy level (work function value) is almost taken into consideration.
  • Patent Document 1 proposes a transparent conductive film in which the work function of the ITO thin film used for the anode is 5.1 to 6. OeV and a method for manufacturing the same.
  • Patent Document 1 JP-A-8-167479 (such as (0012) to (0013) and FIG. 1) Disclosure of the Invention
  • the work function of the oxide transparent conductive film used for the cathode of the organic EL element is low.
  • the oxide transparent conductive film is an oxide
  • the work function The work function of the currently known oxide transparent conductive film, which has a high value, is 4.5 eV or more.
  • Patent Document 1 also states that the work function of commercially available ITO films and low-resistance ITO films is 4.6 to 4.8 eV or more (see [0005]), and the work function is 4.5 eV or less.
  • the work function of commercially available ITO films and low-resistance ITO films is 4.6 to 4.8 eV or more (see [0005])
  • the work function is 4.5 eV or less.
  • the present invention solves such a problem, and is an acid-containing transparent conductive film, but can stably maintain a value with a work function lower than 4.5 eV stably in the atmosphere. It is an object to provide a transparent transparent conductive film.
  • Another object of the present invention is to provide a film forming method capable of forming an oxide transparent conductive film having a work function lower than 4.5 eV by a simple method.
  • Another object of the present invention is to provide an organic optical device having a low driving voltage, a low leakage current, and a low turn-on threshold voltage.
  • the oxide transparent conductive film of the present invention according to claim 1 is an oxide transparent conductive film used for an organic light emitting device or an organic light input device, and contains an alkali metal. To do.
  • the present invention according to claim 2 is the oxide transparent conductive film according to claim 1, wherein the oxide transparent conductive film comprises indium tin oxide, indium zinc oxide, tin oxide, indium oxide, indium zinc oxide, It is characterized by being any one of acid zinc aluminum, acid zinc gallium, and dimethyl tungsten oxide.
  • the present invention according to claim 3 is the oxide transparent conductive film according to claim 1, wherein the alkali metal is any one of cesium, lithium, sodium, potassium, and rubidium.
  • the present invention according to claim 4 is characterized in that, in the oxide transparent conductive film according to claim 1, the alkali metal is unevenly mixed and mixed on one main surface side of the oxide transparent conductive film. To do.
  • the present invention according to claim 5 is the oxide transparent conductive film according to claim 1, wherein the acid The alkali metal is mixed in the entire transparent chemical conductive film.
  • the method for forming an alkali metal-containing oxide transparent conductive film according to claim 6 of the present invention is a method for forming an alkali metal-containing oxide transparent conductive film used in an organic light emitting device, and is formed in a sputtering chamber.
  • a step of discharging a transparent conductive film material, and a step of introducing an alkali metal vapor into the space over the substrate, the central force of the plasma space in the sputtering chamber is a method for forming an alkali metal-containing oxide transparent conductive film used in an organic light emitting device, and is formed in a sputtering chamber.
  • the present invention according to claim 7 is the method for forming an alkali metal-containing oxide transparent conductive film according to claim 6, wherein the plasma gas (argon, argon) in the step of flowing the plasma gas into the sputtering chamber is provided.
  • the time for flowing only the reactive gas such as oxygen is the total time of the first time and the second time
  • the time for introducing the alkali metal vapor in the step of introducing the alkali metal vapor into the sputtering chamber is The total time of the first time and the second time or only the second time.
  • the present invention according to claim 8 is characterized in that the substrate is shifted from the center position of the target over the film-forming method of the alkali metal-containing oxide transparent conductive film according to claim 6.
  • the organic optical device of the present invention according to claim 9, wherein a transparent anode, a hole injection layer, a hole transport layer, a light emitting layer composed of an organic substance, an electron injection layer, and a transparent cathode are formed in this order, and the transparent cathode Is the oxide transparent conductive film according to claim 1.
  • the oxide transparent conductive film is made of indium tin oxide, indium zinc oxide, tin oxide, indium oxide, indium zinc oxide, acid oxide. ⁇ Aluminum zinc, zinc oxide gallium and indium tungsten oxide!
  • the invention according to claim 11 is the organic optical device according to claim 9, characterized in that the alkali metal is any one of cesium, lithium, sodium, potassium, and rubidium.
  • the present invention according to claim 12 is the organic optical device according to claim 9, wherein The alkali metal is unevenly distributed and mixed on one main surface side of the bright conductive film.
  • the invention according to claim 13 is the organic optical device according to claim 9, wherein the alkali metal is mixed in the entire oxide transparent conductive film.
  • a transparent conductive oxide film with a low work function is formed by a simple method using a low-damage process in the sputtering method and introducing an alkali metal such as cesium (Cs) in the vicinity of the substrate. can do.
  • FIG. 1 is a cross-sectional side view showing the configuration of a cesium-containing ITO sputter film forming apparatus according to Example 1 of the present invention.
  • FIG. 2 Spectral spectrum of cesium-containing ITO film according to Example 1 of the present invention.
  • FIG. 3 is a characteristic diagram of cesium-containing ITO according to Example 1 of the present invention, in which (a) is a characteristic diagram showing the relationship between the shift distance between the glass substrate and the target and the transparency, and (b) is the shift distance. Characteristic diagram showing the relationship with work function, (c) Characteristic diagram showing change with time of work function with respect to displacement distance, (d) Characteristic diagram showing relationship between displacement distance and sheet resistance
  • FIG. 4 is a cross-sectional side view showing the configuration of an organic EL device using a cesium-containing ITO film according to Example 2 of the present invention.
  • FIG. 5 is a characteristic diagram of an organic EL device using a cesium-containing ITO film according to Example 2 of the present invention, where (a) is a light emission luminance characteristic diagram, (b) is a current density characteristic diagram with respect to an applied voltage, and (c). Is a characteristic diagram showing the relationship between the work function of the cathode and the turn-on threshold voltage.
  • the oxide transparent conductive film according to the first embodiment of the present invention is obtained by adding an alkali metal to an oxide transparent conductive film used for an organic light emitting device or an organic light input device, and has a work function in the atmosphere.
  • the second embodiment of the present invention is the oxide transparent conductive film according to the first embodiment, wherein the oxide transparent conductive film comprises indium tin oxide, indium monozinc oxide, Oxidized tin, indium oxide, indium zinc oxide, oxidized aluminum zinc, oxidized zinc gallium, and indium tungsten oxide, and stable work function in various oxide transparent conductive films in the atmosphere And can be kept below 4.5eV.
  • the third embodiment of the present invention is an oxide transparent conductive film according to the first embodiment.
  • the alkali metal is any one of cesium, lithium, sodium, potassium, and rubidium, and the work function of the transparent oxide conductive film can be reduced by adding various metals to the transparent oxide conductive film.
  • the oxide transparent Oxide metal is unevenly mixed on one main surface side of the conductive film, so that the work function is stable in the atmosphere and can maintain a value lower than 4.5 eV.
  • a conductive film can be realized.
  • the fifth embodiment of the present invention is the oxide transparent conductive film according to the first embodiment, in which an alkali metal is mixed in the entire oxide transparent conductive film.
  • an alkali metal is mixed in the entire oxide transparent conductive film.
  • the method for forming an alkali metal-containing oxide transparent conductive film according to the sixth embodiment of the present invention is such that a plasma gas is allowed to flow in a sputtering chamber to form a glass or polymer substrate from the target or an organic layer is formed on the substrate.
  • a plasma gas is allowed to flow in a sputtering chamber to form a glass or polymer substrate from the target or an organic layer is formed on the substrate.
  • alkali metal vapor is also introduced into the space over the substrate, which is the central force of the plasma space.
  • the time for introducing the alkali metal vapor is set to a part or all of the sputtering time.
  • the eighth embodiment of the present invention is a method for depositing an alkali metal-containing oxide transparent conductive film according to the sixth embodiment, in which the substrate is arranged with the center position force of the target shifted, as well.
  • a transparent anode, a hole injection layer, a hole transport layer, a light emitting layer made of an organic material, an electron injection layer, and a transparent cathode are formed in this order.
  • a transparent cathode is composed of the oxide transparent conductive film according to the first embodiment, and a top emission type organic optical device having a work function stable in the atmosphere and lower than 4.5 eV is realized. can do.
  • the oxide transparent conductive film is made of indium tin oxide, indium zinc oxide, tin oxide, indium oxide, indium zinc oxide,
  • the eleventh embodiment of the present invention is an organic optical device according to the ninth embodiment, wherein the alkali metal is any one of cesium, lithium, sodium, potassium, and rubidium.
  • the alkali metal is any one of cesium, lithium, sodium, potassium, and rubidium.
  • the twelfth embodiment of the present invention is an organic optical device according to the ninth embodiment, in which an alkali metal is unevenly distributed on one main surface side of the oxide transparent conductive film and is low in operation.
  • a top emission type organic light emitting device having a transparent cathode of function can be realized.
  • the thirteenth embodiment of the present invention is the organic optical device according to the ninth embodiment, in which an alkali metal is mixed in the entire oxide transparent conductive film, and a top having a transparent negative electrode with a low work function.
  • An emission type organic light emitting device can be realized.
  • FIG. 1 is a cross-sectional side view showing a configuration of a cesium-containing ITO sputter film forming apparatus according to Example 1 of the present invention.
  • the sputtering power may be any type of sputtering, such as radio frequency (RF) magnetron sputtering, direct current sputtering, panorless sputtering, reactive sputtering, etc.
  • a sputtering cathode 13 for disposing a sputtering target 12 is provided above the sputtering chamber 11, and a disk-shaped or ring-shaped target 12 is disposed on the inside of the sputtering chamber 11 of the sputtering cathode 13.
  • As the target 12 for example, 3 inch diameter InO doped with 10% by weight of SnO is used.
  • a sample stage 14 is provided in the lower part of the sputtering chamber 11 so as to face the sputtering cathode 13, and a glass substrate 15 is installed on the sample stage 14, that is, on the inner surface of the sputtering chamber 11.
  • the distance between the target 12 and the glass substrate 15 and the relative position of both are arbitrary, but the optimum work function, transparency, sheet resistance, film formation rate, etc. required for the ITO film can be obtained. It is necessary to set. In this example, the distance between the target 12 and the glass substrate 15 was 6 cm. Further, the relative positional relationship between the target 12 and the glass substrate 15 is such that the center position P of the glass substrate 15 is slightly shifted from the position immediately below the center position Q of the target 12. The shift distance corresponding to the distance between P and Q will be described later.
  • this embodiment is described as a glass substrate 15, it may be a polymer substrate.
  • a gas inlet 16 for introducing a sputtering gas such as argon is provided on the side wall of the sputtering chamber 11, and a gas outlet 17 is provided on the side wall of the sputtering chamber 11 at a position facing the gas inlet 16.
  • the gas inlet 16 is connected to a cylinder 18 and a valve 19 for supplying an argon gas as a sputtering gas, and the gas outlet 17 is connected to a vacuum pump 20.
  • a cesium evaporation source 21 with a built-in heater is disposed at the gas inlet 16 in the sputtering chamber 11, and the heater is heated by an AC or DC drive power source 22 to generate cesium vapor.
  • the distance between the cesium evaporation source 21 and the target 12 is also arbitrary, but is 7 cm in this embodiment.
  • cesium vapor is introduced into the sputtering chamber 11.
  • the cesium vapor is in the middle of the plasma space, which is an intermediate position between the target 12 and the glass substrate 15. To the glass substrate 15 It is preferable to arrange the cesium evaporation source 21 so that it will be introduced more often.
  • the glass substrate 15 is 20: 50-30: 30-30.
  • the heater of the cesium evaporation source 21 is not heated at a predetermined first time, the ITO film is formed without evaporation of cesium, and the heater of the cesium evaporation source 21 at a predetermined second time.
  • the ITO film was formed while evaporating and evaporating cesium in the plasma space.
  • the cesium vapor is blown to the plasma at the intermediate position between the target 12 and the glass substrate 15, blown to the space from the central part of the plasma space to the glass substrate 15, or blown onto the glass substrate 15, etc.
  • Cesium vapor is evaporated so as to be intensively introduced into the space from the part to the glass substrate 15. Therefore, when ITO sputtered from the target 12 advances toward the glass substrate 15 at the central force of the plasma space, cesium vapor is efficiently taken into the ITO.
  • the sputtering output is 30 W
  • the argon gas pressure is 1.
  • the sputtering rate is 5 to 7 nm Zmin
  • the temperature of the glass substrate 15 is room temperature
  • the sputtering time is 30 minutes
  • the first time is 23 minutes
  • the second time is When the time was 7 minutes, an ITO film with a thickness of 200 nm was obtained in which cesium was unevenly distributed in the upper 50 nm portion.
  • FIG. 2 is a spectral spectrum of a cesium-containing ITO film formed by shifting the glass substrate 15 by 4 cm from the position immediately below the target 12 under the above sputtering conditions. As shown in Fig. 2, peaks were observed near 740 eV (3d3Z2) and 726 (3d5Z2), confirming that the ITO film contained cesium.
  • 3 (a) to 3 (d) are characteristics diagrams of cesium-containing ITO when the sputter deposition apparatus of FIG. 1 in this example is used, and FIG. 3 (a) shows the position immediately below the target 12 or the target.
  • FIG. 3 (b) shows the relationship between the displacement distance and transparency when the glass substrate 15 is displaced from 12 and the ITO film mixed with cesium is sputtered under the above sputtering conditions.
  • Fig. 3 (c) is a characteristic diagram showing the change in work function with respect to the shifting distance
  • Fig. 3 (d) is a characteristic diagram showing the relationship between the shifting distance and the sheet resistance. It is.
  • the transparency reaches a maximum of 83% when the glass substrate 15 is placed directly under the target 12, and the transparency is increased as the glass substrate 15 is also shifted under the target 12. Transparency decreases to 62% at 5cm distance, 56% at 5cm, and 54% at 7cm.
  • the work function is 4.48eV immediately after sputtering and 4.61eV after being left in the air for 24 hours.
  • the shifting distance is 4 cm, it is immediately after sputtering and left in air for 24 hours.4.3 5 eV, 5 cm is immediately after sputtering 4.3 eV, after it is left in air for 24 hours 4.25 eV, after 7 cm is immediately after sputtering 4.18 eV, after 24 hours in air 4.23 eV, 8 cm immediately after sputtering 4. leV, 4.16 eV after 24 hours in air, the work function decreases as the shift distance increases. To do.
  • the change in the work function of the ITO film with time is the first one when it is left in the air for several days and when the glass substrate 15 is placed immediately below the target 12. Although it increases slightly in days, it is almost constant after that. Similarly, when the shift distance is 4 cm, it increases slightly in the first day, but after that, it tends to decrease and is almost constant. When the shift distance is 7 cm, it tends to increase for 4 days, but it is almost constant after that. Thus, it can be seen that the ITO film containing cesium is extremely stable in the atmosphere.
  • the sheet resistance is the lowest value of 10 ⁇ when the glass substrate 15 is placed immediately below the target 12, and increases as the shift distance increases.
  • the ITO film suitable for the light extraction cathode of the organic EL apparatus is a glass substrate 15 that is low in damage during ITO sputtering. It is preferable to place cesium vapor in the position where the position force just below 12 is also shifted 4cm to 5cm.
  • the oxide transparent conductive film is ITO.
  • the oxide transparent conductive film indium zinc oxide, tin oxide, indium oxide, oxide indium zinc, oxide aluminum Zinc, zinc oxide gallium, and indium tungsten oxide can also be used.
  • the force described in the case of containing cesium in ITO In addition to cesium, alkali metals such as lithium, sodium, potassium, and rubidium are vaporized in the sputtering chamber 11 to convert these alkali metals into an oxide such as ITO. You may make it contain in a transparent conductive film.
  • the target 12 is disposed upward, the glass substrate 15 is disposed downward, and the sputtering method is performed by sputtering from above.
  • the target 12 is disposed downward, the glass substrate 15 is disposed upward, and the downward force is also upward.
  • target 12 and glass substrate 15 are arranged opposite to the side wall of sputtering chamber 11 and sputtering is performed in the horizontal direction.
  • a pair of targets 12 are arranged in a square shape to the surface of glass substrate 15.
  • Various modifications such as a method of sputtering from an oblique direction and a method of controlling the amount of sputtering by arranging a grid between the target 12 and the glass substrate 15 are possible.
  • the organic optical device is formed so as not to damage the organic layer.
  • the cesium evaporation source 21 When the cesium evaporation source 21 is placed at the gas inlet 16 in the sputtering chamber 11 Therefore, the cesium vapor is placed at the center of the plasma space, at the center of the plasma space, at an intermediate position between the center of the plasma space and the glass substrate 15, or near the glass substrate 15. If a large amount of force is introduced on the glass substrate 15 side, the arrangement position is not limited. Further, as long as steam is introduced as described above, it may be from outside the sputtering chamber.
  • alkali metal was unevenly mixed on the top of the oxide transparent conductive film with a sputtering time of 30 minutes, a first time of 23 minutes, and a second time of 7 minutes. Sputter alkali metal through the oxide transparent conductive film to mix the alkali metal.
  • the force glass substrate 15 and the target 12 described in the example in which the sputter deposition apparatus of FIG. It is essential to consider the work function, transparency, sheet resistance, film formation rate, etc. It may be preferable to place the glass substrate 15 directly below the target 12. For example, if the influence of plasma is small as an action to reduce the work function of the ITO film, the glass substrate 15 is placed immediately below the target 12 to increase the transparency, reduce the sheet resistance, and reduce the work function. An ITO film can be obtained. In addition, when the temperature distribution of the glass substrate 15 due to high energy particles is large, the glass substrate 15 may be placed immediately below the target 12 to cool the glass substrate 15.
  • FIG. 4 is a cross-sectional side view showing the configuration of an organic EL device using a cesium-containing ITO film according to Example 2.
  • Polystyrene sanolefonate Z Poly (styrenesulfonate) / poly (2, 3-dihydrothieno (3, 4—)) as hole injection layer 32 on ITO film 31 of commercially available glass substrate with ITO film b) — 1, 4— dioxin ⁇ PEDT— PSS o) Spin-coated and heat-treated for 3 minutes at 200 C. 4, 4, bis [N (l naphthyl) on hole injection layer 32 N phenylamino] biphenyl (hereinafter a-NPD) is vacuum deposited Thus, the hole transport layer 33 is formed. On the hole transport layer 33, trihydroxyquinolinate anorum (Tris [8- hydroxvquinolinato] aluminum; hereinafter referred to as Alq and ti)
  • the light emitting layer 34 is formed by vacuum deposition. On the light emitting layer 34, triazine, 2,9-Dimethyl-4,7-diphenyl-1,10-phenanthroline (hereinafter referred to as BCP) is vacuum-deposited to form the electron injection layer 35. A cesium-containing ITO film 36 according to Example 1 is formed on the electron injection layer 35 to produce an organic EL device according to Example 2 (present device C). In order to compare the characteristics of the device C of the present invention with the organic EL, an organic EL device (comparative device A) and an electronic device containing a cesium on the light-emitting layer 34 and having an ordinary ITO film formed thereon are used. When the injection layer 35 is formed, BCP and cesium are vapor-deposited at the same time and cesium is contained. The organic injection device 35 that contains cesium on the electron injection layer 35 and that forms a normal ITO film (comparator B) Created.
  • BCP 2,9-Dimethyl-4,7-diphenyl-1,10
  • FIG. 5 (a) is a light emission luminance characteristic diagram of the comparative device A, the comparative device B, and the inventive device C.
  • Comparative device A and comparative device B emit little light when the applied voltage is 8V or less, and start emitting light when the applied voltage is 8V or more. Note that it is observed that the light emission luminance of the comparison device B is higher than that of the comparison device A when the electron injection layer 35 contains cesium.
  • the present device C starts emitting light with an applied voltage of around 4 V, and the light emission luminance is not equal to or higher than that of the comparison device B. Therefore, the driving voltage for light emission can be reduced.
  • FIG. 1 is a light emission luminance characteristic diagram of the comparative device A, the comparative device B, and the inventive device C.
  • 5B is a current density characteristic diagram with respect to the applied voltage of the comparison device A, the comparison device B, and the device C of the present invention. It can be seen that the device C of the present invention has a smaller leakage current before light emission than the comparison devices A and B.
  • FIG. 5 (c) is a characteristic diagram showing the relationship between the work function of the cathode and the turn-on threshold voltage in the comparison device B and the device C of the present invention.
  • the work function of the comparison device B is 4.53 eV and the turn-on threshold voltage is 7.8 V, whereas the work function of the device C of the present invention is 4.3 eV and the turn-on threshold voltage is 5.6 V.
  • a higher electron injection capability can be provided.
  • the organic EL device has a low drive voltage for light emission, a small leakage current before light emission, and a small turn-on threshold voltage, so that it has a high V and electron injection capability. be able to.
  • the film forming method of the oxide transparent conductive film and the alkali metal-containing oxide transparent conductive film of the present invention provides an oxide transparent conductive film having a work function lower than 4.5 eV, and is a transparent cathode of a solar cell or a photosensor. Alternatively, it is suitable for application to a transparent cathode in an organic light emitting device such as a transparent cathode for top emission of an organic EL device.
  • the organic light emitting device of the present invention includes a flat-screen TV, a display for a personal computer, a display for a portable device such as a mobile phone, a PDA, or a digital camera, a display for an in-vehicle device such as a car navigation system, a head-up display, It is suitable for use in various flat displays such as surface-emitting lighting, sheet-like flexible displays, head-up displays for windshield curved shields attached to helmets, and glasses-type displays.

Abstract

 大気中で安定して仕事関数が4.5eVより低い値を保持することができる酸化物透明導電膜およびその成膜方法を提供する。  酸化インジウム錫などの酸化物透明導電膜に、セシウム、リチウム、ナトリウム、カリウム、およびルビジウムのいずれかのアルカリ金属を含有させる。スパッタリング室11内にボンベ18からアルゴンなどのプラズマガスを流し、スパッタリング室11内に配置されたターゲット12からガラス基板15に酸化物透明導電膜材料をスパッタリングする。ガラス基板15の中心位置Pはターゲット12の中心位置Qからずれた位置に配置されている。ターゲット12からガラス基板15に酸化物透明導電膜材料をスパッタリングするとき、スパッタリング室11内のプラズマ空間の中心からガラス基板15にかけての空間にセシウム蒸発源21によりセシウム蒸気を導入する。

Description

明 細 書
酸化物透明導電膜およびアルカリ金属含有酸化物透明導電膜の成膜方 法ならびにその酸化物透明導電膜を利用した有機光装置
技術分野
[0001] 本発明は、有機エレクト口ルミネッセンス (EL)などの有機光放射装置、および、有 機太陽電池、有機光センサ、有機イメージセンサなどの有機光入力装置 (以下、有 機光放射装置および有機光入力装置を有機光装置と総称する。 )に使用される酸ィ匕 物透明導電膜およびアルカリ金属含有酸ィ匕物透明導電膜の成膜方法ならびにその 酸ィ匕物透明導電膜を陰極に利用した有機光装置に関するものである。
背景技術
[0002] 酸化インジウム錫 (以下、 ITOと記す。 )に代表される酸ィ匕物透明導電膜は、有機太 陽電池、有機光センサ、有機イメージセンサなどの有機光入力装置の受光部分の電 極や、有機エレクト口ルミネッセンスなどの平面ディスプレイの光取り出し用電極およ び透明電極膜付基板として一般に広く用いられている。酸化物透明導電膜の評価の 指標は、一般に、透明性と導電率 (またはシート抵抗)および平坦性であり、エネルギ 一準位 (仕事関数の値)はほとんど考慮されて 、な 、。
近年、酸化物透明導電膜を使用した有機 EL素子が提案されている (たとえば特許 文献 1参照)。有機 EL素子は電流注入型の発光素子であるため、陽極からはホール を、陰極からは電子を効率よく注入する必要がある。この観点力もすると、陽極に用 いる酸ィ匕物透明導電膜の仕事関数は高ぐ陰極に用いる酸ィ匕物透明導電膜の仕事 関数は低いことが必要となる。特許文献 1においては、陽極に用いる ITO薄膜の仕 事関数が 5. 1〜6. OeVである透明導電膜およびその製造方法を提案している。 特許文献 1:特開平 8— 167479号公報((0012)〜(0013)および図 1など) 発明の開示
発明が解決しょうとする課題
[0003] 一方、前述したように有機 EL素子の陰極に用いる酸ィ匕物透明導電膜の仕事関数 は低いことが望ましい。しかし、酸化物透明導電膜は酸化物であるので仕事関数の 値が高ぐ現在知られている酸化物透明導電膜の仕事関数は 4. 5eV以上である。 特許文献 1においても市販の ITO膜や低抵抗の ITO膜の仕事関数は 4. 6〜4. 8eV 以上であると記載されており ([0005]参照)、仕事関数が 4. 5eV以下である酸ィ匕物 透明導電膜の実現や提案についての記載はない。したがって、現在、酸化物透明導 電膜にお 、て低 、仕事関数の材料がな 、ため、有機 EL装置における電子注入性を 向上させることは困難である。
[0004] そこで本発明は、このような課題を解消し、酸ィ匕物透明導電膜でありながら、大気中 で安定して仕事関数が 4. 5eVより低 、値を保持することができる酸ィ匕物透明導電膜 を提供することを目的とする。
また、本発明は、仕事関数が 4. 5eVより低い値を有する酸ィ匕物透明導電膜を簡単 な方法で成膜することができる成膜方法を提供することを目的とする。
また、本発明は、低駆動電圧、低漏洩電流、低ターンオンスレショルド電圧の有機 光装置を提供することを目的とする。
課題を解決するための手段
[0005] 請求項 1記載の本発明の酸化物透明導電膜は、有機光放射装置または有機光入 力装置に使用される酸化物透明導電膜であって、アルカリ金属を含有したことを特徴 とする。
請求項 2記載の本発明は、請求項 1に記載の酸化物透明導電膜において、前記酸 化物透明導電膜は、酸化インジウム錫、インジウム 亜鉛酸化物、酸化錫、酸化イン ジゥム、酸化インジウム亜鉛、酸ィ匕アルミニウム亜鉛、酸ィ匕亜鉛ガリウムおよび酸化ィ ンジゥムタングステンのいずれかであることを特徴とする。
請求項 3記載の本発明は、請求項 1に記載の酸化物透明導電膜において、前記ァ ルカリ金属がセシウム、リチウム、ナトリウム、カリウム、およびルビジウムのいずれかで あることを特徴とする。
請求項 4記載の本発明は、請求項 1に記載の酸化物透明導電膜において、前記酸 化物透明導電膜の一方の主面側に前記アルカリ金属が偏在して混入していることを 特徴とする。
請求項 5記載の本発明は、請求項 1に記載の酸化物透明導電膜において、前記酸 化物透明導電膜の全体に前記アルカリ金属が混入していることを特徴とする。
請求項 6記載の本発明のアルカリ金属含有酸化物透明導電膜の成膜方法は、有 機光放射装置に使用されるアルカリ金属含有酸化物透明導電膜の成膜方法であつ て、スパッタリング室内にプラズマガスを流す工程と、前記スパッタリング室内に配置 されたターゲットから前記ターゲットに対向して配置されたガラス、ポリマー等の基板 又はその基板上に有機層が成膜されている基板に酸ィ匕物透明導電膜材料を放出す る工程と、前記スパッタリング室内のプラズマ空間の中心力 前記基板にかけての空 間にアルカリ金属蒸気を導入する工程とを有することを特徴とする。
請求項 7記載の本発明は、請求項 6に記載のアルカリ金属含有酸ィ匕物透明導電膜 の成膜方法において、前記スパッタリング室内に前記プラズマガスを流す工程にお ける前記プラズマガス (アルゴン、酸素等の反応性ガス)のみを流す時間が第 1の時 間および第 2の時間の合計時間であり、前記スパッタリング室内にアルカリ金属蒸気 を導入する工程における前記アルカリ金属蒸気を導入する時間が前記第 1の時間お よび前記第 2の時間の合計時間または前記第 2の時間のみであることを特徴とする。 請求項 8記載の本発明は、請求項 6に記載のアルカリ金属含有酸ィ匕物透明導電膜 の成膜方法にぉ ヽて、前記基板を前記ターゲットの中心位置からずらせて配置する ことを特徴とする。
請求項 9記載の本発明の有機光装置は、透明陽極、ホール注入層、ホール輸送層 、有機物カゝらなる発光層、電子注入層および透明陰極がこの順で形成されており、 前記透明陰極が請求項 1に記載の酸ィ匕物透明導電膜であることを特徴とする。 請求項 10記載の本発明は請求項 9に記載の有機光装置において、前記酸化物透 明導電膜が酸化インジウム錫、インジウム 亜鉛酸ィ匕物、酸化錫、酸化インジウム、 酸化インジウム亜鉛、酸ィ匕アルミニウム亜鉛、酸ィ匕亜鉛ガリウムおよび酸化インジウム タングステンの!、ずれかであることを特徴とする。
請求項 11記載の本発明は請求項 9に記載の有機光装置において、前記アルカリ 金属がセシウム、リチウム、ナトリウム、カリウム、およびルビジウムのいずれかであるこ とを特徴とする。
請求項 12記載の本発明は請求項 9に記載の有機光装置において、前記酸化物透 明導電膜の一方の主面側に前記アルカリ金属が偏在して混入していることを特徴と する。
請求項 13記載の本発明は請求項 9に記載の有機光装置において、前記酸化物透 明導電膜の全体に前記アルカリ金属が混入していることを特徴とする。
発明の効果
[0006] 本発明によれば、仕事関数が大気中で安定して 4. 5eVより低い値を保持すること ができる酸ィ匕物透明導電膜を実現することができる。
また、仕事関数が低い値の酸ィ匕物透明導電膜を、スパッタ法において低ダメージ のプロセスを使用し、基板近傍にセシウム (Cs)などのアルカリ金属を導入するのみ の簡単な方法により成膜することができる。
図面の簡単な説明
[0007] [図 1]本発明の実施例 1によるセシウム含有 ITOのスパッタ成膜装置の構成を示す断 面側面図
[図 2]本発明の実施例 1によるセシウム含有 ITO膜の分光スペクトル図
[図 3]本発明の実施例 1によるセシウム含有 ITOの特性図で、(a)はガラス基板とター ゲットの位置のずらし距離と透明度との関係を示す特性図、 (b)はずらし距離と仕事 関数との関係を示す特性図、 (c)はずらし距離に対する仕事関数の経時変化を示す 特性図、(d)はずらし距離とシート抵抗との関係を示す特性図
[図 4]本発明の実施例 2によるセシウム含有 ITO膜を使用した有機 EL装置の構成を 示す断面側面図
[図 5]本発明の実施例 2によるセシウム含有 ITO膜を使用した有機 EL装置の特性図 で、(a)は発光輝度特性図、(b)は印加電圧に対する電流密度特性図、(c)は陰極 の仕事関数とターンオンスレショルド電圧の関係を示す特性図
符号の説明
[0008] 11 スパッタリング室
12 ターゲット
13 スパッタカソード
14 サンプルステージ 15 ガラス基板
16 ガス導入口
17 ガス排出口
18 ボンべ
19 バルブ
20 真空ポンプ
21 セシウム蒸発源
22 電源
31 ITOフイノレム
32 ホール注入層
33 ホール輸送層
34 発光層
35 電子注入層
36 セシウム含有 ITO膜
発明を実施するための最良の形態
本発明の第 1の実施の形態による酸化物透明導電膜は、有機光放射装置または 有機光入力装置に使用される酸化物透明導電膜にアルカリ金属を含有させたもので 、仕事関数が大気中で安定して 4. 5eVより低い値を保持することができる低仕事関 数の酸ィ匕物透明導電膜を実現することができる。したがって、有機エレクト口ルミネッ センスなどの有機光放射装置のトップェミッション用透明陰極、あるいは、有機太陽 電池や有機光センサ、有機イメージセンサなどの有機光入力装置のより効率的な透 明陰極などを実現することができる。
本発明の第 2の実施の形態は、第 1の実施の形態による酸ィ匕物透明導電膜におい て、前記酸ィ匕物透明導電膜は、酸化インジウム錫、インジウム一亜鉛酸ィ匕物、酸ィ匕錫 、酸化インジウム、酸化インジウム亜鉛、酸ィ匕アルミニウム亜鉛、酸ィ匕亜鉛ガリウムお よび酸化インジウムタングステンのいずれかとしたもので、種々の酸化物透明導電膜 における仕事関数を大気中で安定して 4. 5eVより低い値に保持することができる。 本発明の第 3の実施の形態は、第 1の実施の形態による酸ィ匕物透明導電膜におい て、アルカリ金属をセシウム、リチウム、ナトリウム、カリウム、およびルビジウムのいず れかとしたもので、酸化物透明導電膜に種々の金属を含有させることにより酸化物透 明導電膜の仕事関数を大気中で安定して 4. 5eVより低い値に保持することができる 本発明の第 4の実施の形態は、第 1の実施の形態による酸ィ匕物透明導電膜におい て、前記酸ィ匕物透明導電膜の一方の主面側にアルカリ金属を偏在して混入させたも ので、仕事関数が大気中で安定して 4. 5eVより低い値を保持することができる低仕 事関数の酸化物透明導電膜を実現することができる。
本発明の第 5の実施の形態は、第 1の実施の形態による酸ィ匕物透明導電膜におい て、前記酸ィ匕物透明導電膜の全体にアルカリ金属を混入させたもので、仕事関数が 大気中で安定して 4. 5eVより低い値を保持することができる低仕事関数の酸化物透 明導電膜を実現することができる。
本発明の第 6の実施の形態によるアルカリ金属含有酸化物透明導電膜の成膜方 法は、スパッタリング室内にプラズマガスを流してターゲットからガラス、ポリマー等の 基板又はその基板上に有機層が成膜されている基板に酸ィ匕物透明導電膜材料をス パッタリングする際に、プラズマ空間の中心力も基板にかけての空間にアルカリ金属 蒸気を導入するもので、簡単な方法により仕事関数が大気中で安定して 4. 5eVより 低い値を保持することができる低仕事関数の酸ィ匕物透明導電膜を成膜することがで きる。
本発明の第 7の実施の形態は、第 6の実施の形態によるアルカリ金属含有酸ィ匕物 透明導電膜の成膜方法において、アルカリ金属蒸気を導入する時間をスパッタ時間 の全部または一部の時間としたもので、簡単な方法により仕事関数が大気中で安定 して 4. 5eVより低い値を保持することができる低仕事関数の酸化物透明導電膜を成 膜することができる。
本発明の第 8の実施の形態は、第 6の実施の形態によるアルカリ金属含有酸ィ匕物 透明導電膜の成膜方法において、基板をターゲットの中心位置力もずらせて配置し たもので、透明度、仕事関数の大きさとその経時変化およびシート抵抗に対して総合 的に最適な状態を実現することができる酸ィ匕物透明導電膜を成膜することができる。 本発明の第 9の実施の形態による有機光装置は、透明陽極、ホール注入層、ホー ル輸送層、有機物カゝらなる発光層、電子注入層および透明陰極がこの順で形成され ており、透明陰極が第 1の実施の形態による酸ィ匕物透明導電膜で構成したもので、 仕事関数が大気中で安定して 4. 5eVより低い値を有するトップェミッション型の有機 光装置を実現することができる。
本発明の第 10の実施の形態は、第 9の実施の形態による有機光装置において、酸 化物透明導電膜を酸化インジウム錫、インジウム 亜鉛酸化物、酸化錫、酸化インジ ゥム、酸化インジウム亜鉛、酸ィ匕アルミニウム亜鉛、酸ィ匕亜鉛ガリウムおよび酸化イン ジゥムタングステンのいずれかとしたもので、種々の酸化物透明導電膜で構成した低 仕事関数の透明陰極を有するトップェミッション型の有機光装置を実現することがで きる。
本発明の第 11の実施の形態は、第 9の実施の形態による有機光装置において、ァ ルカリ金属をセシウム、リチウム、ナトリウム、カリウム、およびルビジウムのいずれかと したもので、酸化物透明導電膜に種々の金属を含有させることにより低仕事関数の 透明陰極を有するトップェミッション型の有機光装置を実現することができる。
本発明の第 12の実施の形態は、第 9の実施の形態による有機光装置において、酸 化物透明導電膜の一方の主面側にアルカリ金属を偏在して混入させたもので、低仕 事関数の透明陰極を有するトップェミッション型の有機光放射装置を実現することが できる。
本発明の第 13の実施の形態は、第 9の実施の形態による有機光装置において、酸 化物透明導電膜の全体にアルカリ金属を混入させたもので、低仕事関数の透明陰 極を有するトップェミッション型の有機光放射装置を実現することができる。
実施例 1
以下に、本発明のアルカリ金属含有酸ィ匕物透明導電膜およびその成膜方法の一 実施例を図面に基づいて説明する。以下の実施例の説明では酸化物透明導電膜が ITOである場合にっ 、て説明する。
図 1は本発明の実施例 1によるセシウム含有 ITOのスパッタ成膜装置の構成を示す 断面側面図である。 スパッタリング動力は高周波 (RF)マグネトロンスパッタリング、直流スパッタリング、 パノレススパッタリング、リアクティブスパッタリングなど 、かなるタイプのスパッタリングで もよい。スパッタリング室 11の上部にスパッタ用のターゲット 12を配置するスパッタカ ソード 13が設けられ、スパッタカソード 13のスパッタリング室 11内部側に円盤状また はリング状のターゲット 12が配置される。ターゲット 12としては、たとえば、 10重量% の SnOをドーピングした 3インチ径の In Oが使用される。
2 2 3
スパッタリング室 11の下部にはスパッタカソード 13に対向してサンプルステージ 14 が設けられ、サンプルステージ 14の上、すなわち、スパッタリング室 11内部側の面上 にガラス基板 15が設置される。ターゲット 12とガラス基板 15との距離および両者の 相対的な位置は任意であるが、 ITO膜に必要とされる最適な仕事関数、透明度、シ ート抵抗、成膜レートなどが得られるように設定することが必要である。本実施例では ターゲット 12とガラス基板 15との距離を 6cmとした。また、ターゲット 12とガラス基板 1 5との相対的な位置関係は、ガラス基板 15の中心位置 Pがターゲット 12の中心位置 Qの直下の位置からややずらせて配置したものである。 P— Q間の距離に相当する ずらし距離については後述する。なお、本実施例はガラス基板 15として説明するが、 ポリマー等の基板でもよ 、。
スパッタリング室 11の側壁にはアルゴンなどのスパッタガスを導入するガス導入口 1 6が設けられ、ガス導入口 16に対向した位置のスパッタリング室 11の側壁にはガス 排出口 17が設けられている。ガス導入口 16にはスパッタガスであるアルゴンガスを供 給するボンべ 18およびバルブ 19が連結されており、ガス排出口 17には真空ポンプ 2 0が連結されている。
スパッタリング室 11内のガス導入口 16にはヒータを内蔵させたセシウム蒸発源 21 が配置され、交流または直流駆動の電源 22でヒータを加熱してセシウム蒸気を発生 させる。セシウム蒸発源 21とターゲット 12との距離も任意であるが、本実施例では 7c mとした。
セシウム蒸発源 21からスパッタリング室 11内にセシウムを蒸発させた際に、セシゥ ム蒸気がスパッタリング室 11内に導入される力 セシウム蒸気がターゲット 12とガラス 基板 15の中間位置であるプラズマ空間の中央部からガラス基板 15にかけての空間 に多く導入されるようにセシウム蒸発源 21を配置することが好まし 、。
たとえば、ターゲット 12近傍:プラズマ空間の中央部:ガラス基板 15近傍におけるセ シゥム蒸気の比率が 20: 50-30: 30〜50となるような位置に配置する。
[0011] つぎに動作を説明する。
ノ レブ 19を開けてボンべ 18よりガス導入口 16を経てスパッタリング室 11内にアル ゴンガスを導入し、真空ポンプ 20によりガス排出口 17から排出させてスパッタリング 室内にアルゴンガスを流した状態で、サンプルステージ 14およびガラス基板 15を回 転させながらターゲット 12およびガラス基板 15間にスパッタリング電力をカ卩える。する と、スパッタリング室 11内にプラズマが発生し、ターゲット 12から ITOがスパッタされ、 ガラス基板 15上に ITO膜が形成される。
本実施例においては、所定の第 1の時間ではセシウム蒸発源 21のヒータを加熱せ ず、セシウムの蒸発は行わずに ITO膜を形成し、所定の第 2の時間にセシウム蒸発 源 21のヒータを加熱してプラズマ空間内にセシウムを蒸発させながら ITO膜を形成し た。
このとき、セシウム蒸気がターゲット 12とガラス基板 15の中間位置にあるプラズマに 吹き付ける、プラズマ空間の中央部からガラス基板 15にかけての空間に吹き付ける、 あるいはガラス基板 15上に吹き付けるなどにより、プラズマ空間の中央部からガラス 基板 15にかけての空間にセシウム蒸気を集中的に導入されるように蒸発させる。した がって、ターゲット 12からスパッタされる ITOがプラズマ空間の中央部力 ガラス基板 15に向力つて進行する際に、 ITO中にセシウム蒸気が効率的に取り込まれる。
スパッタリング条件として、スパッタリング出力を 30W、アルゴンガス圧力を 1. OPa、 スパッタリングレートを 5〜7nmZmin、ガラス基板 15の温度を室温、スパッタリング 時間を 30分とし、第 1の時間を 23分、第 2の時間を 7分としたとき、上部 50nmの部分 にセシウムが偏在して混入している厚さ 200nmの ITO膜が得られた。
[0012] 図 2は上述のスパッタリング条件において、ガラス基板 15をターゲット 12の直下位 置から 4cmずらせて成膜したセシウム含有 ITO膜の分光スペクトルである。図 2に示 すように、 740eV近傍(3d3Z2)および 726近傍(3d5Z2)にピークが見られ、 ITO 膜中にセシウムが含有されて 、ることが確認された。 図 3 (a)〜(d)は本実施例における図 1のスパッタ成膜装置を使用した場合のセシ ゥム含有 ITOの特性図で、図 3 (a)は、ターゲット 12の直下位置またはターゲット 12よ りずらせてガラス基板 15を配置し、上述のスパッタリング条件によりセシウムを混入さ せた ITO膜をスパッタリングしたときのずらし距離と透明度との関係を示す特性図、図 3 (b)はずらし距離と仕事関数との関係を示す特性図、図 3 (c)はずらし距離に対す る仕事関数の経時変化を示す特性図、図 3 (d)はずらし距離とシート抵抗との関係を 示す特性図である。
透明度は、図 3 (a)に示すように、ガラス基板 15をターゲット 12の直下位置に配した 場合に 83%と最大になり、ガラス基板 15をターゲット 12の直下位置力もずらしていく につれて透明度は低下し、ずらし距離が 4cmで透明度は 62%、 5cmで 56%、 7cm で 54%程度に低下する。
一方、仕事関数は、図 3 (b)に示すように、ガラス基板 15をターゲット 12の直下位置 に配した場合には、スパッタ直後で 4. 48eV、空気中に 24時間放置後で 4. 61eVと 大きいが、ずらし距離が 4cmではスパッタ直後および空気中に 24時間放置後で 4. 3 5eV、 5cmではスパッタ直後に 4. 3eV、空気中に 24時間放置後で 4. 25eV、 7cm ではスパッタ直後に 4. 18eV、空気中に 24時間放置後で 4. 23eV、 8cmではスパッ タ直後に 4. leV,空気中に 24時間放置後で 4. 16eVとなり、ずらし距離が大きいほ ど仕事関数は低下する。
また、 ITO膜の仕事関数の経時変化は、図 3 (c)に示すように、空気中に数日間放 置した場合、ガラス基板 15をターゲット 12の直下位置に配した場合で、最初の 1日で 若干増加するが、それ以降はほぼ一定である。同様に、ずらし距離が 4cmの場合は 、最初の 1日で若干増加するが、それ以降は低下傾向でほぼ一定である。ずらし距 離が 7cmの場合は、 4日間増加傾向であるが、それ以降はほぼ一定である。このよう に、セシウムを含有させた ITO膜は大気中できわめて安定していることがわかる。 また、シート抵抗は、図 3 (d)に示すように、ガラス基板 15をターゲット 12の直下位 置に配した場合に 10 ΩΖ口と最低値になり、ずらし距離が大きくなるにつれて増大し 、ずらし距離力 cmで 25 ΩΖ口、 5cmで 100 ΩΖ口、 7cmで 2000 ΩΖ口と対数的 に増加する。 ITO膜を有機 EL装置の光取り出し用陰極に使用する場合、評価の指標は透明性 、シート抵抗および平坦性に加え、低い仕事関数であることが要求される力 この観 点から図 3 (a)〜図 3 (d)を参酌すると、ずらし距離が 4cn!〜 5cmが最適であると判定 される。すなわち、ずらし距離が 4cm〜5cmの場合は、透明度は 62%〜56%で実 用的には十分な値であり、仕事関数およびその経時変化は 4. 35eV以下と小さぐ シート抵抗は 25〜: ίΟΟ Ω /口で実用的には十分な値である。一方、ずらし距離が Oc mである場合は仕事関数が 4. 48-4. 61eVと大きいので好ましくない。また、ずらし 距離が 5cmより大きい場合はシート抵抗が急激に大きくなるので好ましくない。
以上の結果から、図 1のスパッタ成膜装置を使用した本実施例においては、有機 E L装置の光取り出し用陰極に好適な ITO膜としては、低ダメージで ITOスパッタ中に 、ガラス基板 15をターゲット 12の直下位置力も 4cm〜5cmずらせた位置に配置して セシウム蒸気を導入することが好まし 、。
以上の説明においては、酸ィ匕物透明導電膜が ITOである場合について説明したが 、酸化物透明導電膜としてインジウム 亜鉛酸化物、酸化錫、酸化インジウム、酸ィ匕 インジウム亜鉛、酸ィ匕アルミニウム亜鉛、酸ィ匕亜鉛ガリウムおよび酸化インジウムタン ダステンなども利用可能である。
また、 ITOにセシウムを含有させる場合について説明した力 セシウム以外にリチウ ム、ナトリウム、カリウム、ルビジウムなどのアルカリ金属をスパッタリング室 11内に蒸 発させてこれらのアルカリ金属を ITOなどの酸ィ匕物透明導電膜に含有させてもよい。 また、スパッタリング装置としては、ターゲット 12を上方に、ガラス基板 15を下方に 配置して上方から下方にスパッタさせるダウン方式、ターゲット 12を下方に、ガラス基 板 15を上方に配置して下方力も上方にスパッタさせるアップ方式、ターゲット 12およ びガラス基板 15をスパッタリング室 11の側壁に対向配置し、横方向にスパッタさせる 方式、一対のターゲット 12をノヽ字形に配置してガラス基板 15の面に対して斜め方向 からスパッタさせる方式、ターゲット 12とガラス基板 15間にグリッドを配置してスパッタ 量を制御する方式など種々の変形が可能である。いずれの方式においても、有機光 装置には、その有機層にダメージを与えな ヽように成膜されることが好ま 、。
また、セシウム蒸発源 21をスパッタリング室 11内のガス導入口 16に配置した場合 につ 、て説明した力 プラズマ空間の中央部やプラズマ空間の中央部とガラス基板 1 5との中間位置、あるいは、ガラス基板 15の近傍などの位置に配置してセシウム蒸気 がプラズマ空間の中央部力もガラス基板 15側に多く導入されれば配置位置に制限 は無い。また、上記のように蒸気が導入されれば、スパッタリング室の外部からでも構 わない。
また、スパッタリング時間を 30分とし、第 1の時間を 23分、第 2の時間を 7分として酸 化物透明導電膜の上部にアルカリ金属を偏在させて混入した例について説明したが 、全スパッタリング時間を通じてアルカリ金属をスパッタリングして、酸化物透明導電 膜の全体にアルカリ金属を混入させてもょ ヽ。
また、図 1のスパッタ成膜装置を使用してガラス基板 15をターゲット 12の直下位置 力もずらせてスパッタリングする例につ 、て説明した力 ガラス基板 15とターゲット 12 とは、 ITO膜に必要とされる仕事関数、透明性、シート抵抗、成膜レートなどを考慮し て最適な位置に配置することが本質であり、図 1とは異なるスパッタ成膜装置を使用 したり、異なるスパッタリング条件によっては、ガラス基板 15をターゲット 12の直下位 置に配置することが好ましい場合がある。たとえば、 ITO膜の仕事関数を小さくする 作用としてプラズマの影響が小さい場合には、ガラス基板 15をターゲット 12の直下位 置に配置することにより透明度が大きぐシート抵抗が小さぐしかも低仕事関数の IT O膜を得ることができる。また、高エネルギー粒子によるガラス基板 15の温度分布の 影響が大きい場合には、ガラス基板 15をターゲット 12の直下位置に配置して、ガラス 基板 15を冷却させるようにすればょ 、。
実施例 2
図 4は実施例 2によるセシウム含有 ITO膜を使用した有機 EL装置の構成を示す断 面側面図である。
市販の ITO膜付きガラス基板の ITOフィルム 31上にホール注入層 32としてポリス チレンサノレフォネート Zポリジヒドロチェノダィォキシン (Poly (styrenesulfonate) / poly (2, 3-dihydrothieno (3, 4— b)— 1, 4— dioxinゝ以下 PEDT— PSSと記す o )をスピンコートし、 200。Cで 3分熱処理する。ホール注入層 32の上に、 4, 4, bis[ N (l naphthyl) N phenylamino]biphenyl (以下、 a—NPDと記す。)を真空蒸着 してホール輸送層 33を形成する。ホール輸送層 33の上に、トリヒドロキシキノリネート ァノレ -ゥム (Tris[8― hydroxvquinolinato] aluminium.以下、 Alqと tiす。 )を
3
真空蒸着して発光層 34を形成する。発光層 34の上に、トリアジン、 2, 9 -Dimethyl -4, 7-diphenyl- l, 10— phenanthroline (以下、 BCPと記す。)を真空蒸着し て電子注入層 35を形成する。電子注入層 35の上に、実施例 1によるセシウム含有 I TO膜 36を形成して本実施例 2による有機 EL装置 (本発明装置 C)が作成される。 なお、本発明装置 Cによる有機 ELとの特性を比較するために、発光層 34の上にセ シゥムを含有して 、な 、通常の ITO膜を形成した有機 EL装置 (比較装置 A)および 電子注入層 35の生成時に BCPとセシウムを同時に蒸着してセシウムを含有させた 電子注入層 35上にセシウムを含有して 、な 、通常の ITO膜を形成した有機 EL装置 (比較装置 B)を合わせて作成した。
図 5 (a)は比較装置 A、比較装置 Bおよび本発明装置 Cの発光輝度特性図である。 比較装置 Aおよび比較装置 Bは印加電圧が 8V以下ではほとんど発光せず、 8V以 上で始めて発光を始める。なお、比較装置 Bは電子注入層 35にセシウムを含有させ ることにより比較装置 Aより発光輝度が大きくなつていることが観察される。一方、本発 明装置 Cは印加電圧が 4V付近力 発光を始め、発光輝度も比較装置 Bと同等ない しそれ以上である。したがって、発光のための駆動電圧を小さくすることができる。 図 5 (b)は比較装置 A、比較装置 Bおよび本発明装置 Cの印加電圧に対する電流 密度特性図である。本発明装置 Cは、比較装置 Aおよび比較装置 Bに比較して発光 前の漏洩電流が小さ 、ことがわかる。
図 5 (c)は比較装置 Bおよび本発明装置 Cにおける陰極の仕事関数とターンオンス レショルド電圧の関係を示す特性図である。比較装置 Bの仕事関数は 4. 53eV、タ ーンオンスレショルド電圧は 7. 8Vであるのに対し、本発明装置 Cの仕事関数は 4. 3 3eV、ターンオンスレショルド電圧は 5. 6Vであり、より高い電子注入能力を持たせる ことができる。
このように、本実施例による有機 EL装置は、発光のための駆動電圧が小さぐまた 、発光前の漏洩電流が小さぐさらに、ターンオンスレショルド電圧が小さいので、高 V、電子注入能力を持たせることができる。 産業上の利用可能性
本発明の酸化物透明導電膜およびアルカリ金属含有酸化物透明導電膜の成膜方 法は、仕事関数が 4. 5eVより低い酸化物透明導電膜を提供し、太陽電池や光セン サの透明陰極、あるいは有機 EL装置のトップェミッション用透明陰極などの有機光 放射装置における透明陰極に適用して好適である。
また、本発明の有機光放射装置は、薄型テレビ、ノ ソコン用ディスプレイ、携帯電 話や PDA、デジタルカメラなどの携帯用機器のディスプレイ、カーナビゲーシヨン用 などの車載機器のディスプレイ、ヘッドアップディスプレイ、面発光照明、シート状フレ キシブルディスプレイ、ヘルメットに装着する風除け曲面シールドなどへのヘッドアツ プディスプレイ、メガネ型ディスプレイなどの種々のフラットディスプレイに適用して好 適である。

Claims

請求の範囲
[1] 有機光放射装置または有機光入力装置に使用される酸ィ匕物透明導電膜であって
、アルカリ金属を含有したことを特徴とする酸化物透明導電膜。
[2] 前記酸ィ匕物透明導電膜は、酸化インジウム錫、インジウム—亜鉛酸ィ匕物、酸化錫、 酸化インジウム、酸化インジウム亜鉛、酸ィ匕アルミニウム亜鉛、酸化亜鉛ガリウムおよ び酸化インジウムタングステンの 、ずれかであることを特徴とする請求項 1に記載の 酸化物透明導電膜。
[3] 前記アルカリ金属がセシウム、リチウム、ナトリウム、カリウム、およびルビジウムのい ずれかであることを特徴とする請求項 1に記載の酸化物透明導電膜。
[4] 前記酸化物透明導電膜の一方の主面側に前記アルカリ金属が偏在して混入して Vヽることを特徴とする請求項 1に記載の酸化物透明導電膜。
[5] 前記酸化物透明導電膜の全体に前記アルカリ金属が混入していることを特徴とす る請求項 1に記載の酸化物透明導電膜。
[6] 有機光放射装置に使用されるアルカリ金属含有酸化物透明導電膜の成膜方法で あって、スパッタリング室内にプラズマガスを流す工程と、前記スパッタリング室内に 配置されたターゲットから前記ターゲットに対向して配置されたガラス、ポリマー等の 基板又はその基板上に有機層が成膜されている基板に酸ィ匕物透明導電膜材料を放 出する工程と、前記スパッタリング室内のプラズマ空間の中心力 前記基板にかけて の空間にアルカリ金属蒸気を導入する工程とを有することを特徴とするアルカリ金属 含有酸化物透明導電膜の成膜方法。
[7] 前記スパッタリング室内に前記プラズマガスを流す工程における前記プラズマガス ( アルゴン、酸素等の反応性ガス)のみを流す時間が第 1の時間および第 2の時間の 合計時間であり、前記スパッタリング室内にアルカリ金属蒸気を導入する工程におけ る前記アルカリ金属蒸気を導入する時間が前記第 1の時間および前記第 2の時間の 合計時間または前記第 2の時間のみであることを特徴とする請求項 6に記載のアル力 リ金属含有酸化物透明導電膜の成膜方法。
[8] 前記基板を前記ターゲットの中心位置力もずらせて配置することを特徴とする請求 項 6に記載のアルカリ金属含有酸化物透明導電膜の成膜方法。
[9] 透明陽極、ホール注入層、ホール輸送層、有機物カゝらなる発光層、電子注入層お よび透明陰極力 Sこの順で形成されており、前記透明陰極が請求項 1に記載の酸ィ匕物 透明導電膜であることを特徴とする有機光装置。
[10] 前記酸化物透明導電膜が酸化インジウム錫、インジウム 亜鉛酸ィ匕物、酸化錫、 酸化インジウム、酸化インジウム亜鉛、酸ィ匕アルミニウム亜鉛、酸化亜鉛ガリウムおよ び酸化インジウムタングステンの 、ずれかであることを特徴とする請求項 9に記載の 有機光装置。
[11] 前記アルカリ金属がセシウム、リチウム、ナトリウム、カリウム、およびルビジウムのい ずれかであることを特徴とする請求項 9に記載の有機光装置。
[12] 前記酸化物透明導電膜の一方の主面側に前記アルカリ金属が偏在して混入して いることを特徴とする請求項 9に記載の有機光装置。
[13] 前記酸化物透明導電膜の全体に前記アルカリ金属が混入していることを特徴とす る請求項 9に記載の有機光装置。
PCT/JP2006/301747 2005-02-02 2006-02-02 酸化物透明導電膜およびアルカリ金属含有酸化物透明導電膜の成膜方法ならびにその酸化物透明導電膜を利用した有機光装置 WO2006082879A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-027036 2005-02-02
JP2005027036A JP2008108423A (ja) 2005-02-02 2005-02-02 酸化物透明導電膜およびアルカリ金属含有酸化物透明導電膜の成膜方法ならびにその酸化物透明導電膜を利用した有機光装置

Publications (1)

Publication Number Publication Date
WO2006082879A1 true WO2006082879A1 (ja) 2006-08-10

Family

ID=36777262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/301747 WO2006082879A1 (ja) 2005-02-02 2006-02-02 酸化物透明導電膜およびアルカリ金属含有酸化物透明導電膜の成膜方法ならびにその酸化物透明導電膜を利用した有機光装置

Country Status (2)

Country Link
JP (1) JP2008108423A (ja)
WO (1) WO2006082879A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8125140B2 (en) 2008-08-20 2012-02-28 Samsung Mobile Display Co., Ltd. Organic light emitting display with improved light emitting efficiency

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9490441B2 (en) * 2012-08-02 2016-11-08 Sony Corporation Semiconductor device, method of manufacturing semiconductor device, solid-state image pickup unit, and electronic apparatus
US9379343B2 (en) * 2012-09-10 2016-06-28 Samsung Electronics Co., Ltd. Light transmissive electrode, organic photoelectric device, and image sensor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63310505A (ja) * 1987-06-12 1988-12-19 Sanyo Electric Co Ltd 透明電極用酸化錫膜
JPH04363810A (ja) * 1991-06-11 1992-12-16 Canon Inc 透明電極
JP2000123658A (ja) * 1998-10-09 2000-04-28 Fuji Photo Film Co Ltd 透明導電膜の製造方法及び透明導電膜
JP2000281337A (ja) * 1999-03-31 2000-10-10 Sumitomo Chem Co Ltd 酸化インジウム−酸化錫粉末及びその製造方法
JP2002150857A (ja) * 2000-11-15 2002-05-24 Nippon Sheet Glass Co Ltd 透明導電膜の処理方法および透明導電膜を備える基体
JP2004075472A (ja) * 2002-08-20 2004-03-11 Catalysts & Chem Ind Co Ltd インジウム系酸化物微粒子の製造方法、該微粒子を含む透明導電性被膜形成用塗布液および透明導電性被膜付基材、表示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63310505A (ja) * 1987-06-12 1988-12-19 Sanyo Electric Co Ltd 透明電極用酸化錫膜
JPH04363810A (ja) * 1991-06-11 1992-12-16 Canon Inc 透明電極
JP2000123658A (ja) * 1998-10-09 2000-04-28 Fuji Photo Film Co Ltd 透明導電膜の製造方法及び透明導電膜
JP2000281337A (ja) * 1999-03-31 2000-10-10 Sumitomo Chem Co Ltd 酸化インジウム−酸化錫粉末及びその製造方法
JP2002150857A (ja) * 2000-11-15 2002-05-24 Nippon Sheet Glass Co Ltd 透明導電膜の処理方法および透明導電膜を備える基体
JP2004075472A (ja) * 2002-08-20 2004-03-11 Catalysts & Chem Ind Co Ltd インジウム系酸化物微粒子の製造方法、該微粒子を含む透明導電性被膜形成用塗布液および透明導電性被膜付基材、表示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8125140B2 (en) 2008-08-20 2012-02-28 Samsung Mobile Display Co., Ltd. Organic light emitting display with improved light emitting efficiency

Also Published As

Publication number Publication date
JP2008108423A (ja) 2008-05-08

Similar Documents

Publication Publication Date Title
JP3797317B2 (ja) 透明導電性薄膜用ターゲット、透明導電性薄膜およびその製造方法、ディスプレイ用電極材料、有機エレクトロルミネッセンス素子
US6645843B2 (en) Pulsed laser deposition of transparent conducting thin films on flexible substrates
CN101438627B (zh) 有机电子器件的制备方法及用该方法制备的有机电子器件
WO2006087558A2 (en) Apparatus and method for the application of a material layer to display devices
TW200948179A (en) An electrically conducting structure for a light transmissible device
JP3918721B2 (ja) 透明導電性薄膜、その製造方法と製造用焼結体ターゲット、及び有機エレクトロルミネッセンス素子とその製造方法
JP4269986B2 (ja) 透明導電性薄膜製造用酸化物焼結体ターゲット、透明導電性薄膜、透明導電性基板、表示デバイスおよび有機エレクトロルミネッセンス素子
CN110600627A (zh) 电子传输层、发光器件及其制备方法
WO2006082879A1 (ja) 酸化物透明導電膜およびアルカリ金属含有酸化物透明導電膜の成膜方法ならびにその酸化物透明導電膜を利用した有機光装置
CN106920895B (zh) 一种顶发射有机电致发光器件的阴极及其制备方法
CN103000818B (zh) 顶发射有机电致发光器件及其制备方法和应用
US20110006292A1 (en) Processes for forming electronic devices and electronic devices formed by such processes
JP2004127639A (ja) 有機エレクトロルミネッセント画像表示装置
JP2004241296A (ja) 透明導電性薄膜とその製造方法、それを用いた表示パネル用透明導電性基材及びエレクトロルミネッセンス素子
Chen et al. Enhancement of organic light-emitting device performances with Hf-doped indium tin oxide anodes
CN219437503U (zh) 一种基于稀土氧化物的光电子器件
CN113113520B (zh) 一种基于铯铜碘(CsCuI)半导体的全固态光源及其制备方法
JP2007141602A (ja) 有機電界発光素子及びその製造方法及びその透明電極成膜方法
Chen et al. Improvement of electrical characteristics and wet etching procedures for InGaTiO electrodes in organic light-emitting diodes through hydrogen doping
CN104178149A (zh) 一种二氧化铪发光薄膜及其制备方法和电致发光器件
CN203134868U (zh) 一种顶发射有机电致发光器件和显示器
CN116762488A (zh) 发光器件及其制作方法、显示基板、显示装置
CN114023912A (zh) 一种基于稀土氧化物的光电子器件
WO2011096922A1 (en) Organic light emitting device with enhanced emission uniformity
Lee et al. Enhancement of Operating Lifetime and Performance on Polymer Light Emitting Diode by Mg–Zn–F Passivation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06712890

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6712890

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP