WO2006080542A1 - Procede d’estimation de la resistance a la corrosion d’un metal ou d’une plaque metallique enrobee - Google Patents

Procede d’estimation de la resistance a la corrosion d’un metal ou d’une plaque metallique enrobee Download PDF

Info

Publication number
WO2006080542A1
WO2006080542A1 PCT/JP2006/301604 JP2006301604W WO2006080542A1 WO 2006080542 A1 WO2006080542 A1 WO 2006080542A1 JP 2006301604 W JP2006301604 W JP 2006301604W WO 2006080542 A1 WO2006080542 A1 WO 2006080542A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
corrosion
corrosion resistance
thickness
corrosion rate
Prior art date
Application number
PCT/JP2006/301604
Other languages
English (en)
Japanese (ja)
Inventor
Daisuke Mizuno
Sakae Fujita
Hiroshi Kajiyama
Chiaki Kato
Original Assignee
Jfe Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfe Steel Corporation filed Critical Jfe Steel Corporation
Publication of WO2006080542A1 publication Critical patent/WO2006080542A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light
    • G01N17/006Investigating resistance of materials to the weather, to corrosion, or to light of metals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light
    • G01N17/02Electrochemical measuring systems for weathering, corrosion or corrosion-protection measurement

Definitions

  • the present invention relates to a corrosion resistance prediction method for predicting the life of metals and coated metal sheets used in corrosive environments.
  • the present invention has been made to solve the above-described problems, and predicts the corrosion resistance life of a material in a real environment or structure.
  • the material predicted by the corrosion resistance prediction is The purpose is to provide embedded products.
  • the gist of the present invention is as follows.
  • the correlation between the corrosion rate ratio of metal B with respect to the reference metal obtained in the second step and the corrosion rate ratio or corrosion resistance ratio of metal C with respect to the reference metal obtained in the third step is obtained, and this correlation is obtained. From the relationship, the corrosion rate ratio of metal C with respect to the reference metal in the actual environment or the corrosion resistance ratio can be calculated to determine the corrosion rate of metal C in the actual environment Or a fourth step to predict the corrosion resistance time,
  • a method for predicting corrosion resistance of a metal characterized by comprising:
  • metal A as a reference metal is steel
  • metal B is zinc
  • metal C is a zinc-containing alloy
  • the reference metal, metal A, is steel, metal B is zinc or zinc plating, metal C is zinc-containing alloy or zinc-containing alloy plating including surface treatment layer,
  • the corrosion rate or corrosion resistance time of the metal C required in the first step is the average corrosion rate or total corrosion resistance time between the surface treatment layer and the zinc-containing alloy or zinc-containing alloy plating.
  • a method for predicting the corrosion resistance of metals is the average corrosion rate or total corrosion resistance time between the surface treatment layer and the zinc-containing alloy or zinc-containing alloy plating.
  • metal A as a reference metal is steel, metal B is zinc, and metal C is a surface treatment layer.
  • metal A is coated with metal C according to the following equation.
  • a method for predicting the corrosion resistance of a coated metal sheet, characterized in that the corrosion resistance life of the coated metal sheet is obtained.
  • Corrosion resistance (Coating layer (metal C) thickness Metal C corrosion rate) + (Under metal (metal A) thickness No metal A corrosion rate)
  • Corrosion resistance time of coating layer (thickness of coating layer (metal C) Corrosion rate of metal C) 7. Setting of the corrosion rate or corrosion resistance of metal C obtained by the method for predicting corrosion resistance of metal according to any one of items 1 to 5, and setting of a coated metal plate in which metal A is coated with metal C A method for selecting a covered metal plate, wherein the thickness of the coating layer (metal C) is determined by the following equation using the measured corrosion resistance life and the thickness of the base metal (metal A).
  • Corrosion resistance (Coating layer (metal C) thickness Z Metal C corrosion rate) + (Under metal (metal A) thickness No metal A corrosion rate)
  • Corrosion resistance time of coating layer (Coating layer (metal) thickness Metal C corrosion rate)
  • Corrosion life (Coating layer (metal C) thickness Metal C corrosion rate) + (Under metal (metal A) thickness / Metal A corrosion rate)
  • Corrosion resistance time of coating layer (thickness of coating layer (metal C) Corrosion rate of metal C)
  • Item 7 or 8 used as an inner / outer plate, frame, billet, member, reinforcement member such as reinforcement or beam, case, exhaust system part where the coated metal plate is used in automobiles with or without painting.
  • Corrosion rate or corrosion time of metal C obtained by the method for predicting corrosion resistance of metal according to any one of items 1 to 5, and metal A is not coated with metal C.
  • the thickness of the coating layer (metal C) is determined by the following equation using the set corrosion resistance life of the coated metal plate and the thickness of the base metal (metal A). .
  • Corrosion life (Coating layer (metal C) thickness Metal C corrosion rate) + (Under metal (metal A) thickness Z Metal A corrosion rate)
  • FIG. 1 is a flowchart showing a process for predicting a corrosion resistance life of a metal and a coating layer, a design method from the metal and the coating layer and structure, and a manufacturing method thereof.
  • Figure 2 is an illustration of the metal structure for determining the corrosion rate.
  • Figure 3 is an illustration of the definition of corrosion rate in the corrosion test.
  • FIG. 4 is a characteristic diagram obtained by the embodiment (S T 2) in the present invention.
  • Fig. 5 is an explanatory diagram of the relationship between the corrosion resistance life of the surface-treated metal and the thickness and corrosion rate of the coating layer and the underlying metal.
  • Figure 6 shows the relationship between the corrosion rate ratio of steel and the other two metals with respect to the corrosion rate ratio of steel and zinc obtained in the embodiment (ST 2) of the present invention. It is the figure which showed the comparison of the result of extrapolating to the corrosion rate of and the corrosion rate ratio in a real environment.
  • FIG. 1 is a flowchart of the corrosion resistance life prediction method for a metal and a coating layer according to an embodiment of the present invention, the design method for the metal, the coating layer and the structure, and the process of the manufacturing method. .
  • Product conditions are presented first.
  • Product conditions include corrosive environment (use area, structure, part, etc.) and material conditions (corrosion amount, depth of corroded holes, coating blister width, thickness and type of underlying metal and coating layer, etc.).
  • the metal that predicts the corrosion-resistant life or calculates the corrosion rate for prediction is as follows: (a) a single metal as a base, (b) a coating film, an organic film, A surface treatment layer selected from an inorganic coating, an organic-inorganic composite coating, a diffusion layer, a coating layer having a single layer composed of plating, or (c) a base metal having the above-mentioned multilayer coating layer is there. Including those with non-metallic components in the coating layer, (b) and (c) are collectively referred to as “coated metal plate”.
  • Fig. 2 (a) al is a metal
  • Fig. 2 (b) bl is a single surface treatment layer or coating layer
  • b2 is a base metal
  • Fig. 2 (c) cl, c2, c3 is a multilayer surface treatment layer or coating layer
  • c4 is a base metal.
  • Two types of metals with known corrosion rates in the real environment (hereinafter referred to as metals A and B) and corrosion rates in the real environment Conduct multiple corrosion tests on the unknown metal (hereinafter referred to as Metal C), and determine the corrosion rate or corrosion resistance time for each.
  • the corrosion rate is a value obtained by conducting a corrosion test for a certain period and converting the obtained corrosion amount into a corrosion amount for a unit period.
  • the corrosion resistance time is the time required to reach the set amount of corrosion.
  • Metal C may contain non-metallic components as described above. Metal C is a representative of multiple types of metals and need not be a single type. -
  • the corrosion rate ratio of metal B which has a known corrosion rate in the actual environment, to the reference metal is plotted on the horizontal axis for each corrosion test, and a vertical line is drawn at each plot position.
  • a curve like the white circle in Fig. 4 is drawn, as shown by the arrow.
  • the value of the corrosion rate ratio in the actual environment (indicated by black circles) can be estimated.
  • the first term on the right side of this equation is the corrosion resistance time of the coating layer.
  • ST 3 Determine whether the corrosion life of the material obtained by the above processing (ST 2-1) or (ST 2-4) satisfies the required service life, and use it in products. Select the material to be used.
  • the material may be designed to meet the required service life and selected as a structural member for the product.
  • the allowable corrosion thickness of the coating layer is set as follows.
  • the thickness of the metal and coating layer and the thickness of the underlying metal can be determined by determining the allowable corrosion thickness of the underlying metal.
  • Table 1 shows the results of determining the corrosion rates in three types of conventional corrosion test machines and real environments for four types of metals.
  • the base metal plate symbol F e, the same applies below
  • zinc plating Z n
  • Z n zinc-containing alloy with a Z n alloy
  • Metsuki OZA
  • Table 1 Corrosion test 1
  • Corrosion test 2 Corrosion test 3 Actual environment Life ⁇ m / cy ⁇ m./cy m / day m
  • Table 2 summarizes the results obtained in Example 1 by the processing of the embodiment (ST2-2) in the present invention. Corrosion rate ratios with the other three metals were determined based on steel among the four metals. ,
  • a metal whose corrosion resistance is unknown in the actual environment / actual structure (plating film, based on the relative corrosion rate ratio of two or more metals that have been used in the actual structure for a long time) It is possible to accurately estimate the corrosion rate of unknown metals in the actual environment and actual structure through a short-term corrosion acceleration test, and to calculate the corrosion resistance life. In addition, it is possible to design the life of a real structure and contribute to the recently demanded life cycle cost life technology.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Environmental Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

L’invention a pour objet un procédé permettant d’estimer la longévité de la résistance à la corrosion d’un métal ou d’une couche de revêtement utilisé dans un environnement corrosif. Le procédé objet de l’invention comprend une première étape au cours de laquelle la vitesse de corrosion ou durée de résistance à la corrosion est déterminée dans de multiples environnements corrosifs d’essais ; une deuxième étape au cours de laquelle le rapport de vitesse de corrosion est déterminé dans l’environnement réel pendant la première étape en tenant compte de l’environnement réel et des multiples environnements corrosifs d’essais ; une troisième étape au cours de laquelle le rapport de vitesse de corrosion ou rapport de durée de résistance à la corrosion est déterminé par rapport au métal de référence et une quatrième étape au cours de laquelle une corrélation du rapport de vitesse de corrosion ou rapport de durée de résistance à la corrosion obtenu au cours des deuxième et troisième étapes et à partir de données de la corrélation est déterminée afin de calculer le rapport de vitesse de corrosion entre le métal de référence et d’autres métaux dans l’environnement réel.
PCT/JP2006/301604 2005-01-26 2006-01-25 Procede d’estimation de la resistance a la corrosion d’un metal ou d’une plaque metallique enrobee WO2006080542A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005018382 2005-01-26
JP2005-018382 2005-01-26

Publications (1)

Publication Number Publication Date
WO2006080542A1 true WO2006080542A1 (fr) 2006-08-03

Family

ID=36740556

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/301604 WO2006080542A1 (fr) 2005-01-26 2006-01-25 Procede d’estimation de la resistance a la corrosion d’un metal ou d’une plaque metallique enrobee

Country Status (1)

Country Link
WO (1) WO2006080542A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008180694A (ja) * 2006-12-28 2008-08-07 Jfe Steel Kk 構造体の構造決定方法
CN109580464A (zh) * 2018-11-22 2019-04-05 广西电网有限责任公司电力科学研究院 一种检测评价电网设备涂层质量的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002328085A (ja) * 2001-02-27 2002-11-15 Nkk Corp 表面処理鋼材の耐食寿命予測方法、表面処理鋼材、表面処理鋼材の設計方法及び表面処理鋼材の製造方法
JP2003121339A (ja) * 2001-10-11 2003-04-23 Mitsubishi Heavy Ind Ltd 金属材料の耐食性評価方法及び金属材料の耐食性評価装置
JP2003329573A (ja) * 2002-03-08 2003-11-19 Jfe Steel Kk 金属材の耐食性評価方法、金属材の腐食寿命予測方法、金属材、金属材の設計方法及び金属材の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002328085A (ja) * 2001-02-27 2002-11-15 Nkk Corp 表面処理鋼材の耐食寿命予測方法、表面処理鋼材、表面処理鋼材の設計方法及び表面処理鋼材の製造方法
JP2003121339A (ja) * 2001-10-11 2003-04-23 Mitsubishi Heavy Ind Ltd 金属材料の耐食性評価方法及び金属材料の耐食性評価装置
JP2003329573A (ja) * 2002-03-08 2003-11-19 Jfe Steel Kk 金属材の耐食性評価方法、金属材の腐食寿命予測方法、金属材、金属材の設計方法及び金属材の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008180694A (ja) * 2006-12-28 2008-08-07 Jfe Steel Kk 構造体の構造決定方法
CN109580464A (zh) * 2018-11-22 2019-04-05 广西电网有限责任公司电力科学研究院 一种检测评价电网设备涂层质量的方法

Similar Documents

Publication Publication Date Title
JP4706489B2 (ja) 金属および被覆金属板の耐食性予測方法、被覆金属板の選定方法
JP6213426B2 (ja) 塗装金属材の耐食性評価方法及び耐食性評価装置
CN105088208B (zh) 一种热镀铝锌板用三价铬络合物及其制备方法
CN110392744A (zh) 镀覆钢板
Diler et al. Real‐time monitoring of the degradation of metallic and organic coatings using electrical resistance sensors
Knudsen et al. Correlations between standard accelerated tests for protective organic coatings and field performance
JP2003329573A (ja) 金属材の耐食性評価方法、金属材の腐食寿命予測方法、金属材、金属材の設計方法及び金属材の製造方法
JP2012121331A (ja) 耐端面赤錆性に優れたクロムフリー塗装鋼板およびクロムフリー溶剤系塗料
WO2006080542A1 (fr) Procede d’estimation de la resistance a la corrosion d’un metal ou d’une plaque metallique enrobee
WO2014156073A1 (fr) FEUILLE D'ACIER PLAQUÉE À BASE D'Al-Zn
JP4946821B2 (ja) 構造体の構造決定方法
Carpinteri et al. Kinetics of intermetallic phases and mechanical behavior of ZnSn3% hot‐dip galvanization coatings
Bierwagen Corrosion and its control by coatings
Bensalah et al. Assessment of automotive coatings used on different metallic substrates
KR102100040B1 (ko) 아연도금강판의 도금량 및 합금화도 중 적어도 하나의 예측 방법
JP3347657B2 (ja) 屋外用途向けプレコート金属板
Britner et al. Corrosion protection for cold‐formed structural steel elements
Chenoll-Mora et al. Review and long-term corrosion analysis of coatings based on Zinc-Aluminium-Magnesium alloys, as an alternative to traditional zinc-based coatings for cable trunking systems in electrical installations
Chenoll Mora Analysis of metallic coatings based in zinc-aluminium-magnesium alloys, in terms of performance and long-term corrosion. Case study: Electrical cable trays selection in project design
Cloquell Ballester et al. Reviewand long-term corrosion analysis of coatings based on Zinc-Aluminium-Magnesium alloys, as an alternative to traditional zinc-based coatings for cable trunking systems inelectrical installations
Subramanian et al. Predictive modeling of deposition rate in electro-deposition of copper–tin using regression and artificial neural network
Feldmann et al. Characterisation of the galvanic protection of zinc flake coating by spectroelectrochemistry and industrial testing
KR102586135B1 (ko) 강판의 코팅 부착량 측정 방법
Akahori et al. Development of a highly anti-corrosive organic-inorganic hybrid paint
Mizuno et al. An appropriate specimen configuration for evaluating the perforation corrosion resistance of automotive coated steel sheets in accelerated corrosion tests

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase

Ref document number: 06712747

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6712747

Country of ref document: EP