WO2006075035A1 - Catalizador para un proceso catalítico para la obtención de hidrógeno a partir de bioetanol y/o etanol7 procedimiento de preparación del catalizador, y su uso en el proceso catalítico - Google Patents

Catalizador para un proceso catalítico para la obtención de hidrógeno a partir de bioetanol y/o etanol7 procedimiento de preparación del catalizador, y su uso en el proceso catalítico Download PDF

Info

Publication number
WO2006075035A1
WO2006075035A1 PCT/ES2005/000696 ES2005000696W WO2006075035A1 WO 2006075035 A1 WO2006075035 A1 WO 2006075035A1 ES 2005000696 W ES2005000696 W ES 2005000696W WO 2006075035 A1 WO2006075035 A1 WO 2006075035A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
hydrogen
oxide
water
active phase
Prior art date
Application number
PCT/ES2005/000696
Other languages
English (en)
French (fr)
Inventor
Manuel Jesús BENITO GONZÁLEZ
Juan Luis SANZ YAGÜE
Ruth ISABEL GÓMEZ
Loreto Daza Bertrand
Original Assignee
Greencell, S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Greencell, S.A. filed Critical Greencell, S.A.
Priority to EP05850029A priority Critical patent/EP1844855A4/en
Priority to US11/795,257 priority patent/US20080261090A1/en
Publication of WO2006075035A1 publication Critical patent/WO2006075035A1/es
Priority to US13/435,390 priority patent/US8697028B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0618Reforming processes, e.g. autothermal, partial oxidation or steam reforming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/323Catalytic reaction of gaseous or liquid organic compounds other than hydrocarbons with gasifying agents
    • C01B3/326Catalytic reaction of gaseous or liquid organic compounds other than hydrocarbons with gasifying agents characterised by the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2235/00Indexing scheme associated with group B01J35/00, related to the analysis techniques used to determine the catalysts form or properties
    • B01J2235/15X-ray diffraction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0207Pretreatment of the support
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/042Purification by adsorption on solids
    • C01B2203/043Regenerative adsorption process in two or more beds, one for adsorption, the other for regeneration
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0435Catalytic purification
    • C01B2203/044Selective oxidation of carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0435Catalytic purification
    • C01B2203/0445Selective methanation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/047Composition of the impurity the impurity being carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1076Copper or zinc-based catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1082Composition of support materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1094Promotors or activators
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1217Alcohols
    • C01B2203/1229Ethanol
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • H01M8/0668Removal of carbon monoxide or carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention belongs to the technical field of catalysts for ethanol or bioethanol reforming and the production of hydrogen-rich gas streams that can be used in hydrogen production plants, combustion engines and, in particular, as fuel in battery systems of fuel or other alternative uses.
  • Ethanol is a renewable energy source that is increasingly playing an important role in air quality, the economic security of the agricultural sector and directing changes in the security of energy policy.
  • the constant advances in enzymatic and processed technology are increasing the viability of ethanol production from low cost raw materials.
  • the various European and American governments are incentivizing the ethanol market, reducing and even eliminating the taxes with which it taxes conventional fuels.
  • fuel cells are an emerging technology capable of increasing energy efficiency, as well as drastically reducing the emissions of both mobile and stationary systems, in which this technology is applicable.
  • Fuel cells need a source of hydrogen to produce electricity, but hydrogen is difficult to store and transport.
  • Ethanol is a liquid rich in hydrogen; therefore, there are no technical barriers to the use of ethanol as a hydrogen carrier, for fuel cell based applications. In this way, ethanol could be used as a source of hydrogen, both in stationary applications and for mobile applications through a reforming process.
  • the reforming reaction is a complex reaction where numerous side reactions can occur, being able to obtain a series of by-products, among which are: acetaldehyde, methane, carbon monoxide, acetic acid, ethylene, diethyl ether, acetone.
  • the essential difficulty of this reaction is that,
  • transition metals have been used that have a high catalytic activity, and on the other hand use supports with low surface acidity, or supports in which their basicity is enhanced.
  • catalysts appear in the literature in which the support is modified, in particular alumina, with calcium oxide to neutralize its surface acidity and avoid the dehydration reactions of ethanol, managing to reduce the rate of dehydration of the catalyst.
  • Another route used is to use basic supports such as magnesium oxide, but the results obtained do not significantly increase the activity and stability of the catalyst.
  • the subject of the present invention is a new catalyst for a catalytic process for obtaining hydrogen from bioethanol and / or ethanol that overcomes the drawbacks of the prior art, a process of preparing such a catalyst, and the use of the catalyst in such a catalytic process.
  • the catalyst is a solid calcined comprising a support, a promoter agent and an active phase incorporated into the support, wherein the catalyst is a calcined solid, preferably at a temperature above 600 0 C, in wherein the support comprises at least one oxide of high surface mobility such as zirconium oxide, and is a modified support with the promoter, the promoter is at least one oxide of a rare earth metal selected from the group comprising lanthanides , preferably lanthanum oxide, cerium oxide and combinations thereof, the active phase comprises at least one oxide of a transition metal of group VIII or group IB, preferably nickel, cobalt, copper, iron, rhodium, palladium, ruthenium, Platinum and combinations thereof.
  • the support comprises at least one oxide of high surface mobility such as zirconium oxide, and is a modified support with the promoter
  • the promoter is at least one oxide of a rare earth metal selected from the group comprising lanthanides , preferably lanthanum oxide, cerium oxide and
  • This catalyst used in catalytic processes of ethanol or bioethanol reforming, has a high catalytic activity, with total conversion of ethanol, high selectivity for hydrogen production, without formation of secondary by-products, and high stability, without appreciable deactivation after 500 hours Continuous operation, because it contains one or several transition metal oxides of group VIII as the active phase, it uses as a substrate a high surface mobility oxide and as promoter one or several rare earth metal oxides selected from the lanthanide group.
  • the transition metal used as the active phase is nickel or cobalt
  • the substrate used as support is zirconium oxide
  • the rare earth metal used as a promoter is lanthanum or cerium and its oxides are La 2 O 3 and the CeO 2 .
  • the catalyst comprises cobalt oxide (active phase transition metal), zirconium oxide (high surface mobility oxide) and lanthanum oxide (promoter agent), and has the following X-ray diffractogram ,
  • the catalyst obtained was characterized by X-ray diffraction, detecting the diffraction peaks corresponding to cobalt oxide, zirconium oxide and lanthanum oxide.
  • the equipment used in these analyzes consisted of a SEIFERT 3000P brand diffractometer coupled to a computer system for the acquisition and processing of data.
  • the team had a secondary monochromator.
  • the identification of the crystalline phases was carried out taking as reference the X-ray diffraction database of the Joint Committee on Powder Difraction Standards 1971, managed through a computer program called PDFWIN.
  • a catalyst preparation it can comprise 1 to 30% by weight of the promoter and 1 to 15% by weight of the active phase.
  • the catalyst comprises 5 to 11% by weight of the promoter and 3 to 10% by weight of the active phase.
  • the catalyst comprises 8 to 10% by weight of lanthanum oxide as a promoter and 5 to 7% by weight of cobalt as the active phase.
  • the high surface mobility oxide may have been calcined before being modified with the promoter. Also, the support modified with the promoter agent may have been calcined before the active phase has been incorporated.
  • the present invention also relates to a catalyst preparation process with the characteristics described above.
  • This process comprises a first stage in which the high surface mobility oxide is modified with the promoter to obtain the modified support, a second stage in which the active phase is incorporated into the modified support to obtain a catalyst precursor, for example by impregnation or adsorption in solution (preferably in an inert solvent), by a sol-gel process, by micromulsion or by coprecipitation, subjecting, if necessary, the precursor to a drying stage, and a third stage in which the precursor is subjected to calcination at a temperature of at least 600 0 C.
  • zirconium oxide powder modified with lanthanum oxide or cerium oxide is used, which is used as support, to which a salt of the active phase, of nickel, copper cobalt, has been homogeneously incorporated. before being calcined in the third stage at high temperature such as at a temperature between 700 0 C and 900 ° C.
  • the support can be previously calcined at high temperature, such as at a temperature of at least 700 0 C, and preferably at a temperature between 750 0 C and 900 ° C.
  • the present invention also relates to the use of the catalyst with the properties described above, in a method for obtaining hydrogen from bioethanol and / or ethanol, whose method is a catalytic process of reforming a hydrogen carrier (donor) selected from the group comprised of ethanol, ethanol and mixtures thereof, wherein reacting the hydrogen carrier with water, preferably as steam, in the presence of the catalyst at a temperature between 600 0 C and 800 0 C to obtain a mixture of Gases containing hydrogen.
  • a hydrogen carrier selected from the group comprised of ethanol, ethanol and mixtures thereof
  • ethanol / water volume ratios between 1/1, 25 and 1/5 and preferably between 1/1, 5 and 1/4, both included.
  • the ethanol / water ratio is 1/3 v / v + 10% or 1/2 v / v + 10%.
  • the water and the hydrogen carrier are reacted at atmospheric pressure.
  • the water and the hydrogen carrier can be reacted at a temperature between 650 ° C and 750 0 C and particularly at a temperature of 700 0 C + 5%.
  • the mixture of gases comprising hydrogen, resulting from the reaction of the hydrogen carrier with water is fed to a high temperature fuel cell.
  • this mixture containing the hydrogen produced can be fed directly to the anode of a high temperature fuel cell, such as molten carbonate fuel cells - MCFC - or solid oxide fuel cells - SOFC, IT- SOFC- without the need for purification.
  • a high temperature fuel cell such as molten carbonate fuel cells - MCFC - or solid oxide fuel cells - SOFC, IT- SOFC-
  • CO 2 would behave like an inert, and the rest of compounds present in the gas mixture, such as CO and CH 4 , would act as fuel in this type of cells, where by reaction with the oxygen of the air fed into the cathode, electrical energy would be generated.
  • the mixture of gases comprising hydrogen resulting from the reaction of the hydrogen carrier with water is subjected to a purification step to convert at least part of carbon monoxide optionally present in the mixture.
  • This embodiment is especially suitable for the case of intermediate temperature fuel cells, such as phosphoric acid fuel cells -PAFC- or low temperature fuel cells, such as polymeric fuel cells -PEMFC-, in which it is necessary to introduce different purification steps to reduce the concentration of carbon monoxide to the levels required for the proper functioning of such fuel cells (1% and 50 ppm, respectively).
  • intermediate temperature fuel cells such as phosphoric acid fuel cells -PAFC- or low temperature fuel cells, such as polymeric fuel cells -PEMFC-
  • a reaction known as "displacement water gas” water gas shift ⁇ WGS) wherein the carbon monoxide reacts with 'water to hydrogen and carbon dioxide production can be used.
  • the present invention allow hydrogen to be obtained from bioethanol and / or ethanol with an economical, durable and stable catalyst, but also the stationary and non-stationary production of such hydrogen, with a hydrogen production yield close to thermodynamic under the conditions used.
  • the mixture of gases generated can serve as direct feed to medium or high temperature fuel cells.
  • Figure 1 is an X-ray diffractogram of an embodiment of the catalyst of the present invention
  • Figure 2 is a graph showing the results of the pore size determination of catalyst samples characterized in Figure 1
  • Figure 3 shows the results of ethanol conversion tests performed with the catalyst corresponding to Figures 1 and 2
  • Figure 4 shows the results of ethanol conversion tests performed with the catalyst corresponding to Figures 1 and 2
  • Figure 5 shows the results of ethanol conversion tests performed with another embodiment of the catalyst of the present invention
  • Figure 6 shows the results of ethanol conversion tests performed with the same catalyst referred to in figure 5.
  • Preparation of the catalyst was weighed 5 g of support consisting of zirconium oxide modified with 10% of lanthanum oxide calcined at 800 0 C. 1.299 g of cobalt nitrate hexahydrate were weighed and dissolved in 10 Ohm of distilled water. The mixture was vacuum of 0, 5 to 0, 7 bar, a temperature of about 70 0 C and a rotation speed 20rpm for 4 hours to complete dryness. The resulting powder was dried in an oven at 110 0 C overnight. Subsequently it calcined at 750 air 0 C for 2 hours with a heating rate of 5 ° C / min. Finally, the catalyst was allowed to cool slowly until room temperature was reached.
  • the catalyst obtained was characterized by X-ray diffraction, detecting the diffraction peaks corresponding to cobalt oxide, zirconium oxide and lanthanum oxide.
  • the team had a secondary monochromator.
  • the catalyst was also texturally characterized for determination of the BET surface area by nitrogen adsorption, presenting a specific surface area of 50 m 2 / g;
  • the nitrogen adsorption / desorption isotherm is characteristic of a mesoporous solid (Fig. 2).
  • 100 mg of catalyst obtained analogously to what is set forth in example 1 with particle size comprised between the mesh lights of 0.42-0.50 mm was weighed.
  • Water and ethanol in relation to S / C 6, 45 were fed with a total flow rate of 0.1 ml / min without carrier gas to a reactor.
  • the reactor used in the catalytic tests is a 316-L stainless steel tube with a length of 300 mm, an internal diameter of 8, 48 mm and an external diameter of 14, 30 mm.
  • the catalyst is supported within the catalyst bed with a quartz wool plug.
  • a thermocouple is introduced through the top of the reactor to measure the temperature inside the catalytic bed.
  • the reactor is inside a heating furnace of 1000 W of power.
  • This reactor and oven assembly is located in a heated box that prevents condensation of the feed and the reaction outlet at all times.
  • the ethanol reforming reaction was carried out at atmospheric pressure, a temperature 700 0 C and space velocity of 76,430 h '1 (GHSV). After 500 hours of operation under these conditions, total ethanol conversion continued to be obtained with the appearance as the only products of H 2 , CO, CH 4 , and CO 2 .
  • the dry-based composition obtained in this test is the one seen in Figures 3 and 4.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

Un catalizador para la obtención de hidrógeno o de un gas rico en hidrógeno adecuado para su empleo en pilas de combustible u otras aplicaciones, a partir de bioetanol y/o etanol que comprende un soporte, un agente promotor, y una fase activa incorporada en el soporte, siendo el catalizador es un sólido calcinado en el que el soporte comprende al menos un óxido de elevada movilidad superficial, y es un soporte modificado con el agente promotor, el agente promotor es al menos un óxido de un metal de tierras raras seleccionado del grupo comprendido por lantánidos, y la fase activa comprende al menos un óxido de un metal de transición del grupo VIII o IB.

Description

CATALIZADOR PARA UN PROCESO CATALÍTICO PARA LA OBTENCIÓN
DE HIDRÓGENO A PARTIR DE BIOETANOL Y/O ETANOL, PROCEDIMIENTO DE PREPARACIÓN DEL CATALIZADOR, Y SU USO EN
EL PROCESO CATALÍTICO CAMPO TÉCNICO DE LA INVENCIÓN
La presente invención pertenece al campo técnico de los catalizadores para reformado de etanol o bioetanol y la producción de corrientes gaseosas ricas en hidrógeno que pueden utilizarse en plantas de producción de hidrógeno, motores de combustión y, en especial , como combustible en sistemas de pilas de combustible u otros usos alternativos .
ESTADO DE LA TÉCNICA ANTERIOR A LA INVENCIÓN
El etanol es una fuente de energía renovable que está jugando un papel importante de manera creciente en la calidad del aire , la seguridad económica del sector agrícola y dirigiendo cambios en la seguridad de la política energética . Los constantes avances en la tecnología enzimática y procesado, están incrementando la viabilidad de la producción de etanol a partir de materias primas de bajo coste . En la actualidad, y en base a criterios medioambientales, los distintos gobiernos europeos y americanos están incentivando el mercado del etanol , reduciendo e incluso eliminando los impuestos con los que grava los combustibles convencionales .
Del mismo modo, las pilas de combustible son una tecnología emergente capaz de aumentar la eficiencia energética, así como reducir de manera drástica las emisiones de los sistemas , tanto móviles como estacionarios , en los que esta tecnología es aplicable .
Los fabricantes de automóviles han identificado la infraestructura del combustible como uno de los puntos más críticos en la determinación de la elección de la tecnología a aplicar en los vehículos y, por tanto, para Ia aplicación de las pilas de combustible en el sector transporte . Las ventajas del etanol como combustible se derivan de que la tecnología, tanto para la distribución como para el almacenamiento, es muy similar a la empleada en el caso de la gasolina . El etanol podría ser dispensado en las estaciones de servicio del mismo modo que la gasolina introduciendo en los equipos muy pocas modificaciones .
Las pilas de combustible necesitan una fuente de hidrógeno para producir electricidad, pero el hidrógeno es difícil de almacenar y de transportar . El etanol es un líquido rico en hidrógeno; por lo tanto, no existen barreras técnicas para el empleo del etanol como portador de hidrógeno, para aplicaciones basadas en pilas de combustible . De este modo, el etanol podría ser utilizado como fuente de hidrógeno, tanto en aplicaciones estacionarias como para aplicaciones móviles mediante un proceso de reformado .
Una gran parte del coste de producción de etanol se debe a los procesos de separación del agua, ya que el producto directamente obtenido de la fermentación contiene entre un 8% y un 12% de alcohol . Para poder emplear el alcohol en motores de combustión interna, o como aditivo a la gasolina, es necesario elevar la concentración a niveles superiores al 99 , 9% . Hay que considerar que este proceso resulta muy caro, ya que el sistema etanol-agua presenta un azeótropo a una composición del 95 , 6% . En cuanto a la utilización como fuente de hidrógeno para pilas de combustible , el etanol necesitaría ser sometido a un proceso de reformado con vapor de agua, por lo que parecería en principio más rentable utilizar mezclas de etanol y agua; con esto, se reducirían los costes de producción de etanol de manera apreciable . Sin embargo, es necesario considerar que la aplicación de esta tecnología depende de manera muy significativa de aspectos logísticos . En este sentido, resulta más caro distribuir por transporte terrestre o marítimo mezclas diluidas de etanol , con el bajo potencial energético que ello supone , que distribuir etanol de elevada pureza . Otro aspecto a considerar, es que , en base a la tecnología actual , se requieren elevadas relaciones agua/etanol , para evitar problemas de desactivación del catalizador de reformado . El agua alimentada en exceso se puede realimentar en el sistema, economizando su consumo, por lo que en este caso sería óptimo alimentar al sistema etanol de elevada pureza .
La reacción de reformado es una reacción compleja donde se pueden producir numerosas reacciones secundarias , pudiéndose obtener una serie de subproductos entre los que cabe citar : acetaldehído, metano , monóxido de carbono, ácido acético, etileno, dietil éter, acetona . La dificultad esencial de esta reacción reside en que ,
I según la bibliografía , es necesario trabajar a relaciones vapor de agua/carbón muy elevadas para evitar la formación de depósitos de carbón sobre el catalizador, causa esencial del envenenamiento de los catalizadores desarrollados hasta la fecha . Como se ha reseñado con anterioridad, la composición del etanol obtenida por fermentación suele estar comprendida entre el 8- 12% . Si se empleara esta concentración, se reducirían los elevados costes de purificación, pero se incrementarían los costes en la etapa de reformado, ya que el agua, debido a su calor latente, requiere una elevada cantidad de energía para ser evaporada . Para poder trabajar en relaciones vapor de agua/carbón lo más bajas posibles y lograr aumentar la eficiencia del proceso, sería necesario utilizar catalizadores resistentes al envenenamiento que pudieran trabajar en esas condiciones .
El empleo de soportes catalíticos de elevada superficie con acidez superficial , promueve las reacciones de deshidratación del etanol , que se traduce en la formación de etileno ; el etileno es un compuesto de gran reactividad, que se descompone con enorme facilidad dando lugar a carbón, que se deposita sobre los centros activos del catalizador produciendo su envenenamiento . Este envenenamiento es detectable por descensos en la conversión de etanol , así como en la distribución de productos obtenida, aumentando las concentraciones de productos secundarios , tales como acetaldehido, etano, acetona, etileno, diétil éter .
En este marco, se han empleado metales de transición que presentan una alta actividad catalítica, y de otro lado emplear soportes con baja acidez superficial, o soportes en los que se potencie su basicidad. En este sentido en la bibliografía aparecen catalizadores en los que se modifica el soporte , en concreto la alúmina, con óxido de calcio para neutralizar su acidez superficial y evitar las reacciones de deshidratación del etanol , logrando disminuir la velocidad de deshidratación del catalizador . Otra vía utilizada consiste en emplear soportes básicos como es el caso del óxido de magnesio, pero los resultados obtenidos no logran aumentar de manera apreciable la actividad y estabilidad del catalizador . Sin embargo, hasta la fecha no se conocen catalizadores que permitan realizar procesos catalíticos de reformado del etanol o del bioetanol con rendimientos en hidrógeno satisfactorios , que además tengan una actividad duradera y que no resulten excesivamente costosos .
DESCRIPCIÓN DE LA INVENCIÓN
La presente invención tiene por objeto un nuevo catalizador para un proceso catalítico para la obtención de hidrógeno a partir de bioetanol y/o etanol que supere los inconvenientes del estado de la técnica, un procedimiento de preparación de tal catalizador, y el uso del catalizador en tal proceso catalítico .
De acuerdo con la invención, el catalizador es un sólido calcinado que comprende un soporte , un agente promotor, y una fase activa incorporada en el soporte, caracterizado porque el catalizador es un sólido calcinado, preferentemente a una temperatura superior a 6000C, en el que el soporte comprende al menos un óxido de elevada movilidad superficial como por ejemplo óxido de zirconio, y es un soporte modificado con el agente promotor, el agente promotor es al menos un óxido de un metal de tierras raras seleccionado del grupo comprendido por lantánidos , preferentemente óxido de lantano, óxido de cerio y combinaciones de los mismos , la fase activa comprende al menos un óxido de un metal de transición del grupo VIII o grupo IB, preferentemente níquel, cobalto, cobre, hierro, rodio, paladio, rutenio, platino y combinaciones de los mismos . Este catalizador, empleado en procesos catalíticos de reformado de etanol o bioetanol , presenta una alta actividad catalítica, con conversión total de etanol , alta selectividad para la producción de hidrógeno, sin formación de subproductos secundarios , y alta estabilidad, sin desactivación apreciable tras 500 horas de operación en continuo, porque contiene uno o varios óxidos de metales de transición del grupo VIII como fase activa, utiliza como sustrato un óxido de elevada movilidad superficial y como promotor uno o varios óxidos de metales de tierras raras seleccionados del grupo de los lantánidos . Preferentemente, el metal de transición utilizado como fase activa es el níquel o el cobalto, el sustrato utilizado como soporte es el óxido de zirconio y el metal de tierras raras utilizado como promotor es el lantano o el cerio y sus óxidos el La2O3 y el CeO2. En una realización de la invención, el catalizador comprende óxido de cobalto (metal de transición de la fase activa) , óxido de zirconio (óxido de elevada movilidad superficial) y óxido de lantano (agente promotor) , y presenta el siguiente difractograma de rayos X,
Figure imgf000007_0001
en la que la intensidad relativa de las líneas se ha calculado como el porcentaj e respecto del pico más intenso, y se considera muy fuerte (mf.) un porcentaje de 80 -100 , fuerte (f) un porcentaje de 60-80 , media (m) un porcentaje de 40 -60 , débil (d) un porcentaj e de 20 -40 , y muy déb,il (md) un porcentaje de 0-20. El catalizador obtenido se caracterizó por difracción de rayos X detectándose los picos de difracción correspondientes al óxido de cobalto, óxido de zirconio y óxido de lantano . El equipo empleado en estos análisis consistía en un difractómetro de la marca SEIFERT 3000P acoplado a un sistema informático para la adquisición y tratamiento de los datos . Se tomó registro de los difractogramas para un ángulo comprendido entre 4 o y 80 ° empleando la radiación CuKa de longitud de onda λ= 0.154005980 nm, eliminando la radiación Kβ mediante un filtro de níquel , siendo estimado el error de ventana en 0.1 (l+senθ) . El equipo disponía de un monocromador secundario . La identificación de las fases cristalinas se realizó tomando como referencia la base de datos de difracción de rayos X del Joint Commitee on Powder Difraction Standards 1971, gestionada mediante un programa informático denominado PDFWIN. De acuerdo con una preparación del catalizador, éste puede comprender un 1 a 30% en peso del agente promotor y un 1 a 15% en peso de la fase activa . Preferentemente , el catalizador comprende un 5 a 11% en peso del agente promotor y un 3 a 10% en peso de la fase activa . En una preparación preferida el catalizador comprende un 8 a 10 % en peso de óxido de lantano como agente promotor y un 5 a 7 % en peso de cobalto como fase activa .
El óxido de elevada movilidad superficial puede haber sido calcinado antes de ser modificado con el agente promotor . Asimismo, el soporte modificado con el agente promotor puede haber sido calcinado antes de que se haya incorporado la fase activa .
Cuando el catalizador se emplea en un proceso catalítico de reformado de etanol o bioetanol llevado a cabo en lecho fijo, con relaciones etanol/agua en volumen entre 1/1 , 25 y 1/5 , temperaturas comprendidas entre 6000C y 9000C y presiones comprendidas entre 0 y 3 bar, se ha detectado que en esas condiciones , se produce una conversión total de etanol con selectividad a hidrógeno comprendida entre 65 y 72% , obteniendo como únicos subproductos monóxido de carbono y metano, además de dióxido de carbono . En ensayos de larga duración de más de 500 horas en esas mismas condiciones , se mantiene la actividad y selectividad del catalizador, sin apreciarse signos de desactivación, y sin formación apreciable de otros subproductos .
La presente invención también se refiere a un procedimiento de preparación del catalizador con las características antes descritas . Este procedimiento comprende una primera etapa en la que el óxido de elevada movilidad superficial se modifica con el agente promotor para obtener el soporte modificado, una segunda etapa en la que la fase activa se incorpora al soporte modificado para obtener un precursor del catalizador, por ejemplo mediante impregnación o adsorción en disolución (preferentemente en un disolvente inerte) , mediante un proceso sol-gel , mediante micromulsión o mediante coprecipitación, sometiéndose , en caso necesario el precursor a una etapa de secado, y una tercera etapa en la que el precursor se somete a calcinación a una temperatura de al menos 6000C .
En una realización de este procedimiento se parte de polvo de óxido de zirconio modificado con óxido de lantano u óxido de cerio, que se utiliza como soporte, al que se ha incorporado de forma homogénea una sal de la fase activa, de níquel , cobalto cobre con anterioridad a ser calcinado en la tercera etapa a alta temperatura como por ej emplo a una temperatura comprendida entre 7000C y 900 °C .
Asimismo, el soporte puede ser previamente calcinado a alta temperatura, como por ejemplo a una temperatura de al menos 7000C, y preferentemente a una temperatura entre 7500C y 900 °C . La presente invención también se refiere al uso del catalizador con las propiedades más arriba descritas , en un método para obtener hidrógeno a partir de bioetanol y/o etanol , cuyo método es un proceso catalítico de reformado de un portador (donante) de hidrógeno seleccionado entre el grupo comprendido por etanol , bioetanol y mezclas de los mismos , en el que se hace reaccionar el portador de hidrógeno con agua, preferentemente en forma de vapor de agua, en presencia ,del catalizador, a una temperatura entre 6000C y 8000C para obtener una mezcla de gases que contiene hidrógeno .
Este proceso catalítico para la producción de hidrógeno de reformado se basa en la reacción :
C2H5OH + 3H2O O 6 H2 + 3CO2 ΔH= +173 , 5 kJ/mol
y permite la reacción de reformado de etanol o bioetanol , particularmente con relaciones etanol/agua en volumen comprendidas entre 1/1, 25 y 1/5 y preferentemente entre 1/1 , 5 y 1/4 , ambas incluidas . En una realización particular la relación etanol/agua es de 1/3 v/v + 10% ó 1/2 v/v + 10% .
. Para la reacción del agua y el portador de hidrógeno son idóneas presiones entre 0 y 5 bar, y particularmente entre 0 y 3 bar . En una realización preferente del procedimiento, el agua y el portador de hidrógeno se hacen reaccionar a presión atmosférica . Por otra parte , el agua y el portador de hidrógeno pueden hacerse reaccionar a una temperatura entre 650 °C y 7500C y particularmente a una temperatura de 7000C + 5% . En una realización de este uso según la invención, la mezcla de gases que comprende el hidrógeno, resultante de la reacción del portador de hidrógeno con el agua, se alimenta a una pila de combustible de alta temperatura . En este caso, esta mezcla que contiene el hidrógeno producido puede ser alimentada directamente al ánodo de una pila de combustible de alta temperatura, como por ej emplo, pilas de combustible de carbonatos fundidos - MCFC- o pilas de combustible de óxidos sólidos -SOFC, IT- SOFC- sin necesidad de purificación . Esto se debe a que el CO2 se comportaría como un inerte, y el resto de compuestos presentes en la mezcla de gases , tales como CO y CH4 , actuarían como combustible en este tipo de celdas , donde por reacción con el oxígeno del aire alimentado en el cátodo , se generaría energía eléctrica . En otra realización del uso de la invención, la mezcla de gases que comprende el hidrógeno resultante de la reacción del portador de hidrógeno con el agua, se somete a una etapa de purificación para convertir al menos parte de monóxido de carbono eventualmente presente en la mezcla de gases , en dióxido de carbono para obtener una mezcla de gases purificada, y porgue dicha mezcla se alimenta a una pila de combustible . Esta realización es especialmente adecuada para el caso de pilas de combustible de temperatura intermedia, como por ejemplo, pilas de combustible de ácido fosfórico -PAFC- o pilas de combustible de baja temperatura, como por ej emplo, pilas de combustible poliméricas -PEMFC- , en la que es necesario introducir distintas etapas de purificación para reducir la concentración de monóxido de carbono a los niveles requeridos para el correcto funcionamiento de tales pilas de combustible (1% y 50 ppm, respectivamente) . Para llevar a cabo esta purificación, puede emplearse una reacción denominada "desplazamiento del gas de agua" {water gas shift, WGS) , en la que el monóxido de carbono reacciona con ' agua para producir hidrógeno y dióxido de carbono . La ventaja de esta reacción es doble , ya que , además de eliminar el CO presente en la corriente de reformado, se aumenta el contenido en hidrógeno . Generalmente, la concentración remanente de CO que suele quedar después de la etapa WGS , suele ser más elevada que la que se puede alimentar a una pila de combustible de baja temperatura de tipo polimérico . Para reducir esta concentración de CO remanente existen varias alternativas entre las que cabe destacar los sistemas PSA (Pressure Swing Adsorption) , metanación y oxidación selectiva de monóxidσ de carbono . El agua generada en la pila de combustible, se podría recircular al proceso de producción de hidrógeno, minimizando su consumo en el esquema global del proceso . Puede observarse que la presente invención no sólo permite obtener hidrógeno a partir de bioetanol y/o etanol con un catalizador económico, duradero y estable, sino también la producción estacionaria y no estacionaria de tal hidrógeno, con un rendimiento en la producción de hidrógeno próximo al termodinámico en las condiciones empleadas . Además la mezcla de gases generada puede servir de alimentación directa a pilas de combustible de media o alta temperatura .
EJEMPLOS
A continuación se describirán aspectos de la invención sobre las base de unos ej emplos en los que se hará referencia a unas figuras que forman parte integrante de la presente memoria descriptiva, donde la figura 1 es un difractograma de rayos X de una realización del catalizador de la presente invención; la figura 2 es un gráfico que muestra los resultados de la determinación del tamaño de poros de muestras del catalizador caracterizado en la figura 1; la figura 3 muestra los resultados de ensayos de conversión de etanol realizados con el catalizador correspondiente a las figuras 1 y 2 ; la figura 4 muestra los resultados de ensayos de conversión de etanol realizados con el catalizador correspondiente a las figuras 1 y 2 ; la figura 5 muestra los resultados de ensayos de conversión de etanol realizados con otra realización del catalizador de la presente invención; y la figura 6 muestra los resultados de ensayos de conversión de etanol realizados con el mismo catalizador al que se refiere la figura 5.
EJEMPLO 1:
Preparación del catalizador : Se pesaron 5 g de soporte consistente en óxido de zirconio modificado con 10% de óxido de lantano calcinado a 8000C . Se pesaron 1 , 299 g de nitrato de cobalto hexahidratado y se disolvieron en 10OmI de agua destilada . La mezcla se sometió a vacío de 0 , 5 a 0 , 7 bar, una temperatura aproximada de 700C y a rotación a una velocidad de 20rpm durante 4 horas hasta sequedad total . El polvo resultante se secó en estufa a 1100C durante una noche . Posteriormente se calcinó al aire a 7500C durante 2 horas , con una velocidad de calentamiento de 5 ° C/min. Finalmente , se dejó enfriar el catalizador lentamente hasta alcanzar la temperatura ambiente .
El catalizador obtenido se caracterizó por difracción de rayos X detectándose los picos de difracción correspondientes al óxido de cobalto, óxido de zirconio y óxido de lantano . El equipo empleado en estos análisis consistía en un difractómetro de la marca SEIFERT 3000P acoplado a un sistema informático para la adquisición y tratamiento de los datos . Se tomó registro de los difractogramas para un ángulo comprendido entre 4 o y 80 ° empleando la radiación CuKa de longitud de onda λ= 0.154005980 nm, eliminando la radiación Kβ mediante un filtro de níquel , siendo estimado el error de ventana en 0.1 (l+senθ) . El equipo disponía de un monocromador secundario . La identificación de las fases cristalinas se realizó tomando como referencia la base de datos de difracción de rayos X del Joint Commitee on Powder Difraction Standards 1971 , gestionada mediante un programa informático denominado PDFWIN. El difractograma de rayos X del catalizador puede apreciarse en la figura 1 , en la que se observan los valores que aparecen en la Tabla I
Tabla I
Líneas de difracción
Figure imgf000014_0001
El catalizador se caracterizó igualmente texturalmente para determinación del área superficial BET por adsorción de nitrógeno, presentando una superficie específica de 50 m2/g; la isoterma de adsorción/desorción de nitrógeno es característica de un sólido mesoporoso (fig . 2 ) .
EJEMPLO 2
Se pesaron 100 mg de catalizador obtenido análogamente a lo que se expone en el ej emplo 1 con tamaño de partícula comprendido entre las luces de malla de 0 , 42 - 0 , 50 mm. Se alimentó agua y etanol en relación S/C 6 , 45 con un caudal total de 0 , 1 ml/min sin gas portador a un reactor . El reactor empleado en los ensayos catalíticos es un tubo de acero inoxidable 316-L con una longitud de 300 mm, un diámetro interior de 8 , 48 mm y diámetro externo de 14 , 30 mm. El catalizador se soporta dentro del lecho catalítico con un tapón de lana de cuarzo . Por la parte superior del reactor se introduce un termopar para medir la temperatura dentro del lecho catalítico . El reactor se encuentra dentro de un horno calefactor de 1000 W de potencia . Este conjunto de reactor y horno se encuentra dentro de una caja calefactada que impide en todo momento la condensación de la alimentación y la salida de reacción . La reacción de reformado de etanol se llevó a cabo a presión atmosférica, una temperatura 7000C y velocidad espacial de 76.430 h'1 (GHSV) . Tras 500 horas de operación en esas condiciones , se siguió obteniendo conversión total de etanol con la aparición como únicos productos de H2, CO, CH4, y CO2. La composición en base seca que se obtiene en este ensayo es la que se aprecia en las figuras 3 y 4.
EJEMPLO 3
Se pesaron 1000 mg de catalizador obtenido análogamente a lo que se expone en el ej emplo 1 con tamaño de partícula comprendido entre las luces de malla de 0 , 42 - 0 , 50 mm. Se alimentó a un reactor, agua y etanol en relación S/C 4 , 84 con un caudal total de 0 , 9 ml/min sin gas portador . El reactor es el mismo que el del ejemplo 2. La reacción de reformado de etanol se llevó a cabo a presión atmosférica, una temperatura 7000C y velocidad espacial de 66.034 h"1 (GHSV) . Tras 100 horas de operación en esas condiciones la conversión de etanol es total y los productos presentes eran H2 , CO, CH4 , y CO2 como se puede apreciar en las figuras 5 y 6.

Claims

REIVINDICACIONES
1. Un catalizador para la obtención de hidrógeno o de un gas rico en hidrógeno a partir de bioetanol y/o etanol =que comprende un soporte, un agente promotor, y una fase activa incorporada en el soporte , caracterizado porque el catalizador es un sólido calcinado en el que el soporte comprende al menos un óxido de elevada movilidad superficial , y es un soporte modificado con el agente promotor, el agente promotor es al menos un óxido de un metal de tierras raras seleccionado del grupo comprendido por lantánidos , y la fase activa comprende al menos un óxido de un metal de transición seleccionado de los grupos VIII y IB .
2. ' Un catalizador según la reivindicación 1 , caracterizado porque el óxido de elevada movilidad superficial es óxido de zirconio; el agente promotor está seleccionado entre óxidos de lantano, óxidos de cerio y combinaciones de los mismos ; la fase activa está seleccionada del grupo comprendido por níquel , cobalto y combinaciones de los mismos .
3. Un catalizador según la reivindicación 1 ó 2 , caracterizado porque el catalizador comprende óxido de cobalto como metal de transición de la fase activa, óxido de zirconio como óxido de elevada movilidad superficial y óxido de lantano como agente promotor, y porque presenta un difractograma de rayos X con líneas de difracción y picos , correspondiente a,
Figure imgf000017_0001
donde
MF es una intensidad relativa muy fuerte correspondiente a un porcentaje de 80 -100 respecto del pico más intenso,
F es una intensidad relativa fuerte correspondiente a un porcentaje de 60 -80 respecto del pico más intenso,
M es una intensidad relativa media correspondiente a un porcentaje de 40-60 respecto del pico más intenso ,
D es una intensidad relativa débil correspondiente a un porcentaj e de 20-40 respecto del pico más intenso, y
Md es una intensidad relativa muy débil correspondiente a un porcentaje de 0-20 respecto del pico más inmenso .
4. Un catalizador según la reivindicación 1 , 2 ó 3 , caracterizado porgue el óxido de elevada movilidad superficial ha sido calcinado antes de ser modificado con el agente promotor .
5. Un catalizador según la reivindicación 1 , 2 , 3 ó 4 , caracterizado porque el soporte modificado ha sido calcinado antes de que se haya incorporado la fase activa .
6. Un catalizador según una cualquiera de las reivindicaciones 1 a 5 , caracterizado porque el catalizador se ha calcinado a una temperatura de al menos 6000C .
7. Un catalizador según una cualquiera de las reivindicaciones l a 6 , caracterizado porque comprende
1 a 30% en peso del agente promotor; 1 a 15% en peso de la fase activa .
8. Un catalizador según una cualquiera de las reivindicaciones 1 a 6 , caracterizado porque comprende
5 a 11% en peso del agente promotor; 3 a 10% en peso de la fase activa .
9. Un catalizador según una cualquiera de las reivindicaciones 1 a 6 , caracterizado porque comprende
8 a 10 % en peso del agente promotor; 5 a 7 % en peso de la fase activa .
10. Un catalizador según la reivindicación 1 una cualquiera de las reivindicaciones 1 a 9 , caracterizado porque el agente promotor es óxido de lantano y la fase activa es cobalto u óxido de cobalto
11. Un procedimiento para preparar el catalizador de una cualquiera de las reivindicaciones 1 a 10 , caracterizado porque comprende una primera etapa en la que el óxido de elevada movilidad superficial se modifica con el agente promotor para obtener al soporte modificado, una segunda etapa en la que la fase activa se incorpora el soporte modificado para obtener un precursor del catalizador, una tercera etapa en la que el precursor se somete a calcinación a una temperatura de al menos 6000C .
12. Un catalizador según la reivindicación 11, caracterizado porque el óxido de elevada movilidad superficial es óxido de zirconio; el agente promotor está seleccionado entre el grupo comprendido por óxido de lantano, óxido de cerio y combinaciones de los mismos ; la fase activa está seleccionada entre el grupo comprendido por níquel , cobalto y combinaciones de los mismos .
13. Un procedimiento según la reivindicación 11 , caracterizado porque el óxido de elevada movilidad superficial está calcinado .
14. Un procedimiento según la reivindicación 11 , caracterizado porque el soporte modificado se calcina antes de incorporarse la fase activa .
15. Un procedimiento según la reivindicación 14 , caracterizado porque el soporte modificado se calcina a una temperatura de al menos 7000C .
16. Un procedimiento según la reivindicación 14 , caracterizado porque el soporte modificado se calcina a una temperatura entre 75O 0C y 9000C .
17. Un procedimiento según la reivindicación 11, caracterizado porque la calcinación en la tercera etapa se realiza a una temperatura comprendida entre 6000C y 900 0 C .
18. Un procedimiento según la reivindicación 11 , caracterizado porque la fase activa se incorpora en el soporte modificado mediante impregnación.
19. Un procedimiento según la reivindicación 11, caracterizado porque la fase activa se incorpora en el soporte modificado mediante adsorción en disolución .
20. Un procedimiento según la reivindicación 11, caracterizado porque la fase activa se incorpora en el soporte modificado mediante sol-gel .
21. Un procedimiento según la reivindicación 11 , caracterizado porque la fase activa se incorpora en el soporte modificado mediante microemulsión .
22. Un procedimiento según la reivindicación 11 , caracterizado porque la fase activa se incorpora en el soporte modificado mediante coprecipitación.
23. Un procedimiento según la reivindicación 18 a 22 , caracterizado porque después de la incorporación de la fase activa, se realiza una etapa de secado .
24. Uso del catalizador según una cualquiera de las reivindicaciones 1 a 10 , caracterizado porque "el catalizador se usa en un método para obtener hidrógeno o de un gas rico en hidrógeno a partir de bioetanol y/o etanol .
25. Uso del catalizador según la reivindicación 24 , caracterizado porque el catalizador se usa en un método para obtener hidrógeno o de un gas rico en hidrógeno adecuado para su empleo en pilas de combustible .
26. Uso del catalizador según la reivindicación 24 o 25 , caracterizado porgue el método es un proceso catalítico de reformado de un portador de hidrógeno seleccionado entre el grupo comprendido por etanol , bioetanol y mezclas de los mismos , que comprende hacer reaccionar el portador de hidrógeno con agua en presencia del catalizador, a una temperatura entre 6000C y 900 °C para obtener una mezcla de gases que contiene hidrógeno .
27. Uso según la reivindicación 26 , caracterizado porque el agua y el portador de hidrógeno se hacen reaccionar a una presión entre 0 y 5 bar .
28. Uso según la reivindicación 26 , caracterizado porque el agua y el portador de hidrógeno se hacen reaccionar a una presión entre 0 y 3 bar .
29. Uso según la reivindicación 26 , caracterizado porque el agua y el portador de hidrógeno se hacen reaccionar a presión atmosférica .
30. Uso según una cualquiera de las reivindicaciones 26 a 29 , caracterizado porque el agua y el portador de hidrógeno se hacen reaccionar en una relación, portador de hidrógeno / agua entre 1 : 1, 25 y 1 : 5 v/v .
I
31. Uso según una cualquiera de las reivindicaciones 26 a 29 , caracterizado porque el agua y el portador de hidrógeno se hacen reaccionar en una relación portador de hidrógeno / agua entre 1 : 1 , 5 y 1 : 4 v/v .
32. Uso según una cualquiera de las reivindicaciones 26 a 29 , caracterizado porque el agua y el portador de hidrógeno se hacen reaccionar en una relación portador de hidrógeno / agua de 1/3 v/v +• 10% o 1/2 v/v + 10% .
33. Uso según una cualquiera de las reivindicaciones 26 a 29 , caracterizado porque el agua y el portador de hidrógeno se hacen reaccionar a una temperatura entre 6500C y 7500C .
34. Uso según una cualquiera de las reivindicaciones 26 a 32 , caracterizado porque el agua y el portador de hidrógeno se hacen reaccionar a una temperatura de 7000C + 5% .
35. Uso según una cualquiera de las reivindicaciones 26 a 32 , caracterizado porque el agua que se hace reaccionar con ' el portador de hidrógeno está en forma de vapor de agua .
36. Uso según una cualquiera de las reivindicaciones 26 a 32 , caracterizado porque la mezcla de gases que comprende el hidrógeno , resultante de la reacción del portador de hidrógeno con el agua, se alimenta a una pila de combustible de media o alta temperatura .
37. Uso según una cualquiera de las reivindicaciones 26 a 32 , caracterizado porque la mezcla de gases que comprende el hidrógeno, resultante de la reacción del portador de hidrógeno con el agua, se somete a una etapa de purificación para convertir al menos parte de monóxido de carbono eventualmente presente en la mezcla de gases , en dióxido de carbono para obtener una mezcla de gases purificada, y porque dicha mezcla purificada de gases se alimenta a una pila de combustible .
38. Uso según la reivindicación 37 , caracterizado porque Ia pila de combustible es una pila de combustible de temperatura intermedia .
39. Uso según la reivindicación 37 , caracterizado porque la pila de combustible es una pila de combustible de baj a temperatura .
PCT/ES2005/000696 2005-01-14 2005-12-21 Catalizador para un proceso catalítico para la obtención de hidrógeno a partir de bioetanol y/o etanol7 procedimiento de preparación del catalizador, y su uso en el proceso catalítico WO2006075035A1 (es)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP05850029A EP1844855A4 (en) 2005-01-14 2005-12-21 CATALYST FOR A CATALYTIC PROCESS FOR THE PREPARATION OF HYDROGEN FROM BIOETHANOL AND / OR ETHANOL, CATALYST PREPARATION METHOD AND USE THEREOF IN THE CATALYTIC PROCESS
US11/795,257 US20080261090A1 (en) 2005-01-14 2005-12-21 Catalyst for a Catalytic Process Which is Used to Obtain Hydrogen from Bioethanol and/or Ethanol, Catalyst-Preparation Method and Use Thereof in Said Catalytic Process
US13/435,390 US8697028B2 (en) 2005-01-14 2012-03-30 Catalytic method for obtaining hydrogen or a hydrogen-rich gas starting from bioethanol and/or ethanol

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200500056 2005-01-14
ES200500056A ES2259535B1 (es) 2005-01-14 2005-01-14 Catalizador para un proceso catalitico para la obtencion de hidrogeno a partir de bioetanol y/o etanol, procedimiento de preparacion del catalizador, y su uso en el proceso catalitico.

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US11/795,257 A-371-Of-International US20080261090A1 (en) 2005-01-14 2005-12-21 Catalyst for a Catalytic Process Which is Used to Obtain Hydrogen from Bioethanol and/or Ethanol, Catalyst-Preparation Method and Use Thereof in Said Catalytic Process
US13/435,390 Division US8697028B2 (en) 2005-01-14 2012-03-30 Catalytic method for obtaining hydrogen or a hydrogen-rich gas starting from bioethanol and/or ethanol

Publications (1)

Publication Number Publication Date
WO2006075035A1 true WO2006075035A1 (es) 2006-07-20

Family

ID=36677378

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2005/000696 WO2006075035A1 (es) 2005-01-14 2005-12-21 Catalizador para un proceso catalítico para la obtención de hidrógeno a partir de bioetanol y/o etanol7 procedimiento de preparación del catalizador, y su uso en el proceso catalítico

Country Status (4)

Country Link
US (2) US20080261090A1 (es)
EP (1) EP1844855A4 (es)
ES (1) ES2259535B1 (es)
WO (1) WO2006075035A1 (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008150956A2 (en) * 2007-06-01 2008-12-11 Invista Technologies S.A R.L. Catalyst and process for the conversion of nitrous oxide
US20120015266A1 (en) * 2009-01-13 2012-01-19 Melo Faus Francisco Vicente Catalyst for a process for obtaining hydrogen through reforming hydrocarbons with steam, process for preparing the catalyst and use thereof in the process

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0923620A2 (pt) * 2008-12-23 2019-12-10 Shell Internatioale Res Maatschappij B V catalisador de reforma a vapor de carga de alimentação bio-baseada, e, método para preparar um catalisador de reforma a vapor de carga de alimentação bio-baseada
CA2747649A1 (en) * 2008-12-23 2010-07-01 Shell Internationale Research Maatschappij B.V. Processes for hydrogen production and catalysts for use therein
KR101725293B1 (ko) * 2015-11-04 2017-04-10 한국과학기술연구원 혼합 개질 반응용 니켈 담지촉매
US11417903B2 (en) * 2019-11-29 2022-08-16 Nissan North America, Inc. Electrode-based reformer for solid oxide electrochemical devices
CN112439416A (zh) * 2020-10-16 2021-03-05 大连理工大学 一种高分散铜负载二氧化钛纳米片的制备方法及其应用
US11865515B2 (en) * 2021-12-06 2024-01-09 ExxonMobil Technology and Engineering Company Catalyst for olefins generation

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5989457A (en) * 1993-04-22 1999-11-23 Mannesmann Aktiengesellschaft & K.T.I. Group B.V. Process for the production of synthesis gas

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3931393A (en) * 1974-10-23 1976-01-06 Gte Laboratories Incorporated Catalytic process for removing sulfur dioxide from gas streams
DE68916285D1 (de) * 1988-03-12 1994-07-28 Akira Igarashi Verfahren zur Dampfreformierung von Kohlenwasserstoffen.
CA1334962C (en) * 1988-04-14 1995-03-28 Tomohisa Ohata Catalyst for purifying exhaust gas and method for production thereof
JPH0380937A (ja) * 1989-08-25 1991-04-05 Tonen Corp 炭化水素の水蒸気改質触媒及びその製造方法
US5254519A (en) * 1990-02-22 1993-10-19 Engelhard Corporation Catalyst composition containing platinum and rhodium components
US5861137A (en) * 1996-10-30 1999-01-19 Edlund; David J. Steam reformer with internal hydrogen purification
AU2001231082A1 (en) * 2000-01-24 2001-07-31 International Fuel Cells, Llc Autothermal fuel gas reformer assemblage
US7132093B2 (en) * 2002-06-05 2006-11-07 UNIVERSITé LAVAL Mesoporous mixed oxide materials as a new class of SO2 resistant catalysts for hydrocarbon oxidation
JP2004345874A (ja) * 2003-05-20 2004-12-09 Research Institute Of Innovative Technology For The Earth 水素の製造方法及び水素の製造システム

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5989457A (en) * 1993-04-22 1999-11-23 Mannesmann Aktiengesellschaft & K.T.I. Group B.V. Process for the production of synthesis gas

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
FATSIKOSTAS A.N. ET AL.: "Production of hydrogen for niel cells by reformation of biomass-derived ethanol", CATALYSIS TODAY, vol. 75, 2002, pages 145 - 155, XP008119353 *
LLORCA J. ET AL.: "Efficient Production of Hydrogen over Supported Cobalt Catalysts from Ethanol Steam Reforming", JOURNAL OF CATALYSIS, vol. 209, 2002, pages 306 - 317, XP008119354 *
ROH H.-S. ET AL.: "Carbon dioxide reforming of methane over co-precipitated Ni-CeO2, Ni-ZrO2 and Ni-Ce-ZrO2 catalysts", CATALYSIS TODAY, vol. 93-95, 1 September 2004 (2004-09-01), pages 39 - 44, XP004548920 *
See also references of EP1844855A4 *
VARGAS J.C. ET AL.: "Study of Ce-Zr-Co fluorite-type oxide as catalysts for hydrogen production by steam reforming of bioethanol", CATALYSIS TODAY, vol. 107-108, 30 October 2005 (2005-10-30), pages 417 - 425, XP025357144 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008150956A2 (en) * 2007-06-01 2008-12-11 Invista Technologies S.A R.L. Catalyst and process for the conversion of nitrous oxide
WO2008150956A3 (en) * 2007-06-01 2009-04-16 Invista Tech Sarl Catalyst and process for the conversion of nitrous oxide
US20120015266A1 (en) * 2009-01-13 2012-01-19 Melo Faus Francisco Vicente Catalyst for a process for obtaining hydrogen through reforming hydrocarbons with steam, process for preparing the catalyst and use thereof in the process
US8932774B2 (en) * 2009-01-13 2015-01-13 Abengoa Hidrogeno, S.A. Catalyst for a process for obtaining hydrogen through reforming hydrocarbons with steam, process for preparing the catalyst and use thereof in the process

Also Published As

Publication number Publication date
EP1844855A4 (en) 2012-05-23
US20080261090A1 (en) 2008-10-23
EP1844855A1 (en) 2007-10-17
ES2259535B1 (es) 2007-11-01
ES2259535A1 (es) 2006-10-01
US8697028B2 (en) 2014-04-15
US20120181484A1 (en) 2012-07-19

Similar Documents

Publication Publication Date Title
ES2259535B1 (es) Catalizador para un proceso catalitico para la obtencion de hidrogeno a partir de bioetanol y/o etanol, procedimiento de preparacion del catalizador, y su uso en el proceso catalitico.
Pu et al. Ceria-promoted Ni@ Al2O3 core-shell catalyst for steam reforming of acetic acid with enhanced activity and coke resistance
Song et al. Methanol steam reforming for hydrogen production over ternary composite ZnyCe1Zr9Ox catalysts
TWI433723B (zh) Catalyst precursors and catalysts using them
US20240058800A1 (en) Haber-bosch catalyst comprising an anion-vacant lattice
Osman et al. Effect of precursor on the performance of alumina for the dehydration of methanol to dimethyl ether
Kumar et al. The preparation and efficacy of SrO/CeO2 catalysts for the production of dimethyl carbonate by transesterification of ethylene carbonate
Suwannapichat et al. Direct synthesis of dimethyl ether from CO2 hydrogenation over novel hybrid catalysts containing a CuZnOZrO2 catalyst admixed with WOx/Al2O3 catalysts: Effects of pore size of Al2O3 support and W loading content
Nimmas et al. Bi-metallic CuO-NiO based multifunctional material for hydrogen production from sorption-enhanced chemical looping autothermal reforming of ethanol
WO1999017875A1 (fr) Catalyseur pour la production d'hydrogene ou de gaz de synthese et procede de production correspondant
SG182122A1 (en) A perovskite-type strontium titanate
KR20140087264A (ko) 중형기공성 니켈-x-알루미나 제어로젤 촉매, 이의 제조방법 및 상기 촉매를 사용하는 메탄 제조방법
Challa et al. Coupling of CH 3 OH and CO 2 with 2-cyanopyridine for enhanced yields of dimethyl carbonate over ZnO–CeO 2 catalyst
Jiang et al. Direct synthesis of dimethyl carbonate from carbon dioxide and methanol over Ce-BTC-derived CeO2
BR112013011294A2 (pt) composição de catalisador e processo para preprarar um álcool superior
Larimi et al. Partial oxidation of methane over Ni/CeZrO2 mixed oxide solid solution catalysts
Güell et al. Sustainable route to hydrogen–Design of stable catalysts for the steam gasification of biomass related oxygenates
JP5105544B2 (ja) 水蒸気改質触媒
JP4724973B2 (ja) ジメチルエーテル改質触媒および該触媒を用いる水素含有ガス製造方法
Meng et al. Hollow Mn-doped CeO2@ Co3O4 catalyst for NO reduction by CO
KR102186058B1 (ko) 산화마그네슘-알루미나 복합 지지체를 이용한 알코올의 이산화탄소 개질 반응용 촉매 및 이를 이용한 합성가스의 제조방법
Lytkina et al. Effects of support structure and composition on the activity of Cu–Ni catalysts for methanol steam reforming
Hussain et al. Hydrogenation of CO2 to dimethyl ether over nanosized WOx-ZrO2/Cu-ZnO-ZrO2 catalysts
JP5494910B2 (ja) 水素生成触媒及びその製造方法
AU2012258290A1 (en) Nickel based catalysts for hydrocarbon reforming

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2005850029

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2005850029

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005850029

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11795257

Country of ref document: US