WO2006079550A2 - Alcohol resistant dosage forms - Google Patents

Alcohol resistant dosage forms Download PDF

Info

Publication number
WO2006079550A2
WO2006079550A2 PCT/EP2006/000727 EP2006000727W WO2006079550A2 WO 2006079550 A2 WO2006079550 A2 WO 2006079550A2 EP 2006000727 W EP2006000727 W EP 2006000727W WO 2006079550 A2 WO2006079550 A2 WO 2006079550A2
Authority
WO
WIPO (PCT)
Prior art keywords
dosage form
opioid
salt
less
controlled release
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/EP2006/000727
Other languages
English (en)
French (fr)
Other versions
WO2006079550A3 (en
Inventor
Richard O. Mannion
William H. Mckenna
Edward P. O'donnell
Helen Kathleen Danagher
Geoffrey Gerard Hayes
Hassan Mohammad
Derek Allan Prater
Harjit Tamber
Malcolm Walden
Steve Whitelock
Wolfgang Fleischer
Udo Hahn
Christof Spitzley
Christian Leuner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Euro Celtique SA
Original Assignee
Euro Celtique SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=36297284&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2006079550(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from GBGB0501638.1A external-priority patent/GB0501638D0/en
Priority claimed from PCT/GB2005/050014 external-priority patent/WO2005079760A1/en
Priority to BRPI0606339-0A priority Critical patent/BRPI0606339A2/pt
Priority to NZ560669A priority patent/NZ560669A/xx
Priority to CN2006800033121A priority patent/CN101132772B/zh
Priority to JP2007552587A priority patent/JP5704789B2/ja
Priority to KR1020097004935A priority patent/KR20090029856A/ko
Priority to AP2007004099A priority patent/AP2274A/xx
Priority to US11/574,778 priority patent/US20070259045A1/en
Priority to MX2007009162A priority patent/MX2007009162A/es
Priority to EA200701595A priority patent/EA015615B1/ru
Application filed by Euro Celtique SA filed Critical Euro Celtique SA
Priority to AU2006208627A priority patent/AU2006208627B8/en
Priority to CA002594373A priority patent/CA2594373A1/en
Priority to EP06703915A priority patent/EP1771160A2/en
Publication of WO2006079550A2 publication Critical patent/WO2006079550A2/en
Publication of WO2006079550A3 publication Critical patent/WO2006079550A3/en
Priority to IL184858A priority patent/IL184858A/en
Priority to TNP2007000293A priority patent/TNSN07293A1/fr
Anticipated expiration legal-status Critical
Priority to KR1020077019593A priority patent/KR100905511B1/ko
Priority to US13/157,093 priority patent/US20120141583A1/en
Priority to US15/367,095 priority patent/US20170079923A1/en
Priority to US15/886,659 priority patent/US20180153812A1/en
Ceased legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1629Organic macromolecular compounds
    • A61K9/1652Polysaccharides, e.g. alginate, cellulose derivatives; Cyclodextrin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/485Morphinan derivatives, e.g. morphine, codeine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2022Organic macromolecular compounds
    • A61K9/205Polysaccharides, e.g. alginate, gums; Cyclodextrin
    • A61K9/2054Cellulose; Cellulose derivatives, e.g. hydroxypropyl methylcellulose
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2072Pills, tablets, discs, rods characterised by shape, structure or size; Tablets with holes, special break lines or identification marks; Partially coated tablets; Disintegrating flat shaped forms
    • A61K9/2077Tablets comprising drug-containing microparticles in a substantial amount of supporting matrix; Multiparticulate tablets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/04Centrally acting analgesics, e.g. opioids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/30Drugs for disorders of the nervous system for treating abuse or dependence
    • A61P25/36Opioid-abuse
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]

Definitions

  • the present invention relates to controlled release formulations resistant to alcohol extraction, in particular opioid controlled release formulations resistant to alcohol extraction.
  • Pharmaceutical products are sometimes the subject of abuse.
  • a particular dose of opioid agonist may be more potent when administered parenteral Iy as compared to the same dose administered orally.
  • Some formulations can be tampered with to provide the opioid agonist contained therein for illicit use.
  • Controlled release opioid agonist formulations are sometimes crushed, or subject to extraction with solvents (e.g., ethanol) by drug abusers to provide the opioid contained therein for immediate release upon oral or parenteral administration.
  • Controlled release opioid agonist dosage forms which can liberate a portion of the opioid upon exposure to ethanol, can also result in a patient receiving the dose more rapidly than intended if a patient disregards instructions for use and concomitantly uses alcohol with the dosage form.
  • Purdue Pharma L.P. currently markets sustained-release oxycodone in dosage forms containing 10, 20, 40 and 80 mg oxycodone hydrochloride under the tradename OxyContin.
  • Purdue Pharma L.P. is the NDA holder of sustained-release hydromorphone in dosage forms containing 12, 16, 24 and 32 mg hydromorphone hydrochloride under the tradename Palladone®.
  • U.S. Patent Publication Nos. 2003/0118641 and 2005/0163856 to Maloney et al. describe an opioid formulation which employs an ion exchange resin in conjunction with a hydrophobic matrix that is purportedly resistant to extraction of the opioid with commonly available solvents.
  • U.S Patent Publication No. 2004/0052731 to Hirsh et al. describes a pharmaceutical composition which can purportedly be used to reduce the likelihood of improper administration of drugs.
  • the present invention is directed to a controlled release dosage form comprising an opioid analgesic and a controlled release material; wherein the ratio of the amount of opioid analgesic released after 1 hour of in- vitro dissolution of the dosage form in 500 ml and/or 900 mlof Simulated Gastric Fluid with 20% ethanol using a USP Apparatus I (basket) apparatus at 100 rpm at 37 degrees C° to the amount of opioid analgesic released after 1 hour in-vitro dissolution of the dosage form in 500 ml and/or 900 ml of Simulated Gastric Fluid with 0% ethanol using a USP Apparatus I (basket) apparatus at 100 rpm at 37 degrees C° is 2:1 or less or less than about 2:1; 1.5:1 or less or less than about 1.5: 1 ; or 1 : 1 or less or less than about 1:1. In certain such embodiments, the lower limit of this ratio is 0.5:1 or 1:1.
  • the present invention is directed to a controlled release dosage form comprising an opioid analgesic and a controlled release material; wherein the ratio of the amount of opioid analgesic released after 1 hour of in-vitro dissolution of the dosage form in 500 ml and/or 900 ml of Simulated Gastric Fluid with 30% ethanol using a USP Apparatus I (basket) apparatus at 100 rpm at 37 degrees C° to the amount of the opioid analgesic released after 1 hour of in-vitro dissolution of the dosage form in 500 ml and/or 900 ml of Simulated Gastric Fluid with 0% ethanol using a USP Apparatus I (basket) apparatus at 100 rpm at 37 degrees C° is 4:1 or less or less than about 4:1; 3:1 or less or less than about 3:1; or 2:1 or less or less than about 2:1.
  • the lower limit of this ratio is 0.5:1 or 1:1; or 1.7:1.
  • the present invention is directed to a controlled release dosage form comprising an opioid analgesic and a controlled release material; wherein the ratio of the amount of opioid analgesic released after 1 hour of in-vitro dissolution of the dosage form in 500 ml and/or 900 ml of Simulated Gastric Fluid with 40% ethanol using a USP Apparatus I (basket) apparatus at 100 rpm at 37 degrees C 0 to the amount of the opioid analgesic released after 1 hour of in-vitro dissolution of the dosage form in 500 ml and/or 900 ml of Simulated Gastric Fluid with 0% ethanol using a USP Apparatus I (basket) apparatus at 100 rpm at 37 degrees C° is 5:1 or less or less than about 5:1; 4:1 or less or less than about 4:1; or 3:1 or less or less than about 3:1.
  • the lower limit of this ratio is 0.5:1 or 1:1; or 2.6:1.
  • the present invention is directed to a controlled release dosage form comprising a plurality of matrices comprising a therapeutically effective amount of hydromorphone or a pharmaceutically acceptable salt thereof, dispersed in a controlled release material; wherein the ratio of the amount of hydromorphone or a pharmaceutically acceptable salt thereof released after 1 hour of in-vitro dissolution of the dosage form in 500 ml and/or 900 ml of Simulated Gastric Fluid with 20% ethanol using a USP Apparatus I (basket) apparatus at 100 rpm at 37 degrees C° to the amount of hydromorphone or a pharmaceutically acceptable salt thereof released after 1 hour of in-vitro dissolution of the dosage form in 500 ml and/or 900 ml of Simulated Gastric Fluid with 0% ethanol using a USP Apparatus I (basket) apparatus at 100 rpm at 37 degrees C° is less than about 2:1.
  • the present invention is directed to a controlled release dosage form comprising a plurality of extruded matrices comprising a therapeutically effective amount of hydromorphone or a pharmaceutically acceptable salt thereof, dispersed in an alkylcellulose.
  • the present invention is directed to a controlled release dosage form comprising a plurality of extruded matrices comprising a therapeutically effective amount of hydromorphone or a pharmaceutically acceptable salt thereof, dispersed in an ethylcellulose.
  • the present invention is directed to a controlled release dosage form comprising a plurality of extruded matrices comprising a therapeutically effective amount of hydromorphone or a pharmaceutically acceptable salt thereof, dispersed in an alkylcellulose, the alkylcellulose being at least 50 %, w/w of the matrices.
  • the present invention is directed to a controlled release dosage form comprising a plurality of extruded matrices consisting essentially of hydromorphone or a pharmaceutically acceptable salt thereof, dispersed in an alkylcellulose.
  • the present invention is directed to a controlled release dosage form comprising a plurality of extruded matrices consisting essentially of hydromorphone or a pharmaceutically acceptable salt thereof, dispersed in an alkylcellulose, an optional binder, and an optional plasticizer.
  • the present invention is directed to a controlled release dosage form comprising a plurality of extruded matrices comprising hydromorphone or a pharmaceutically acceptable salt thereof, dispersed in an alkylcellulose, wherein the matrices do not comprise an acrylic polymer.
  • the present invention is directed to a controlled release dosage form comprising a matrix comprising a pharmaceutically acceptable salt of an opioid analgesic in a controlled release material; wherein less than 25% of the opioid salt is released after 1 hour of in-vitro dissolution of the dosage form in 500ml and/or 900 ml of Simulated Gastric Fluid with 20% ethanol using a USP Apparatus I (basket) apparatus at 100 rpm at 37 degrees C°.
  • the present invention is directed to a controlled release dosage form comprising a plurality of matrices comprising a pharmaceutically acceptable salt of an opioid analgesic in a controlled release material.
  • the present invention is directed to a controlled release dosage form comprising a matrix comprising a pharmaceutically acceptable salt of an opioid analgesic in a pharmaceutically acceptable excipient; and a layer comprising a controlled release material disposed about the matrix, e.g.
  • the present invention is directed to a controlled release dosage form comprising a plurality of matrices comprising a pharmaceutically acceptable salt of an opioid analgesic in a pharmaceutically acceptable excipient; and a layer comprising a controlled release material disposed about each of the matrices.
  • the present invention is directed to the use of a sparingly water permeable thermoplastic polymer or a hydrophobic polymer as controlled release matrix material in the manufacture of an opioid controlled release matrix formulation to impart resistance to alcohol extraction of the opioid, wherein said formulation having the sparingly water permeable thermoplastic polymer or hydrophobic polymer as controlled release matrix material releases less opioid in an alcohol extraction test compared to the same formulation but with the sparingly water permeable thermoplastic polymer or hydrophobic polymer substituted entirely or partly by other matrix materials.
  • the present invention is directed to the use of a sparingly water permeable thermoplastic polymer as controlled release matrix material in the manufacture of an opioid controlled release matrix formulation to impart resistance to alcohol extraction, wherein said formulation after 15 minutes shaking in 40 % ethanol at room temperature using a Stuart Scientific Flask Shaker Model SFl set at 500 to 600 oscillations per minute releases less than 35 % of opioid. In certain such embodiments said formulation releases less than 30 %, more preferred less than 25 % of opioid salt, or from 15 to 25 % opioid salt.
  • the present invention is directed to the use of a hydrophobic material polymer as controlled release matrix material in the manufacture of an opioid controlled release matrix formulation to impart resistance to alcohol extraction, wherein less than 25 % of the opioid is released after 1 hour of in-vitro dissolution of a dosage form comprising said formulation in 500 ml and/or 900 ml of Simulated Gastric Fluid with 20 % ethanol using USP Apparatus I (basket) operating at 100 rpm at 37 °C.
  • the present invention is directed to the use of a hydrophobic material as controlled release matrix material in the manufacture of an opioid controlled release matrix formulation to impart resistance to alcohol extraction, wherein the ratio of the amount of opioid released after 1 hour of in-vitro dissolution of the dosage form comprising said formulation in 900 and/or 500 ml of Simulated Gastric Fluid with 20 % ethanol using a USP Apparatus I (basket) apparatus at 100 rpm at 37 0 C, to the amount of opioid released after 1 hour of in-vitro dissolution of the dosage form comprising said formulation in 900 and/or 500 ml of Simulated Gastric Fluid with 0 % ethanol using an USP Apparatus I (basket) apparatus at 100 rpm at 37 0 C, is less than about 2:1.
  • the present invention is directed to a method of treating pain comprising administering to a patient in need thereof a dosage form as disclosed herein. In certain embodiments, the present invention is directed to a method of deterring abuse of an opioid agonist comprising preparing a dosage form as disclosed herein.
  • the formulations disclosed herein are intended to release the drug over an extended period of time to provide a therapeutic effect.
  • the controlled release formulations provide a at least a 12 hour or 24 hour therapeutic effect.
  • controlled release as it applies to an opioid agonist is defined for purposes of the present invention as the release of the opioid from the formulation at a rate which will provide a longer duration of action than a single dose of the normal (i.e., immediate release) formulation.
  • an immediate release oral formulation may release the drug over a 1-hour interval, compared to a controlled release oral formulation which may release the drug over a 4 to 24 hour interval.
  • opioid analgesic is interchangeable with the term “opioid” and includes one agonist or a combination of more than one opioid agonist, and also includes the use of a mixed agonist-antagonist; a partial agonist and combinations of an opioid agonist and an opioid antagonist, wherein the combination provides an analgesic effect, stereoisomers thereof; an ether or ester thereof; or a mixture of any of the foregoing.
  • opioid agonist is interchangeable with the term “opioid analgesic” and includes one agonist or a combination of more than one opioid agonist, and also includes the use of a mixed agonist-antagonist; a partial agonist; stereoisomers thereof; an ether or ester thereof; or a mixture of any of the foregoing.
  • opioid salt refers to a pharmaceutically acceptable salt of the opioid. Any embodiment of the invention referring to opioid is also meant to refer to opioid salt.
  • Pharmaceutically acceptable salts include, but are not limited to, metal salts such as sodium salt, potassium salt, secium salt and the like; alkaline earth metals such as calcium salt, magnesium salt and the like; organic amine salts such as triethylamine salt, pyridine salt, picoline salt, ethanolamine salt, triethanolamine salt, dicyclohexylamine salt, N,N'-dibenzylethylenediamine salt and the like; inorganic acid salts such as hydrochloride, hydrobromide, sulfate, phosphate and the like; organic acid salts such as formate, acetate, trifluoroacetate, maleate, tartrate and the like; sulfonates such as methanesulfonate, benzenesulfonate, p-toluenesulfonate, and the like; amino acid salts such as arginate, asparginate, glutamate and the like.
  • metal salts such as sodium salt, potassium salt, secium
  • the opioids used according to the present invention may contain one or more asymmetric centers and may give rise to enantiomers, diastereomers, or other stereoisomeric forms.
  • the present invention is also meant to encompass the use of all such possible forms as well as their racemic and resolved forms and mixtures thereof.
  • the compounds described herein contain olefinic double bonds or other centers of geometric asymmetry, it is intended to include both E and Z geometric isomers. All tautomers are intended to be encompassed by the present invention as well.
  • the matrix or plurality of matrices of the dosage form disclosed herein consist essentially of an opioid analgesic dispersed in an alkylcellulose; an optional binder, and an optional plasticizer.
  • the dosage form as disclosed herein does not comprise an acrylic polymer.
  • the matrix or plurality of matrices of the dosage form disclosed herein do not comprise an acrylic polymer.
  • stereoisomers is a general term for all isomers of individual molecules that differ only in the orientation of their atoms is space. It includes enantiomers and isomers of compounds with more than one chiral center that are not mirror images of one another (diastereomers).
  • chiral center refers to a carbon atom to which four different groups are attached.
  • enantiomer or “enantiomeric” refers to a molecule that is nonsuperimposeable on its mirror image and hence optically active wherein the enantiomer rotates the plane of polarized light in one direction and its mirror image rotates the plane of polarized light in the opposite direction.
  • racemic refers to a mixture of equal parts of enantiomers and which is optically inactive.
  • resolution refers to the separation or concentration or depletion of one of the two enantiomeric forms of a molecule.
  • layer means a material disposed about a substrate (which can include itself and one or more optional intermediate layers such e.g., a seal coat), which can be applied, e.g., as a coating. Layering of substrates can be performed by procedures known in the art including, e.g., spray coating, dipping or enrobing.
  • the term "disposed about” means that the layer material disposed about the particle covers at least a portion of the particle, with or without an intermediate layer or layers between the substance and the particle. In certain embodiments, the material covers an average of at least 50% of the surface area of the particle. In certain other embodiments, the material completely covers the particle.
  • resistance to alcohol extraction in the broadest sense refers to the ability of a formulation to release less opioid when subjected to a solution comprising ethanol than a comparative formulation, notwithstanding the fact that "resistance to alcohol extraction” can be alternatively or further defined with respect to specific embodiments of the invention. Within the meaning of the present invention resistance to alcohol extraction can be tested and defined by various "alcohol extraction tests" which involve subjecting the formulation to a solution comprising ethanol as described herein.
  • controlled release matrix formulation refers to the composition including the controlled release materials and the opioid. Unless specifically indicated the term “controlled release matrix formulation” refers to said formulation in intact form.
  • controlled release dosage form refers to the administration form comprising the opioid in controlled release form as e.g. in form of the "controlled release matrix formulation” or in any other controlled release form as referred to herein. Unless specifically indicated the term “controlled release dosage form” refers to said dosage form in intact form..
  • the dosage form can e.g. be a tablet comprising the compressed controlled release matrix formulation or a capsule comprising the controlled release matrix formulation in the form of multi particulates..
  • Resistance to alcohol extraction can e.g. be tested by subjecting the formulation to Simulated Gastric Fluid (SGF) with 20% ethanol.
  • SGF Simulated Gastric Fluid
  • a typical manner in order to obtain "900 ml of Simulated Gastric Fluid (SGF) with 20% ethanol” is by mixing 800 ml of SGF with 210 ml of 95% ethanol/water (which provides 200 ml ethanol) and taking 900 ml of the mixture. The effect of the additional 10 ml of water from the 95% ethanol will be minimal in the percentages of SGF and ethanol in the 900 ml mixture.
  • Resistance to alcohol extraction can also be tested using an aqueous solution comprising 40% ethanol.
  • Figure 1 depicts the in-vitro dissolution results of compositions A-F of Example 5.
  • Figure 2 and 3 depict the in-vitro dissolution results of Example 9.
  • Figure 4 depicts the crushing test results using a Pill Crusher or Spoons of Example 14
  • FIG. 5 depicts the crushing test results using Mortar and Pestle of Example 14
  • Figure 6 depicts the alcohol extraction test results of Example 14.
  • Figure 7 depicts the alcohol extraction test results of Examples 15 to 21 described in
  • Example 25 depicts the dissolution profiles in Simulated Gastric Fluid with 40% alcohol of
  • Figure 9 depicts the dissolution profiles in Simulated Gastric Fluid of Examples 15 to 20 described in Example 25
  • Figure 11 depicts the dissolution profiles in Simulated Gastric Fluid of Examples 22 to
  • Drug abusers sometimes try to achieve euphoric effects by manipulating drug formulations to quicken the onset.
  • crushed material is sometimes dissolved in water with heating and filtered into a syringe for injection.
  • the present invention is directed to a controlled release dosage form comprising a matrix comprising a pharmaceutically acceptable salt of an opioid analgesic in a controlled release material; wherein less than 25%, or less than 20% of the opioid salt is released after 1 hour of in-vitro dissolution of the dosage form in 500 ml and/or 900 ml of Simulated Gastric Fluid with 20% ethanol using a USP Apparatus I (basket) apparatus at 100 rpm at 37 degrees C°. In certain such embodiments, at least 5%, or 10% opioid analgesic is released under these dissolution conditions.
  • the present invention is directed to a controlled release dosage form comprising a plurality of matrices comprising a pharmaceutically acceptable salt of an opioid analgesic in a controlled release material.
  • the present invention is directed to a controlled release dosage form comprising a matrix comprising a pharmaceutically acceptable salt of an opioid analgesic in a pharmaceutically acceptable excipient; and a layer comprising a controlled release material disposed about the matrix.
  • the present invention is directed to a controlled release dosage form comprising a plurality of matrices comprising a pharmaceutically acceptable salt of an opioid analgesic in a pharmaceutically acceptable excipient; and a layer comprising a controlled release material disposed about each of the matrices.
  • the controlled release dosage form comprises a controlled release matrix formulation which does not contain more than 15% (by wt), preferably which does not contain more than 20 % (by wt) Ci 2 to C 36 aliphatic alcohol selected from the group consisting of stearyl alcohol, cetyl alcohol and cetostearyl alcohol.
  • the present invention is directed to a controlled release dosage form comprising an opioid analgesic and a controlled release material; wherein the ratio of the amount of opioid analgesic released after 1 hour of in-vitro dissolution of the dosage form in 500 ml and/or 900 ml of Simulated Gastric Fluid with 20% ethanol using a USP Apparatus I (basket) apparatus at 100 rpm at 37 degrees C° to the amount of opioid analgesic released after 1 hour in-vitro dissolution of the dosage form in 500 ml and/or 900 ml of Simulated Gastric Fluid with 0% ethanol using a USP Apparatus I (basket) apparatus at 100 rpm at 37 degrees C° is 2:1 or less or less than about 2:1; 1.5:1 or less or less than about 1.5 : 1 ; or 1 : 1 or less or less than about 1:1. In certain such embodiments, the lower limit of this ratio is 0.5:1 or 1:1.
  • the controlled release dosage form comprises a controlled release matrix formulation which does not contain more than 15% (by wt), preferably which does not contain more than 20 % (by wt) Ci 2 to C 36 aliphatic alcohol selected from the group consisting of stearyl alcohol, cetyl alcohol and cetostearyl alcohol.
  • the present invention is directed to the use of a sparingly water permeable thermoplastic polymer as controlled release matrix material in the manufacture of an opioid controlled release matrix formulation to impart resistance to alcohol extraction, wherein said formulation after 15 minutes shaking in 40 % ethanol at room temperature using a Stuart Scientific Flask Shaker Model SFl set at 500 to 600 oscillations per minute releases less than 35 % of opioid. In certain such embodiments said formulation releases less than 30 %, more preferred less than 25 % of opioid salt, or from 15 to 25 % opioid salt.
  • the present invention is directed to the use of a hydrophobic material polymer as controlled release matrix material in the manufacture of an opioid controlled release matrix formulation to impart resistance to alcohol extraction, wherein less than 25 % of the opioid is released after 1 hour of in-vitro dissolution of a dosage form comprising said formulation in 500ml and/or 900 ml of Simulated Gastric Fluid with 20 % ethanol using USP Apparatus I (basket) operating at 100 rpm at 37 °C.
  • the present invention is directed to the use of a hydrophobic material as controlled release matrix material in the manufacture of an opioid controlled release matrix formulation to impart resistance to alcohol extraction, wherein the ratio of the amount of opioid released after 1 hour of in-vitro dissolution of the dosage form comprising said formulation in 900 and/or 500 ml of Simulated Gastric Fluid with 20 % ethanol using a USP Apparatus I (basket) apparatus at 100 rpm at 37 0 C, to the amount of opioid released after 1 hour of in-vitro dissolution of the dosage form comprising said formulation in 900 and/or 500 ml of Simulated Gastric Fluid with 0 % ethanol using an USP Apparatus I (basket) apparatus at 100 rpm at 37 0 C, is less than about 2:1.
  • the dosage form can comprise a matrix comprising the opioid analgesic and the controlled release material; a plurality of matrices comprising the opioid analgesic and the controlled release material; a matrix comprising the opioid analgesic and a pharmaceutically acceptable excipient and a layer comprising a controlled release material disposed about the matrix; or a plurality of matrices comprising the opioid analgesic and a pharmaceutically acceptable excipient and a layer comprising a controlled release material disposed about each of the matrices.
  • This list is not meant to be exclusive.
  • the dosage form can comprise an opioid analgesic in an osmotic core with a semipermeable membrane surrounding the core.
  • the dosage form can have an optional passageway for osmotic delivery of the opioid analgesic upon administration.
  • the controlled release material comprises a hydrophobic material, preferably an alkylcellulose, and most preferably ethylcellulose. In certain embodiments of the present invention, the controlled release material comprises a sparingly water permeable thermoplastic polymer, preferably an alkylcellulose, and most preferably ethylcellulose.
  • the above said hydrophobic material or said sparingly water permeable thermoplastic polymer is used to impart resistance to alcohol extraction as described herein.
  • the embodiments described below provide a more detailed description of the use of said hydrophobic material or said sparingly water permeable thermoplastic polymers to impart resistance to alcohol extraction.
  • the ethylcellulose is present in a weight amount of at least 40%, at least 45%, at least 50%, at least 55% or at least 60% of the matrix or matrices. In other embodiments, the ethylcellulose is present in a weight amount of at most 70%, at most 80% or at most 90% of the matrix or matrices.
  • the present invention is directed to the use of alkyl cellulose, preferably ethyl cellulose, in an amount from 5 to 60 % (by wt) of the controlled release matrix formulation, preferably from 10 to 50 % (by wt), most preferably from 20 to 45 % (by wt) of the controlled release matrix formulation.
  • the present invention is directed to the use of ethyl cellulose in combination with at least a second controlled release matrix material selected from a polymethacrylate polymer, preferably a neutral water-insoluble poly (ethyl acrylate, methyl methacrylate) copolymer.
  • a polymethacrylate polymer preferably a neutral water-insoluble poly (ethyl acrylate, methyl methacrylate) copolymer.
  • the controlled release material further comprises a polymethacrylate polymer in a weight amount of at least 5%, at least 10%, at least 15%, at least 20% or at least 25% of the matrix or matrices.
  • the polymethacrylate polymer is present in a weight amount of at most 30%, or at most 35% of the matrix or matrices.
  • the controlled release matrix formulation further comprises a polymethacrylate polymer, preferably a neutral water-insoluble poly(ethyl acrylate, methyl acrylate) copolymer in an amount of 5 % to 66 % (by wt), preferably 15 % to 50 % (by wt), more preferred 20 % to 45 % (by wt) and most preferred 25 % to 45 % (by wt) of the controlled release matrix formulation.
  • a polymethacrylate polymer preferably a neutral water-insoluble poly(ethyl acrylate, methyl acrylate) copolymer in an amount of 5 % to 66 % (by wt), preferably 15 % to 50 % (by wt), more preferred 20 % to 45 % (by wt) and most preferred 25 % to 45 % (by wt) of the controlled release matrix formulation.
  • the controlled release pharmaceutical formulation may be obtained or is obtainable by melt extrusion and may include a neutral poly(ethyl acrylate, methyl methacrylate) copolymer and an active ingredient.
  • the rubber-like characteristics of this polymer provide multi particulates which typically are elastic and compressible without breaking, and are preferably resilient.
  • the multi particulates may be compressed by hand between two rigid surfaces, for example a coin and a tabletop or between two spoons, without breaking.
  • the multi particulates may be distorted but may not break or shatter and may ideally reassume more or less their original shape.
  • tamper resistance is of especial importance for products containing opioid analgesics or other active ingredients which are subject to abuse.
  • the tamper resistance of preferred multi particulates of the invention can be demonstrated by shaking a dosage amount of multi particulates in water and/or ethanol, for example 40% ethanol. When tested in this way, preferred multi particulates will show at least one of the following release characteristics of active agent:
  • the tamper resistance of preferred multi particulates of the invention can be demonstrated by subjecting a dosage amount of multi particulates to grinding in a mortar and pestle with 24 rotations of the pestle and the product placed in 900 ml water at 37 0 C for 45 minutes.
  • the amounts of active agent extracted can then be determined by HPLC and detection UV for instance at 210 nm wavelength.
  • preferred multi particulates according to the invention will show the following release characteristics of active agent; less than 12.5% release agent, preferably less than 10% release of active agent, more preferably less than 7.5% release of active agent, for example 2 to 7.5% release of active agent.
  • the tamper resistance of preferred multi particulates of the invention can be demonstrated by crushing a dosage amount of multi particulates between two spoons or in a pill crusher, such as a Pill Pulverizer as sold by Apex Healthcare Products, and then extracting in 2 ml water heated to boiling on a spoon and filtered off.
  • the amounts of active agent extracted can then be determined by HPLC and detection by UV for instance at 210 mm wavelength.
  • preferred multi particulates according to the invention will show the following release characteristics of active agent; less than 27.5% release of active agent, preferably less than 15% release of active agent, more preferably less than 5% release of active agent, for example 1 to 5% release of active agent.
  • the present invention may include the use of a neutral poly(ethyl acrylate, methylacrylate) copolymer in the preparation of a pharmaceutical formulation to provide resistance to tamper.
  • a neutral poly(ethyl acrylate, methyl methacrylate) copolymer may be incorporated with the active ingredient in the formulation.
  • the dosage form further comprises a binder in a weight amount of at least 1%, at least 3%, or at least 5% of the matrix or matrices. In other embodiments, the binder is in a weight amount of at most 7%, or at most 10% of the matrix or matrices. In certain embodiments, the binder is a hydroxyalkylcellulose such as hydroxypropylcellulose or hydroxypropylmethylcellulose. In certain embodiments of the present invention, the dosage form further comprises a plasticizer in a weight amount of at least 3%, at least 5%, at least 15%, or at least 25% of the matrix or matrices. In other embodiments, the plasticizer is in a weight amount of at most 30%, or at most 40% of the matrix or matrices.
  • the plasticizer has a melting point of at least 80° C. This helps to minimize the dissolution of the dosage form in hot water in an attempt to liberate the opioid analgesic contained therein.
  • the plasticizer is hydrogenated castor oil.
  • a hot water extraction test may be performed as follows: Place one dosage unit of each drug product into two separate glass scintillation vials and label the vials 1 and 2. Add 10 mL of extraction solvent to each vial. If specified, place the vials in a water bath set to a specified temperature (50, 75 or 100 0 C) for 5 minutes. Place both vials on a laboratory wrist-action shaker and remove vial 1 after 15 minutes and vial 2 after 120 minutes. Samples at room temperature are placed directly onto the shaker.
  • the ratio of the weight% amount of the opioid analgesic released at 5O 0 C, 120 minutes shaking, based on the total amount of opioid in the tested controlled release formulation or dosage form , to the weight% amount of opioid analgesic released at RT 120 minutes shaking, based on the total amount of opioid in the tested controlled release formulation or dosage form is 1.2 or less, preferably 1 or less or 0.9 or less.
  • the ratio of the weight% amount of the opioid analgesic released at 75 0 C, 15 minutes shaking, based on the total amount of opioid in the tested controlled release formulation or dosage form , to the weight% amount of opioid analgesic released at RT 15 minutes shaking, based on the total amount of opioid in the tested controlled release formulation or dosage form is 1.2 or less, preferably 1 or less or 0.9 or less.
  • the ratio of the weight% amount of the opioid analgesic released at 100 0 C, 15 minutes shaking, based on the total amount of opioid in the tested controlled release formulation or dosage form , to the weight% amount of opioid analgesic released at RT 15 minutes shaking, based on the total amount of opioid in the tested controlled release formulation or dosage form is 1.3 or less, preferably 1.2 or less or 0.9 or less.
  • the ratio of the weight% amount of the opioid analgesic released at 100 0 C, 120 minutes shaking, based on the total amount of opioid in the tested controlled release formulation or dosage form , to the weight% amount of opioid analgesic released at RT 120 minutes shaking, based on the total amount of opioid in the tested controlled release formulation or dosage form is less than 2, preferably 1.5 or less or 1 or less or 0.9 or less.
  • the amount of the alkyl cellulose, preferably ethyl cellulose is less than 20 % (by wt), preferably less than 15 % (by wt), most preferred less than 10 % (by wt) but more than 5% (by wt) of the controlled release matrix formulation.
  • the alkyl cellulose especially ethyl cellulose, is used in the form of particles or aqueous alkyl cellulose dispersions.
  • the ethyl cellulose has preferably a viscosity in the range of 3 to 110 cP, when measured in a 5 % solution at 25 °C in an Ubbelohde viscosimeter with a solvent of 80 % toluene and 20 % alcohol.
  • the viscosity is in the range of 18 to 110 cP and most preferred in the range of 41 - 49 cP.
  • a suitable ethyl cellulose is provided by Dow Chemical Company under the trade name Ethocel TM Standard 45.
  • An alternative ethyl cellulose is Ethocel TM Standard 7.
  • aqueous ethyl cellulose dispersions a dispersion of ethyl cellulose 20 cP with dibutyl/sebacate, ammoniumhydroxide, oleic acid and colloidal anhydrous silica is preferred, which is available under the trade name Surlease TM E-7-7050.
  • the present invention is directed to the use of ethyl cellulose in combination with at least one plasticizer or second controlled release matrix material selected from C 12 to C 36 aliphatic alcohols and the corresponding aliphatic acids, preferably stearyl alcohol, cetyl alcohol and cetostearyl alcohol and the corresponding stearic and palmitic acids and mixtures thereof, wherein the amount of Ci 2 to C 36 aliphatic alcohol or aliphatic acid is preferably at least 5 %, more preferred at least 10 % (by wt), more preferred at least 15 % (by wt) and most preferred 20 % to 25 % (by wt) of the controlled release matrix formulation.
  • the dosage form may comprise, besides the alkyl (ethyl) cellulose and/or the fatty alcohol, fillers and additional substances, such as granulating aids, lubricants, dyes, flowing agents and plasticizers.
  • additional substances such as granulating aids, lubricants, dyes, flowing agents and plasticizers.
  • Lactose, glucose or saccharose, starches and their hydrolysates, microcrystalline cellulose, cellatose, sugar alcohols such as sorbitol or mannitol, polysoluble calcium salts like calciumhydrogenphosphate, dicalcium- or tricalciumphosphat may be used as fillers.
  • Povidone may be used as granulating aid.
  • Highly-dispersed silica (Aerosil ® ), talcum, corn starch, magnesium oxide and magnesium- or calcium stearate may preferably be used as flowing agents or lubricants.
  • Magnesium stearate and/or calcium stearate can be preferably be used as lubricants.
  • Fats like hydrogenated castor oil can also preferably be used.
  • a formulation is especially preferred which comprises ethylcellulose, stearyl alcohol, magnesium stearate as lubricant, lactose as filler and providone as a granulating aid.
  • the controlled release matrix formulation does not comprise a neutral water insoluble poly (ethyl acrylate methyl acrylate) copolymer and/or a poly(meth)acrylate trimethylammoniummethylacrylate chloride copolymer.
  • the hydrophobic material is an enteric polymer.
  • suitable enteric polymers include cellulose acetate phthalate, hydroxypropylmethylcellulose phthalate, polyvinylacetate phthalate, methacrylic acid copolymer, shellac, hydroxypropylmethylcellulose succinate, cellulose acetate trimellitate, and mixtures of any of the foregoing.
  • the dosage form of the present invention can be prepared by extrusion or by granulation in accordance with the teachings of, e.g., U.S. Patent Nos. 5,266,331; 5,958,452; and 5,965,161.
  • compositions or preliminary stages thereof which are in accordance with the invention, by extrusion technology is especially advantageous.
  • pharmaceutical formulations or preliminary stages thereof are produced by melt extrusion with co- or counter-rotating extruders comprising two screws.
  • Another such preferred embodiment is the production by means of extrusion, with extruders comprising one or more screws.
  • These extruders may also comprise kneading elements.
  • Extrusion is also a well-established production process in pharmaceutical technology and is well known to the person skilled in the art.
  • the person skilled in the art is well aware that during the extrusion process, various parameters, such as the feeding rate, the screw speed, the heating temperature of the different extruder zones (if available), the water content, etc. may be varied in order to produce products of the desired characteristics.
  • the temperature of the heating zones in which the components of the inventive formulation melt, may be between 40 to 120 °C or between 40 to 160 0 C, preferably between 50 to 100 0 C or preferably between 50 to 135 0 C, more preferably between 50 to 90 0 C, even more preferably between 50 to 70 °C and most preferably between 50 to 65 0 C, particularly if counter-rotating twin screw extruders (such as a Leistritz Micro 18 GGL) are used.
  • counter-rotating twin screw extruders such as a Leistritz Micro 18 GGL
  • the screw speed may vary between 100 to 500 revolutions per minute (rpm)., preferably between 100 to 250 rpm, more preferably between 100 to 200 rpm and most preferably around 150 rpm, particularly if counter-rotating twin screw extruders (such as a Leistritz Micro 18 GGL) are used.
  • the geometry and the diameter of the nozzle may be selected as required.
  • the diameter of the nozzle of commonly used extruders typically is between 1 to 10 mm, preferably between 2 to 8 mm and most preferably between 3 to 5 mm.
  • the ratio of length versus diameter of the screw of extruders that may be used for production of inventive preparations is typically around 40 : 1.
  • the temperatures of the heating zones have to be selected such that no temperatures develop that may destroy the pharmaceutically active compounds.
  • the feeding rate and screw speed will be selected such that the pharmaceutically active compounds are released from the preparations produced by extrusion in a sustained, independent and invariant manner. If e.g. the feeding rate is increased, the screw speed may have to be increased correspondingly to ensure the same retardation.
  • the C 12 to C 36 aliphatic alcohol or aliphatic acid melts and the ethylcellulose can be dissolved in said C 12 to C 36 aliphatic alcohol or aliphatic acid during the melt extrusion process.
  • Opioid agonists salts useful in the present invention include, but are not limited to, pharmaceutically acceptable salts of any of alfentanil, allylprodine, alphaprodine, anileridine, benzylmorphine, bezitramide, buprenorphine, butorphanol, clonitazene, codeine, desomorphine, dextromoramide, dezocine, diampromide, diamorphone, dihydrocodeine, dihydromorphine, dimenoxadol, dimepheptanol, dimethylthiambutene, dioxaphetyl butyrate, dipipanone, eptazocine, ethoheptazine, ethylmethylthiambutene, ethylmorphine, etonitazene, etorphine, dihydroetorphine, fentanyl and derivatives, hydrocodone, hydromorphone, hydroxype
  • Opioid antagonist or pharmaceutically acceptable salts thereof useful in combination with opioid agonists or pharmaceutically acceptable salts thereof as described above are naloxone, naltrexone and nalorphine or pharmaceutically acceptable salts thereof.
  • Preferred is the combination of oxycodone HCl and naloxone HCl in an amount ratio of 2:1.
  • the opioid is selected from codeine, morphine, oxycodone, hydrocodone, hydromorphone, or oxymorphone or pharmaceutically acceptable salts thereof.
  • therapeutically active agents / actives may be used in accordance with the present invention, either in combination of opiods or instead of opioids.
  • therapeutically active agents include antihistamines (e.g., dimenhydrinate, diphenhydramine, chlorpheniramine and dexchlorpheniramine maleate), non -steroidal anti-inflammatory agents (e.g., naproxen, diclofenc, indomethacin, ibuprofen, sulindac), anti-emetics (e.g., metoclopramide, methylnaltrexone), anti-epileptics (e.g., phenytoin, meprobmate and nitrazepam), vasodilators (e.g., nifedipine, papaverine, diltiazem and nicardipine), anti-tussive agents and expectorants (e.g.
  • anti-asthmatics e.g. theophylline
  • antacids e.g. theophylline
  • anti-spasmodics e.g. atropine, scopolamine
  • antidiabetics e.g., insulin
  • diuretics e.g., ethacrynic acid, bendrofluthiazide
  • anti-hypotensives e.g., propranolol, clonidine
  • antihypertensives e.g., clonidine, methyldopa
  • bronchodilatiors e.g., albuterol
  • steroids e.g., hydrocortisone, triamcinolone, prednisone
  • antibiotics e.g., tetracycline
  • antihemorrhoidals hypnotics, psychotropics, antidiarrheals, mucolytics, sedatives, decongestants, lax
  • the present invention is also directed to the dosage forms utilizing active agents such as for example, benzodiazepines, barbiturates or amphetamines. These may be combined with the respective antagonists
  • benzodiazepines refers to benzodiazepines and drugs that are derivatives of benzodiazepine that are able to depress the central nervous system.
  • Benzodiazepines include, but are not limited to, alprazolam, bromazepam, chlordiazepoxied, clorazepate, diazepam, estazolam, flurazepam, halazepam, ketazolam, lorazepam, nitrazepam, oxazepam, prazepam, quazepam, temazepam, triazolam, methylphenidate as well as pharmaceutically acceptable salts, hydrates, and solvates and mixtures thereof.
  • Benzodiazepine antagonists that can be used in the present invention include, but are not limited to, flumazenil as well as pharmaceutically acceptable salts, hydrates, and solvates.
  • Barbiturates refer to sedative-hypnotic drugs derived from barbituric acid (2, 4, 6,-trioxohexahydropyrimidine).
  • Barbiturates include, but are not limited to, amobarbital, aprobarbotal, butabarbital, butalbital, methohexital, mephobarbital, metharbital, pentobarbital, phenobarbital, secobarbital and as well as pharmaceutically acceptable salts, hydrates, and solvates mixtures thereof.
  • Barbiturate antagonists that can be used in the present invention include, but are not limited to, amphetamines as well as pharmaceutically acceptable salts, hydrates, and solvates.
  • Stimulants refer to drugs that stimulate the central nervous system.
  • Stimulants include, but are not limited to, amphetamines, such as amphetamine, dextroamphetamine resin complex, dextroamphetamine, methamphetamine, methylphenidate as well as pharmaceutically acceptable salts, hydrates, and solvates and mixtures thereof.
  • Stimulant antagonists that can be used in the present invention include, but are not limited to, benzodiazepines, as well as pharmaceutically acceptable salts, hydrates, and solvates as described herein.
  • the opioid is hydromorphone hydrochloride in an amount, e.g., of 2 mg, 4 mg, 8 mg, 12 mg, 16 mg, 24 mg, 32 mg, 48 mg or 64 mg hydromorphone hydrochloride.
  • the opioid is oxycodone hydrochloride in an amount, e.g., of 5 mg, 10 mg, 15 mg, 20 mg, 30, mg, 40 mg, 45 mg, 60 mg, or 80 mg, 90 mg, 120 mg or 160 mg oxycodone hydrochloride.
  • alkyl cellulose e.g. ethylcellulose in combination with fatty alcohol oxycodone hydrochloride is combined in the above amounts with naloxone hydrochloride in an amount ratio of 2 : 1.
  • Example 1 is the approved Palladone (sustained release hydromorphone hydrochloride) formulation and contains the following ingredients:
  • the formulation was prepared by the following procedure:
  • Example 2.1 The composition of Example 2.1 is summarized below.
  • Ethycellulose (Ethocel Std. Premium 7) 61.0 1,118.3
  • Glyceryl palmitostearate (Precirol ATO 5) 27.0 495.0
  • Torque 25 Melt Pressure (psi): 520 Feed rate (kg/hour): 4.2 Screw speed (rpm): 90 Die Plate Hole diameter (mm): 1.0 (8-hole die plate)
  • Blending The materials screened in Step 1 were loaded into an 8 qt. V-blender with intensifier bar and blended for 10 minutes at ambient temperature.
  • Extrusion Materials blended in Step 2 were metered into a twin screw extruder fitted with a die and processed into approximately 1 mm strands. The extruder was set on counter-rotation with zone (barrel) temperatures ranged from 15°C to
  • Cooling The strands were cooled on a conveyor at ambient temperature.
  • Pelletizing The cooled strands were cut into pellets approximately 1 mm in length using a pelletizer. 6. Screening: The pellets were screened through a #16 US mesh screen and a #20
  • Example 2.2 compares the impact of various concentrations of ethanol in simulated gastric fluid (500 ml in Example 1; 900 ml in Example 2.1) using a USP Apparatus I (basket) apparatus at 100 rpm at 37 degrees C°on the dissolution of the current Palladone formulation and the formulation of Example 2.1 containing the same concentration of hydromorphone (19% w/w).
  • the current Palladone formulation contains an ammonio methacrylate copolymer as the primary release-rate controlling excipient whereas the formulation of Example 2.1 contains ethylcellulose. The results are summarized below.
  • Example 2.1 is more resistant to increases in the drug release in the presence of ethanol.
  • concentrations of 20% ethanol in SGF resulted in 8x the amount of hydromorphone to be released in one hour compared to the amount released in SGF.
  • concentration of ethanol results in an increase of approximately 1.5x the amount of hydromorphone release for the formulation of Example 2.1 containing ethylcellulose as the rate limiting polymer.
  • Example 3.1 The composition of Example 3.1 is summarized below.
  • Torque (%): 25 Melt Pressure (psi): 690 Feed rate (kg/hour): 2.9 Screw speed (rpm): 90 Die Plate Hole diameter (mm): 1.0 (8-hole die plate)
  • Extrusion Materials blended in Step 2 were metered into a twin screw extruder fitted with a die and processed into approximately 1 mm strands. The extruder was set on counter-rotation with zone (barrel) temperatures ranged from 15 0 C to 125°C.
  • Cooling The strands were cooled on a conveyor at ambient temperature.
  • Pelletizing The cooled strands were cut into pellets approximately 1 mm in length using a pelletizer. 12. Screening: The pellets were screened through a #16 US mesh screen and a #20 US mesh screen. The pellets retained on the #20 US mesh screen were collected.
  • Example 3.2 compares the resistance to hot water extraction. Place one dosage unit of each drug product into two separate glass scintillation vials and label the vials 1 and 2. Add 10 mL of extraction solvent to each vial. If specified, place the vials in a water bath set to a specified temperature (50, 75 or 100 0 C) for 5 minutes. Place both vials on a laboratory wrist-action shaker and remove vial 1 after 15 minutes and vial 2 after 2 hours. Samples at room temperature are placed directly onto the shaker. The experimental set-up is listed below.
  • Example 4 is directed to formulations comprising ethylcellulose and poylmethacrylate.
  • Example 4.1 the following formulation can be prepared.
  • the formulation may consist of a combination of the following ingredients: drug, ethylcellulose, polymethacrylate, and hydroxypropyl cellulose.
  • An example formulation is presented below.
  • the manufacturing process utilizes standard / conventional pharmaceutical processes: , wet granulation, drying, milling, and compression.
  • the granulation process produces a typical granulation (i.e., it resembles a free flowing granular powder); however, when the granulation is compressed, the granules fuse together creating a hard tablet which is resistant to tampering.
  • the manufacturing process is described below.
  • milled to reduce the particle size (creating a more uniform particle size profile) that could be directly compressed, blended with other ingredients (e.g., lubricant, additional binder), or screened to provide specific particle size fractions for compression or for further blending.
  • Milling can be achieved using a screening mill (such as a rotating impeller or oscillating bar). e. Compress tablets to target weight on a rotary tablet press.
  • f Dry mix the Ethylcellulose, Hydromorphone HCl, Microcrystalline Cellulose and Hydroxypropyl Cellulose in a low/high shear mixer. g. While mixing, add the Polymethacrylate (aqueous dispersion) and continue mixing in the low/high shear mixer until a granulation forms. h. Dry the wet granulation in a fluid bed dryer (or screen onto oven trays and dry). i. Mill the dried granulation using a screening mill (such as a rotating impeller or oscillating bar). j . Compress the milled granulation to target weight on a rotary tablet press.
  • a screening mill such as a rotating impeller or oscillating bar
  • Tablets were compressed to a weight of 120 mg to target a 12 mg dose.
  • the resultant tablet composition is provided below.
  • compositions of Examples 4.3, 4.4 and 4.5 are summarized below.
  • Tablets were compressed to a weight of 102 mg to target a 12 mg dose as presented below.
  • the tablets were tested in vitro using a USP Apparatus 2 (paddle) at 50 rpm at 37 degrees C in 900 ml of simulated gastric fluid to evaluate drug release.
  • Drug release data was collected using a UV spectrometer flow through system at a wavelength of 280 nm. The results are presented below.
  • compositions of Examples 4.6, 4.7 and 4.8 are summarized below.
  • a screening mill such as a rotating impeller or oscillating bar
  • Tablets were compressed to a weight of 100 mg to target a 10 mg dose as presented below.
  • Example 4.8 was tested in 40% Ethanol / SGF to evaluate the impact of ethanol on drug release. The results are presented below.
  • compositions A through F of Example 5 are summarized below.
  • Blending The materials screened in Step 1 were loaded into an 8 qt. V-blender with intensifier bar and blended for 10 minutes at ambient temeperature.
  • Extrusion Materials blended in Step 2 were metered into a twin screw extruder fitted with a die and processed in to approximately 1 mm strands. The extruder was set on counter-rotation with zone (barrel) set-temperatures ranged from 15 0 C tol35°C.
  • Cooling The strands were cooled on a conveyor at ambient temperature.
  • Pelletizing The cooled strands were cut into pellets approximately 1 mm in length using a pelletizer. 6. Screening: The pellets were screened through a #16 US mesh screen and a #20
  • Formulations A, C and F were tested in vitro using a USP Apparatus I (basket) apparatus at 100 rpm at 37 degrees 0 C in various concentrations of ethanol in 500 ml simulated gastric fluid in order to determine the impact of ethanol on drug release. The results are presented below.
  • Oxycodone/naloxone dosage form comprising 10 mg oxycodone hydrochloride and 5 mg naloxone hydrochloride
  • Oxycodone/naloxone dosage form comprising 20 mg oxycodone hydrochloride and 10 mg naloxone hydrochloride
  • Oxycodone/naloxone dosage form comprising 40 mg oxycodone hydrochloride and 20 mg naloxone hydrochloride
  • Oxycodone hydrochloride and naloxone hydrochloride are blended with povidone, ethylcellulose, stearyl alcohol and lactose, the blend is screened to remove agglomerates and further blended.
  • the blend is melt extruded utilizing a heated twin screw extruder, to form strands which are milled to produce granules.
  • the granules are blended with talc and magnesium stearate, compressed into capsule shaped tablets, which are then film coated.
  • the dissolution apparatus was assembled in accordance with the USP basket/100rpm/900ml dissolution media method as described e.g. in USP 23.
  • the specified dissolution media were transferred into each vessel with the bath temperature set to 37.0 ⁇ 0.5 °C.
  • All ethanolic media were prepared by transferring the appropriate amount of ethanol in USP Simulated Gastric Fluid (SGF) without pepsin (i.e. 9 mL of ethanol with 891 mL of SGF for a 1% ethanol media).
  • SGF Simulated Gastric Fluid
  • a single tablet was transferred into each vessel.
  • a sample was drawn from each vessel at four time points: 10, 30, 60 and 120 minutes.
  • samples and (corresponding) standards were injected onto the column to determine the amount of oxycodone HCl and naloxone HCl dissolved.
  • Example 6 to 8 The dissolution results of Example 6 to 8 are shown in Fig. 2 and 3.
  • Fig. 2 shows the dissolution (%) of oxycodone after two hours for example 6 (OX/N 10/5 PR), example 7 (OX/N 20/10 PR) and example 9 (OX/N 20/40 PR).
  • Fig. 3 shows the corresponding dissolution (%) of naloxone after two hours.
  • compositions of Examples 10 to 13 are below.
  • Step 1 The oxycodone was blended for 5 minutes with ethyl cellulose and/or Eudragit RS PO/ RL PO and stearyl alcohol in the Gral 10 high shear mixer Step 2.
  • Eudragit NE 40 D dispersion was slowly added by aid of a peristaltic pump onto the blended materials from Step 1 in the Gral 10 mixing bowl, pre-warmed for Examples 12 and 13 to 29 0 C, whilst maintaining mixing/chopping.
  • Step 3 The application of Eudragit NE 40 D was continued until granule formation occurred - all the Eudragit NE 40 D was added. Step 4. The application of Eudragit NE 40 D was periodically halted to permit scraping of the sides of the mixing bowl.
  • Step 5 After all the Eudragit NE 40 D had been added, the wet granules were extruded through a conventional extruder and then dried in a fluid bed dryer at approximately 44° C. Step 6. The dried granules were cooled to room temperature and collected.
  • Step 7 The granules were then fed at a controlled rate to a Leistritz Micro 18 extruder equipped with a 1.0 mm die-plate, a conveyor and pelletiser and heated stations (zones) torque and melt pressure as follows;.
  • Leistritz Micro 18 extruder could be used, a larger extruder, for example a Leistritz Micro 27, may be preferred to handle materials requiring a higher torque for processing.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Addiction (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Biomedical Technology (AREA)
  • Emergency Medicine (AREA)
  • Pain & Pain Management (AREA)
  • Rheumatology (AREA)
  • Psychiatry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
PCT/EP2006/000727 2004-02-12 2006-01-27 Alcohol resistant dosage forms Ceased WO2006079550A2 (en)

Priority Applications (18)

Application Number Priority Date Filing Date Title
AU2006208627A AU2006208627B8 (en) 2005-01-28 2006-01-27 Alcohol resistant dosage forms
CA002594373A CA2594373A1 (en) 2005-01-28 2006-01-27 Alcohol resistant dosage forms
EP06703915A EP1771160A2 (en) 2005-01-28 2006-01-27 Alcohol resistant dosage forms
NZ560669A NZ560669A (en) 2005-01-28 2006-01-27 Use of alkyl cellulose as controlled release matrix material in alcohol resistant dosage forms
CN2006800033121A CN101132772B (zh) 2005-01-28 2006-01-27 耐醇剂型
JP2007552587A JP5704789B2 (ja) 2005-01-28 2006-01-27 耐アルコール性剤形
KR1020097004935A KR20090029856A (ko) 2005-01-28 2006-01-27 알코올 저항성 제형
AP2007004099A AP2274A (en) 2005-01-28 2006-01-27 Alcohol resistant dosage forms.
US11/574,778 US20070259045A1 (en) 2005-01-28 2006-01-27 Alcohol Resistant Dosage Forms
MX2007009162A MX2007009162A (es) 2005-01-28 2006-01-27 Formas de dosis rsistente al alcohol.
EA200701595A EA015615B1 (ru) 2005-01-28 2006-01-27 Устойчивые к спиртам лекарственные формы
BRPI0606339-0A BRPI0606339A2 (pt) 2005-01-28 2006-01-27 formas farmacêuticas resistentes a álcool
TNP2007000293A TNSN07293A1 (fr) 2005-01-28 2007-07-26 Formes posologiques resistant a l'extraction alcoolique
IL184858A IL184858A (en) 2005-01-28 2007-07-26 Alcohol-resistant dosage forms
KR1020077019593A KR100905511B1 (ko) 2005-01-28 2007-08-27 알코올 저항성 제형
US13/157,093 US20120141583A1 (en) 2004-02-12 2011-06-09 Alcohol resistant dosage forms
US15/367,095 US20170079923A1 (en) 2004-02-12 2016-12-01 Alcohol resistant dosage forms
US15/886,659 US20180153812A1 (en) 2004-02-12 2018-02-01 Alcohol resistant dosage forms

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
GB0501638.1 2005-01-28
GBGB0501638.1A GB0501638D0 (en) 2005-01-28 2005-01-28 Particulates
GBPCT/GB2005/050014 2005-02-11
PCT/GB2005/050014 WO2005079760A1 (en) 2004-02-12 2005-02-11 Particulates
US67050605P 2005-04-12 2005-04-12
US60/670,506 2005-04-12
US73033905P 2005-10-26 2005-10-26
US60/730,339 2005-10-26

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US11/574,778 A-371-Of-International US20070259045A1 (en) 2005-01-28 2006-01-27 Alcohol Resistant Dosage Forms
US13/157,093 Continuation US20120141583A1 (en) 2004-02-12 2011-06-09 Alcohol resistant dosage forms

Publications (2)

Publication Number Publication Date
WO2006079550A2 true WO2006079550A2 (en) 2006-08-03
WO2006079550A3 WO2006079550A3 (en) 2006-12-14

Family

ID=36297284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/000727 Ceased WO2006079550A2 (en) 2004-02-12 2006-01-27 Alcohol resistant dosage forms

Country Status (14)

Country Link
US (1) US20070259045A1 (enExample)
EP (4) EP1771160A2 (enExample)
JP (1) JP5704789B2 (enExample)
KR (2) KR20090029856A (enExample)
CN (1) CN101132772B (enExample)
AP (1) AP2274A (enExample)
AU (1) AU2006208627B8 (enExample)
BR (1) BRPI0606339A2 (enExample)
CA (1) CA2594373A1 (enExample)
EA (1) EA015615B1 (enExample)
GE (1) GEP20105052B (enExample)
IL (1) IL184858A (enExample)
MX (1) MX2007009162A (enExample)
WO (1) WO2006079550A2 (enExample)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008049657A3 (de) * 2006-10-26 2008-10-30 Evonik Roehm Gmbh Verwendung von (meth)acrylat-copolymeren in retard-arzneiformen zur verringerung des einflusses von ethanol auf die wirkstofffreisetzung
WO2008011596A3 (en) * 2006-07-21 2008-11-13 Lab Internat Srl Hydrophilic abuse deterrent delivery system
WO2008053356A3 (en) * 2006-04-28 2008-12-18 Endo Pharmaceuticals Immediate release oxymorphone compositions and methods of using same
JP2010539197A (ja) * 2007-09-21 2010-12-16 エボニック レーム ゲゼルシャフト ミット ベシュレンクテル ハフツング エタノールの影響に対して耐性を有するph依存性制御放出医薬オピオイド組成物
JP2010539196A (ja) * 2007-09-21 2010-12-16 エボニック レーム ゲゼルシャフト ミット ベシュレンクテル ハフツング エタノールの影響に対して耐性を有する非オピオイド薬のpH依存性制御放出医薬組成物
US20110002985A1 (en) * 2007-08-13 2011-01-06 Abuse Deterrent Pharmaceutical, Llc Abuse resistant drugs, method of use and method of making
JP2011504455A (ja) * 2006-09-15 2011-02-10 シマ ラブス インク. 誤用抵抗性製剤
JP2011510048A (ja) * 2008-01-24 2011-03-31 アボット ゲーエムベーハー ウント カンパニー カーゲー 低減したアルコール相互作用を有する乱用抵抗性溶融押出製剤
WO2013057570A3 (en) * 2011-10-18 2013-06-13 Purdue Pharma L.P. Acrylic polymer formulations
US9056051B2 (en) 2001-05-11 2015-06-16 Purdue Pharma L.P. Abuse-resistant controlled-release opioid dosage form
US9226907B2 (en) 2008-02-01 2016-01-05 Abbvie Inc. Extended release hydrocodone acetaminophen and related methods and uses thereof
US9486413B2 (en) 2006-08-25 2016-11-08 Purdue Pharma L.P. Tamper resistant dosage forms
US9655855B2 (en) 2002-04-05 2017-05-23 Purdue Pharma L.P. Matrix for sustained, invariant and independent release of active compounds
US9700508B2 (en) 2010-05-10 2017-07-11 Euro-Celtique S.A. Pharmaceutical compositions comprising hydromorphone and naloxone
US9814710B2 (en) 2013-11-13 2017-11-14 Euro-Celtique S.A. Hydromorphone and naloxone for treatment of pain and opioid bowel dysfunction syndrome
US9820983B2 (en) 2009-03-10 2017-11-21 Purdue Pharma L.P. Immediate release pharmaceutical compositions comprising oxycodone and naloxone
US9901540B2 (en) 2010-05-10 2018-02-27 Euro-Celtique S.A. Combination of active loaded granules with additional actives
US9993433B2 (en) 2010-05-10 2018-06-12 Euro-Celtique S.A. Manufacturing of active-free granules and tablets comprising the same
US10071089B2 (en) 2013-07-23 2018-09-11 Euro-Celtique S.A. Combination of oxycodone and naloxone for use in treating pain in patients suffering from pain and a disease resulting in intestinal dysbiosis and/or increasing the risk for intestinal bacterial translocation
US10258235B2 (en) 2005-02-28 2019-04-16 Purdue Pharma L.P. Method and device for the assessment of bowel function
US10420726B2 (en) 2013-03-15 2019-09-24 Inspirion Delivery Sciences, Llc Abuse deterrent compositions and methods of use
US10507205B2 (en) 2006-01-19 2019-12-17 Purdue Pharmaceutical Products L.P. Methods of treating opiate dependency and preventing non-oral opiate abuse among opiate addicts
US10729685B2 (en) 2014-09-15 2020-08-04 Ohemo Life Sciences Inc. Orally administrable compositions and methods of deterring abuse by intranasal administration
US11806433B2 (en) 2017-11-01 2023-11-07 Edgemont Pharmaceuticals, LLC Trust Alcohol-resistant oral pharmaceutical compositions of lorazepam
US12161754B2 (en) 2017-12-20 2024-12-10 Purdue Pharma L.P. Abuse deterrent morphine sulfate dosage forms

Families Citing this family (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6375957B1 (en) 1997-12-22 2002-04-23 Euro-Celtique, S.A. Opioid agonist/opioid antagonist/acetaminophen combinations
ES2412409T3 (es) 1997-12-22 2013-07-11 Euro-Celtique S.A. Forma farmacéutica para dosificación oral que comprende una combinación de un agonista opiáceo y un antagonista opiáceo
US7776314B2 (en) 2002-06-17 2010-08-17 Grunenthal Gmbh Abuse-proofed dosage system
DE102005005446A1 (de) 2005-02-04 2006-08-10 Grünenthal GmbH Bruchfeste Darreichungsformen mit retardierter Freisetzung
US20070048228A1 (en) 2003-08-06 2007-03-01 Elisabeth Arkenau-Maric Abuse-proofed dosage form
DE10361596A1 (de) 2003-12-24 2005-09-29 Grünenthal GmbH Verfahren zur Herstellung einer gegen Missbrauch gesicherten Darreichungsform
DE10336400A1 (de) 2003-08-06 2005-03-24 Grünenthal GmbH Gegen Missbrauch gesicherte Darreichungsform
TWI350762B (en) * 2004-02-12 2011-10-21 Euro Celtique Sa Particulates
GB0403098D0 (en) * 2004-02-12 2004-03-17 Euro Celtique Sa Extrusion
DE102004032049A1 (de) 2004-07-01 2006-01-19 Grünenthal GmbH Gegen Missbrauch gesicherte, orale Darreichungsform
DE102005005449A1 (de) 2005-02-04 2006-08-10 Grünenthal GmbH Verfahren zur Herstellung einer gegen Missbrauch gesicherten Darreichungsform
US20090317355A1 (en) * 2006-01-21 2009-12-24 Abbott Gmbh & Co. Kg, Abuse resistant melt extruded formulation having reduced alcohol interaction
US20070212414A1 (en) * 2006-03-08 2007-09-13 Penwest Pharmaceuticals Co. Ethanol-resistant sustained release formulations
CA2687192C (en) 2007-06-04 2015-11-24 Egalet A/S Controlled release pharmaceutical compositions for prolonged effect
US8383152B2 (en) 2008-01-25 2013-02-26 Gruenenthal Gmbh Pharmaceutical dosage form
AU2009223061B2 (en) 2008-03-11 2014-10-09 Depomed Inc. Gastric retentive extended-release dosage forms comprising combinations of a non-opioid analgesic and an opioid analgesic
US8372432B2 (en) 2008-03-11 2013-02-12 Depomed, Inc. Gastric retentive extended-release dosage forms comprising combinations of a non-opioid analgesic and an opioid analgesic
TWI524904B (zh) 2008-05-09 2016-03-11 歌林達股份有限公司 製備醫藥用固體劑型,尤指錠劑之方法,及製備固體劑型,尤指錠劑之前驅物之方法
NZ592276A (en) * 2008-09-18 2012-12-21 Purdue Pharma Lp PHARMACEUTICAL DOSAGE FORMS COMPRISING POLY(epsilon-CAPROLACTONE) AND AN OPIOID
BRPI0823096B8 (pt) 2008-09-24 2022-07-05 Evonik Roehm Gmbh composição farmacêutica de opióide de liberação controlada, dependente do ph, com resistência contra a influência do etanol, processo para sua preparação, e seu uso
BRPI0823402A2 (pt) * 2008-12-30 2015-06-16 Abdi Ibrahim Ilac Sanayi Ve Ticaret Anonim Sirketi Formulações farmacêuticas de olmesartan
NZ594207A (en) 2009-02-06 2013-03-28 Egalet Ltd Immediate release composition resistant to abuse by intake of alcohol
BRPI0924427A2 (pt) * 2009-03-18 2016-01-26 Evonik Roehm Gmbh composição farmacêutica de liberação controlada, seu processo de preparação e uso da mesma
US9730899B2 (en) * 2009-03-18 2017-08-15 Evonik Roehm Gmbh Controlled release pharmaceutical composition with resistance against the influence of ethanol employing a coating comprising neutral vinyl polymers and excipients
GB0909680D0 (en) * 2009-06-05 2009-07-22 Euro Celtique Sa Dosage form
NZ597283A (en) 2009-06-24 2013-07-26 Egalet Ltd Controlled release formulations
JP5667183B2 (ja) 2009-07-22 2015-02-12 グリュネンタール・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 加熱溶融押出成型した制御放出性投与剤型
NZ596668A (en) 2009-07-22 2013-09-27 Gruenenthal Chemie Oxidation-stabilized tamper-resistant dosage form
US9198861B2 (en) 2009-12-22 2015-12-01 Mallinckrodt Llc Methods of producing stabilized solid dosage pharmaceutical compositions containing morphinans
US8597681B2 (en) 2009-12-22 2013-12-03 Mallinckrodt Llc Methods of producing stabilized solid dosage pharmaceutical compositions containing morphinans
EP2531176B1 (en) 2010-02-03 2016-09-07 Grünenthal GmbH Preparation of a powdery pharmaceutical composition by means of an extruder
MX2013002293A (es) 2010-09-02 2013-05-09 Gruenenthal Gmbh Forma de dosificacion resistente a alteracion que comprende un polimero anionico.
ES2486791T3 (es) 2010-09-02 2014-08-19 Grünenthal GmbH Forma de dosificación resistente a la manipulación que comprende una sal inorgánica
GB201020895D0 (en) * 2010-12-09 2011-01-26 Euro Celtique Sa Dosage form
US8741885B1 (en) 2011-05-17 2014-06-03 Mallinckrodt Llc Gastric retentive extended release pharmaceutical compositions
US8658631B1 (en) 2011-05-17 2014-02-25 Mallinckrodt Llc Combination composition comprising oxycodone and acetaminophen for rapid onset and extended duration of analgesia
US8858963B1 (en) 2011-05-17 2014-10-14 Mallinckrodt Llc Tamper resistant composition comprising hydrocodone and acetaminophen for rapid onset and extended duration of analgesia
AT511581A1 (de) 2011-05-26 2012-12-15 G L Pharma Gmbh Orale retardierende formulierung
EP2714015B1 (en) * 2011-06-01 2017-03-15 FMC Corporation Controlled release solid dose forms
PE20141650A1 (es) 2011-07-29 2014-11-22 Gruenenthal Chemie Tableta a prueba de alteracion que proporciona liberacion inmediata del farmaco
EA201400172A1 (ru) 2011-07-29 2014-06-30 Грюненталь Гмбх Устойчивая к разрушению таблетка, которая обеспечивает немедленное высвобождение лекарственного средства
ES2641437T3 (es) * 2011-09-16 2017-11-10 Purdue Pharma Lp Formulaciones farmacéuticas resistentes a la manipulación indebida
WO2013127831A1 (en) 2012-02-28 2013-09-06 Grünenthal GmbH Tamper-resistant dosage form comprising pharmacologically active compound and anionic polymer
ES2692944T3 (es) * 2012-04-18 2018-12-05 Grünenthal GmbH Forma de dosificación farmacéutica resistente a la manipulación y resistente a la descarga rápida de la dosis
US10064945B2 (en) 2012-05-11 2018-09-04 Gruenenthal Gmbh Thermoformed, tamper-resistant pharmaceutical dosage form containing zinc
CA2795324C (en) * 2012-11-09 2015-07-14 Purdue Pharma Pharmaceutical compositions comprising hydromorphone and naloxone
WO2014123899A1 (en) 2013-02-05 2014-08-14 Purdue Pharma L.P. Tamper resistant pharmaceutical formulations
US10751287B2 (en) 2013-03-15 2020-08-25 Purdue Pharma L.P. Tamper resistant pharmaceutical formulations
US9737490B2 (en) 2013-05-29 2017-08-22 Grünenthal GmbH Tamper resistant dosage form with bimodal release profile
BR112015026549A2 (pt) 2013-05-29 2017-07-25 Gruenenthal Gmbh forma de dosagem à prova de violação contendo uma ou mais partículas
AU2014289187B2 (en) 2013-07-12 2019-07-11 Grunenthal Gmbh Tamper-resistant dosage form containing ethylene-vinyl acetate polymer
AU2014356581C1 (en) 2013-11-26 2020-05-28 Grunenthal Gmbh Preparation of a powdery pharmaceutical composition by means of cryo-milling
MX2016014738A (es) 2014-05-12 2017-03-06 Gruenenthal Gmbh Formulacion en capsula de liberacion inmediata resistente a alteraciones que comprende tapentadol.
CN106456550A (zh) 2014-05-26 2017-02-22 格吕伦塔尔有限公司 避免乙醇剂量倾泻的多颗粒
BR112017021475A2 (pt) 2015-04-24 2018-07-10 Gruenenthal Gmbh forma de dosagem resistente à adulteração (tamper) com liberação imediata e resistência contra extração de solvente
CA2998259A1 (en) 2015-09-10 2017-03-16 Grunenthal Gmbh Protecting oral overdose with abuse deterrent immediate release formulations
US9861629B1 (en) 2015-10-07 2018-01-09 Banner Life Sciences Llc Opioid abuse deterrent dosage forms
US10335405B1 (en) 2016-05-04 2019-07-02 Patheon Softgels, Inc. Non-burst releasing pharmaceutical composition
US10335375B2 (en) 2017-05-30 2019-07-02 Patheon Softgels, Inc. Anti-overingestion abuse deterrent compositions
WO2020036970A1 (en) * 2018-08-13 2020-02-20 Avekshan, Llc Abuse deterrent pharmaceutical formulations

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4844909A (en) 1986-10-31 1989-07-04 Euroceltique, S.A. Controlled release hydromorphone composition
WO2001058451A1 (en) 2000-02-08 2001-08-16 Euro-Celtique, S.A. Tamper-resistant oral opioid agonist formulations

Family Cites Families (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3173876A (en) * 1960-05-27 1965-03-16 John C Zobrist Cleaning methods and compositions
NL271831A (enExample) * 1960-11-29
US3276586A (en) * 1963-08-30 1966-10-04 Rosaen Filter Co Indicating means for fluid filters
NL6714885A (enExample) * 1967-11-02 1969-05-06
US3541006A (en) * 1968-07-03 1970-11-17 Amicon Corp Ultrafiltration process
US3541005A (en) * 1969-02-05 1970-11-17 Amicon Corp Continuous ultrafiltration of macromolecular solutions
US3773955A (en) * 1970-08-03 1973-11-20 Bristol Myers Co Analgetic compositions
FR2183546B1 (enExample) * 1972-05-10 1975-06-20 Servier Lab
US3845770A (en) * 1972-06-05 1974-11-05 Alza Corp Osmatic dispensing device for releasing beneficial agent
US3916899A (en) * 1973-04-25 1975-11-04 Alza Corp Osmotic dispensing device with maximum and minimum sizes for the passageway
US3916889A (en) * 1973-09-28 1975-11-04 Sandoz Ag Patient ventilator apparatus
GB1478759A (en) * 1974-11-18 1977-07-06 Alza Corp Process for forming outlet passageways in pills using a laser
US3966040A (en) * 1975-03-05 1976-06-29 Hazelwood John E Combined vibratory feeder drive unit, vibratory feeder bowl, and parts separator
US4077407A (en) * 1975-11-24 1978-03-07 Alza Corporation Osmotic devices having composite walls
US4126684A (en) * 1976-02-11 1978-11-21 Ciba-Geigy Corporation 4-amino-3-p-halophenylbutyric acids and their derivatives used in the control of narcotic abuse
US4063064A (en) * 1976-02-23 1977-12-13 Coherent Radiation Apparatus for tracking moving workpiece by a laser beam
US4285987A (en) * 1978-10-23 1981-08-25 Alza Corporation Process for manufacturing device with dispersion zone
US4200098A (en) * 1978-10-23 1980-04-29 Alza Corporation Osmotic system with distribution zone for dispensing beneficial agent
US4457933A (en) * 1980-01-24 1984-07-03 Bristol-Myers Company Prevention of analgesic abuse
GB8332556D0 (en) * 1983-12-06 1984-01-11 Reckitt & Colmann Prod Ltd Analgesic compositions
US4668685A (en) * 1984-07-05 1987-05-26 E.I. Du Pont De Nemours And Company Substituted benzoate ester prodrug derivatives of 3-hydroxymorphinans, which are analgesics or narcotic antagonists
US4861598A (en) * 1986-07-18 1989-08-29 Euroceltique, S.A. Controlled release bases for pharmaceuticals
DE3812567A1 (de) * 1988-04-15 1989-10-26 Basf Ag Verfahren zur herstellung pharmazeutischer mischungen
US5236714A (en) * 1988-11-01 1993-08-17 Alza Corporation Abusable substance dosage form having reduced abuse potential
US5656295A (en) 1991-11-27 1997-08-12 Euro-Celtique, S.A. Controlled release oxycodone compositions
US5266331A (en) * 1991-11-27 1993-11-30 Euroceltique, S.A. Controlled release oxycodone compositions
US5286493A (en) * 1992-01-27 1994-02-15 Euroceltique, S.A. Stabilized controlled release formulations having acrylic polymer coating
US5681585A (en) * 1991-12-24 1997-10-28 Euro-Celtique, S.A. Stabilized controlled release substrate having a coating derived from an aqueous dispersion of hydrophobic polymer
US5273760A (en) * 1991-12-24 1993-12-28 Euroceltigue, S.A. Stabilized controlled release substrate having a coating derived from an aqueous dispersion of hydrophobic polymer
US5478577A (en) * 1993-11-23 1995-12-26 Euroceltique, S.A. Method of treating pain by administering 24 hour oral opioid formulations exhibiting rapid rate of initial rise of plasma drug level
US5968551A (en) 1991-12-24 1999-10-19 Purdue Pharma L.P. Orally administrable opioid formulations having extended duration of effect
US5472712A (en) * 1991-12-24 1995-12-05 Euroceltique, S.A. Controlled-release formulations coated with aqueous dispersions of ethylcellulose
US5324351A (en) * 1992-08-13 1994-06-28 Euroceltique Aqueous dispersions of zein and preparation thereof
IL119660A (en) * 1993-05-10 2002-09-12 Euro Celtique Sa Controlled release formulation comprising tramadol
IL110014A (en) * 1993-07-01 1999-11-30 Euro Celtique Sa Solid controlled-release oral dosage forms of opioid analgesics
US5411745A (en) * 1994-05-25 1995-05-02 Euro-Celtique, S.A. Powder-layered morphine sulfate formulations
US5866154A (en) * 1994-10-07 1999-02-02 The Dupont Merck Pharmaceutical Company Stabilized naloxone formulations
US5965161A (en) * 1994-11-04 1999-10-12 Euro-Celtique, S.A. Extruded multi-particulates
US20020006964A1 (en) * 1995-05-16 2002-01-17 Young James W. Methods of using and compositions comprising (+) sibutramine optionally in combination with other pharmacologically active compounds
DE19651551C2 (de) * 1996-12-11 2000-02-03 Klinge Co Chem Pharm Fab Opioidantagonisthaltige galenische Formulierung
DE19710008A1 (de) * 1997-03-12 1998-09-17 Basf Ag Feste, mindestens zweiphasige Zubereitungsformen eines Opioid-Analgeticums mit verzögerter Freisetzung
US5985452A (en) 1997-03-18 1999-11-16 Ucar Carbon Technology Corporation Flexible graphite composite sheet and method
US6207142B1 (en) * 1997-04-14 2001-03-27 Janssen Pharmaceutica N.V. Compositions containing an antifungal and a cationic agent
DE69834195T2 (de) * 1997-07-02 2007-03-29 Euro-Celtique S.A. Stabilisierte tramadol formulierungen mit verzögerter freisetzung
CN1204890C (zh) * 1997-12-22 2005-06-08 欧罗赛铁克股份有限公司 防止阿片样物质滥用的方法
ES2412409T3 (es) * 1997-12-22 2013-07-11 Euro-Celtique S.A. Forma farmacéutica para dosificación oral que comprende una combinación de un agonista opiáceo y un antagonista opiáceo
EP1066038B1 (en) * 1998-03-27 2005-12-21 Pharmacia & Upjohn Company LLC Use of cabergoline in the treatment of restless legs syndrome
DE19901085C2 (de) * 1999-01-14 2003-12-18 Lohmann Therapie Syst Lts Transdermales therapeutisches System mit einer selbstklebenden Matrix, enthaltend organische Säure-Additionssalze von Alkaloiden des Morphin- bzw. Morphinantyps
US20030178031A1 (en) * 1999-05-07 2003-09-25 Du Pen, Inc. Method for cancer pain treatment
US20030118641A1 (en) 2000-07-27 2003-06-26 Roxane Laboratories, Inc. Abuse-resistant sustained-release opioid formulation
DE19938823A1 (de) * 1999-08-19 2001-02-22 Boehringer Ingelheim Pharma Medikamentöse Behandlung des Restless Leg Syndroms
US6258042B1 (en) * 1999-09-17 2001-07-10 James S. Factor Visual analog scale and method of use for the diagnosis and/or treatment of physical pain
US6716449B2 (en) * 2000-02-08 2004-04-06 Euro-Celtique S.A. Controlled-release compositions containing opioid agonist and antagonist
AR030557A1 (es) 2000-04-14 2003-08-27 Jagotec Ag Una tableta en multicapa de liberacion controlada y metodo de tratamiento
US7223421B2 (en) * 2000-06-30 2007-05-29 Mcneil-Ppc, Inc. Teste masked pharmaceutical particles
GB0026137D0 (en) * 2000-10-25 2000-12-13 Euro Celtique Sa Transdermal dosage form
AR031152A1 (es) * 2000-10-31 2003-09-10 Upjohn Co Tratamientos nuevos para el sindrome de piernas inquietas
CA2444053C (en) * 2001-04-19 2008-06-17 Warner-Lambert Company Llc Fused bicyclic or tricyclic amino acids
US20030004177A1 (en) * 2001-05-11 2003-01-02 Endo Pharmaceuticals, Inc. Abuse-resistant opioid dosage form
WO2003004009A1 (en) * 2001-07-02 2003-01-16 Geneva Pharmaceuticals, Inc. Pharmaceutical composition
AU2002316738B2 (en) * 2001-07-18 2009-01-08 Euro-Celtique S.A. Pharmaceutical combinations of oxycodone and naloxone
EP1414413A1 (en) * 2001-08-06 2004-05-06 Euro-Celtique S.A. Compositions and methods to prevent abuse of opioids
KR20040060917A (ko) * 2001-08-06 2004-07-06 유로-셀티크 소시에떼 아노뉨 오피오이드 남용을 방지하기 위한 조성물 및 방법
US7332182B2 (en) * 2001-08-06 2008-02-19 Purdue Pharma L.P. Pharmaceutical formulation containing opioid agonist, opioid antagonist and irritant
US20030044458A1 (en) * 2001-08-06 2003-03-06 Curtis Wright Oral dosage form comprising a therapeutic agent and an adverse-effect agent
EP1429787A1 (en) * 2001-09-24 2004-06-23 Ortho-McNeil Pharmaceutical, Inc. Anticonvulsant derivatives useful for the treatment of restless limb syndrome and periodic limb movement disorder
ES2320748T5 (es) * 2002-04-05 2017-02-20 Euro-Celtique S.A. Matriz para la liberación sostenida, invariable e independiente de compuestos activos
US20030191147A1 (en) * 2002-04-09 2003-10-09 Barry Sherman Opioid antagonist compositions and dosage forms
US7399488B2 (en) 2002-07-05 2008-07-15 Collegium Pharmaceutical, Inc. Abuse-deterrent pharmaceutical compositions of opiods and other drugs
US8216609B2 (en) 2002-08-05 2012-07-10 Torrent Pharmaceuticals Limited Modified release composition of highly soluble drugs
CA2499994C (en) * 2002-09-23 2012-07-10 Verion, Inc. Abuse-resistant pharmaceutical compositions
SI1575569T1 (sl) 2002-12-13 2010-12-31 Durect Corp Oralni sistem dostave zdravila, ki obsega visokoviskozne tekoče nosilne materiale
CN100500130C (zh) * 2003-01-23 2009-06-17 株式会社太平洋 缓释制剂及其制备方法
TWI357815B (en) * 2003-06-27 2012-02-11 Euro Celtique Sa Multiparticulates
TWI350762B (en) * 2004-02-12 2011-10-21 Euro Celtique Sa Particulates
US7700626B2 (en) * 2004-06-04 2010-04-20 Adolor Corporation Compositions containing opioid antagonists
EP1604666A1 (en) * 2004-06-08 2005-12-14 Euro-Celtique S.A. Opioids for the treatment of the Chronic Obstructive Pulmonary Disease (COPD)
EP1695700A1 (en) * 2005-02-28 2006-08-30 Euro-Celtique S.A. Dosage form containing oxycodone and naloxone

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4844909A (en) 1986-10-31 1989-07-04 Euroceltique, S.A. Controlled release hydromorphone composition
WO2001058451A1 (en) 2000-02-08 2001-08-16 Euro-Celtique, S.A. Tamper-resistant oral opioid agonist formulations

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
AMABILE CELENE M; BOWMAN BILL J: "Overview of oral modified-release opioid products for the management of chronic pain", ANNALS OF PHARMACOTHERAPY, vol. 40, no. 7-8, July 2006 (2006-07-01), pages 1327 - 1335, XP009125854
M. WALDEN ET AL.: "The effect of ethanol on the release of opioids from oral prolonged-release preparations", DRUG DEVELOPMENT AND INDUSTRIAL PHARMACY, vol. 33, no. 10, 2007, pages 1101 - 1111, XP008105537
MUNDIPHARMA PHARMACEUTICALS LTD.: "OxyContin 80 mg prolonged release tablets", SUMMARY OF PRODUCT CHARACTERISTICS, 28 May 1998 (1998-05-28), pages 1 - 11, XP055258983
NAPP PHARMACEUTICALS LTD.: "MST Continus tablets 5 mg, 10 mg, 15 mg, 30 mg, 60 mg, 100 mg, 200 mg", EMC WEBSITE, 1 May 1999 (1999-05-01), XP055258966, Retrieved from the Internet <URL:https://www.medicines.org.uk/emc/medicine/1223/SPC/M+Continus+tablets++5+mg,+10+mg,+15+mg,+30+mg,+60+mg,+100+mg,+200+mg/>
See also references of EP1771160A2

Cited By (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9056051B2 (en) 2001-05-11 2015-06-16 Purdue Pharma L.P. Abuse-resistant controlled-release opioid dosage form
US9084729B2 (en) 2001-05-11 2015-07-21 Purdue Pharma L.P. Abuse-resistant controlled-release opioid dosage form
US10420762B2 (en) 2002-04-05 2019-09-24 Purdue Pharma L.P. Pharmaceutical preparation containing oxycodone and naloxone
US9907793B2 (en) 2002-04-05 2018-03-06 Purdue Pharma L.P. Pharmaceutical preparation containing oxycodone and naloxone
US9655855B2 (en) 2002-04-05 2017-05-23 Purdue Pharma L.P. Matrix for sustained, invariant and independent release of active compounds
US10258235B2 (en) 2005-02-28 2019-04-16 Purdue Pharma L.P. Method and device for the assessment of bowel function
US10507205B2 (en) 2006-01-19 2019-12-17 Purdue Pharmaceutical Products L.P. Methods of treating opiate dependency and preventing non-oral opiate abuse among opiate addicts
WO2008053356A3 (en) * 2006-04-28 2008-12-18 Endo Pharmaceuticals Immediate release oxymorphone compositions and methods of using same
WO2008011596A3 (en) * 2006-07-21 2008-11-13 Lab Internat Srl Hydrophilic abuse deterrent delivery system
US9770417B2 (en) 2006-08-25 2017-09-26 Purdue Pharma L.P. Tamper resistant dosage forms
US9775808B2 (en) 2006-08-25 2017-10-03 Purdue Pharma L.P. Tamper resistant dosage forms
US11298322B2 (en) 2006-08-25 2022-04-12 Purdue Pharma L.P. Tamper resistant dosage forms
US10076499B2 (en) 2006-08-25 2018-09-18 Purdue Pharma L.P. Tamper resistant dosage forms
US10076498B2 (en) 2006-08-25 2018-09-18 Purdue Pharma L.P. Tamper resistant dosage forms
US12396955B2 (en) 2006-08-25 2025-08-26 Purdue Pharma L.P. Tamper resistant dosage forms
US11304908B2 (en) 2006-08-25 2022-04-19 Purdue Pharma L.P. Tamper resistant dosage forms
US11304909B2 (en) 2006-08-25 2022-04-19 Purdue Pharma L.P. Tamper resistant dosage forms
US11826472B2 (en) 2006-08-25 2023-11-28 Purdue Pharma L.P. Tamper resistant dosage forms
US11904055B2 (en) 2006-08-25 2024-02-20 Purdue Pharma L.P. Tamper resistant dosage forms
US11938225B2 (en) 2006-08-25 2024-03-26 Purdue Pharm L.P. Tamper resistant dosage forms
US12280152B2 (en) 2006-08-25 2025-04-22 Purdue Pharma L.P. Tamper resistant dosage forms
US9775812B2 (en) 2006-08-25 2017-10-03 Purdue Pharma L.P. Tamper resistant dosage forms
US9486413B2 (en) 2006-08-25 2016-11-08 Purdue Pharma L.P. Tamper resistant dosage forms
US9486412B2 (en) 2006-08-25 2016-11-08 Purdue Pharma L.P. Tamper resistant dosage forms
US9492393B2 (en) 2006-08-25 2016-11-15 Purdue Pharma L.P. Tamper resistant dosage forms
US9492389B2 (en) 2006-08-25 2016-11-15 Purdue Pharma L.P. Tamper resistant dosage forms
US9492390B2 (en) 2006-08-25 2016-11-15 Purdue Pharma L.P. Tamper resistant dosage forms
US9492391B2 (en) 2006-08-25 2016-11-15 Purdue Pharma L.P. Tamper resistant dosage forms
US9492392B2 (en) 2006-08-25 2016-11-15 Purdue Pharma L.P. Tamper resistant dosage forms
US9545380B2 (en) 2006-08-25 2017-01-17 Purdue Pharma L.P. Tamper resistant dosage forms
US9775810B2 (en) 2006-08-25 2017-10-03 Purdue Pharma L.P. Tamper resistant dosage forms
US11964056B1 (en) 2006-08-25 2024-04-23 Purdue Pharma L.P Tamper resistant dosage forms
US9763886B2 (en) 2006-08-25 2017-09-19 Purdue Pharma L.P. Tamper resistant dosage forms
US9763933B2 (en) 2006-08-25 2017-09-19 Purdue Pharma L.P. Tamper resistant dosage forms
US9775809B2 (en) 2006-08-25 2017-10-03 Purdue Pharma L.P. Tamper resistant dosage forms
US9770416B2 (en) 2006-08-25 2017-09-26 Purdue Pharma L.P. Tamper resistant dosage forms
US9775811B2 (en) 2006-08-25 2017-10-03 Purdue Pharma L.P. Tamper resistant dosage forms
JP2011504455A (ja) * 2006-09-15 2011-02-10 シマ ラブス インク. 誤用抵抗性製剤
WO2008049657A3 (de) * 2006-10-26 2008-10-30 Evonik Roehm Gmbh Verwendung von (meth)acrylat-copolymeren in retard-arzneiformen zur verringerung des einflusses von ethanol auf die wirkstofffreisetzung
US11285112B2 (en) 2007-08-13 2022-03-29 Oheno Life Sciences, Inc Abuse resistant forms of immediate release oxymorphone, method of use and method of making
US10695298B2 (en) * 2007-08-13 2020-06-30 Inspirion Delivery Sciences, Llc Abuse resistant forms of extended release hydromorphone, method of use and method of making
US20110150971A1 (en) * 2007-08-13 2011-06-23 Inspirion Delivery Technologies, Llc Abuse resistant drugs, method of use and method of making
US20110150991A1 (en) * 2007-08-13 2011-06-23 Inspirion Delivery Technologies, Llc Abuse resistant drugs, method of use and method of making
US20140377352A1 (en) * 2007-08-13 2014-12-25 Inspirion Delivery Technologies, Llc Abuse resistant forms of extended release morphine, method of use and method of making
US20110150990A1 (en) * 2007-08-13 2011-06-23 Inspirion Delivery Technologies, Llc Abuse resistant drugs, method of use and method of making
US20140248343A1 (en) * 2007-08-13 2014-09-04 Inspirion Delivery Technologies, Llc Abuse resistant forms of extended release morphine, method of use and method of making
US20140248344A1 (en) * 2007-08-13 2014-09-04 lnspirion Delivery Technologies, LLC Abuse resistant forms of extended release morphine, method of use and method of making
US20110159089A1 (en) * 2007-08-13 2011-06-30 Inspirion Delivery Technologies, Llc Abuse resistant drugs, method of use and method of making
US20110150970A1 (en) * 2007-08-13 2011-06-23 Inspirion Delivery Technologies, Llc Abuse resistant drugs, method of use and method of making
US20110150969A1 (en) * 2007-08-13 2011-06-23 Inspirion Delivery Technologies, Llc Abuse resistant drugs, method of use and method of making
US20110002985A1 (en) * 2007-08-13 2011-01-06 Abuse Deterrent Pharmaceutical, Llc Abuse resistant drugs, method of use and method of making
US11291634B2 (en) 2007-08-13 2022-04-05 OHEMO Life Sciences, Inc. Abuse resistant forms of extended release oxymorphone, method of use and method of making
US11191730B2 (en) 2007-08-13 2021-12-07 Ohemo Life Sciences Inc. Abuse resistant forms of immediate release hydromorphone, method of use and method of making
US11045422B2 (en) 2007-08-13 2021-06-29 Oheno Life Sciences, Inc. Abuse resistant drugs, method of use and method of making
US10736850B2 (en) * 2007-08-13 2020-08-11 Ohemo Life Sciences Inc. Abuse resistant oral opioid formulations
US11278500B2 (en) 2007-08-13 2022-03-22 OHEMO Life Sciences, Inc. Abuse resistant forms of extended release hydrocodone, method of use and method of making
US10688054B2 (en) * 2007-08-13 2020-06-23 Inspirion Delivery Sciences Llc Abuse resistant forms of extended release morphine, method of use and method of making
US10688053B2 (en) * 2007-08-13 2020-06-23 Inspirion Delivery Sciences, Llc Abuse resistant forms of extended release hydrocodone, method of use and method of making
US10688051B2 (en) * 2007-08-13 2020-06-23 Inspirion Delivery Sciences Llc Abuse resistant forms of extended release oxycodone, method of use, and method of making
US10688052B2 (en) * 2007-08-13 2020-06-23 Inspirion Delivery Sciences Llc Abuse resistant forms of extended release oxymorphone, method of use and method of making
US10702480B2 (en) * 2007-08-13 2020-07-07 OHEMO Life Sciences, Inc. Abuse resistant forms of extended release morphine, method of use and method of making
US10688055B2 (en) * 2007-08-13 2020-06-23 Inspirion Delivery Sciences, Llc Abuse resistant forms of extended release morphine, method of use and method of making
US10729657B2 (en) * 2007-08-13 2020-08-04 Ohemo Life Sciences Inc. Abuse resistant forms of extended release morphine, method of use and method of making
US10729656B2 (en) 2007-08-13 2020-08-04 Ohemo Life Sciences Inc. Abuse resistant forms of immediate release oxycodone, method of use and method of making
US10736852B2 (en) 2007-08-13 2020-08-11 OHEMO Life Sciences, Inc. Abuse resistant oral opioid formulations
US10736851B2 (en) * 2007-08-13 2020-08-11 Ohemo Life Sciences Inc. Abuse resistant forms of extended release morphine with oxycodone, method of use and method of making
JP2010539197A (ja) * 2007-09-21 2010-12-16 エボニック レーム ゲゼルシャフト ミット ベシュレンクテル ハフツング エタノールの影響に対して耐性を有するph依存性制御放出医薬オピオイド組成物
JP2010539196A (ja) * 2007-09-21 2010-12-16 エボニック レーム ゲゼルシャフト ミット ベシュレンクテル ハフツング エタノールの影響に対して耐性を有する非オピオイド薬のpH依存性制御放出医薬組成物
JP2011510048A (ja) * 2008-01-24 2011-03-31 アボット ゲーエムベーハー ウント カンパニー カーゲー 低減したアルコール相互作用を有する乱用抵抗性溶融押出製剤
US9226907B2 (en) 2008-02-01 2016-01-05 Abbvie Inc. Extended release hydrocodone acetaminophen and related methods and uses thereof
US9820983B2 (en) 2009-03-10 2017-11-21 Purdue Pharma L.P. Immediate release pharmaceutical compositions comprising oxycodone and naloxone
US9700508B2 (en) 2010-05-10 2017-07-11 Euro-Celtique S.A. Pharmaceutical compositions comprising hydromorphone and naloxone
US9993433B2 (en) 2010-05-10 2018-06-12 Euro-Celtique S.A. Manufacturing of active-free granules and tablets comprising the same
US9901540B2 (en) 2010-05-10 2018-02-27 Euro-Celtique S.A. Combination of active loaded granules with additional actives
WO2013057570A3 (en) * 2011-10-18 2013-06-13 Purdue Pharma L.P. Acrylic polymer formulations
AU2012324534B2 (en) * 2011-10-18 2015-11-05 Purdue Pharma L.P. Acrylic polymer formulations
US10420726B2 (en) 2013-03-15 2019-09-24 Inspirion Delivery Sciences, Llc Abuse deterrent compositions and methods of use
US11571390B2 (en) 2013-03-15 2023-02-07 Othemo Life Sciences, Inc. Abuse deterrent compositions and methods of use
US10071089B2 (en) 2013-07-23 2018-09-11 Euro-Celtique S.A. Combination of oxycodone and naloxone for use in treating pain in patients suffering from pain and a disease resulting in intestinal dysbiosis and/or increasing the risk for intestinal bacterial translocation
US9814710B2 (en) 2013-11-13 2017-11-14 Euro-Celtique S.A. Hydromorphone and naloxone for treatment of pain and opioid bowel dysfunction syndrome
US10258616B2 (en) 2013-11-13 2019-04-16 Euro-Celtique S.A. Hydromorphone and naloxone for treatment of pain and opioid bowel dysfunction syndrome
US10729685B2 (en) 2014-09-15 2020-08-04 Ohemo Life Sciences Inc. Orally administrable compositions and methods of deterring abuse by intranasal administration
US11806433B2 (en) 2017-11-01 2023-11-07 Edgemont Pharmaceuticals, LLC Trust Alcohol-resistant oral pharmaceutical compositions of lorazepam
US12161754B2 (en) 2017-12-20 2024-12-10 Purdue Pharma L.P. Abuse deterrent morphine sulfate dosage forms

Also Published As

Publication number Publication date
BRPI0606339A2 (pt) 2009-06-16
EP3228308A1 (en) 2017-10-11
AU2006208627A1 (en) 2006-08-03
KR100905511B1 (ko) 2009-07-01
EA015615B1 (ru) 2011-10-31
MX2007009162A (es) 2007-10-23
KR20090029856A (ko) 2009-03-23
EP2319499A1 (en) 2011-05-11
AP2274A (en) 2011-08-19
EA200701595A1 (ru) 2008-02-28
KR20070104443A (ko) 2007-10-25
GEP20105052B (en) 2010-07-26
IL184858A0 (en) 2007-12-03
AU2006208627B8 (en) 2009-08-13
JP5704789B2 (ja) 2015-04-22
AP2007004099A0 (en) 2007-08-31
JP2008528534A (ja) 2008-07-31
EP1771160A2 (en) 2007-04-11
IL184858A (en) 2016-03-31
CA2594373A1 (en) 2006-08-03
US20070259045A1 (en) 2007-11-08
WO2006079550A3 (en) 2006-12-14
CN101132772B (zh) 2012-05-09
EP2289491A1 (en) 2011-03-02
AU2006208627B2 (en) 2009-08-06
CN101132772A (zh) 2008-02-27

Similar Documents

Publication Publication Date Title
AU2006208627B2 (en) Alcohol resistant dosage forms
US20180153812A1 (en) Alcohol resistant dosage forms
US9603802B2 (en) Extrusion
EP2344136B1 (en) Pharmaceutical dosage forms comprising poly(e-caprolactone)
US6261599B1 (en) Melt-extruded orally administrable opioid formulations
TWI463983B (zh) 抗干預之劑型
NO328032B1 (no) Farmasoytisk produkt omfattende en matrisedispergert opioidantagonist, samt fremstilling derav
EP3435984A1 (en) Extended release, abuse deterrent dosage forms
NZ590772A (en) Alcohol resistant dosage forms
HK1099226A (en) Melt-extruded orally administrable opioid formulations
HK1071696A (en) Melt-extruded orally administrable opioid formulations

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2006703915

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006703915

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11574778

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2006703915

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2594373

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 12007501605

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 184858

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 2007552587

Country of ref document: JP

Ref document number: 200680003312.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: MX/a/2007/009162

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 07081185

Country of ref document: CO

WWE Wipo information: entry into national phase

Ref document number: 2006208627

Country of ref document: AU

Ref document number: 560669

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 10246

Country of ref document: GE

Ref document number: 1020077019593

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 6671/DELNP/2007

Country of ref document: IN

Ref document number: 1200701724

Country of ref document: VN

WWE Wipo information: entry into national phase

Ref document number: 200701595

Country of ref document: EA

ENP Entry into the national phase

Ref document number: 2006208627

Country of ref document: AU

Date of ref document: 20060127

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2006208627

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 11574778

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020097004935

Country of ref document: KR

ENP Entry into the national phase

Ref document number: PI0606339

Country of ref document: BR

Kind code of ref document: A2