WO2006082717A1 - Apparatus for forming thin film - Google Patents

Apparatus for forming thin film Download PDF

Info

Publication number
WO2006082717A1
WO2006082717A1 PCT/JP2006/300833 JP2006300833W WO2006082717A1 WO 2006082717 A1 WO2006082717 A1 WO 2006082717A1 JP 2006300833 W JP2006300833 W JP 2006300833W WO 2006082717 A1 WO2006082717 A1 WO 2006082717A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
lock chamber
load lock
dielectric film
substrate
Prior art date
Application number
PCT/JP2006/300833
Other languages
French (fr)
Japanese (ja)
Inventor
Tadahiro Ohmi
Kazumasa Kawase
Akinobu Teramoto
Original Assignee
Tohoku University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University filed Critical Tohoku University
Publication of WO2006082717A1 publication Critical patent/WO2006082717A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/564Means for minimising impurities in the coating chamber such as dust, moisture, residual gases
    • C23C14/566Means for minimising impurities in the coating chamber such as dust, moisture, residual gases using a load-lock chamber

Definitions

  • the present invention relates to a thin film formed on a substrate, a method for forming the thin film, a forming apparatus therefor, a semiconductor device using the thin film, and a forming method therefor.
  • Fig. 4 is a graph showing the dependence of the total amount of organic substances adhering on a substrate left under atmospheric pressure and reduced pressure (Takeyuki Hayashi, "Study on Organic Contamination of Wafer Surface in Vacuum Vacuum Equipment", According to a doctoral dissertation), under reduced pressure, organic substances contaminate the substrate surface in a very short time.
  • this organic matter causes a slight increase in roughness, or obstructs the acquisition of the original surface shape.
  • the sensitivity is reduced by this organic matter, which hinders measurement.
  • when analyzing carbon-containing samples or organic substances adhering to the analysis sample surface they are disturbed by organic substances contaminated by the load lock.
  • silicon oxide dielectric film which is a gate insulating film of a MOS (metal film electrode / silicon oxide dielectric film / silicon substrate) transistor has low leakage current characteristics, Various high insulation characteristics and high reliability are required, such as low interface state density, low threshold voltage shift, and low threshold variation characteristics.
  • a load lock chamber is provided as the front chamber of the furnace, and oxygen or moisture concentration is reduced by an inert gas such as N or Ar or a non-oxidizing atmosphere such as vacuum. Therefore, the substrate may be introduced into the furnace and heated in a non-oxidizing gas atmosphere.
  • an inert gas such as N or Ar
  • a non-oxidizing atmosphere such as vacuum. Therefore, the substrate may be introduced into the furnace and heated in a non-oxidizing gas atmosphere.
  • both HF treatment and non-oxidizing atmosphere temperature rise are used, there is a problem that the insulating properties of the silicon oxide film deteriorate.
  • Figure 1 (a) shows the XPS Cls core-level photoelectron spectrum of the surface of the substrate after HF treatment heated to 800 ° C in Ar gas, a non-oxidizing atmosphere, and is related to the Si-C bond. The observed peak is clearly observed.
  • the temperature is raised in 0, which is an oxidizing atmosphere
  • the temperature of the SiO surface substrate without HF treatment
  • Ar gas Ar gas
  • No SiC peak is observed.
  • Figure 2 shows the temperature dependence of the amount of SiC formed when the substrate after HF treatment is heated in vacuum, and the desorption temperature characteristics of terminal H. From this result, the formation mechanism of SiC is shown by the reaction model in Fig. 3.
  • the Si (100) surface after HF treatment has a structure in which Si atoms on the resurface are terminated with H in two of the four bonds. Yes. From 300 to 430 ° C, one of the H ends of the two bonds is desorbed, and Si forms a dangling bond. A dimer is formed by combining with a ring bond, and the structure changes as shown in Fig. 3 (b).
  • the temperature is raised in a non-oxidizing gas atmosphere containing an oxidizing gas such as 0 to several tens of percent, and an oxide film is formed at a low temperature (hereinafter referred to as a low temperature oxide film).
  • a non-oxidizing gas atmosphere containing an oxidizing gas such as 0 to several tens of percent
  • an oxide film is formed at a low temperature (hereinafter referred to as a low temperature oxide film).
  • a process for carrying out the oxidation is generally used. Insulation characteristics of low-temperature oxide films are better than natural oxide films, chemical oxide films, entangled oxide films, etc., but they are worse than oxide films formed at high temperatures. Improvement can be expected.
  • Oxidizing gases such as 0, H 0, N 0 and NO, nitriding gases such as NH, N 0 and NO, noble gases such as Kr, Xe and Ar, inert gases such as N, reduction of H and the like It is impossible to irradiate with a reactive gas, or plasma irradiation or ion irradiation.
  • the cleaning chemical solution In order to prevent organic contamination from adhering to the substrate surface, the cleaning chemical solution, the atmosphere in the cleaning device, the clean norm atmosphere, the atmosphere in the transfer container, the atmosphere in the load lock chamber, the atmosphere in the oxidation treatment chamber, the process gas, etc. It is necessary to remove organic matter, but all parts It is very difficult to completely prevent organic contamination because organic substances are used in
  • the atmosphere in the load lock chamber and the atmosphere in the oxidation treatment chamber must be depressurized and introduced with high-purity inert gas or process gas in order to prevent the surrounding atmosphere from being involved. Is common.
  • Fig. 4 is a graph showing the dependence of the total amount of organic substances adhering to the substrate left under atmospheric pressure and reduced pressure on the duration of release.
  • the amount of these contaminating the oxidation processing chamber walls and desorbing during depressurization to contaminate the substrate is small compared to that in the load-lock chamber that is opened to the atmosphere and organic substances are not removed by oxidation or the like. It is the load lock chamber that is most likely to contaminate the substrate with organic substances, and improvement of this part is the most important.
  • the present invention has been made to solve the above-mentioned problems, and its purpose is to suppress the adhesion of organic contamination to the substrate, thereby preventing uncontrolled oxide film free, organic contamination free, Si
  • the aim is to provide thin films such as silicon oxide films that are C-free, H-free, and flat at the atomic level.
  • Another object of the present invention is to suppress contamination of organic substances on the surface of an analysis sample by using a two-stage load lock.
  • the thin film forming apparatus of the present invention accommodates a first stage load lock chamber in which a substrate is introduced from the outside and replaced with an inert gas while maintaining atmospheric pressure, and the substrate. And a second stage load lock chamber equipped with a mechanism that does not adsorb organic substances on the inner wall, or a mechanism for removing adsorbed organic substances, and a film formation mechanism for accommodating a substrate and forming a predetermined thin film.
  • a gas atmosphere control unit for controlling the vacuum level and gas concentration of the processing chamber, the first stage load lock chamber, the second stage load lock chamber and the processing chamber to predetermined values, the first stage load lock chamber, A transfer mechanism that moves the substrate between the second-stage load lock chamber and the processing chamber, the first-stage load lock chamber and the second-stage load lock chamber, and the second-stage load lock chamber and the processing chamber, respectively.
  • a gate vanolev for opening and closing and passing through the substrate It is characterized by that.
  • the gas atmosphere control unit includes an exhaust unit for exhausting the first-stage load lock chamber, the second-stage load lock chamber, and the processing chamber, and an exhaust amount control gate valve for controlling an exhaust amount. And a gas introduction part for introducing gas, and a gas flow control valve for controlling the gas flow rate.
  • the second-stage load lock chamber has a cleaning mechanism for detaching organic substances attached to the inner wall of the furnace or preventing the attachment of organic substances.
  • the cleaning mechanism has, for example, a heating mechanism for baking the inner wall.
  • the cleaning mechanism includes, for example, a plasma generation mechanism that irradiates plasma on the inner wall.
  • the thin film formation mechanism includes, for example, a plasma generation unit for performing radical oxidation and an oxidizing gas introduction unit.
  • the thin film formation mechanism includes, for example, a plasma generation unit for performing radical nitriding and a nitriding gas introduction unit.
  • the thin film formation mechanism includes, for example, a plasma generation unit for performing radical oxynitridation, and an introduction unit of an oxynitriding gas or an oxidizing gas and a nitriding gas.
  • the thin film forming mechanism includes, for example, a heating unit for performing thermal oxidation and an oxidizing gas introduction unit.
  • the thin film formation mechanism includes, for example, a heating unit for performing thermal nitridation and a nitriding gas introduction unit.
  • the thin film forming mechanism includes, for example, a heating unit for performing thermal oxynitridation, and an introduction unit for an oxynitriding gas or an oxidizing gas and a nitriding gas.
  • the thin film formation mechanism includes, for example, a heating unit for performing CVD film formation and a source gas introduction unit.
  • the thin film formation mechanism includes, for example, a target for performing sputter film formation, and an ion generation unit.
  • the plasma generation unit for performing the radical oxidation, radical nitridation, and radical oxynitridation preferably includes a microwave generation unit, a microwave waveguide, and a radial line slot antenna.
  • the plasma generation unit for performing the radical oxidation, radical nitridation, and radical oxynitridation includes parallel plate electrodes to which a high frequency can be applied.
  • the CVD film formation includes a group consisting of SiO 2, SiN, SiON, HfO, HfSiO, and HfSiON.
  • the sputter film formation is a film formation of a base thin film for forming a gate insulating film of S or Hf.
  • a transport container that is transported in an inert atmosphere at atmospheric pressure from at least a pretreatment device that performs a cleaning process includes a second-stage load port chamber that prevents adhesion of organic substances or removes organic substances. Connected via a gate valve, the second stage load locks the substrate without touching the atmosphere. It has a mechanism that can be introduced into the chamber, and this transfer container may serve as a first-stage load lock chamber that creates an inert gas atmosphere at atmospheric pressure.
  • the processing chamber of the pretreatment apparatus that performs the cleaning process or its load lock chamber is connected directly to the load lock chamber force S, which prevents organic substances from adhering to or removes organic substances, via a goat valve.
  • the processing chamber of this pretreatment device or its load lock chamber may serve as a first-stage load lock chamber that maintains an inert gas atmosphere at atmospheric pressure.
  • a two-stage load port chamber is used, and the first-stage load lock chamber is an inert gas at atmospheric pressure.
  • the second-stage load lock chamber has a mechanism that prevents organic substances from adhering to the inner wall, keeps it clean, and reduces the pressure of the impurity gas before introducing the substrate into the processing chamber.
  • the first stage load lock chamber is opened to the atmosphere when the substrate is introduced, organic contamination adheres to the inner wall of the substrate, but it is replaced by an inert gas without reducing the pressure. Organic contamination can be prevented.
  • the impurity gas concentration in the first-stage load lock chamber can only be lowered to a higher level than when the pressure is reduced.
  • the second-stage load lock chamber has a mechanism that prevents organic substances from adhering to the inner wall or a mechanism that can remove organic substances.
  • this can be realized by always baking the inner wall or by providing a mechanism for generating plasma of a gas not containing C, such as an oxidizing gas, a hydrogen gas, and a nitriding gas.
  • a gas not containing C such as an oxidizing gas, a hydrogen gas, and a nitriding gas.
  • the substrate is introduced into the processing chamber after doing in this way, it is possible to prevent both organic contamination of the substrate surface and the introduction of impurity gas into the processing chamber.
  • the pressure in the first-stage load lock chamber is 100 Torr or higher, the adhesion of organic contamination is almost negligible, but even higher than atmospheric pressure is better.
  • the load lock chamber is not necessary. Since it is not open to the atmosphere, the first-stage load lock chamber is unnecessary. In addition, a second load lock chamber is not required to provide a mechanism in the transfer chamber that prevents organic matter from adhering to the inner wall.
  • the second-stage load lock chamber may be omitted. it can. In other words, the processing chamber plays the role of the second-stage load lock chamber.
  • the two-stage load lock is used as a load lock chamber of a surface analyzer or a surface observation device, thereby preventing organic substances from adhering to the analysis sample surface.
  • the present invention it is possible to prevent organic contamination from adhering to the silicon substrate at low cost while maintaining the purity of the process gas atmosphere. For this reason, SiC is not formed even if H that terminates the silicon surface is removed immediately before the oxidation treatment. This makes it possible to form only a high-quality oxide film on the silicon surface of uncontrolled oxide film free, organic contamination-free, SiC-free, and H-free, thereby improving the insulation characteristics.
  • FIG. 1 shows the surface of the substrate after HF treatment heated to 800 ° C in Ar gas, and (b) shows the temperature of the substrate after HF treatment raised to 800 ° C in 0 gas. (C) shows SiO formed on the surface without HF treatment
  • This figure shows the XPS Cls core-level photoelectron spectrum of the surface of the resulting substrate heated to 800 ° C in Ar gas.
  • FIG. 2 A graph showing the temperature dependence of the amount of SiC formed and the desorption temperature characteristics of terminal H when the substrate after HF treatment is heated in vacuum.
  • FIG. 3 (a) to (c) are model diagrams showing how the Si (lOO) surface after HF treatment desorbs H and restructures to form SiC as the temperature rises.
  • FIG. 4 A graph showing the dependence of the total amount of organic substances adhering to a substrate left in a reduced-pressure atmosphere and atmospheric pressure on the standing time.
  • FIG. 5 is a diagram showing an example of a thin film forming apparatus (radial power oxidizer) that prevents adhesion of organic substances shown in Embodiment 1 of the present invention.
  • FIG. 6 is a diagram showing an example of a thin film forming apparatus (radial power oxidizing apparatus) that prevents the adhesion of organic substances shown in the second embodiment of the present invention.
  • FIG. 7 is a diagram showing an example of a surface analysis device or a surface inspection device shown in the third embodiment of the present invention.
  • a first-stage load lock chamber 10 and a second-stage load lock chamber 11 are provided in the front chamber of the processing chamber 12.
  • the two load lock chambers 10, 11 and processing chamber 12 have gas inlet ports 30, 31, 32, gas flow control valves 53, 54, 55, exhaust pumps 13, 14, 15, and exhaust volume control gate valves, respectively. 43, 44, 45, the gas flow rate control valve 53, 54, 55 and the displacement control valve 43, 44, 45 to control the degree of vacuum and gas concentration to control the gas atmosphere control unit 50, 51 and 52.
  • the second-stage load lock chamber 11 is equipped with a baking heater 20 to prevent organic substances from adhering to the inner wall.
  • the RLSA antenna 21, waveguide 22, and microwave generator 23 necessary for radical oxidation are installed.
  • the gate valve 40 is opened to release the atmosphere, and the first-stage load lock chamber 10 is processed from the outside to the first-stage load lock chamber 10
  • Substrate 1 is introduced, and gate vano lev 40 is closed.
  • the organic substance 5 slightly enters from the outside air, but the organic substance 5 accumulates on the inner wall of the load lock chamber 10 in the first stage because it is released to the atmosphere for each treatment.
  • the substrate 1 to be processed is supported on the transfer stage 2.
  • an inert gas such as N is introduced from the gas inlet 30, and the force S exhausted by the exhaust pump 13, the gas flow control valve 53 and the exhaust control gate valve 43 are opened and closed.
  • the gas atmosphere control unit 50 By adjusting the gas atmosphere control unit 50, it is replaced with N while maintaining the atmospheric pressure.
  • the load lock chamber 11 in the second stage is evacuated in a steady state and heated by the baking heater 20 so that the organic substance 5 does not adhere to the inner wall.
  • the gate valve 41 is opened, the substrate 1 is moved onto the transfer stage 3, and the gate vano rev 41 is closed.
  • the second-stage load lock chamber 11 is once evacuated and then discharged. Purge with active gas. By several evacuations and inert gas purges, the impurity concentration is sufficiently reduced. Since organic substance 5 does not adhere to the inner wall of load lock chamber 11 in the second stage, organic substance 5 does not contaminate substrate 1 even under reduced pressure.
  • the baking heater 20 was used to prevent the organic matter 5 from adhering to the inner wall, but the adhering organic contamination was detected by using a gas that does not contain C, such as oxygen plasma, hydrogen plasma, and nitrogen plasma. A method of cleaning the inner wall by generating the generated plasma is also effective.
  • the processing chamber 12 is evacuated in a steady state. If no treatment has been performed immediately before, there is a small amount of organic matter adhering to the inner wall due to reverse diffusion from the exhaust pump 15, so a dummy substrate is inserted and the inner wall is then treated with oxygen plasma, hydrogen plasma, or nitrogen plasma. It is preferable to clean.
  • the organic matter 5 should be burned and removed by thermal oxidation. Even in the case of a CVD furnace, remove organic matter 5 by raising the temperature by flowing an oxidizing gas.
  • the gate valve 42 is opened, the substrate 1 is moved to the processing stage 4, and the gate valve 42 is closed.
  • plasma is generated from the microwave generator 23 through the waveguide 22 and directly under the na 21. This plasma generates a Kr gas plasma, supplies Kr radicals and Kr ions to the surface of the substrate 1, and removes the H that terminates the surface of the substrate 1.
  • the substrate 1 is oxidized by oxygen radicals generated by Kr / O etc.
  • radical oxidation by plasma generated by the method and when inert gases such as Xe and Ar other than Kr are used.
  • thermal oxidation, CVD oxide film formation radical nitridation, thermal nitridation, radical oxynitridation, thermal oxynitridation, sputtering, and other thin film formations.
  • the two-stage load lock chambers 10 and 11 keep the organic material 5, SiC, and other H and uncontrolled oxide films on the surface of the substrate 1 immediately before processing.
  • a first-stage load lock chamber 10 and a second-stage load lock chamber 11 are provided in the front chamber of the processing chamber 12.
  • the load lock chamber 11 and the processing chamber 12 in the second stage have gas inlets 31 and 32, gas flow control valves 54 and 55, exhaust pumps 14 and 15, displacement control gate valves 44 and 45, respectively, Gas flow control valves 54 and 55 and exhaust gas control valves 44 and 45 are provided to control the degree of vacuum and gas concentration, and gas atmosphere control units 51 and 52 are provided.
  • the second-stage load lock chamber 11 is equipped with a baking heater 20 to prevent organic substances from adhering to the inner wall.
  • a radial line slot antenna (RLSA antenna) 21, a waveguide 22, and a microwave generator 23 necessary for radical oxidation are installed in the processing chamber 12.
  • the first-stage load lock chamber 10 is purged with an inert gas, for example, by another pretreatment device such as a cleaning device, and is used as a transfer container for transfer to the thin film forming apparatus.
  • the first-stage load lock chamber 10 is connected to the second-stage load lock chamber 11, and the substrate 1 is moved from the first-stage load lock chamber 10 to the second-stage by opening the gate valve 46 and the gate valve 40. It has a mechanism that can transport it to the load lock chamber 11.
  • the first-stage load lock chamber 10 is brought to atmospheric pressure by introducing an inert gas from another device.
  • the load lock chamber 11 in the second stage is evacuated during normal operation and heated by the baking heater 20 so that organic substances do not adhere to the inner wall.
  • An inert gas is introduced into the second-stage load lock chamber 11 to bring it to atmospheric pressure, and after the first-stage load lock chamber 10 and the second-stage load lock chamber 11 are connected, the gate valve 46 and the gate valve 40 are connected.
  • the substrate 1 to be processed is introduced into the load lock chamber 11 in the second stage, and the gate valve 46 and the gate valve 40 are closed.
  • the baking heater 20 was used to prevent the organic matter from adhering to the inner wall, but the adhering organic contamination was generated by generating plasma using a gas containing no C, such as oxygen plasma and nitrogen plasma.
  • the method of cleaning the inner wall is also effective.
  • the processing chamber 12 is evacuated in a steady state. If no treatment has been performed immediately before, there is a small amount of organic matter adhering to the inner wall due to back-diffusion from the exhaust pump 15, so a dummy substrate is inserted and the inner wall is cleaned with oxygen plasma or nitrogen plasma. It is preferable to keep it. In the case of a thermal oxidation furnace, it is better to burn off organic substances by thermal oxidation. Even in the case of a CVD furnace, the organic substances are removed by flowing an oxidizing gas and raising the temperature.
  • the gate valve 42 is opened, the substrate 1 is moved to the processing stage 4, and the gate valve 42 is closed.
  • plasma is generated from the microwave generator 23 through the waveguide 22 and directly under the na 21. This plasma generates a Kr gas plasma, supplies Kr radicals and ions to the surface of the substrate 1, and removes the H that terminates the surface of the substrate 1.
  • the substrate 1 is oxidized by oxygen radicals generated by Kr / O.
  • a first-stage load lock chamber 10 and a second-stage load lock chamber 11 are provided in the front chamber of the processing chamber (analysis chamber or observation chamber) 12.
  • the two load lock chambers 10, 11 and the processing chamber 12 have gas inlets 30, 31, 32, gas flow control valves 53, 54, 55, exhaust pumps 13, 14, 15, and exhaust volume control gate valves, respectively.
  • 43, 44, 45 and the gas flow control valve 5 3, 54, 55 and displacement control valves 43, 44, 45 to control the degree of vacuum and gas concentration, and gas atmosphere control units 50, 51, 52 are provided.
  • the second-stage load lock chamber 11 is equipped with a baking heater 20 to prevent organic substances from adhering to the inner wall.
  • the processing chamber 12 is equipped with an X-ray source (excitation source) 24 and a detector 25 necessary for analysis and observation.
  • the gate valve 40 After introducing an inert gas into the first-stage load lock chamber 10 and bringing it to atmospheric pressure, the gate valve 40 is opened to release the atmosphere, and analysis or observation is performed from outside the apparatus to the first-stage load lock chamber 10.
  • the substrate 1 is introduced and the gate valve 40 is closed.
  • the organic substance 5 has accumulated on the inner wall of the load lock chamber 10 at the first stage because the force S that organics enter slightly from the outside air and the first stage load lock chamber 10 is released to the atmosphere for each treatment.
  • the substrate 1 to be processed is supported on the transfer stage 2.
  • an inert gas such as N is introduced from the gas inlet 30 and exhausted by the exhaust pump 13, but the gas flow control valve 53 and the exhaust control gate valve 43 are opened and closed.
  • the load lock chamber 11 in the second stage is evacuated in a steady state and heated by the baking heater 20 so that organic substances do not adhere to the inner wall.
  • the gate valve 41 is opened, the substrate 1 is moved onto the transfer stage 3, and the gate vano rev 41 is closed.
  • a small amount of impurity gas in the first-stage load lock chamber 10 flows into the second-stage load lock chamber 11, so the second-stage load lock chamber 11 must be evacuated.
  • the processing chamber 12 is ultra-high vacuum, the load lock chamber is evacuated to at least high vacuum. Since organic substances do not adhere to the inner wall of the second-stage load lock chamber 11, the organic substances do not contaminate the analytical sample even under reduced pressure.
  • the processing chamber 12 is evacuated to an ultra-high vacuum by an ion pump or the like in a steady state.
  • an ion pump or the like In order to achieve an ultra-high vacuum, the inner wall of the analysis chamber has already been cleaned by baking.
  • FIG. 7 shows an example of an X-ray photoelectron spectrometer.
  • the X-ray source 24 irradiates the surface of the analysis sample with X-rays, and the photoelectrons jumping out of the analysis sample are detected by the detector 25 including the energy spectrometer. What is important is that the two-stage load lock chamber 11 ensures that no organic matter exists on the substrate surface immediately before analysis.
  • the present invention it is possible to prevent organic contamination from adhering to the substrate surface and form a thin film free from organic contamination.
  • the insulation characteristics of the silicon oxide film are improved by simultaneously preventing the formation of an uncontrolled oxide film, the adhesion of organic contamination, the formation of SiC, and the incorporation of H into the silicon oxide film.
  • the present invention can be applied to a VLSI capable of realizing thinning of a silicon oxide film and high reliability of other thin films and high performance.

Abstract

A substrate is introduced to a treating chamber through two steps of load lock chambers and then treated. A first step load lock chamber is kept at the atmospheric pressure and the gas in the chamber is replaced by an inert gas. A second step load lock chamber has a baking heater. When a chamber having an organic material attached to the inner wall thereof is evacuated, the organic material on the inner wall is separated from the wall and the substrate is contaminated with the organic material. In the apparatus of the present invention, the substrate is subjected to evacuation in the second step load lock chamber having no organic material attached thereto, which results in the prevention of the attachment of an organic material to the substrate.

Description

明 細 書  Specification
薄膜形成装置  Thin film forming equipment
技術分野  Technical field
[0001] 本発明は、基板上に形成された薄膜及びその形成方法とその形成装置、及びその 薄膜を用いた半導体装置及びその形成方法に関するものである。  The present invention relates to a thin film formed on a substrate, a method for forming the thin film, a forming apparatus therefor, a semiconductor device using the thin film, and a forming method therefor.
背景技術  Background art
[0002] 半導体デバイスや,液晶デバイスなどの特性は,薄膜の極表面 (数 nm以下)の組成 ,結合状態,不純物濃度,表面形状などにより大きく左右されるため,これらのデバイ ス開発及び解析には,表面分析装置の活用が必須となっている。  [0002] The characteristics of semiconductor devices, liquid crystal devices, etc. are greatly affected by the composition, bonding state, impurity concentration, surface shape, etc. of the thin film's extreme surface (several nm or less). Therefore, the use of surface analysis equipment is essential.
[0003] 全ての X線光電子分光装置,ォージェ電子分光装置,ダイナミック 2次イオン質量 分析装置,飛行時間型 2次イオン質量分析装置の分析室,もしくは,一部の走査型 原子間力顕微鏡,走査型トンネル顕微鏡では,超高真空槽内で分析もしくは観察が 行われるため,ロードロック室で分析試料を減圧してから,分析室もしくは観察室に搬 送され,分析及び観察される。  [0003] All X-ray photoelectron spectrometers, Auger electron spectrometers, dynamic secondary ion mass spectrometers, time-of-flight secondary ion mass spectrometer analyzers, or some scanning atomic force microscopes, scanning In the type tunnel microscope, analysis or observation is performed in an ultra-high vacuum chamber, so the analysis sample is depressurized in the load-lock chamber and then transported to the analysis or observation chamber for analysis and observation.
[0004] この際,ロードロック室の内壁に付着した有機汚染が脱離し,分析'観察試料表面 を汚染する問題が起きる。  [0004] At this time, organic contamination adhering to the inner wall of the load lock chamber is desorbed, causing a problem of contaminating the surface of the sample to be analyzed.
[0005] ロードロックは試料導入の度に大気開放され、また、有機汚染をクリーニング除去す る機構も持たないため、その内壁に有機汚染を蓄積しているからである。  This is because the load lock is released to the atmosphere each time a sample is introduced, and has no mechanism for cleaning and removing organic contamination, so that organic contamination is accumulated on the inner wall of the load lock.
[0006] 図 4は大気圧下及び減圧下で放置された基板上に付着した有機物の総量の放置 時間依存性を示すグラフ (林 輝幸、 "減圧真空装置内ウェハー表面有機物汚染に 関する研究"、博士学位論文より)であるが、減圧下では、非常に短時間で有機物が 基板表面を汚染する。表面観察装置の場合,この有機物による微小なラフネス増加 を招いたり,本来の表面形状の取得の妨害となる。一方,表面分析装置の場合,この 有機物による感度の低下が起き測定を妨害する。また,炭素を含む試料の分析や, 分析試料表面に付着した有機物を分析対象とする場合,ロードロックで汚染した有 機物により妨害を受ける。  [0006] Fig. 4 is a graph showing the dependence of the total amount of organic substances adhering on a substrate left under atmospheric pressure and reduced pressure (Takeyuki Hayashi, "Study on Organic Contamination of Wafer Surface in Vacuum Vacuum Equipment", According to a doctoral dissertation), under reduced pressure, organic substances contaminate the substrate surface in a very short time. In the case of a surface observation device, this organic matter causes a slight increase in roughness, or obstructs the acquisition of the original surface shape. On the other hand, in the case of surface analyzers, the sensitivity is reduced by this organic matter, which hinders measurement. In addition, when analyzing carbon-containing samples or organic substances adhering to the analysis sample surface, they are disturbed by organic substances contaminated by the load lock.
[0007] 例えば、 X線光電子分光装置の場合,図 1に示したように, Siの表面を分析すると, 大気に触れた試料表面からは,必ず, c-c, c-o, c=o, cooなどのピークが観測さ れる。例えば Sト Cの形成量を評価する場合, c-cのピークが大いと, S卜 Cのピーク強 度を読み取るのを妨害するため, Si-Cの検出感度の低下,定量限界の増加,定量精 度の低下などの問題が発生する。 [0007] For example, in the case of an X-ray photoelectron spectrometer, as shown in Fig. 1, when the surface of Si is analyzed, Peaks such as cc, co, c = o, and coo are always observed from the sample surface exposed to the atmosphere. For example, when evaluating the amount of S-to-C formation, if the peak of cc is large, reading the peak intensity of S 卜 C is hindered, so the detection sensitivity of Si-C decreases, the limit of quantification increases, Problems such as lowering of the degree occur.
[0008] このため,対象とする処理から,測定までの間に,有機汚染が表面に付着しないよ うにすることが強く望まれる。上述のように,ロードロック室を通って,分析室に分析試 料が運ばれる際,必ず減圧雰囲気になるため,有機汚染が付着したロードロックの内 壁から,減圧時に有機物が脱離し,試料表面を汚染する。  [0008] For this reason, it is highly desirable to prevent organic contamination from adhering to the surface between the target treatment and measurement. As described above, when an analysis sample is transported through the load lock chamber to the analysis chamber, a reduced pressure atmosphere is inevitably generated. Therefore, organic substances are detached from the inner wall of the load lock to which organic contamination has adhered, and the sample is removed. Contaminates the surface.
[0009] 一方、 MOS (金属膜電極/シリコン酸化物誘電体膜/シリコン基板)トランジスタのゲ ート絶縁膜であるシリコン酸化物誘電体膜 (以後シリコン酸化膜)には,低リーク電流 特性,低界面準位密度,低しきい値電圧シフト,低しきい値バラツキ特性など,様々 な高絶縁特性と高信頼性が要求される。  On the other hand, a silicon oxide dielectric film (hereinafter referred to as silicon oxide film) which is a gate insulating film of a MOS (metal film electrode / silicon oxide dielectric film / silicon substrate) transistor has low leakage current characteristics, Various high insulation characteristics and high reliability are required, such as low interface state density, low threshold voltage shift, and low threshold variation characteristics.
[0010] シリコン酸化膜は,高い絶縁特性を得るため,酸化方法に関して様々な研究や発 明がなされているが,酸化前のシリコン基板表面には,できる限り清浄な表面が求め られる。シリコン表面は大気中では自然酸化しており, 自然酸化膜が 0.5〜1.5 nm程 度形成されているが,この酸化膜は絶縁特性が悪いため, HF等を含んだ薬液でエツ チング除去する必要がある。  [0010] Various studies and inventions have been made on the oxidation method of the silicon oxide film in order to obtain high insulation characteristics, but the surface of the silicon substrate before oxidation is required to be as clean as possible. The silicon surface is naturally oxidized in the atmosphere, and a natural oxide film is formed to a thickness of about 0.5 to 1.5 nm. However, since this oxide film has poor insulating properties, it must be etched away with a chemical solution containing HF. There is.
[0011] また,金属や,パーティクル,有機汚染を除去するために, H SO , 0等の酸化性の 薬液による洗浄が実施される。この際,シリコン表面には絶縁特性の悪いケミカル酸 化膜が形成されるため,この工程の後には,上記 HF処理を実施しなければならない [0011] In order to remove metal, particles, and organic contamination, cleaning with oxidizing chemicals such as H 2 SO and 0 is performed. At this time, a chemical oxide film with poor insulating properties is formed on the silicon surface, so the above HF treatment must be performed after this step.
[0012] また,洗浄と酸化処理の間には,数分から数時間程度のストレージ時間が必要とな る。しかし、 HF処理を行うと,シリコン表面のダングリングボンドが H原子で終端される ことにより安定化され, 自然酸化を抑制することが可能である。 [0012] Further, a storage time of several minutes to several hours is required between the cleaning and the oxidation treatment. However, when HF treatment is performed, dangling bonds on the silicon surface are stabilized by termination with H atoms, and natural oxidation can be suppressed.
[0013] 半導体デバイスの高性能化は,素子の微細化により達成されてきたが,それに伴い シリコン酸化膜の厚さは極薄化しなければならず, 2 nm以下の極薄膜では,上記の 自然酸化膜やケミカル酸化膜を除去できる HF処理が必須となっている。  [0013] Although high performance of semiconductor devices has been achieved by miniaturization of elements, the thickness of the silicon oxide film must be made extremely thin. HF treatment that can remove oxide film and chemical oxide film is essential.
[0014] 一方,熱酸化によりシリコン酸化膜を形成する際,室温のシリコン基板を高温の酸 化炉に挿入すると,例え炉内を非酸化性雰囲気に保っていても,周辺の大気を卷き 込み,本来の処理温度よりも低い温度で酸化膜が形成し始める問題がある。 On the other hand, when forming a silicon oxide film by thermal oxidation, a silicon substrate at room temperature is replaced with a high-temperature acid. When inserted in a chemical furnace, there is a problem that even if the inside of the furnace is kept in a non-oxidizing atmosphere, the surrounding air is swallowed and an oxide film starts to form at a temperature lower than the original processing temperature.
[0015] これを防止するためには,炉の前室として,ロードロック室を設け, N や Arなどの 不活性ガスや真空などの非酸化性雰囲気により,酸素や水分濃度を低下させてから ,炉に基板を導入し非酸化性ガス雰囲気で昇温すればよい。しかし, HF処理と非酸 化性雰囲気昇温の両方を用いると,シリコン酸化膜の絶縁特性が逆に悪くなる問題 力 Sある。  [0015] In order to prevent this, a load lock chamber is provided as the front chamber of the furnace, and oxygen or moisture concentration is reduced by an inert gas such as N or Ar or a non-oxidizing atmosphere such as vacuum. Therefore, the substrate may be introduced into the furnace and heated in a non-oxidizing gas atmosphere. However, if both HF treatment and non-oxidizing atmosphere temperature rise are used, there is a problem that the insulating properties of the silicon oxide film deteriorate.
[0016] シリコン表面を終端している Hが 430 °C以上の昇温により脱離すると,ダングリング ボンドを形成するが,シリコン表面に有機汚染が存在すると,シリコンのダングリング ボンドと有機汚染が反応し, SiCを形成するためである。  [0016] When H, which terminates the silicon surface, desorbs at a temperature of 430 ° C or higher, a dangling bond is formed. However, if organic contamination exists on the silicon surface, the silicon dangling bond and organic contamination This is because it reacts to form SiC.
[0017] ラジカル酸ィ プラズマ酸化等, 430 °C以下のプロセスの場合は, Hが膜中に取り 込まれると,絶縁特性に悪影響を与えるため,希ガスイオンの照射等により, Hを除去 してから処理を行う必要がある。この際も同様にダングリングボンドを形成するが,シリ コン表面に有機汚染が存在すると,シリコン表面のダングリングボンドと有機汚染が 反応し, SiCを形成するため,絶縁特性は劣化する。  [0017] In the case of processes below 430 ° C, such as radical acid, plasma oxidation, etc., if H is incorporated into the film, it will adversely affect the insulation characteristics. Therefore, H is removed by irradiation with rare gas ions. It is necessary to perform processing afterwards. In this case, dangling bonds are also formed. However, if organic contamination exists on the silicon surface, the dangling bonds on the silicon surface react with the organic contamination to form SiC, which degrades the insulation characteristics.
[0018] 図 1(a)は, HF処理後の基板を非酸化性雰囲気である Arガス中で 800 °Cに昇温した 表面の XPS Clsコアレベル光電子スペクトルであり, Si-C結合に関係したピークが明 瞭に観察される。酸化性雰囲気である 0中で昇温した場合,及び SiO表面 (HF処理 無しの基板)を Arガス中で昇温した場合は,図 1(b),図 1(c)に示すように, SiCのピー クは全く観測されない。なお,メインピークから高結合エネルギー側に検出される C-C , C-O, C=0, COOピークは,酸化処理後,測定までの間に大気から汚染した有機物 に関係するピークである。  [0018] Figure 1 (a) shows the XPS Cls core-level photoelectron spectrum of the surface of the substrate after HF treatment heated to 800 ° C in Ar gas, a non-oxidizing atmosphere, and is related to the Si-C bond. The observed peak is clearly observed. When the temperature is raised in 0, which is an oxidizing atmosphere, and when the temperature of the SiO surface (substrate without HF treatment) is raised in Ar gas, as shown in Figs. 1 (b) and 1 (c), No SiC peak is observed. The C-C, C-O, C = 0, and COO peaks detected from the main peak to the high binding energy side are peaks related to organic substances contaminated from the atmosphere after the oxidation treatment and before measurement.
[0019] 図 2は, HF処理後の基板を真空中で昇温した際の SiC形成量の温度依存性と,終 端 Hの脱離温度特性を示す。この結果から SiCの形成メカニズムは図 3の反応モデ ルで示される。 [0019] Figure 2 shows the temperature dependence of the amount of SiC formed when the substrate after HF treatment is heated in vacuum, and the desorption temperature characteristics of terminal H. From this result, the formation mechanism of SiC is shown by the reaction model in Fig. 3.
[0020] 図 3(a)に示すように, HF処理後の Si(100)表面は,再表面の Si原子が, 4本の結合手 の内 2本が Hで終端された構造となっている。 300〜430 °Cにかけて, 2本の結合手を 終端している Hの一方が脱離し, Siはダングリングボンドを生成するが,隣り合うダング リングボンドとが結合してダイマーを形成し,図 3(b)に示すような構造に変化する。 [0020] As shown in Fig. 3 (a), the Si (100) surface after HF treatment has a structure in which Si atoms on the resurface are terminated with H in two of the four bonds. Yes. From 300 to 430 ° C, one of the H ends of the two bonds is desorbed, and Si forms a dangling bond. A dimer is formed by combining with a ring bond, and the structure changes as shown in Fig. 3 (b).
[0021] 430〜600 °Cにかけて,残りの Hも脱離し,ダングリングボンドを形成するが,隣合う ダングリングボンドとの距離が離れているため,結合することはできず,図 3(c)に示す ように,ダングリングボンドで一面に覆われた極めて活性な表面となる。一方,有機汚 染は,昇温により分子構造の一部が分解し,一部が脱離するが,表面に残存する部 分もある。これらはダングリングボンドを持っため, Si表面のダングリングボンドと容易 に結合し, SiCを形成する。 [0021] From 430 to 600 ° C, the remaining H also desorbs to form a dangling bond, but cannot be bonded because the distance from the adjacent dangling bond is too large. As shown in (2), it becomes a very active surface covered with dangling bonds. On the other hand, with organic contamination, part of the molecular structure decomposes and partly desorbs when the temperature rises, but some remains on the surface. Since these have dangling bonds, they easily combine with dangling bonds on the Si surface to form SiC.
[0022] 有機汚染の基板への付着を完全に防ぎ, SiCの形成を抑制するのは容易ではない 。このため,従来は,数〜数十%の 0等の酸化性ガスを含んだ非酸化性ガス雰囲気 で昇温し,低温で酸化膜を形成(以後、低温酸化膜という)し,その後、本酸化を実施 する工程が一般に用いられている。低温酸化膜の絶縁特性は, 自然酸化膜,ケミカ ル酸化膜,巻き込み酸化膜等よりは良いが,高温で形成される酸化膜よりは悪いた め,低温酸化膜の形成を防止できれば,絶縁特性の向上が期待できる。 [0022] It is not easy to completely prevent organic contamination from adhering to the substrate and to suppress the formation of SiC. For this reason, conventionally, the temperature is raised in a non-oxidizing gas atmosphere containing an oxidizing gas such as 0 to several tens of percent, and an oxide film is formed at a low temperature (hereinafter referred to as a low temperature oxide film). A process for carrying out the oxidation is generally used. Insulation characteristics of low-temperature oxide films are better than natural oxide films, chemical oxide films, entangled oxide films, etc., but they are worse than oxide films formed at high temperatures. Improvement can be expected.
[0023] 一旦付着した有機汚染は, Si基板表面を酸化ゃ窒化等の変化をさせずに,かつ表 面平坦性を損なわずに除去することは極めて困難である。 0 , H 0, N 0, NO等の酸 化性ガス, NH , N 0, NO等の窒化性ガス, Kr, Xe, Ar等の希ガス, N等の不活性ガ ス, H等の還元性ガスの照射,もしくはそれらのプラズマ照射及びイオン照射等を行 つても不可能である。 [0023] Once contaminated, organic contamination is extremely difficult to remove without oxidizing or nitriding the surface of the Si substrate and without sacrificing surface flatness. Oxidizing gases such as 0, H 0, N 0 and NO, nitriding gases such as NH, N 0 and NO, noble gases such as Kr, Xe and Ar, inert gases such as N, reduction of H and the like It is impossible to irradiate with a reactive gas, or plasma irradiation or ion irradiation.
[0024] このために,未制御酸化膜, SiC, Hの全てを排除した Si表面を実現し,これらの全 てを含まなレ、酸化膜を形成するためには,有機汚染が基板表面に付着しなレ、ように する方法の開発が必須である。なお,ここでは,これら自然酸化膜,ケミカル酸化膜, 巻き込み酸化膜,低温酸化膜など,本酸化で形成した酸化膜よりも絶縁特性が悪い 酸化膜を,未制御酸化膜と呼ぶ。  [0024] For this reason, in order to realize an Si surface that excludes all of the uncontrolled oxide film, SiC, and H, and to form an oxide film that does not include all of these, organic contamination is caused on the substrate surface. It is essential to develop a method to prevent adhesion. Here, these oxide films with poorer insulation properties than the oxide films formed by this oxidation, such as natural oxide films, chemical oxide films, entrained oxide films, and low-temperature oxide films, are called uncontrolled oxide films.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0025] 基板表面に有機汚染が付着しないようにするには,洗浄薬液,洗浄装置内雰囲気 ,クリーンノレーム大気,搬送容器内雰囲気,ロードロック室内雰囲気,酸化処理室内 雰囲気,プロセスガスなどから,有機物を除去することが必要であるが,あらゆる部材 に有機物が用いられているため,完全に有機汚染を防止するのは非常に困難である [0025] In order to prevent organic contamination from adhering to the substrate surface, the cleaning chemical solution, the atmosphere in the cleaning device, the clean norm atmosphere, the atmosphere in the transfer container, the atmosphere in the load lock chamber, the atmosphere in the oxidation treatment chamber, the process gas, etc. It is necessary to remove organic matter, but all parts It is very difficult to completely prevent organic contamination because organic substances are used in
[0026] クリーンルーム大気全体から有機汚染を完全に除去するには,膨大な量の空気を ケミカルフィルタで除去しなければならないが,コストの面から不可能に近いため,装 置周辺を局所的にクリーンにするか,基板搬送容器内を清浄にする方法が現実的で ある。 [0026] In order to completely remove organic pollution from the entire clean room atmosphere, a huge amount of air must be removed by a chemical filter. It is practical to clean or clean the substrate transfer container.
[0027] 洗浄薬液,プロセスガス中の有機汚染はすでに低いレベルに抑制されている。また [0027] Organic contamination in the cleaning chemical and process gas is already suppressed to a low level. Also
,高純度の不活性ガスを大気圧付近で用レ、ることにより,洗浄装置内雰囲気,搬送 容器内雰囲気についても,有機汚染を防ぐことが可能である。 By using a high purity inert gas near atmospheric pressure, it is possible to prevent organic contamination in the atmosphere inside the cleaning device and the atmosphere inside the transfer container.
[0028] ただし,ロードロック室内雰囲気と,酸化処理室内雰囲気は,周辺の大気を巻き込 まないようにするため,一旦減圧してから,高純度の不活性ガスやプロセスガスを導 入するのが一般的である。 [0028] However, the atmosphere in the load lock chamber and the atmosphere in the oxidation treatment chamber must be depressurized and introduced with high-purity inert gas or process gas in order to prevent the surrounding atmosphere from being involved. Is common.
[0029] クリーンノレーム大気に触れたり,ノくックポンプからの拡散により,有機汚染が内壁に 付着した状態で減圧にすると,内壁に付着した有機汚染が内壁から脱離し,一部が 基板表面に付着する。 [0029] If the pressure is reduced while the organic pollutant adheres to the inner wall due to contact with the clean noreme atmosphere or diffusion from the knock pump, the organic pollutant adhering to the inner wall is detached from the inner wall, and a part of it is deposited on the substrate surface. Adhere to.
[0030] 図 4は大気圧下及び減圧下で放置された基板上に付着した有機物の総量の,放 置時間依存性を示すグラフである。  [0030] Fig. 4 is a graph showing the dependence of the total amount of organic substances adhering to the substrate left under atmospheric pressure and reduced pressure on the duration of release.
[0031] 減圧下では,非常に短時間で有機物が汚染する。ただし,酸化処理室は,メンテナ ンス時以外大気開放されず,また,酸化処理を行う毎に有機汚染が燃焼分解除去さ れるため,有機汚染は,ロードロック室との間のゲートバノレブを開けた際にロードロッ ク室から流れ込むか,基板に付着した状態で持ち込まれる力 前の処理から次の処 理までの間に,バックポンプから逆拡散して持ち込まれるかしかない。  [0031] Under reduced pressure, organic matter is contaminated in a very short time. However, the oxidation chamber is not opened to the atmosphere except during maintenance, and the organic contamination is burned and removed every time the oxidation treatment is performed. Therefore, the organic contamination is not removed when the gate vano lev between the load lock chamber and the chamber is opened. However, it can only flow from the load-lock chamber or be brought back-spread from the back pump between the previous process and the next process.
[0032] これらが酸化処理室内壁を汚染し,減圧時に脱離して基板を汚染する量は,大気 開放され,酸化処理等による有機物の除去が行われないロードロック室のそれと比べ れば僅かであり,最も基板を有機物で汚染しやすいのは,ロードロック室であり,この 部分の改良が最も重要である。  [0032] The amount of these contaminating the oxidation processing chamber walls and desorbing during depressurization to contaminate the substrate is small compared to that in the load-lock chamber that is opened to the atmosphere and organic substances are not removed by oxidation or the like. It is the load lock chamber that is most likely to contaminate the substrate with organic substances, and improvement of this part is the most important.
[0033] 以上は酸化処理の場合を例に述べたが, CVD等の薄膜形成装置の場合であって も, SiCの形成が薄膜の特性に悪影響を与える。また, SiCを形成せずに有機物の状 態であっても,基板上に付着していると,薄膜の特性に影響を与える場合は少なくな レ、。したがって,一般的な薄膜形成装置全般に対しても,有機汚染の基板への付着 防止は重用な課題である。 [0033] Although the case of oxidation treatment has been described above as an example, the formation of SiC adversely affects the characteristics of the thin film even in the case of a thin film forming apparatus such as CVD. In addition, the state of organic matter without forming SiC Even in this state, if it adheres to the substrate, it may affect the characteristics of the thin film. Therefore, preventing general organic contamination from adhering to the substrate is also an important issue for general thin film forming equipment.
[0034] 本発明は上記問題点を解決するためになされたものであり、その目的は、有機汚 染の基板への付着抑制であり,これにより,未制御酸化膜フリー,有機汚染フリー, Si Cフリー, Hフリーで,かつ原子レベルで平坦なシリコン酸化膜等の薄膜を提供するこ とである。  [0034] The present invention has been made to solve the above-mentioned problems, and its purpose is to suppress the adhesion of organic contamination to the substrate, thereby preventing uncontrolled oxide film free, organic contamination free, Si The aim is to provide thin films such as silicon oxide films that are C-free, H-free, and flat at the atomic level.
[0035] また、本発明の他の目的は、 2段式のロードロックを用いることにより,分析試料表面 への有機物の汚染を抑制することである。  [0035] Another object of the present invention is to suppress contamination of organic substances on the surface of an analysis sample by using a two-stage load lock.
課題を解決するための手段  Means for solving the problem
[0036] 上記目的を達成するために、本発明の薄膜形成装置では、基板を外部から導入し ,大気圧を保持したまま不活性ガスで置換する 1段目のロードロック室と,基板を収容 し,内壁に有機物を吸着させなレ、もしくは吸着した有機物を除去する機構を備えた 2 段目のロードロック室と、基板を収容し,所定の薄膜を形成するための膜形成機構を 有した処理室と, 1段目ロードロック室, 2段目ロードロック室及び処理室の真空度及 びガス濃度をそれぞれ所定の値に制御するためのガス雰囲気制御部と、 1段目ロー ドロック室, 2段目ロードロック室及び処理室間で,基板を移動させる搬送機構と, 1 段目ロードロック室と 2段目ロードロック室間, 2段目ロードロック室と処理室間を,そ れぞれ開閉し基板を通すためのゲートバノレブとを有すること特徴とする。  [0036] In order to achieve the above object, the thin film forming apparatus of the present invention accommodates a first stage load lock chamber in which a substrate is introduced from the outside and replaced with an inert gas while maintaining atmospheric pressure, and the substrate. And a second stage load lock chamber equipped with a mechanism that does not adsorb organic substances on the inner wall, or a mechanism for removing adsorbed organic substances, and a film formation mechanism for accommodating a substrate and forming a predetermined thin film. A gas atmosphere control unit for controlling the vacuum level and gas concentration of the processing chamber, the first stage load lock chamber, the second stage load lock chamber and the processing chamber to predetermined values, the first stage load lock chamber, A transfer mechanism that moves the substrate between the second-stage load lock chamber and the processing chamber, the first-stage load lock chamber and the second-stage load lock chamber, and the second-stage load lock chamber and the processing chamber, respectively. With a gate vanolev for opening and closing and passing through the substrate It is characterized by that.
[0037] 好ましくは、前記ガス雰囲気制御部は,前記 1段目ロードロック室, 2段目ロードロッ ク室,処理室をそれぞれ排気するための排気部と,排気量を制御する排気量制御ゲ ートバルブと,ガスを導入するためのガス導入部と,ガス流量を制御するガス流量制 御バルブとをそれぞれ有する。  [0037] Preferably, the gas atmosphere control unit includes an exhaust unit for exhausting the first-stage load lock chamber, the second-stage load lock chamber, and the processing chamber, and an exhaust amount control gate valve for controlling an exhaust amount. And a gas introduction part for introducing gas, and a gas flow control valve for controlling the gas flow rate.
[0038] 前記 2段目のロードロック室は,炉内壁に付着した有機物を脱離させるかまたは有 機物の付着を防止するためのクリーニング機構を有することが好ましい。  [0038] It is preferable that the second-stage load lock chamber has a cleaning mechanism for detaching organic substances attached to the inner wall of the furnace or preventing the attachment of organic substances.
[0039] 前記クリーニング機構は,例えば、内壁をべ一キングする加熱機構を有する。  [0039] The cleaning mechanism has, for example, a heating mechanism for baking the inner wall.
[0040] 前記クリーニング機構は,例えば、内壁にプラズマ照射するプラズマ生成機構を有 する。 [0041] 前記薄膜形成機構は,例えば、ラジカル酸化を行うためのプラズマ生成部と,酸化 性ガス導入部とを有する。 [0040] The cleaning mechanism includes, for example, a plasma generation mechanism that irradiates plasma on the inner wall. [0041] The thin film formation mechanism includes, for example, a plasma generation unit for performing radical oxidation and an oxidizing gas introduction unit.
[0042] 前記薄膜形成機構は,例えば、ラジカル窒化を行うためのプラズマ生成部と,窒化 性ガス導入部とを有する。 [0042] The thin film formation mechanism includes, for example, a plasma generation unit for performing radical nitriding and a nitriding gas introduction unit.
[0043] 前記薄膜形成機構は,例えば、ラジカル酸窒化を行うためのプラズマ生成部と,酸 窒化性ガスもしくは酸化性ガスと窒化性ガスの導入部とを有する。 [0043] The thin film formation mechanism includes, for example, a plasma generation unit for performing radical oxynitridation, and an introduction unit of an oxynitriding gas or an oxidizing gas and a nitriding gas.
[0044] 前記薄膜形成機構は,例えば、熱酸化を行うための加熱部と,酸化性ガス導入部と を有する。 [0044] The thin film forming mechanism includes, for example, a heating unit for performing thermal oxidation and an oxidizing gas introduction unit.
[0045] 前記薄膜形成機構は,例えば、熱窒化を行うための加熱部と,窒化性ガス導入部と を有する。  The thin film formation mechanism includes, for example, a heating unit for performing thermal nitridation and a nitriding gas introduction unit.
[0046] 前記薄膜形成機構は,例えば、熱酸窒化を行うための加熱部と,酸窒化性ガスもし くは酸化性ガスと窒化性ガスの導入部とを有する。  [0046] The thin film forming mechanism includes, for example, a heating unit for performing thermal oxynitridation, and an introduction unit for an oxynitriding gas or an oxidizing gas and a nitriding gas.
[0047] 前記薄膜形成機構は,例えば、 CVD成膜を行うための加熱部と,原料ガス導入部 とを有する。 [0047] The thin film formation mechanism includes, for example, a heating unit for performing CVD film formation and a source gas introduction unit.
[0048] 前記薄膜形成機構は,例えば、スパッタ成膜を行うためのターゲット、イオン発生部 [0048] The thin film formation mechanism includes, for example, a target for performing sputter film formation, and an ion generation unit.
,加熱部及び原料ガス導入部とを有する。 And a heating part and a raw material gas introduction part.
[0049] 前記ラジカル酸化,ラジカル窒化及びラジカル酸窒化を行うための前記プラズマ生 成部は,マイクロ波発生部と,マイクロ波導波管とラジアルラインスロットアンテナとを 有することが好ましい。 [0049] The plasma generation unit for performing the radical oxidation, radical nitridation, and radical oxynitridation preferably includes a microwave generation unit, a microwave waveguide, and a radial line slot antenna.
[0050] 前記ラジカル酸化,ラジカル窒化,及びラジカル酸窒化を行うための前記プラズマ 生成部は,高周波を印加できる平行平板電極を有することが好ましい。  [0050] It is preferable that the plasma generation unit for performing the radical oxidation, radical nitridation, and radical oxynitridation includes parallel plate electrodes to which a high frequency can be applied.
[0051] 好ましくは、前記 CVD成膜は, SiO , SiN, SiON, HfO, HfSiO, HfSiONから成るグル [0051] Preferably, the CVD film formation includes a group consisting of SiO 2, SiN, SiON, HfO, HfSiO, and HfSiON.
2 2  twenty two
ープの中から選ばれた少なくとも一つのゲート絶縁膜用薄膜の成膜である。  Forming at least one thin film for a gate insulating film selected from the group.
[0052] 好ましくは、前記スパッタ成膜は, Sほたは Hfのゲート絶縁膜形成用の下地薄膜の 成膜である。  [0052] Preferably, the sputter film formation is a film formation of a base thin film for forming a gate insulating film of S or Hf.
[0053] また、少なくとも洗浄処理を行う前処理装置から大気圧の不活性雰囲気下で搬送さ れる搬送容器が,有機物の付着を防止もしくは有機物の除去を行う 2段目のロード口 ック室とゲートバルブを介して接続され,大気に触れずに基板を 2段目のロードロック 室に導入できる機構を有しており,この搬送容器が,大気圧のまま不活性ガス雰囲 気にする 1段目のロードロック室の役割を有してレ、ても良い。 [0053] In addition, a transport container that is transported in an inert atmosphere at atmospheric pressure from at least a pretreatment device that performs a cleaning process includes a second-stage load port chamber that prevents adhesion of organic substances or removes organic substances. Connected via a gate valve, the second stage load locks the substrate without touching the atmosphere. It has a mechanism that can be introduced into the chamber, and this transfer container may serve as a first-stage load lock chamber that creates an inert gas atmosphere at atmospheric pressure.
[0054] あるいは、少なくとも洗浄処理を行う前処理装置の処理室もしくはそのロードロック 室と有機物の付着を防止もしくは有機物の除去を行う 2段目のロードロック室力 S,グー トバルブを介して直接連結され,この前処理装置の処理室もしくはそのロードロック室 が大気圧のまま不活性ガス雰囲気にする 1段目のロードロック室の役割を有していて も良い。 [0054] Alternatively, at least the processing chamber of the pretreatment apparatus that performs the cleaning process or its load lock chamber is connected directly to the load lock chamber force S, which prevents organic substances from adhering to or removes organic substances, via a goat valve. In addition, the processing chamber of this pretreatment device or its load lock chamber may serve as a first-stage load lock chamber that maintains an inert gas atmosphere at atmospheric pressure.
[0055] このように、本発明では,基板への有機汚染付着を低減するため, 2段式のロード口 ック室を用レ、, 1段目のロードロック室は大気圧で不活性ガスに置換し, 2段目のロー ドロック室には,有機物が内壁に付着しない機構を持たせ清浄に保った上で減圧に し,不純物ガス濃度を充分下げてから処理室に基板を導入する。  [0055] Thus, in the present invention, in order to reduce the adhesion of organic contamination to the substrate, a two-stage load port chamber is used, and the first-stage load lock chamber is an inert gas at atmospheric pressure. The second-stage load lock chamber has a mechanism that prevents organic substances from adhering to the inner wall, keeps it clean, and reduces the pressure of the impurity gas before introducing the substrate into the processing chamber.
[0056] 1段目のロードロック室は,基板導入時に大気開放されるため,その内壁への有機 汚染の付着は免れないが,減圧せずに不活性ガスに置換することで,内壁から基板 への有機汚染の付着は防止できる。ただし, 1段目のロードロック室での不純物ガス 濃度は,減圧した場合よりも高いレベルまでしか下げることができない。  [0056] Since the first stage load lock chamber is opened to the atmosphere when the substrate is introduced, organic contamination adheres to the inner wall of the substrate, but it is replaced by an inert gas without reducing the pressure. Organic contamination can be prevented. However, the impurity gas concentration in the first-stage load lock chamber can only be lowered to a higher level than when the pressure is reduced.
[0057] 次に、 2段目のロードロック室に基板を導入するが, 2段目のロードロック室は,有機 物が内壁に付着しない機構もしくは,有機物を除去できる機構を有している。  [0057] Next, the substrate is introduced into the second-stage load lock chamber. The second-stage load lock chamber has a mechanism that prevents organic substances from adhering to the inner wall or a mechanism that can remove organic substances.
[0058] 例えば、内壁を常にべ一キングしておくか,酸化性ガス,水素ガス、窒化性ガス等 の Cを含まないガスのプラズマを発生させる機構を持たせることで実現可能である。  For example, this can be realized by always baking the inner wall or by providing a mechanism for generating plasma of a gas not containing C, such as an oxidizing gas, a hydrogen gas, and a nitriding gas.
[0059] 1段目のロードロック室から, 2段目のロードロック室に基板が導入される際,有機汚 染の持込はないが,微量の不純物ガスの持込がある。この不純物ガスを処理室に持 ち込まないようにするため, 2段目のロードロック室は減圧するが, 2段目のロードロッ ク室の内壁は有機汚染がないため,減圧にしても,基板が有機汚染されることはない  [0059] When a substrate is introduced from the first-stage load lock chamber into the second-stage load lock chamber, there is no organic contamination, but there is a small amount of impurity gas. To prevent this impurity gas from being brought into the processing chamber, the second-stage load lock chamber is depressurized, but the inner wall of the second-stage load lock chamber is free of organic contamination. Will not be organically polluted
[0060] このようにしてから基板を処理室に導入すれば,基板表面への有機汚染と,処理室 への不純物ガスの持込の両方が防止できる。なお, 1段目のロードロック室の圧力は , 100 Torr以上であれば,有機汚染の付着はほとんど無視できるが,大気圧以上の 圧力であっても問題なぐむしろ高い程よい。 [0061] 上記は,大気に暴露された基板が搬送されてくる場合を想定しているが,有機汚染 がなぐ不活性ガスで満たされた容器で搬送されてきて,ロードロック室を大気開放せ ずに基板をロードロック室内に導入できる機構となっている場合は, 1段目のロード口 ック室を省略することができる。すなわち,この搬送容器力 si段目のロードロック室の 役割を果たしている。 If the substrate is introduced into the processing chamber after doing in this way, it is possible to prevent both organic contamination of the substrate surface and the introduction of impurity gas into the processing chamber. If the pressure in the first-stage load lock chamber is 100 Torr or higher, the adhesion of organic contamination is almost negligible, but even higher than atmospheric pressure is better. [0061] The above assumes that the substrate exposed to the atmosphere is transported, but the substrate is transported in a container filled with an inert gas free from organic contamination, and the load lock chamber is opened to the atmosphere. If the mechanism allows the board to be introduced into the load lock chamber, the first load load chamber can be omitted. In other words, it plays the role of the load lock chamber at the si stage of the transfer container force.
[0062] また,洗浄装置と薄膜形成装置を物理的に接続し,有機汚染のないトランスファー 室を介して搬送される場合はロードロック室は不要である。大気開放されないため 1 段目のロードロック室は不要である。また、トランスファ一室に有機物が内壁に付着し ない機構を持たせるための 2段目のロードロック室も不要となる。  [0062] In addition, when the cleaning apparatus and the thin film forming apparatus are physically connected and transported through a transfer chamber free from organic contamination, the load lock chamber is not necessary. Since it is not open to the atmosphere, the first-stage load lock chamber is unnecessary. In addition, a second load lock chamber is not required to provide a mechanism in the transfer chamber that prevents organic matter from adhering to the inner wall.
[0063] しかし,洗浄がバッチ処理で行われている現状,もしくは洗浄装置と様々な薄膜形 成装置が別々に開発されている現状では,この方法はコストの面で問題があり,本発 明の形態に優位性がある。  [0063] However, in the present situation where cleaning is performed in a batch process, or in the present situation where a cleaning apparatus and various thin film forming apparatuses are separately developed, this method has a problem in terms of cost, and thus the present invention. There is an advantage in the form of.
[0064] また,処理室内に不純物ガスが持ち込まれても,プロセスの精度に影響を与えず, かつ処理室を減圧に保つ必要が無い場合は, 2段目のロードロック室を省略すること ができる。すなわち,処理室が 2段目のロードロック室の役割を果たしている。  [0064] If the impurity gas is brought into the processing chamber without affecting the accuracy of the process and it is not necessary to keep the processing chamber at a reduced pressure, the second-stage load lock chamber may be omitted. it can. In other words, the processing chamber plays the role of the second-stage load lock chamber.
[0065] しかし,半導体装置に使用される薄膜が極薄化している現在,プロセスガス雰囲気 は益々高純度化が求められており,本発明の形態への要求は高い。  However, at the present time when thin films used in semiconductor devices have become extremely thin, the process gas atmosphere is increasingly required to be highly purified, and the demand for the form of the present invention is high.
[0066] 以上のように,ロードロック室内壁から基板への有機汚染を防止することにより, SiC の形成や,有機物の膜及び膜/基板界面への取込みが防止される。  [0066] As described above, by preventing organic contamination from the inner wall of the load lock chamber to the substrate, formation of SiC and incorporation of organic substances into the film and film / substrate interface are prevented.
[0067] また、本発明では、 2段式のロードロックを,表面分析装置や表面観察装置のロード ロック室として用いることにより,分析試料表面への有機物の付着を防止する。  In the present invention, the two-stage load lock is used as a load lock chamber of a surface analyzer or a surface observation device, thereby preventing organic substances from adhering to the analysis sample surface.
発明の効果  The invention's effect
[0068] 本発明によれば,有機汚染のシリコン基板への付着を,低コストでかつプロセスガス 雰囲気の純度を保ったまま防止可能となる。このため,酸化処理直前にシリコン表面 を終端している Hが除去されても SiCが形成されない。これにより,未制御酸化膜フリ 一,有機汚染フリー, SiCフリー, Hフリーのシリコン表面に,良質な酸化膜のみを形成 することが可能となり,絶縁特性を向上させることができる。  [0068] According to the present invention, it is possible to prevent organic contamination from adhering to the silicon substrate at low cost while maintaining the purity of the process gas atmosphere. For this reason, SiC is not formed even if H that terminates the silicon surface is removed immediately before the oxidation treatment. This makes it possible to form only a high-quality oxide film on the silicon surface of uncontrolled oxide film free, organic contamination-free, SiC-free, and H-free, thereby improving the insulation characteristics.
[0069] 酸化処理以外の場合でも有機汚染のシリコン基板への付着を防止することにより, 膜中,膜/基板界面への有機物の取り込みを防止し,良質な薄膜を形成可能となる。 これらにより,シリコン酸化膜やその他の薄膜を,現状よりも薄膜化することが可能と なり,超 LSIの高性能化が実現される。 [0069] By preventing organic contamination from adhering to the silicon substrate even in cases other than oxidation treatment, Incorporation of organic substances into the film / substrate interface in the film is prevented, and a high-quality thin film can be formed. As a result, silicon oxide films and other thin films can be made thinner than they are currently, and high performance of VLSI can be realized.
図面の簡単な説明  Brief Description of Drawings
[0070] [図 1] (a)は HF処理後の基板を Arガス中で 800 °Cに昇温した表面, (b)は HF処理後 の基板を 0ガス中で 800 °Cに昇温した表面, (c)は HF処理無しで SiOが表面に形  [0070] [Fig. 1] (a) shows the surface of the substrate after HF treatment heated to 800 ° C in Ar gas, and (b) shows the temperature of the substrate after HF treatment raised to 800 ° C in 0 gas. (C) shows SiO formed on the surface without HF treatment
2 2  twenty two
成した基板を Arガス中で 800 °Cに昇温した表面,の XPS Clsコアレベル光電子スぺ タトルを表した図である。  This figure shows the XPS Cls core-level photoelectron spectrum of the surface of the resulting substrate heated to 800 ° C in Ar gas.
[図 2]HF処理後の基板を真空中で昇温した際の, SiC形成量の温度依存性と,終端 Hの脱離温度特性を示すグラフを表した図である。  [Fig. 2] A graph showing the temperature dependence of the amount of SiC formed and the desorption temperature characteristics of terminal H when the substrate after HF treatment is heated in vacuum.
[図 3] (a)〜(c)は、 HF処理後の Si(lOO)表面が,昇温により Hを脱離し,再構成し, SiC を形成する様子を示したモデル図である。  [Fig. 3] (a) to (c) are model diagrams showing how the Si (lOO) surface after HF treatment desorbs H and restructures to form SiC as the temperature rises.
[図 4]減圧雰囲気及び大気圧で放置した基板に付着した有機物総量の放置時間依 存性を示すグラフを表した図である。  [FIG. 4] A graph showing the dependence of the total amount of organic substances adhering to a substrate left in a reduced-pressure atmosphere and atmospheric pressure on the standing time.
[図 5]本発明の実施の形態 1に示した有機物の付着を防いだ薄膜形成装置 (ラジ力 ル酸化装置)の一例を表した図である。  FIG. 5 is a diagram showing an example of a thin film forming apparatus (radial power oxidizer) that prevents adhesion of organic substances shown in Embodiment 1 of the present invention.
[図 6]本発明の実施の形態 2に示した有機物の付着を防いだ薄膜形成装置 (ラジ力 ル酸化装置)の一例を表した図である。  FIG. 6 is a diagram showing an example of a thin film forming apparatus (radial power oxidizing apparatus) that prevents the adhesion of organic substances shown in the second embodiment of the present invention.
[図 7]本発明の実施の形態 3に示した表面分析装置または表面監査装置の一例を表 した図である。  FIG. 7 is a diagram showing an example of a surface analysis device or a surface inspection device shown in the third embodiment of the present invention.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0071] (実施の形態 1)  [0071] (Embodiment 1)
本発明の実施の形態 1に係る誘電体膜形成装置について説明する。  A dielectric film forming apparatus according to Embodiment 1 of the present invention will be described.
[0072] 図 5に示すように,処理室 12の前室に 1段目のロードロック室 10と 2段目のロードロッ ク室 11が設けられている。 2つのロードロック室 10, 11と処理室 12は,それぞれ,ガス 導入口 30, 31, 32と,ガス流量制御バルブ 53, 54, 55と,排気ポンプ 13, 14, 15,排気 量制御ゲートバルブ 43, 44, 45と,前記ガス流量制御バルブ 53, 54, 55と排気量制御 バルブ 43, 44, 45を制御して,真空度及びガス濃度を制御するガス雰囲気制御部 50, 51, 52とを備えている。 As shown in FIG. 5, a first-stage load lock chamber 10 and a second-stage load lock chamber 11 are provided in the front chamber of the processing chamber 12. The two load lock chambers 10, 11 and processing chamber 12 have gas inlet ports 30, 31, 32, gas flow control valves 53, 54, 55, exhaust pumps 13, 14, 15, and exhaust volume control gate valves, respectively. 43, 44, 45, the gas flow rate control valve 53, 54, 55 and the displacement control valve 43, 44, 45 to control the degree of vacuum and gas concentration to control the gas atmosphere control unit 50, 51 and 52.
[0073] 1段目ロードロック室 10と外部の間, 1段目ロードロック室 10と 2段目のロードロック室 11の間, 2段目のロードロック室 11と処理室 12の間には,それぞれゲートバルブ 40, 4 1, 42が設置されている。 2段目のロードロック室 11は,内壁への有機物の付着を防ぐ ためのベーキングヒータ 20を備えている。処理室 12には,ラジカル酸化を行うために 必要な RLSAアンテナ 21,導波管 22,マイクロ波発生装置 23が設置されている。  [0073] Between the first-stage load lock chamber 10 and the outside, between the first-stage load lock chamber 10 and the second-stage load lock chamber 11, and between the second-stage load lock chamber 11 and the processing chamber 12. Gate valves 40, 41, and 42 are installed, respectively. The second-stage load lock chamber 11 is equipped with a baking heater 20 to prevent organic substances from adhering to the inner wall. In the processing chamber 12, the RLSA antenna 21, waveguide 22, and microwave generator 23 necessary for radical oxidation are installed.
[0074] 1段目のロードロック室 10に不活性ガスを導入し大気圧にした後,ゲートバルブ 40を 開けて大気開放し,装置外から 1段目のロードロック室 10に,処理される基板 1が導入 され,ゲートバノレブ 40を閉める。この際,外気から有機物 5が僅かに侵入するが,処 理毎に 1段目のロードロック室 10は大気開放されるため,有機物 5がその内壁に蓄積 している。処理される基板 1は搬送ステージ 2に支持される。 1段目のロードロック室 10 は,ガス導入口 30から N等の不活性ガスが導入され,排気ポンプ 13により排気される 力 S,ガス流量制御バルブ 53と排気量制御ゲートバルブ 43の開閉を,ガス雰囲気制御 部 50により調整することにより,大気圧を保ちながら, Nに置換される。ロードロック室 [0074] After introducing an inert gas into the first-stage load lock chamber 10 and bringing it to atmospheric pressure, the gate valve 40 is opened to release the atmosphere, and the first-stage load lock chamber 10 is processed from the outside to the first-stage load lock chamber 10 Substrate 1 is introduced, and gate vano lev 40 is closed. At this time, the organic substance 5 slightly enters from the outside air, but the organic substance 5 accumulates on the inner wall of the load lock chamber 10 in the first stage because it is released to the atmosphere for each treatment. The substrate 1 to be processed is supported on the transfer stage 2. In the first-stage load lock chamber 10, an inert gas such as N is introduced from the gas inlet 30, and the force S exhausted by the exhaust pump 13, the gas flow control valve 53 and the exhaust control gate valve 43 are opened and closed. By adjusting the gas atmosphere control unit 50, it is replaced with N while maintaining the atmospheric pressure. Load lock room
10は減圧されないため,有機物 5はロードロック室 10の内壁から脱離せず,基板 1は 有機物 5で汚染されることはなレ、。 Since 10 is not depressurized, the organic substance 5 does not desorb from the inner wall of the load lock chamber 10, and the substrate 1 is not contaminated with the organic substance 5.
[0075] 一方, 2段目のロードロック室 11は,定常時は真空排気され,かつべ一キングヒータ 20により加熱され,内壁に有機物 5が付着しない状態に保たれている。この 2段目の ロードロック室 11に不活性ガスを導入し大気圧にした後,ゲートバルブ 41を開け,基 板 1を搬送ステージ 3上に移動させ,ゲートバノレブ 41を閉める。この際、 1段目のロード ロック室 10内の,微量の不純物ガスが一部 2段目のロードロック室 11に流れ込むため , 2段目のロードロック室 11は一旦真空排気してから,不活性ガスでパージする。何 度か真空排気と不活性ガスパージすることにより,不純物の濃度は充分低下する。 2 段目のロードロック室 11の内壁には有機物 5が付着していないため,減圧にしても有 機物 5が基板 1を汚染することはない。  On the other hand, the load lock chamber 11 in the second stage is evacuated in a steady state and heated by the baking heater 20 so that the organic substance 5 does not adhere to the inner wall. After introducing an inert gas into the second-stage load lock chamber 11 and bringing it to atmospheric pressure, the gate valve 41 is opened, the substrate 1 is moved onto the transfer stage 3, and the gate vano rev 41 is closed. At this time, since a small amount of impurity gas in the first-stage load lock chamber 10 partially flows into the second-stage load lock chamber 11, the second-stage load lock chamber 11 is once evacuated and then discharged. Purge with active gas. By several evacuations and inert gas purges, the impurity concentration is sufficiently reduced. Since organic substance 5 does not adhere to the inner wall of load lock chamber 11 in the second stage, organic substance 5 does not contaminate substrate 1 even under reduced pressure.
[0076] ここでは,内壁に有機物 5が付着しないようにするためべ一キングヒータ 20を用いた が,付着した有機汚染を酸素プラズマ,水素プラズマ、窒素プラズマ等の Cを含まな いガスを用いたプラズマを発生させ,内壁をクリーニングする方法も効果的である。 [0077] 処理室 12は,定常時は真空排気されている。直前に処理が行われていない場合 は,排気ポンプ 15からの逆拡散等により内壁に付着した微量の有機物が存在するの で,一度ダミー基板を入れて,酸素プラズマ、水素プラズマや窒素プラズマで内壁を クリーニングしておくのが好ましい。熱酸化炉の場合であれば,熱酸化により有機物 5 を燃焼除去しておくのがよい。 CVD炉の場合でも,酸化性ガスを流して昇温するなど ,有機物 5を除去しておく。 [0076] Here, the baking heater 20 was used to prevent the organic matter 5 from adhering to the inner wall, but the adhering organic contamination was detected by using a gas that does not contain C, such as oxygen plasma, hydrogen plasma, and nitrogen plasma. A method of cleaning the inner wall by generating the generated plasma is also effective. [0077] The processing chamber 12 is evacuated in a steady state. If no treatment has been performed immediately before, there is a small amount of organic matter adhering to the inner wall due to reverse diffusion from the exhaust pump 15, so a dummy substrate is inserted and the inner wall is then treated with oxygen plasma, hydrogen plasma, or nitrogen plasma. It is preferable to clean. In the case of a thermal oxidation furnace, the organic matter 5 should be burned and removed by thermal oxidation. Even in the case of a CVD furnace, remove organic matter 5 by raising the temperature by flowing an oxidizing gas.
[0078] 2段目のロードロック室 11と処理室 12を lKpa程度の同じ真空度にした後,ゲートバ ルブ 42を開き,基板 1を処理ステージ 4に移動し,ゲートバルブ 42を閉める。処理ステ ージ 4をプロセス温度に昇温したあと,マイクロ波発生装置 23から導波管 22を通して ナ 21の直下にプラズマを発生させる。このプラズマにより Krガスのプラズマを発生さ せ, Krラジカルや Krイオンを基板 1の表面に供給し,基板 1の表面を終端している Hを 除去する。その後, Kr/O等により発生させた酸素ラジカルにより基板 1を酸化処理 [0078] After the second-stage load lock chamber 11 and the processing chamber 12 have the same degree of vacuum of about 1 Kpa, the gate valve 42 is opened, the substrate 1 is moved to the processing stage 4, and the gate valve 42 is closed. After the processing stage 4 is heated to the process temperature, plasma is generated from the microwave generator 23 through the waveguide 22 and directly under the na 21. This plasma generates a Kr gas plasma, supplies Kr radicals and Kr ions to the surface of the substrate 1, and removes the H that terminates the surface of the substrate 1. After that, the substrate 1 is oxidized by oxygen radicals generated by Kr / O etc.
2  2
する。  To do.
[0079] ここでは、 RLASを用いた Kr/Oラジカル酸化の例を示した力 並行平板,その他の  [0079] Here we show the example of Kr / O radical oxidation using RLAS.
2  2
方法により発生させたプラズマによるラジカル酸化の場合や, Kr以外の Xeや Ar等の 不活性ガスを用いた場合についても同様である。また,熱酸化や, CVD酸化膜の成 膜,ラジカル窒化,熱窒化,ラジカル酸窒化,熱酸窒化,スパッタその他の薄膜の成 膜であっても同様である。重要なのは, 2段のロードロック室 10, 11により,処理直前 の基板 1の表面に有機物 5や SiC,その他, Hや未制御酸化膜が存在しない状態に することである。  The same applies to radical oxidation by plasma generated by the method, and when inert gases such as Xe and Ar other than Kr are used. The same applies to thermal oxidation, CVD oxide film formation, radical nitridation, thermal nitridation, radical oxynitridation, thermal oxynitridation, sputtering, and other thin film formations. What is important is that the two-stage load lock chambers 10 and 11 keep the organic material 5, SiC, and other H and uncontrolled oxide films on the surface of the substrate 1 immediately before processing.
[0080] (実施の形態 2)  [0080] (Embodiment 2)
本発明の実施の形態 2に係る薄膜形成装置について説明する。  A thin film forming apparatus according to Embodiment 2 of the present invention will be described.
[0081] 図 6に示すように,処理室 12の前室に 1段目のロードロック室 10と 2段目のロードロッ ク室 11が設けられている。 2段目のロードロック室 11と処理室 12は,それぞれ,ガス導 入口 31, 32と,ガス流量制御バルブ 54, 55と,排気ポンプ 14, 15,排気量制御ゲート バルブ 44, 45と,前記ガス流量制御バルブ 54, 55と排気量制御バルブ 44, 45を制御 して真空度及びガス濃度を制御するガス雰囲気制御部 51, 52とを備えている。 [0082] 1段目ロードロック室 10と外部の間,外部と 2段目のロードロック室 11の間, 2段目の ロードロック室 11と処理室 12の間には,それぞれゲートバルブ 46, 40, 42が設置され ている。 2段目のロードロック室 11は, 内壁への有機物の付着を防ぐためのベーキン グヒータ 20を備えている。処理室 12には,ラジカル酸化を行うために必要なラジアル ラインスロットアンテナ(RLSAアンテナ) 21,導波管 22,マイクロ波発生装置 23が設置 されている。 As shown in FIG. 6, a first-stage load lock chamber 10 and a second-stage load lock chamber 11 are provided in the front chamber of the processing chamber 12. The load lock chamber 11 and the processing chamber 12 in the second stage have gas inlets 31 and 32, gas flow control valves 54 and 55, exhaust pumps 14 and 15, displacement control gate valves 44 and 45, respectively, Gas flow control valves 54 and 55 and exhaust gas control valves 44 and 45 are provided to control the degree of vacuum and gas concentration, and gas atmosphere control units 51 and 52 are provided. [0082] Between the first stage load lock chamber 10 and the outside, between the outside and the second stage load lock chamber 11, and between the second stage load lock chamber 11 and the processing chamber 12, gate valves 46, 40 and 42 are installed. The second-stage load lock chamber 11 is equipped with a baking heater 20 to prevent organic substances from adhering to the inner wall. In the processing chamber 12, a radial line slot antenna (RLSA antenna) 21, a waveguide 22, and a microwave generator 23 necessary for radical oxidation are installed.
[0083] 1段目のロードロック室 10は,例えば洗浄装置など,別の前処理装置などで不活性 ガスパージされ,本薄膜形成装置に搬送するための搬送容器として用いられる。 1段 目のロードロック室 10は, 2段目のロードロック室 11と接続され,ゲートバルブ 46とゲ 一トバノレブ 40を開けることにより,基板 1を 1段目のロードロック室 10から 2段目のロー ドロック室 11に搬送できる機構を有してレ、る。  [0083] The first-stage load lock chamber 10 is purged with an inert gas, for example, by another pretreatment device such as a cleaning device, and is used as a transfer container for transfer to the thin film forming apparatus. The first-stage load lock chamber 10 is connected to the second-stage load lock chamber 11, and the substrate 1 is moved from the first-stage load lock chamber 10 to the second-stage by opening the gate valve 46 and the gate valve 40. It has a mechanism that can transport it to the load lock chamber 11.
[0084] 1段目のロードロック室 10は,別の装置により不活性ガスが導入され,大気圧にされ ている。一方, 2段目のロードロック室 11は,定常時は真空排気され,かつべ一キング ヒータ 20により加熱され,内壁に有機物が付着しない状態に保たれている。この 2段 目のロードロック室 11に不活性ガスを導入し大気圧にし, 1段目のロードロック室 10と 2段目のロードロック室 11を接続した後,ゲートバルブ 46とゲートバルブ 40を開けて, 処理される基板 1が 2段目のロードロック室 11に導入され,ゲートバルブ 46とゲートバ ルブ 40が閉められる。  [0084] The first-stage load lock chamber 10 is brought to atmospheric pressure by introducing an inert gas from another device. On the other hand, the load lock chamber 11 in the second stage is evacuated during normal operation and heated by the baking heater 20 so that organic substances do not adhere to the inner wall. An inert gas is introduced into the second-stage load lock chamber 11 to bring it to atmospheric pressure, and after the first-stage load lock chamber 10 and the second-stage load lock chamber 11 are connected, the gate valve 46 and the gate valve 40 are connected. The substrate 1 to be processed is introduced into the load lock chamber 11 in the second stage, and the gate valve 46 and the gate valve 40 are closed.
[0085] この際,外気の侵入はなぐ 2段目のロードロック室 11の内壁には,有機物の汚染 はない。ただし, 1段目のロードロック室 10内の,微量の不純物ガスが一部 2段目の口 ードロック室 11に流れ込むため, 2段目のロードロック室 11は一旦真空排気してから, 不活性ガスでパージする。何度か真空排気と不活性ガスパージすることにより,不純 物の濃度は充分低下する。 2段目のロードロック室 11の内壁には有機物が付着して いないため,減圧にしても有機物が基板 1を汚染することはない。処理される基板 1は 搬送ステージ 3に支持される。  [0085] At this time, there is no contamination of organic matter on the inner wall of the second load lock chamber 11 where outside air does not enter. However, since a small amount of impurity gas in the first-stage load lock chamber 10 partially flows into the second-stage port lock chamber 11, the second-stage load lock chamber 11 is once evacuated and then inactive. Purge with gas. Impurities are sufficiently reduced by several evacuations and inert gas purges. Since organic substances do not adhere to the inner wall of the second-stage load lock chamber 11, the organic substances do not contaminate the substrate 1 even under reduced pressure. The substrate 1 to be processed is supported on the transfer stage 3.
[0086] ここでは,内壁に有機物が付着しないようにするためべ一キングヒータ 20を用いた が,付着した有機汚染を酸素プラズマ,窒素プラズマ等の Cを含まないガスを用いた プラズマを発生させ,内壁をクリーニングする方法も効果的である。 [0087] 処理室 12は,定常時は真空排気されている。直前に処理が行われていない場合 は,排気ポンプ 15からの逆拡散等により内壁に付着した微量の有機物が存在するの で,一度ダミー基板を入れて,酸素プラズマや窒素プラズマで内壁をクリーニングし ておくのが好ましい。熱酸化炉の場合であれば,熱酸化により有機物を燃焼除去し ておくのがよい。 CVD炉の場合でも,酸化性ガスを流して,昇温するなど,有機物を 除去しておく。 [0086] Here, the baking heater 20 was used to prevent the organic matter from adhering to the inner wall, but the adhering organic contamination was generated by generating plasma using a gas containing no C, such as oxygen plasma and nitrogen plasma. The method of cleaning the inner wall is also effective. [0087] The processing chamber 12 is evacuated in a steady state. If no treatment has been performed immediately before, there is a small amount of organic matter adhering to the inner wall due to back-diffusion from the exhaust pump 15, so a dummy substrate is inserted and the inner wall is cleaned with oxygen plasma or nitrogen plasma. It is preferable to keep it. In the case of a thermal oxidation furnace, it is better to burn off organic substances by thermal oxidation. Even in the case of a CVD furnace, the organic substances are removed by flowing an oxidizing gas and raising the temperature.
[0088] 2段目のロードロック室 11と処理室 12を lKPa程度の同じ真空度にした後,ゲートバ ルブ 42を開き,基板 1を処理ステージ 4に移動し,ゲートバルブ 42を閉める。処理ステ ージ 4を,プロセス温度に昇温したあと,マイクロ波発生装置 23から導波管 22を通して ナ 21の直下にプラズマを発生させる。このプラズマにより Krガスのプラズマを発生さ せ, Krラジカルや Krイオンを基板 1の表面に供給し,基板 1の表面を終端している Hを 除去する。その後, Kr/O等により発生させた酸素ラジカルにより基板 1を酸化処理 する。  [0088] After the second-stage load lock chamber 11 and the processing chamber 12 have the same degree of vacuum of about 1 KPa, the gate valve 42 is opened, the substrate 1 is moved to the processing stage 4, and the gate valve 42 is closed. After the processing stage 4 is heated to the process temperature, plasma is generated from the microwave generator 23 through the waveguide 22 and directly under the na 21. This plasma generates a Kr gas plasma, supplies Kr radicals and ions to the surface of the substrate 1, and removes the H that terminates the surface of the substrate 1. After that, the substrate 1 is oxidized by oxygen radicals generated by Kr / O.
[0089] ここでは RLASを用いた Kr/Oラジカル酸化の例を示した力 並行平板,その他の方 法により発生させたプラズマによるラジカル酸化の場合や, Kr以外の Xeや Ar等の不 活性ガスを用いた場合についても同様である。また,熱酸化や, CVD酸化膜の成膜 ,ラジカル窒化,熱窒化,ラジカル酸窒化,熱酸窒化,その他の薄膜の成膜であって も同様である。重要なのは, 2段のロードロック室 10、 11により,処理直前の基板 1の 表面に有機物や SiC,その他, Hや未制御酸化膜が存在しない状態にすることである  [0089] Here we show examples of Kr / O radical oxidation using RLAS. Parallel plates, radical oxidation by plasma generated by other methods, and inert gases such as Xe and Ar other than Kr. The same applies to the case of using. The same applies to thermal oxidation, CVD oxide film deposition, radical nitridation, thermal nitridation, radical oxynitridation, thermal oxynitridation, and other thin film depositions. What is important is that the two-stage load lock chambers 10 and 11 make the surface of the substrate 1 just before the treatment have no organic substances, SiC, other H, and uncontrolled oxide films.
[0090] (実施の形態 3) [0090] (Embodiment 3)
本発明の実施の形態 3に係る表面分析装置または表面監査装置について説明す る。  A surface analysis apparatus or surface inspection apparatus according to Embodiment 3 of the present invention will be described.
[0091] 図 7に示すように,処理室 (分析室または観察室) 12の前室に 1段目のロードロック 室 10と 2段目のロードロック室 11が設けられている。 2つのロードロック室 10, 11と処理 室 12は,それぞれ,ガス導入口 30, 31, 32と,ガス流量制御バルブ 53, 54, 55と,排気 ポンプ 13, 14, 15,排気量制御ゲートバルブ 43, 44, 45と,前記ガス流量制御バルブ 5 3, 54, 55と排気量制御バルブ 43, 44, 45を制御して,真空度及びガス濃度を制御す る,ガス雰囲気制御部 50, 51, 52とを備えている。 As shown in FIG. 7, a first-stage load lock chamber 10 and a second-stage load lock chamber 11 are provided in the front chamber of the processing chamber (analysis chamber or observation chamber) 12. The two load lock chambers 10, 11 and the processing chamber 12 have gas inlets 30, 31, 32, gas flow control valves 53, 54, 55, exhaust pumps 13, 14, 15, and exhaust volume control gate valves, respectively. 43, 44, 45 and the gas flow control valve 5 3, 54, 55 and displacement control valves 43, 44, 45 to control the degree of vacuum and gas concentration, and gas atmosphere control units 50, 51, 52 are provided.
[0092] 1段目ロードロック室 10と外部の間, 1段目ロードロック室 10と 2段目のロードロック室 11の間, 2段目のロードロック室 11と処理室 12の間には,それぞれゲートバルブ 40, 4 1, 42が設置されている。 2段目のロードロック室 11には,内壁への有機物付着を防ぐ ためのベーキングヒータ 20を備えている。処理室 12には,分析や観察に必要な, X線 源 (励起源) 24,検出器 25を備えている。  [0092] Between the first-stage load lock chamber 10 and the outside, between the first-stage load lock chamber 10 and the second-stage load lock chamber 11, and between the second-stage load lock chamber 11 and the processing chamber 12. Gate valves 40, 41, and 42 are installed, respectively. The second-stage load lock chamber 11 is equipped with a baking heater 20 to prevent organic substances from adhering to the inner wall. The processing chamber 12 is equipped with an X-ray source (excitation source) 24 and a detector 25 necessary for analysis and observation.
[0093] 1段目のロードロック室 10に不活性ガスを導入し大気圧にした後,ゲートバルブ 40を 開けて大気開放し,装置外から 1段目のロードロック室 10に,分析または観察される 基板 1が導入され,ゲートバルブ 40を閉める。この際,外気から有機物が僅かに侵入 する力 S,処理毎に 1段目のロードロック室 10は大気開放されるため,有機物 5がその 内壁に蓄積している。処理される基板 1は搬送ステージ 2に支持される。 1段目のロー ドロック室 10は,ガス導入口 30から N等の不活性ガスが導入され,排気ポンプ 13によ り排気されるが,ガス流量制御バルブ 53と排気量制御ゲートバルブ 43の開閉を,ガス 雰囲気制御部 50により調整することにより,大気圧を保ちながら, Nに置換される。口 ードロック室 10は減圧されないため,有機物 5はロードロック室 10の内壁力 脱離せず ,基板 1は有機物 5で汚染されることはない。  [0093] After introducing an inert gas into the first-stage load lock chamber 10 and bringing it to atmospheric pressure, the gate valve 40 is opened to release the atmosphere, and analysis or observation is performed from outside the apparatus to the first-stage load lock chamber 10. The substrate 1 is introduced and the gate valve 40 is closed. At this time, the organic substance 5 has accumulated on the inner wall of the load lock chamber 10 at the first stage because the force S that organics enter slightly from the outside air and the first stage load lock chamber 10 is released to the atmosphere for each treatment. The substrate 1 to be processed is supported on the transfer stage 2. In the first-stage load lock chamber 10, an inert gas such as N is introduced from the gas inlet 30 and exhausted by the exhaust pump 13, but the gas flow control valve 53 and the exhaust control gate valve 43 are opened and closed. Is adjusted to N while maintaining the atmospheric pressure by adjusting the gas atmosphere control unit 50. Since the port lock chamber 10 is not depressurized, the organic material 5 does not desorb the inner wall force of the load lock chamber 10, and the substrate 1 is not contaminated by the organic material 5.
[0094] 一方, 2段目のロードロック室 11は,定常時は真空排気され,かつべ一キングヒータ 20により加熱され,内壁に有機物が付着しない状態に保たれている。この 2段目の口 ードロック室 11に不活性ガスを導入し大気圧にした後,ゲートバルブ 41を開け,基板 1 を搬送ステージ 3上に移動させ,ゲートバノレブ 41を閉める。この際 1段目のロードロッ ク室 10内の,微量の不純物ガスが一部 2段目のロードロック室 11に流れ込むため, 2 段目のロードロック室 11はー且真空排気が必要である。処理室 12が超高真空の場 合,少なくとも高真空までロードロック室を排気する。 2段目のロードロック室 11の内 壁には有機物が付着していないため,減圧にしても有機物が分析試料を汚染するこ とはない。 On the other hand, the load lock chamber 11 in the second stage is evacuated in a steady state and heated by the baking heater 20 so that organic substances do not adhere to the inner wall. After introducing an inert gas into the second-stage port lock chamber 11 to bring it to atmospheric pressure, the gate valve 41 is opened, the substrate 1 is moved onto the transfer stage 3, and the gate vano rev 41 is closed. At this time, a small amount of impurity gas in the first-stage load lock chamber 10 flows into the second-stage load lock chamber 11, so the second-stage load lock chamber 11 must be evacuated. If the processing chamber 12 is ultra-high vacuum, the load lock chamber is evacuated to at least high vacuum. Since organic substances do not adhere to the inner wall of the second-stage load lock chamber 11, the organic substances do not contaminate the analytical sample even under reduced pressure.
[0095] ここでは,内壁に有機物が付着しないようにするためべ一キングヒータ 20を用いた 力 付着した有機汚染を酸素プラズマ,窒素プラズマ等の Cを含まないガスを用いた プラズマを発生させ,内壁をクリーニングする方法も効果的である。 [0095] Here, in order to prevent organic matter from adhering to the inner wall, force using the baking heater 20 was used. Organic gas that did not contain C, such as oxygen plasma and nitrogen plasma, was used as the attached organic contamination. A method of generating plasma and cleaning the inner wall is also effective.
[0096] 処理室 12は,定常時はイオンポンプ等により,超高真空に排気されている。超高真 空を実現するために,すでにべ一キング等により,分析室の内壁はクリーニングされ ている。  [0096] The processing chamber 12 is evacuated to an ultra-high vacuum by an ion pump or the like in a steady state. In order to achieve an ultra-high vacuum, the inner wall of the analysis chamber has already been cleaned by baking.
[0097] 2段目のロードロック室 11を高真空以上の真空度に高めた後,ゲートバルブ 42を開 き,分析試料 1を処理ステージ 4に移動し,ゲートバルブ 42を閉める。この分析試料表 面に, X線,電子線,イオン線の照射や,探針を近づけるなどして,分析もしくは観察 を行う。図 7は X線光電子分光装置の例であるが, X線源 24から X線を分析試料表面 に照射し,分析試料から飛び出す光電子を,エネルギー分光器を含む検出器 25に より検出する。重要なのは, 2段のロードロック室 11により,分析直前の基板表面に有 機物が存在しない状態にすることである。  [0097] After raising the second-stage load lock chamber 11 to a degree of vacuum higher than high vacuum, the gate valve 42 is opened, the analysis sample 1 is moved to the processing stage 4, and the gate valve 42 is closed. Analysis or observation is performed by irradiating the sample surface with X-rays, electron beams, ion beams, or bringing a probe closer. Figure 7 shows an example of an X-ray photoelectron spectrometer. The X-ray source 24 irradiates the surface of the analysis sample with X-rays, and the photoelectrons jumping out of the analysis sample are detected by the detector 25 including the energy spectrometer. What is important is that the two-stage load lock chamber 11 ensures that no organic matter exists on the substrate surface immediately before analysis.
産業上の利用可能性  Industrial applicability
[0098] 本発明によれば,基板表面への有機汚染の付着を防止し,有機汚染のない薄膜を 形成することが可能となる。ラジカル酸化の場合,未制御酸化膜の形成,有機汚染の 付着, SiCの形成, Hのシリコン酸化膜中への取込を全て同時に防止することにより, シリコン酸化膜の絶縁特性を向上させる。これにより,本発明は、シリコン酸化膜を薄 膜化や,その他薄膜の高信頼性化を実現することができ、高性能化が実現可能な超 LSIに適用可能である。 According to the present invention, it is possible to prevent organic contamination from adhering to the substrate surface and form a thin film free from organic contamination. In the case of radical oxidation, the insulation characteristics of the silicon oxide film are improved by simultaneously preventing the formation of an uncontrolled oxide film, the adhesion of organic contamination, the formation of SiC, and the incorporation of H into the silicon oxide film. As a result, the present invention can be applied to a VLSI capable of realizing thinning of a silicon oxide film and high reliability of other thin films and high performance.

Claims

請求の範囲 The scope of the claims
[1] 所定の試料を外部から導入して収容し, 10 kPa〜1000 kPaを保持したまま不活性 ガスで置換できる 1段目のロードロック室と,  [1] A first-stage load lock chamber that can be installed by introducing a predetermined sample from the outside and can be replaced with an inert gas while maintaining 10 kPa to 1000 kPa,
所定の試料を収容し, 内壁に有機物を吸着しなレ、もしくは吸着した有機物を除去 できる機構を備えた 2段目のロードロック室とを有すること特徴とする 2段式ロードロッ ク室。  A two-stage load-lock chamber characterized by having a second-stage load-lock chamber that houses a specified sample and does not adsorb organic substances on the inner wall, or has a mechanism that can remove adsorbed organic substances.
[2] 表面分析装置のロードロック室として用いられることを特徴とする請求項 1に記載の  [2] The load analyzer according to claim 1, wherein the load lock chamber is used for a surface analyzer.
2段式ロードロック室。  Two-stage load lock room.
[3] 表面観察装置のロードロック室として用いられることを特徴とする請求項 1に記載の  [3] The device according to claim 1, which is used as a load lock chamber of a surface observation device.
2段式ロードロック室。  Two-stage load lock room.
[4] 前記表面分析装置が, X線光電子分光装置,ォージェ電子分光装置,ダイナミック  [4] The surface analyzer is an X-ray photoelectron spectrometer, an Auger electron spectrometer, dynamic
2次イオン質量分析装置,飛行時間型 2次イオン質量分析装置,走査型原子間カ顕 微鏡または走査型トンネル顕微鏡であることを特徴とする請求項 1または 2に記載の 2 段式ロードロック室。  3. The two-stage load lock according to claim 1, which is a secondary ion mass spectrometer, a time-of-flight secondary ion mass spectrometer, a scanning interatomic microscope, or a scanning tunneling microscope. Room.
[5] 基板を外部から導入し,大気圧を lOKpa〜: !OOOKpaに保持したまま不活性ガス で置換する 1段目のロードロック室と,  [5] A substrate is introduced from the outside, and the atmospheric pressure is lOKpa ~:! First stage load-lock chamber that is replaced with inert gas while maintaining OOOKpa;
基板を収容し,内壁に有機物を吸着させないもしくは吸着した有機物を除去する機 構を備えた 2段目のロードロック室と,  A second stage load lock chamber equipped with a mechanism for accommodating the substrate and not adsorbing or removing adsorbed organic matter on the inner wall;
基板を収容し,所定の薄膜を形成するための膜形成機構を有した処理室と,  A processing chamber having a film forming mechanism for accommodating a substrate and forming a predetermined thin film;
1段目ロードロック室, 2段目ロードロック室及び処理室の真空度及びガス濃度をそ れぞれ所定の値に制御するためのガス雰囲気制御部と、  A gas atmosphere control unit for controlling the vacuum degree and gas concentration of the first-stage load lock chamber, the second-stage load lock chamber, and the processing chamber to respective predetermined values;
1段目ロードロック室, 2段目ロードロック室及び処理室間で,基板を移動させる搬 送機構と,  A transport mechanism for moving the substrate between the first-stage load lock chamber, the second-stage load lock chamber, and the processing chamber;
1段目ロード、ロック室と 2段目ロード、ロック室間, 2段目ロード、ロック室と処理室間を, それぞれ開閉し基板を通すためのゲートバノレブとを有すること特徴とする薄膜形成 装置。  A thin film forming apparatus comprising: a first stage load, a lock chamber and a second stage load, a lock chamber, a second stage load, and a gate vano lev for opening and closing the lock chamber and the processing chamber.
[6] 前記ガス雰囲気制御部は,前記 1段目ロードロック室, 2段目ロードロック室,処理 室をそれぞれ排気するための排気部と,排気量を制御する排気量制御ゲートバルブ と,ガスを導入するためのガス導入部と,ガス流量を制御するガス流量制御バルブと をそれぞれ有することを特徴とする請求項 5に記載の薄膜形成装置。 [6] The gas atmosphere control unit includes an exhaust unit for exhausting the first-stage load lock chamber, the second-stage load lock chamber, and the processing chamber, and an exhaust amount control gate valve for controlling the exhaust amount. 6. The thin film forming apparatus according to claim 5, further comprising: a gas introduction unit for introducing gas; and a gas flow rate control valve for controlling a gas flow rate.
[7] 前記 2段目のロードロック室は,炉内壁に付着した有機物を脱離させるかまたは有 機物の付着を防止するためのクリーニング機構を有することを特徴とする請求項 5ま たは 6に記載の薄膜形成装置。 [7] The second stage load lock chamber has a cleaning mechanism for removing organic substances adhering to the inner wall of the furnace or preventing adhesion of organic substances. 6. The thin film forming apparatus according to 6.
[8] 前記クリーニング機構は,内壁をべ一キングする加熱機構を有すること特徴とする 請求項 7に記載の薄膜形成装置。 8. The thin film forming apparatus according to claim 7, wherein the cleaning mechanism has a heating mechanism for baking the inner wall.
[9] 前記クリーニング機構は,内壁にプラズマ照射するプラズマ生成機構を有すること 特徴とする請求項 7に記載の薄膜形成装置。 9. The thin film forming apparatus according to claim 7, wherein the cleaning mechanism has a plasma generation mechanism for irradiating plasma on an inner wall.
[10] 前記薄膜形成機構は,ラジカル酸化を行うためのプラズマ生成部と,酸化性ガス導 入部とを有すること特徴とする請求項 5〜9のいずれかに記載の薄膜形成装置。 10. The thin film forming apparatus according to any one of claims 5 to 9, wherein the thin film forming mechanism includes a plasma generation unit for performing radical oxidation and an oxidizing gas introduction unit.
[11] 前記薄膜形成機構は,ラジカル窒化を行うためのプラズマ生成部と,窒化性ガス導 入部とを有すること特徴とする請求項 5〜9のいずれかに記載の薄膜形成装置。 11. The thin film forming apparatus according to claim 5, wherein the thin film forming mechanism includes a plasma generating unit for performing radical nitriding and a nitriding gas introducing unit.
[12] 前記薄膜形成機構は,ラジカル酸窒化を行うためのプラズマ生成部と,酸窒化性ガ スもしくは酸化性ガスと窒化性ガスの導入部とを有すること特徴とする請求項 5〜9の いずれかに記載の薄膜形成装置。 12. The thin film formation mechanism includes a plasma generation unit for performing radical oxynitriding, and an introduction unit of oxynitriding gas or oxidizing gas and nitriding gas. The thin film forming apparatus according to any one of the above.
[13] 前記薄膜形成機構は,熱酸化を行うための加熱部と,酸化性ガス導入部とを有す ること特徴とする請求項 5〜9のいずれかに記載の薄膜形成装置。 13. The thin film forming apparatus according to claim 5, wherein the thin film forming mechanism includes a heating unit for performing thermal oxidation and an oxidizing gas introduction unit.
[14] 前記薄膜形成機構は,熱窒化を行うための加熱部と,窒化性ガス導入部とを有す ること特徴とする請求項 5〜9のいずれかに記載の薄膜形成装置。 14. The thin film forming apparatus according to claim 5, wherein the thin film forming mechanism includes a heating unit for performing thermal nitriding and a nitriding gas introduction unit.
[15] 前記薄膜形成機構は,熱酸窒化を行うための加熱部と,酸窒化性ガスもしくは酸化 性ガスと窒化性ガスの導入部とを有すること特徴とする請求項 5〜9のいずれかに記 載の薄膜形成装置。 15. The thin film formation mechanism includes a heating part for performing thermal oxynitridation, and an introduction part of an oxynitriding gas or an oxidizing gas and a nitriding gas. The thin film forming apparatus described in 1.
[16] 前記薄膜形成機構は, CVD成膜を行うための加熱部と,原料ガス導入部とを有す ること特徴とする請求項 5〜9のいずれかに記載の薄膜形成装置。  16. The thin film forming apparatus according to claim 5, wherein the thin film forming mechanism includes a heating unit for performing CVD film formation and a source gas introducing unit.
[17] 前記薄膜形成機構は,スパッタ成膜を行うためのターゲット、イオン発生部,加熱部 及び原料ガス導入部とを有すること特徴とする請求項 5〜9のいずれかに記載の薄 膜形成装置。 [17] The thin film formation mechanism according to any one of [5] to [9], wherein the thin film formation mechanism includes a target for performing sputter deposition, an ion generation unit, a heating unit, and a source gas introduction unit apparatus.
[18] 前記ラジカル酸化,ラジカル窒化及びラジカル酸窒化を行うための前記プラズマ生 成部は,マイクロ波発生部と,マイクロ波導波管とラジアルラインスロットアンテナとを 有すること特徴とする請求項 10〜: 12のいずれかに記載の薄膜形成装置。 18. The plasma generation unit for performing radical oxidation, radical nitridation, and radical oxynitridation includes a microwave generation unit, a microwave waveguide, and a radial line slot antenna. The thin film forming apparatus according to any one of 12 above.
[19] 前記ラジカル酸化,ラジカル窒化,及びラジカル酸窒化を行うための,前記プラズ マ生成部は,高周波を印加できる平行平板電極を有すること特徴とする請求項 10〜 12のいずれかに記載の薄膜形成装置。  [19] The plasma generation unit for performing the radical oxidation, radical nitridation, and radical oxynitridation includes parallel plate electrodes to which a high frequency can be applied. Thin film forming equipment.
[20] 前記 CVD成膜は, SiO , SiN, SiON, HfO , HiSiO, HfSiON力、ら成るグループの中か ら選ばれた少なくとも一つのゲート絶縁膜用薄膜の成膜であること特徴とする請求項 [20] The CVD film formation is characterized in that at least one gate insulating film thin film selected from the group consisting of SiO, SiN, SiON, HfO, HiSiO, and HfSiON force is formed. Term
16に記載の薄膜形成装置。 16. The thin film forming apparatus according to 16.
[21] 前記スパッタ成膜は, Sほたは Hfのゲート絶縁膜形成用の下地薄膜の成膜である こと特徴とする請求項 17に記載の薄膜形成装置。 21. The thin film forming apparatus according to claim 17, wherein the sputter film formation is a film formation of a base thin film for forming a gate insulating film of S or Hf.
[22] 少なくとも洗浄処理を行う前処理装置から大気圧の不活性雰囲気下で搬送される 搬送容器が,有機物の付着を防止もしくは有機物の除去を行う 2段目のロードロック 室とゲートバルブを介して接続され,大気に触れずに基板を 2段目のロードロック室 に導入できる機構を有しており, [22] At least from the pre-treatment device that performs the cleaning process, the transport container is transported in an inert atmosphere at atmospheric pressure, through the second-stage load lock chamber and gate valve that prevents or removes organic substances. Connected, and has a mechanism that allows the substrate to be introduced into the second-stage load lock chamber without touching the atmosphere.
この搬送容器が,大気圧のまま不活性ガス雰囲気にする 1段目のロードロック室の 役割を有していること特徴とする請求項 5〜21のいずれかに記載の薄膜形成装置。  The thin film forming apparatus according to any one of claims 5 to 21, wherein the transfer container has a role of a first-stage load lock chamber in which an inert gas atmosphere is maintained at atmospheric pressure.
[23] 少なくとも洗浄処理を行う前処理装置の処理室もしくはそのロードロック室と有機物 の付着を防止もしくは有機物の除去を行う 2段目のロードロック室力 ゲートバルブを 介して直接連結され, [23] At least the treatment chamber of the pretreatment device that performs the cleaning process or its load lock chamber is directly connected to the organic substance by preventing adhesion or removing the organic substance through the second load lock chamber force gate valve.
この前処理装置の処理室もしくはそのロードロック室が大気圧のまま不活性ガス雰 囲気にする 1段目のロードロック室の役割を有していること特徴とする請求項 5〜21 のいずれかに記載の薄膜形成装置。  The process chamber of this pretreatment device or its load lock chamber has a role of a first-stage load lock chamber that makes an inert gas atmosphere at atmospheric pressure. The thin film forming apparatus described in 1.
[24] 処理基板上に形成された誘電体膜であって, [24] A dielectric film formed on a processing substrate,
前記誘電体膜は未制御酸化膜を含まないことを特徴とする誘電体膜。  The dielectric film according to claim 1, wherein the dielectric film does not include an uncontrolled oxide film.
[25] 前記誘電体膜中において, Si-C結合を,誘電体膜と前記処理基板表面との界面付 近において, 1E+12原子ん m2以下の濃度で含むことを特徴とする請求項 24に記載 の誘電体膜。 [25] In the dielectric film, according to claim a Si-C bond, which in the near with the interface between the dielectric film and the treated substrate surface, characterized in that it comprises N 1E + 12 atoms m 2 at a concentration 24. The dielectric film according to 24.
[26] 前記誘電体膜中において, Hを 1E+20原子ん m3以下の濃度で含むことを特徴とす る請求項 24または 25に記載の誘電体膜。 26. The dielectric film according to claim 24, wherein the dielectric film contains H at a concentration of 1E + 20 atoms / m 3 or less.
[27] 前記誘電体膜中において,誘電体膜と前記処理基板表面との界面のラフネスが R[27] In the dielectric film, the roughness of the interface between the dielectric film and the surface of the processing substrate is R
MS値で 0.2 nm以下であることを特徴とする請求項 24〜26に記載の誘電体膜。 27. The dielectric film according to claim 24, wherein an MS value is 0.2 nm or less.
[28] 処理基板と,処理基板上に形成された誘電体膜と,誘電体膜上に形成された電極 とを備えた半導体装置において, [28] In a semiconductor device comprising a processing substrate, a dielectric film formed on the processing substrate, and an electrode formed on the dielectric film,
前記誘電体膜は,未制御酸化膜を含まないことを特徴とする半導体装置。  The semiconductor device, wherein the dielectric film does not include an uncontrolled oxide film.
[29] 前記誘電体膜は, Si-C結合を,誘電体膜と前記処理基板表面との界面付近にお いて, 1E+12原子ん m2以下の濃度で含むことを特徴とする請求項 28に記載の半導 体装置。 [29] The dielectric film is claim that the Si-C bonds, and have you in the vicinity of the interface between the dielectric film and the treated substrate surface, characterized in that it comprises N 1E + 12 atoms m 2 at a concentration The semiconductor device according to 28.
[30] 前記誘電体膜は, Hを 1E+20原子ん m3以下の濃度で含むことを特徴とする請求項 30. The dielectric film according to claim 21, wherein the dielectric film contains H at a concentration of 1E + 20 atoms / m 3 or less.
28または 29に記載の半導体装置。  28. The semiconductor device according to 28 or 29.
[31] 前記誘電体膜は,誘電体膜と前記処理基板表面との界面のラフネスが RMS値で 0. [31] In the dielectric film, the roughness of the interface between the dielectric film and the surface of the processing substrate is an RMS value of 0.
2 醒以下であることを特徴とする請求項 28〜30のいずれかに記載の半導体装置。  The semiconductor device according to any one of claims 28 to 30, wherein the semiconductor device is awakening or lower.
[32] 処理表面上に誘電体膜を形成する際,ロードロック室で不活性ガス雰囲気に大気 圧以上の圧力下で置換することを特徴とした薄膜の形成方法。 [32] A method for forming a thin film, characterized in that, when forming a dielectric film on the treated surface, the load-lock chamber is replaced with an inert gas atmosphere at a pressure higher than atmospheric pressure.
[33] 前記処理基板の表面上に誘電体膜を形成する際,内壁がベーキングされたロード ロック室を用いて減圧して、処理室に導入することを特徴とする請求項 32に記載の 薄膜の形成方法。 [33] The thin film according to [32], wherein when forming the dielectric film on the surface of the processing substrate, the dielectric film is decompressed using a load lock chamber whose inner wall is baked and introduced into the processing chamber. Forming method.
[34] 前記処理基板の表面上に誘電体膜を形成する際,内壁が酸素、水素もしくは窒素 など炭素を含まないガスのプラズマによりプラズマクリーニングされたロードロック室を 用いて減圧して,処理室に導入することを特徴とする請求項 28に記載の薄膜の形成 方法。  [34] When forming the dielectric film on the surface of the processing substrate, the inner wall is depressurized by using a load-lock chamber that is plasma-cleaned by plasma of a gas not containing carbon such as oxygen, hydrogen, or nitrogen, and the processing chamber is The thin film forming method according to claim 28, wherein the thin film forming method is introduced into the thin film.
[35] 処理基板の表面上に誘電体膜を形成する際,ロードロック室で不活性ガス雰囲気 に大気圧以上の圧力下で置換することを特徴とした半導体装置の製造方法。  [35] A method for manufacturing a semiconductor device, characterized in that, when forming a dielectric film on the surface of a processed substrate, the load-lock chamber is replaced with an inert gas atmosphere at a pressure higher than atmospheric pressure.
[36] 前記処理基板の表面上に誘電体膜を形成する際,内壁がベーキングされたロード ロック室を用いて減圧して、処理室に導入することを特徴とする請求項 35に記載の 半導体装置の製造方法。 36. The semiconductor according to claim 35, wherein when forming the dielectric film on the surface of the processing substrate, the dielectric film is decompressed using a load lock chamber whose inner wall is baked and introduced into the processing chamber. Device manufacturing method.
[37] 前記処理基板表面上に誘電体膜を形成する際,内壁が酸素、水素もしくは窒素な ど炭素を含まないガスのプラズマによりプラズマクリーニングされたロードロック室を用 いて減圧して、処理室に導入することを特徴とする請求項 35に記載の半導体装置の 製造方法。 [37] When forming the dielectric film on the surface of the processing substrate, the inner wall is decompressed using a load-lock chamber that is plasma-cleaned by a plasma of a gas not containing carbon such as oxygen, hydrogen, or nitrogen, and the processing chamber is 36. The method of manufacturing a semiconductor device according to claim 35, wherein the method is introduced into the semiconductor device.
[38] 前記処理基板がシリコン基板であることを特徴とする請求項 24〜27のいずれかに 記載の誘電体膜。  [38] The dielectric film according to any one of [24] to [27], wherein the processing substrate is a silicon substrate.
[39] 前記処理基板がシリコン基板であることを特徴とする請求項 28〜31のいずれかに 記載の半導体装置。  39. The semiconductor device according to claim 28, wherein the processing substrate is a silicon substrate.
[40] 前記処理基板がシリコン基板であることを特徴とする請求項 32〜34のいずれかに 記載の薄膜の形成方法。  [40] The method for forming a thin film according to any one of [32] to [34], wherein the processing substrate is a silicon substrate.
[41] 前記処理基板がシリコン基板であることを特徴とする請求項 35〜37に記載の半導 体装置の製造方法。 41. The method for manufacturing a semiconductor device according to claim 35, wherein the processing substrate is a silicon substrate.
[42] 前記誘電体膜の形成方法が,ラジカル酸化,プラズマ酸化もしくは熱酸化であるこ とを特徴とする請求項 24〜27もしくは 38のいずれかに記載の誘電体膜。  42. The dielectric film according to claim 24, wherein the dielectric film is formed by radical oxidation, plasma oxidation, or thermal oxidation.
[43] 前記誘電体膜の形成方法が,ラジカル酸化,プラズマ酸化,もしくは熱酸化である ことを特徴とする請求項 28〜31もしくは 39のいずれかに記載の半導体装置。 [43] The semiconductor device according to any one of [28] to [31] or [39], wherein the dielectric film is formed by radical oxidation, plasma oxidation, or thermal oxidation.
[44] 前記誘電体膜の形成方法が,ラジカル酸化,プラズマ酸化,もしくは熱酸化,であ ることを特徴とする請求項 32〜34もしくは 40のいずれかに記載の薄膜の形成方法。 44. The method for forming a thin film according to claim 32, wherein the method for forming the dielectric film is radical oxidation, plasma oxidation, or thermal oxidation.
[45] 前記誘電体膜の形成方法が,ラジカル酸化,プラズマ酸化,もしくは熱酸化である ことを特徴とする請求項 35〜37もしくは 41のいずれかに記載の半導体装置の製造 方法。 45. The method of manufacturing a semiconductor device according to claim 35, wherein the dielectric film is formed by radical oxidation, plasma oxidation, or thermal oxidation.
[46] 前記誘電体膜の形成方法が, CVDもしくはスパッタであることを特徴とする請求項 2 46. The method for forming the dielectric film is CVD or sputtering.
4〜27もしくは 38もしくは 42のいずれかに記載の誘電体膜。 The dielectric film according to any one of 4 to 27, 38 or 42.
[47] 前記誘電体膜の形成方法が, CVDもしくはスパッタであることを特徴とする請求項 2[47] The method for forming the dielectric film is CVD or sputtering.
8〜31もしくは 39もしくは 43のいずれかに記載の半導体装置。 48. The semiconductor device according to any one of 8 to 31, 39 or 43.
[48] 前記誘電体膜の形成方法が, CVDもしくはスパッタであることを特徴とする請求項 348. The method for forming the dielectric film is CVD or sputtering.
2〜34もしくは 40もしくは 44のいずれかに記載の薄膜の形成方法。 The method for forming a thin film according to any one of 2 to 34, 40 or 44.
[49] 前記誘電体膜の形成方法が, CVDもしくはスパッタであることを特徴とする請求項 3 5〜37もしくは 41もしくは 45のいずれかに記載の半導体装置の製造方法。 [49] The method of forming a dielectric film according to claim 3, wherein the dielectric film is formed by CVD or sputtering. 46. A method of manufacturing a semiconductor device according to any one of 5-37 or 41 or 45.
処理基板上に形成された薄膜であって,  A thin film formed on a processing substrate,
前記薄膜は未制御酸化膜を含まず,かつ有機物を薄膜と前記処理基板表面との 界面付近において, 1E+12原子ん m2以下の濃度で含むことを特徴とする薄膜。 The thin film does not contain an uncontrolled oxide film, and contains an organic substance at a concentration of 1E + 12 atoms / m 2 or less near the interface between the thin film and the surface of the processing substrate.
PCT/JP2006/300833 2005-02-01 2006-01-20 Apparatus for forming thin film WO2006082717A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005025721A JP2006216625A (en) 2005-02-01 2005-02-01 Thin-film forming device, thin film, formation method thereof, semiconductor device, and manufacturing method thereof
JP2005-025721 2005-02-01

Publications (1)

Publication Number Publication Date
WO2006082717A1 true WO2006082717A1 (en) 2006-08-10

Family

ID=36777106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/300833 WO2006082717A1 (en) 2005-02-01 2006-01-20 Apparatus for forming thin film

Country Status (3)

Country Link
JP (1) JP2006216625A (en)
TW (1) TW200639928A (en)
WO (1) WO2006082717A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009049081A (en) * 2007-08-15 2009-03-05 Nikon Corp Bonding apparatus
JP2010202890A (en) * 2009-02-27 2010-09-16 Shincron:Kk Film deposition method and film deposition system
JP2012233263A (en) * 2012-07-20 2012-11-29 Shincron:Kk Film deposition method and film deposition apparatus

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4893156B2 (en) * 2006-08-21 2012-03-07 栗田工業株式会社 Water quality evaluation method and substrate contact tool used therefor
CN102842637A (en) * 2011-06-20 2012-12-26 理想能源设备(上海)有限公司 Substrate treatment device and substrate treatment method
JP2017053005A (en) * 2015-09-10 2017-03-16 株式会社Screenホールディングス Removal method and removal device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11307623A (en) * 1998-04-16 1999-11-05 Tokyo Electron Ltd Object to be treated housing device and carrying in/out stage
JP2001338967A (en) * 2000-05-29 2001-12-07 Hitachi Kokusai Electric Inc Board processing device
JP2002270596A (en) * 2001-03-12 2002-09-20 Matsushita Electric Ind Co Ltd Apparatus for fabricating semiconductor device
JP2003077914A (en) * 2001-09-04 2003-03-14 Matsushita Electric Ind Co Ltd Method for forming insulating film and its forming apparatus
JP2003151977A (en) * 2001-11-13 2003-05-23 Mitsubishi Electric Corp Method for manufacturing semiconductor device and apparatus for forming thin film
WO2003088341A1 (en) * 2002-03-29 2003-10-23 Tokyo Electron Limited Method for forming underlying insulation film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11307623A (en) * 1998-04-16 1999-11-05 Tokyo Electron Ltd Object to be treated housing device and carrying in/out stage
JP2001338967A (en) * 2000-05-29 2001-12-07 Hitachi Kokusai Electric Inc Board processing device
JP2002270596A (en) * 2001-03-12 2002-09-20 Matsushita Electric Ind Co Ltd Apparatus for fabricating semiconductor device
JP2003077914A (en) * 2001-09-04 2003-03-14 Matsushita Electric Ind Co Ltd Method for forming insulating film and its forming apparatus
JP2003151977A (en) * 2001-11-13 2003-05-23 Mitsubishi Electric Corp Method for manufacturing semiconductor device and apparatus for forming thin film
WO2003088341A1 (en) * 2002-03-29 2003-10-23 Tokyo Electron Limited Method for forming underlying insulation film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009049081A (en) * 2007-08-15 2009-03-05 Nikon Corp Bonding apparatus
JP2010202890A (en) * 2009-02-27 2010-09-16 Shincron:Kk Film deposition method and film deposition system
JP2012233263A (en) * 2012-07-20 2012-11-29 Shincron:Kk Film deposition method and film deposition apparatus

Also Published As

Publication number Publication date
JP2006216625A (en) 2006-08-17
TW200639928A (en) 2006-11-16

Similar Documents

Publication Publication Date Title
KR100841866B1 (en) Production method for semiconductor device and substrate processing device
Wallace In-situ studies of interfacial bonding of high-k dielectrics for CMOS beyond 22nm
US7820558B2 (en) Semiconductor device and method of producing the semiconductor device
JP2003218082A (en) Substrate-treating method and apparatus, and manufacturing apparatus of semiconductor device
JPWO2009057223A1 (en) Surface treatment apparatus and substrate treatment method thereof
US10483097B2 (en) Method for cleaning, passivation and functionalization of Si—Ge semiconductor surfaces
WO2006082717A1 (en) Apparatus for forming thin film
Westermann et al. Oxidation stages of clean and H-terminated Si (001) surfaces at room temperature
JP4849863B2 (en) Oxide film formation method
Wegewitz et al. Plasma-oxidation of Ge (100) surfaces using dielectric barrier discharge investigated by metastable induced electron spectroscopy, ultraviolet photoelectron spectroscopy, and x-ray photoelectron spectroscopy
WO2003088345A1 (en) Material for electronic device and process for producing the same
JP2007214504A (en) Backup exhaust chamber, sample processing equipment, sample analyzer equipment, sample processing method, and sample analytical method
Horii et al. Metalorganic chemical vapor deposition of HfO2 films through the alternating supply of tetrakis (1-methoxy-2-methyl-2-propoxy)-hafnium and remote-plasma oxygen
JP3770870B2 (en) Substrate processing method
JP3723085B2 (en) Semiconductor device manufacturing method and manufacturing apparatus
JP5187736B2 (en) Thin film deposition method
JP4078370B2 (en) Substrate processing equipment
JPH08125185A (en) Method and system for fabricating thin film transistor
JP2003347241A (en) Carbon thin film removing method, surface modifying method, and treatment device therefor
KR101386135B1 (en) Manufacturing method for decreasing interface states of sic/sio2 interface
JPS6390138A (en) Method for cleaning semiconductor surface
Hsu Hafnium oxide films for application as gate dielectrics
JPH0467628A (en) Process and device for thin film formation
Vereecke et al. Investigation of fluorine in dry ultrathin silicon oxides
JPH06333913A (en) Method and device for forming insulating film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06712058

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6712058

Country of ref document: EP