WO2006072990A1 - タグ装置、アンテナ及び携帯型カード - Google Patents

タグ装置、アンテナ及び携帯型カード Download PDF

Info

Publication number
WO2006072990A1
WO2006072990A1 PCT/JP2005/000091 JP2005000091W WO2006072990A1 WO 2006072990 A1 WO2006072990 A1 WO 2006072990A1 JP 2005000091 W JP2005000091 W JP 2005000091W WO 2006072990 A1 WO2006072990 A1 WO 2006072990A1
Authority
WO
WIPO (PCT)
Prior art keywords
main loop
dielectric substrate
antenna
unit
capacitive load
Prior art date
Application number
PCT/JP2005/000091
Other languages
English (en)
French (fr)
Inventor
Takashi Yamagajo
Toru Maniwa
Manabu Kai
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to DE602005024441T priority Critical patent/DE602005024441D1/de
Priority to EP05703359A priority patent/EP1835564B1/en
Priority to CN2005800461581A priority patent/CN101099266B/zh
Priority to TW094100482A priority patent/TWI262447B/zh
Priority to PCT/JP2005/000091 priority patent/WO2006072990A1/ja
Priority to JP2006550567A priority patent/JP4717830B2/ja
Publication of WO2006072990A1 publication Critical patent/WO2006072990A1/ja
Priority to US11/822,528 priority patent/US7880680B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2208Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems
    • H01Q1/2225Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems used in active tags, i.e. provided with its own power source or in passive tags, i.e. deriving power from RF signal
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07749Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
    • G06K19/07771Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card the record carrier comprising means for minimising adverse effects on the data communication capability of the record carrier, e.g. minimising Eddy currents induced in a proximate metal or otherwise electromagnetically interfering object

Definitions

  • the present invention relates to a tag device, an antenna, and a portable card, and more particularly to a tag device that performs wireless communication, an antenna that performs radio wave radiation 'capture, and a portable card that performs wireless communication.
  • RFID Radio Frequency-Identification
  • RFID is a type of wireless communication system that attaches an IC tag to an object and automatically identifies the object wirelessly without contact.
  • RFID can be connected to a network by attaching an IC tag to everything, so it is rapidly being developed as an effective technology for building a next-generation ubiquitous network society.
  • the RFID system is composed of a reader Z writer (ReaderZWriter) and an IC tag, and the reader / writer also writes information to the IC tag or stores it in the IC tag via each antenna by wireless communication. Read the information.
  • the frequency bands previously used for RFID were 13.56MHz band and 2.45GHz band. Recently, UHF (Ultra-High-Frequency: 300MHz—300 MHz) ) IC tags that use bands are attracting attention.
  • the UHF band IC tag uses the UHF band, especially 952MHz-954MHz, for communication, and requires a longer communication distance with the reader Z writer than the existing 13.56MHz band and 2.45GHz band IC tags. It is possible to expand the communicable area.
  • the radio wave or magnetic field force generated by the reader Z writer also inducts the power to the ic tag for communication. It is carried out.
  • RFID is roughly divided into a radio wave system and an electromagnetic induction system as a system for inducting a power source.
  • 45GHz band and UHF band IC tags are radio systems that convert the radio waves emitted by the reader / writer into power. 13.
  • the magnetic force generated near the antenna of the reader Z writer It is an electromagnetic induction system that obtains power
  • FIG. 12 is a diagram showing the concept of the radio wave system.
  • the RFID system 100 that performs communication in the 45 GHz band or UHF band is composed of a reader Z writer 110 and an IC tag 120.
  • the IC tag 120 includes an antenna 121, a rectifier circuit 122, and a control circuit 123.
  • the rectifier circuit 122 rectifies the radio wave that is an AC signal into a DC signal.
  • the direct current signal is used as a power source to control circuit 123 that performs modulation / demodulation control and logic control.
  • FIG. 13 is a diagram showing the concept of the electromagnetic induction method. 13.
  • the reader Z writer antenna and the IC tag antenna are composed of loop antennas 210 and 220, respectively (the loop antenna has a circular or square conductor shape) Is an antenna with a looped structure).
  • the loop antenna in the 13.56MHz band IC tag, power can be obtained based on the current generated by the magnetic field generated by electromagnetic induction using the loop antenna (13.56MHz band). Because the loop antenna is used for electromagnetic induction, the loop antenna itself is used as an antenna that radiates normal radio waves rather than an antenna used only for electromagnetic induction).
  • the UHF band can obtain a communication distance of about three times or more compared to the 2.45 GHz band.
  • the electromagnetic induction method described in FIG. 13 requires that the loop antennas of the reader Z writer and the IC tag are close to each other. If the writer force is also separated, the magnetic field becomes weak at once, and it becomes impossible to secure power. [0015] As specific communication distances, the maximum force of 70-80cm for the 13.56MHz band and about 2m at the maximum for the 2.45GHz band is confirmed as an experimental value of approximately 7m for the UHF band. Te !, Ru (theoretical value is about 10m).
  • Antennas used in 45GHz and UHF band IC tags are basically dipole antennas (eg, folded dipole antennas) with a 1Z2 length ( ⁇ / 2) of radio wave wavelength ⁇ . It is used regularly.
  • ⁇ (wavelength) C (velocity of light) Zf (frequency).
  • the antenna length of the 45 GHz band IC tag is 3 X 10 8 Z2.
  • 45 X 10 9 0.16 m, which is about 6 cm, half of that.
  • the 13.56 MHz band IC tag has a drawback that the communication distance cannot be extended.
  • the communication range is 2 m, so the practical range is expanded to some extent. 2.
  • 2.45 GHz radio waves are blocked and absorbed when liquids such as water and alcohol are nearby. (2. 45 GHz is the same as the frequency of a microwave oven).
  • the UHF band has a longer communication distance and does not have the disadvantages of the 2.45GHz band, so the reader Z writer power is easier to read multiple IC tags at once than the existing frequency band.
  • the UHF band also has the advantage of being able to read IC tags even in places where it cannot be seen by the reader Z writer, since the radio wave wraps around.
  • Patent Document 1 As a conventional IC tag, an IC tag coated with a thin flexible protective laminate is provided (for example, Patent Document 1).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 08-88586 (paragraph numbers [0018] one [0021], FIG. 3) Disclosure of the Invention
  • RFID can be used by embedding an IC tag in a card that can be carried by a person, and using this force to manage the entry and exit of users on railways and aviation, and to shop at department stores, etc. It is conceivable that services using IC tag cards will be widely performed.
  • FIG. 14 is a diagram showing a folded dipole antenna.
  • a dipole antenna (Dipole Antenna) dp is an antenna that emits radio waves by applying a high frequency from a feeding part (wave source) in the center of one conductor, and is the most basic form of a linear antenna (antenna Basically long fly / 2).
  • the folded dipole antenna fdp is an antenna having a structure in which a conductor of one wavelength is folded based on the dipole antenna dp.
  • the card is often carried in a person's breast pocket, etc., or the card is in contact with the reader / writer by holding it in your hand. If the UHF band card with embedded IC tag with a folded dipole antenna fdp is in the vicinity of the human body, the radiation of the radio wave will be blocked and absorbed by the human body, and the reception characteristics of the radio wave will be degraded. There was a problem.
  • FIG. 15 is a diagram showing a problem of the conventional UHF band card.
  • Dipole antenna dp is shown near the human body (note that the basic principle of the folded dipole antenna fdp and the dipole antenna dp is the same. Will be described with reference to FIG.
  • a current il as shown in the figure flows through the dipole antenna dp and a radio wave V is radiated.
  • a current i2 that flows in the opposite direction to the current il flowing through the dipole antenna dp is generated on the surface of the human body.
  • the currents il and i2 cancel each other, so that the current il flows into the dipole antenna dp and the radio wave V does not fly sufficiently.
  • ground plane which is a planar antenna, is also widely used for IC tag cards! /
  • FIG. 16 is a diagram showing a ground plane antenna.
  • the ground plane antenna 300 has a structure in which a GND plate (ground plane) 302 is provided on one surface (back surface) of a dielectric substrate 301 and a radiating element 303 is provided on the other surface (front surface) of the dielectric substrate 301.
  • a GND plate ground plane
  • the core wire of the inner conductor of the coaxial cable is connected to the radiating element 303, and the outer conductor of the coaxial cable is connected to the GND plate 302. Power the signal).
  • the ground plane antenna 300 has front and back surfaces as described above. However, if the front side where the radiating element 303 is installed faces the human body, a phenomenon similar to that described above with reference to FIG. 15 occurs.
  • the ground plane antenna 300 also has a problem in that the radiation and reception characteristics of the radio wave V are deteriorated because the human body blocks and absorbs the radio wave V radiation.
  • the IC tag included in the 13.56MHz band card is an electromagnetic induction type as described above with reference to FIG.
  • the loop antenna There was a problem that the generated magnetic field was blocked by other IC tags that were stacked, no current was generated on the loop, and the 13.56 MHz band IC tag could not operate, making communication impossible.
  • the conductor part inside the UHF band card can be obtained by holding the 13.56MHz band card over the reader Z writer. This causes a phenomenon that the radio waves that should be emitted and received by the 13.56MHz band card are obstructed.
  • the present invention has been made in view of such a point, and even if it is in the vicinity of a human body, it does not deteriorate radio wave reception and reception characteristics, and does not impede communication with other IC tags.
  • An object of the present invention is to provide a tag device that performs simple wireless communication.
  • Another object of the present invention is to provide an antenna that performs high-quality wireless communication without deterioration of radio wave radiation 'reception characteristics even in the vicinity of the human body and without interfering with communication of other IC tags. Is to provide.
  • another object of the present invention is to provide a portable type capable of performing high-quality wireless communication without deterioration of radio wave reception characteristics even in the vicinity of a human body and without inhibiting communication with other IC tags. Is to provide a card.
  • the loop-shaped metal foil mounted on the surface of the dielectric substrate 30
  • An antenna unit 10 composed of a main loop unit 11 that performs transmission and reception, and a capacitive load unit 12 that is a metal foil connected to the main loop unit 11 and has a load of a capacitance component, and a main loop unit 11
  • a control unit 20 that controls information via radio waves.
  • the tag device 1 is provided.
  • the main loop portion 11 is a loop-shaped metal foil mounted on the surface of the dielectric substrate 30, and transmits and receives radio waves.
  • the capacitive load unit 12 is a metal foil connected to the main loop unit 11 and has a load of a capacitance component.
  • the control unit 20 is connected to the main loop unit 11 and controls information via radio waves.
  • the tag device of the present invention is a loop-shaped metal foil mounted on the surface of a dielectric substrate, a main loop portion that transmits and receives radio waves, and a metal foil that is connected to the main loop portion.
  • the antenna unit is composed of a capacitive load unit having a component load.
  • the antenna of the present invention is a loop-shaped metal mounted on the surface of a dielectric substrate, and is a main loop part that transmits and receives radio waves, a metal that is connected to the main loop part, and has a capacitance component. It comprised from the capacitive load part which has load. As a result, even in the vicinity of the human body, it is possible to perform high-quality wireless communication without deterioration of radio wave emission and reception characteristics and without interfering with communication of other IC tags.
  • the portable card of the present invention is a loop-shaped metal foil mounted on the surface of a dielectric substrate, a main loop part for transmitting and receiving radio waves, and a metal foil connected to the main loop part, It has an antenna part composed of a capacitive load part having a load of a capacitance component, and is composed of a card-like member that can be carried by a person. As a result, even in the vicinity of the human body, it is possible to perform high-quality wireless communication without deterioration of radio wave emission and reception characteristics and without interfering with communication of other IC tags.
  • FIG. 1 is a principle diagram of a tag device.
  • FIG. 2 is a diagram showing an overview of an antenna unit.
  • FIG. 3 is a diagram showing a current flowing through an antenna unit.
  • FIG. 4 is a diagram for explaining the operation of the main loop unit when the tag device is located near the human body.
  • FIG. 5 is a conceptual diagram showing the electric field strength of radiated radio waves in the UHF band.
  • FIG. 6 is an experimental comparison of the electric field strength of radiated electromagnetic waves with and without a capacitive load.
  • FIG. 7 is a diagram showing how the length of the capacitive load section is changed.
  • FIG. 8 is a diagram showing the impedance of the main loop portion.
  • FIG. 9 is a diagram showing a tag device when it is overlapped with an ID card having a magnetic tape.
  • Fig. 10 is a diagram showing a tag device when stacked with a 56 MHz band card.
  • FIG. 11 is a diagram showing a modification of the antenna unit.
  • FIG. 12 is a diagram showing a concept of a radio wave system.
  • FIG. 13 is a diagram showing a concept of an electromagnetic induction method.
  • FIG. 14 is a diagram showing a folded dipole antenna.
  • FIG. 15 is a diagram showing problems of a conventional UHF band card.
  • FIG. 16 shows a ground plane antenna
  • FIG. 1 shows the principle of the tag device.
  • the tag device 1 includes an antenna unit 10, a control unit 20, and a dielectric substrate 30, and is a device that performs wireless communication.
  • the tag device 1 is used as an RFID UHF band IC tag.
  • the antenna unit 10 includes a main loop unit 11 and a capacitive load unit 12.
  • the main loop part 11 is a loop-shaped metal foil mounted on the surface of the dielectric substrate 30 and transmits and receives radio waves (the main loop part 11 is a main part of the antenna function).
  • the capacitive load unit 12 is a metal foil connected to the main loop unit 11 and has a load of a capacitance component.
  • the antenna unit 10 has a shape of an elongated loop having an area smaller than the area of the dielectric substrate 30 and sandwiches the dielectric substrate 30 as shown in the figure.
  • the dielectric substrate 30 is mounted in a horizontal direction so as to cover the front surface (both front and back surfaces) and side surfaces of the dielectric substrate 30 and to the surface of the dielectric substrate 30.
  • the capacitive load portion 12 is provided at both end portions of the main loop portion 11 (which may be referred to as end portions of the dielectric substrate 30) covering the front side surface of the dielectric substrate 30, although not shown, the capacitive load portion 12 is provided in the same manner at both ends of the main loop portion 11 on the back surface of the dielectric substrate 30 (the capacitive load portion 12 is provided on the dielectric substrate 30). (Not on the side.)
  • the control unit 20 is an electronic circuit component that is connected to the main loop unit 11 and controls information via radio waves, and corresponds to an IC chip.
  • the control unit 20 is actually mounted on the main loop unit 11 (in the figure, mounted at the center of the main loop unit 11).
  • the information control means that the information received via the main loop unit 11 (from the reader Z writer) is subjected to demodulation processing or data writing processing to the internal memory, or the main loop unit. For example, data read processing and modulation processing of the internal memory are performed on the information to be transmitted via 11 (to the reader Z writer).
  • the control unit 20 serves as a wave source (power feeding unit), and a rectifier circuit is included therein.
  • FIG. 2 is a diagram showing an overview of the antenna unit 10.
  • the main loop portion 11 has an elongated loop shape, and capacitive load portions 12 are provided at both ends of the main loop portion 11. Further, the capacitive load section 12 is vertically connected to both ends of the loop-shaped main loop section 11, so that the antenna section 10 becomes an antenna having an H-shaped structure.
  • the tag device 1 has a structure in which the dielectric substrate 30 shown in FIG. 1 is sandwiched between the antenna portions 10 having such shapes.
  • FIG. 3 is a diagram showing a current flowing through the antenna unit 10. It is a diagram simulating the current flowing through the antenna unit 10, and the state of current flow is indicated by arrows.
  • the power of the current flowing through the antenna section 10 during reception Most current flows on the main loop section 1 1 (because of the loop shape, it flows in a loop (round) on the front and back surfaces)
  • the current flowing through the capacitive load section 12 is very small.
  • the tag device 1 has the antenna unit 10 described above with reference to FIGS. 2 and 3, thereby solving the conventional problems with respect to the UHF band IC tag and obtaining the following effects (1), (1) and (4). Is.
  • the tag device 1 has a wider band than the conventional UHF band IC tag. When regional communication is enabled, it has characteristics. In the following, the functions and operations of the tag device 1 related to these features will be described in detail.
  • the tag device 1 is used as a portable card by housing the antenna unit 10 and the control unit 20 in a card-shaped member that can be carried by a person.
  • the tag device 1 can be used as an ID card, a cash card, a regular train It can be used widely such as ticket cards.
  • the card-shaped member may be a material such as plastic, and the antenna unit 10 may be housed inside the member or may have a structure attached to the surface of the member. Good. However, since the card dimensions in Japan are determined to be 54 mm (vertical) X 86 mm (horizontal) X O. 76 mm (thickness), the tag device 1 is within the size of this card.
  • FIG. 4 is a diagram for explaining the operation of the main loop unit 11 when the tag device 1 is located near the human body.
  • the main loop unit 11 is a loop having a line L1 and an L4 force, and a current flows counterclockwise in the main loop unit 11 when receiving radio waves.
  • the current flowing through the line L1 is referred to as current II, the current flowing through the line L2 into current 12, the current flowing through the line L3 into current 13, and the current flowing through the line L4 into current 14 for convenience.
  • the mobile card including the tag device 1 is placed in the chest pocket or is held by the reader Z writer for the hand, the radiation / reception characteristics of the radio wave are not hindered by the human body, and the vicinity of the human body Even if the tag device 1 is used in this case, it is possible to obtain good radio wave radiation and reception characteristics.
  • FIG. 5 is a conceptual diagram showing the electric field strength of radiated radio waves in the UHF band.
  • the vertical axis is the electric field strength of the radiated radio wave, and the horizontal axis is the frequency (MHz).
  • Graph G1 shows a narrow-band state centered on 953 MHz as the UHF band
  • Daraf G2 shows a wide-band state centered on 953 MHz as the UHF band!
  • a broadband load can be achieved by connecting the capacitive load unit 12 to the main loop unit 11.
  • FIG. 6 is an experimental comparison of the electric field strength of radiated electromagnetic waves with and without the capacitive load section 12.
  • the value at a distant point is calculated by simulation using the moment method.
  • the dimensions of the tag device 1 used for the calculation are 4.5 cm X 7.5 cm X 0.5 mm, and the dielectric
  • the electrical characteristics of the body substrate 30 are a relative dielectric constant of 3.9 and a dielectric loss of 0.008.
  • the internal impedance of the control unit 20 serving as a wave source was 20 ⁇ -18 (3 ⁇ , and the voltage source of IV was used.
  • the graph G3 showing the electric field strength of the main loop portion 11 when the capacitive load portion 12 is connected is connected to the main load portion 12 when the capacitive load portion 12 is connected. It can be seen that the band is wider than the graph G4, which shows the electric field strength of the loop part 11.
  • the control unit 20 is connected to the main loop unit 11, and the electric power output from the control unit 20 is emitted into the air as radio waves via the main loop unit 11.
  • a force that travels a wave while maintaining the relationship of voltage ⁇ current impedance (characteristic impedance) ⁇ ⁇ is connected to a load resistance R that has a value equal to the impedance ⁇ . All enters the load resistance R and is consumed as heat, and
  • the impedance of the main loop unit 11 and the internal impedance of the control unit 20 are made equal (if matching), only the traveling wave output from the control unit 20 is transmitted, and the traveling wave has it. All the electric energy is supplied to the main loop part 11 which is an antenna and radiated.
  • perfect impedance matching is an ideal state that is theoretically possible, and in an actual design, how close to this ideal state is important.
  • FIG. 7 is a diagram showing how the length of the capacitive load unit 12 is changed.
  • the length L of the portion shown in the figure is varied in the range of 0-20mm.
  • FIG. 8 is a diagram showing the impedance of the main loop section 11.
  • the vertical axis represents the impedance ( ⁇ ), and the horizontal axis represents the length L (mm) of the capacitive load section 12, and the impedance of the main loop section 11 when the length L shown in FIG. 7 is varied from 0 to 20 mm. It shows a change.
  • the impedance is changed by changing the length L of the capacitive load section 12.
  • the internal impedance of the control unit 20 is Assuming that 120 ⁇ + j320 Q is obtained from the measurement result of the network analyzer, the impedance will be matched if the length L of the capacitive load section 12 is 15 mm.
  • the impedance of the main loop unit 11 can be made variable only by changing the area of the capacitive load unit 12, so that the control unit 20 (IC Impedance matching can be performed efficiently if the internal impedance of the chip) is measured with a network analyzer or the like, and the area of the capacitive load section 12 is changed so as to substantially match this measurement value ( Since the impedance has two parameters, the resistance R and the reactance X, it is difficult to actually match both of them. However, the capacitive load unit 12 has a priority so that the reactance X side is matched with priority. It was experimentally recognized that adjusting the length improves the impedance matching accuracy).
  • FIG. 9 is a diagram showing the tag device 1 when it is overlapped with an ID card having a magnetic tape.
  • the main loop unit 11 has a magnetic tape (a substance that interferes with the emission and reception of radio waves as well as the magnetic tape) so that the interaction with the magnetic tape is minimized.
  • FIG. 10 is a diagram showing the tag device 1 when it is stacked with a 13.56 MHz band card.
  • a loop antenna inside the 13.56MHz band card, generating magnetic flux. If the main loop 11 of the tag device 1 is in the center of the card and it overlaps with the 13.56MHz band card, it will block the flow of magnetic flux and will interfere with the reading of the 13.56MHz band card. (Conversely, the magnetic flux causes radio interference in the main loop section 11).
  • the main loop portion 11 is positioned away from the center portion of the loop antenna of the 13.56MHz band card so as not to disturb the flow of magnetic flux generated by the 13.56MHz band card. Thus, it is provided on the dielectric substrate 30 (in the figure, the main loop portion 11 located at the center of the card is moved to the end of the card).
  • FIG. 11 is a view showing a modification of the antenna unit 10.
  • the antenna unit 10 described above is an antenna having an H-shaped structure in which the capacitive load unit 12 is vertically connected to both ends of the loop-shaped main loop unit 11, but the antenna unit 10a of the modified example Then, the ends of the capacitive load portion 12 are connected with an acute angle in the vertical direction of both ends of the loop-shaped main loop portion 11 to have an N-shaped structure.
  • the main loop unit 11 of the antenna unit 10a has an elongated loop shape having an area smaller than the area of the dielectric substrate.
  • the dielectric substrate is mounted in a diagonal direction so as to cover the surface and side surfaces of the dielectric substrate and sandwich the dielectric substrate.
  • the capacitive load portion 12 is provided at both ends of the main loop portion 11 covering the front surface of the dielectric substrate and at both ends of the main loop portion 11 covering the back surface of the dielectric substrate.
  • the dielectric substrate is sandwiched between two N-shaped antennas.
  • the main loop portion 11 loops the front and back through the side of the dielectric substrate, and the capacitive load portion 12 Is not provided on the side! / ⁇ ).
  • the tag device 1 When the tag device 1 is placed in a card with a predetermined size (54 mm (vertical) X 86 mm (horizontal) X O. 76 mm (thickness) in Japan), the length of the main loop 11 ( If it is desired to extend the antenna length), the same effect as the H-shape can be obtained as an N-shaped antenna as in the modified example.
  • the human body overlaps with other ID cards and the like. It is possible to obtain good transmission / reception characteristics even in a state where the device is mounted. In addition, it does not adversely affect the IC tag card in the 13.56MHz band. It is possible to adjust the alignment with the IC chip (control unit 20) by changing. This makes it possible to provide effective RFID services when promoting IT and automation in all future industries.
  • the tag device 1 is applied to an RFID portable card, and the shape of the antenna unit 10 is H-shaped or N-shaped, but the antenna unit 10 is H-shaped or N-shaped.
  • the main loop section 11 and the capacitive load section 12 may be connected so that the shape is not limited to the N-shape, but is limited to the RFID field, and other types that use high frequency. Even in the communication field, it is very wide and applicable.

Abstract

 人体近傍にあっても電波の放射・受信特性の劣化がなく、かつ他ICタグの通信を阻害せずに、高品質な無線通信を行う。  メインループ部(11)は、誘電体基板(30)の面積よりも小さな面積を持つ細長ループ形状の金属箔であり、誘電体基板(30)を挟むように、誘電体基板(30)の表面及び側面を覆い、かつ誘電体基板(30)の表面に対して水平方向に実装されて、電波の送受信を行う。容量性負荷部(12)は、誘電体基板(30)の表側の面を覆うメインループ部(11)の両端部及び誘電体基板(30)の裏側の面を覆うメインループ部(11)の両端部にそれぞれ設けられた金属箔であり、キャパシタンス成分の負荷を有する。制御部(20)は、メインループ部(11)と接続し、電波を介して情報の制御を行う。                                                                               

Description

タグ装置、アンテナ及び携帯型カード
技術分野
[0001] 本発明は、タグ装置、アンテナ及び携帯型カードに関し、特に無線通信を行うタグ 装置、電波の放射'捕捉を行うアンテナ及び無線通信を行う携帯型カードに関する。 背景技術
[0002] 近年、 RFID (Radio Frequency-Identification:電波方式認識)と呼ばれる自動認識 技術が注目されている。 RFIDは、 ICタグ (tag)を物体に付けて、無線により非接触で 物体を自動識別する一種の無線通信システムである。 RFIDは、 ICタグをあらゆる物 に付帯させてネットワークとつなげることが可能なため、次世代のュビキタス ·ネットヮ ーク社会の構築に有効な技術として急速に開発が進んでいる。
[0003] RFIDシステムは、リーダ Zライタ(ReaderZWriter)と ICタグとから構成され、無線 通信によってそれぞれのアンテナを介して、リーダ/ライタカも ICタグへ情報を書き 込んだり、 ICタグに記憶されている情報を読み出したりする。
[0004] また、これまで RFIDに使用されていた周波数帯は、 13. 56MHz帯や 2. 45GHz 帯が使われていたが、近年になって、 UHF (Ultra-High- Frequency: 300MHz— 30 00MHz)帯を利用する ICタグが注目されている。
[0005] UHF帯 ICタグは、 UHF帯の特に 952MHz— 954MHzを通信に利用するもので 、既存の 13. 56MHz帯や 2. 45GHz帯の ICタグよりもリーダ Zライタとの通信距離 を長くとることができ、通信可能領域を広げることが可能である。
[0006] 一方、 ICタグは、電源 (電池)を持たな 、ので、リーダ Zライタが ICタグと通信を行う ときには、リーダ Zライタが発する電波または磁界力も icタグへ電源を誘電させて通 信を行っている。
[0007] すなわち、 RFIDでは、電源を誘電させる方式として、大きく電波方式と電磁誘導方 式とに分かれている。 2. 45GHz帯と UHF帯の ICタグについては、リーダ/ライタが 発する電波を電力に変換する電波方式であり、 13. 56MHz帯の ICタグについては 、リーダ Zライタのアンテナ付近に作られる磁界力 電力を得る電磁誘導方式である [0008] 図 12は電波方式の概念を示す図である。 2. 45GHz帯または UHF帯で通信を行 う RFIDシステム 100は、リーダ Zライタ 110と、 ICタグ 120から構成される。 ICタグ 12 0は、アンテナ 121、整流回路 122、制御回路 123を含む。
[0009] ICタグ 120は、リーダ Zライタ 110から送出される電波を、アンテナ 121を介して受 信すると、整流回路 122が交流信号である電波を直流信号に整流する。そして、この 直流信号を電源として、変復調制御や論理制御などを行う制御回路 123へ印カロして いる。
[0010] 図 13は電磁誘導方式の概念を示す図である。 13. 56MHz帯で通信を行う RFID システム 200において、リーダ Zライタのアンテナと、 ICタグのアンテナはそれぞれ、 ループアンテナ 210、 220で構成される (ループアンテナとは、導体を円や四角の形 状にループさせた構造を持つアンテナのことである)。
[0011] ループアンテナ 210、 220が近接した位置にあるとして、リーダ Zライタ側のループ アンテナ 210に対して、反時計周りに電流 iaを流すと、磁界 HIが図に示すように上 向きに発生する。すると、 ICタグ側のループアンテナ 220では、この磁界 HIを打ち 消す方向に電流 ibが流れ (時計周り)、また磁界 H2が下向きに発生する。
[0012] このように、 13. 56MHz帯 ICタグでは、ループアンテナを利用して、電磁誘導によ り発生する磁界によって生じる電流にもとづいて、電力を得ることができる(13. 56M Hz帯では、ループアンテナを利用して電磁誘導を行っているということで、ループア ンテナ自体は、電磁誘導だけに使われるアンテナではなぐ通常の電波を放射する アンテナとしても利用されるものである)。
[0013] ここで、図 12で説明した電波方式においては、電波の周波数が低いほど(波長が 長いほど)、長距離の通信が可能になる。したがって、 UHF帯は、 2. 45GHz帯に比 ベて、単純に考えてもおよそ 3倍以上の通信距離を得られることがわかる。
[0014] これに対して、図 13で説明した電磁誘導方式においては、リーダ Zライタと ICタグ それぞれのループアンテナが近接していることが必要であり、 13. 56MHz帯 ICタグ は、リーダ Zライタ力も離れてしまうと、一気に磁界が弱くなつて、電力を確保できなく なる。 [0015] それぞれの具体的な通信距離としては、 13. 56MHz帯は最大でも 70— 80cm、 2 . 45GHz帯は最大でも 2m程度である力 UHF帯は実験値としておよそ 7mの通信 距離が確認されて!、る (理論値では 10m程度)。
[0016] なお、 2. 45GHz帯及び UHF帯の ICタグに使われるアンテナには、電波の波長 λ の 1Z2の長さ( λ /2)を持つダイポールアンテナ(例えば、折り返しダイポールアン テナ)が基本的に使われて 、る。
[0017] ここで、各周波数帯のアンテナの長さを求めると、 λ (波長) = C (光速) Zf (周波数 )であるから、 2. 45GHz帯 ICタグのアンテナ長は、 3 X 108Z2. 45 X 109 = 0. 122 mの半分の約 6cmとなる。
[0018] 同様に UHF帯 ICタグのアンテナの長さを求めると(953MHzとする)、 3 X 108/9 53 X 106 = 0. 3mの半分の約 15cmとなる(したがって、電気的な長さを変えずに、 単純にアンテナの長さにもとづいて計算上の通信距離を得ようとすれば、 2. 45GHz 帯では最小限 6cmのアンテナが収まる大きさを持つ ICタグとなるし、 UHF帯では最 小限 15cmのアンテナが収まる大きさを持つ ICタグとなる)。
[0019] また、 13. 56MHz帯 ICタグにおいて、仮にダイポールアンテナを使用して電波方 式により電源を得ようとすると、アンテナの長さは、 3 X 108/13. 56 X 106= 22mの 半分の 11mとなってしまい、実用的なものとはならない。このことから 13. 56MHz帯 では、電波方式を使わずに電磁誘導方式で電力を得て!、るのである。
[0020] このように、 13. 56MHz帯 ICタグでは通信距離が伸ばせないといった欠点があつ た。一方、 2. 45GHz帯では、通信距離が 2mなので、実用範囲はある程度広がるが 、 2. 45GHz帯 ICタグでは、水やアルコールなどの液体が近くにあると、 2. 45GHz の電波が遮断、吸収されてしまうといった欠点があった(2. 45GHzは電子レンジの 周波数と同じである)。
[0021] これに対して、 UHF帯は通信距離が長ぐ 2. 45GHz帯の持つ欠点もないので、 既存の周波数帯よりもリーダ Zライタ力も複数の ICタグを一括して読み取りやすくなる 。さらに、 UHF帯は電波の回り込みが大きいので、リーダ Zライタから見えない場所 にあっても ICタグを読み取ることができるなどの利点を持つ。
[0022] このように、 UHF帯を利用した ICタグには利点が多ぐ UHF帯 ICタグにかかる期 待は大きいが、現状においては UHF帯だけでなぐ既存の 13. 56MHz帯や 2. 45 GHz帯の ICタグをも含めた環境にぉ 、て、効率のょ 、RFIDサービスの実現が望ま れている。
[0023] 従来の ICタグとしては、薄型のフレキシブル保護ラミネートで被覆された ICタグが提 供されている (例えば、特許文献 1)
特許文献 1:特開平 08— 88586号公報 (段落番号〔0018〕一〔0021〕、第 3図) 発明の開示
発明が解決しょうとする課題
[0024] RFIDの利用分野としては、人が携帯可能なカードに ICタグを埋め込んで、この力 ードを用いて、鉄道'航空での利用者の入出管理を行ったり、デパートなどで買い物 をしたりするなどというように、 ICタグカードを使用してのサービスが広く行われること が考えられる。
[0025] ここで、従来の UHF帯 ICタグで使用されるアンテナの種類としては、折り返しダイ ポールアンテナを用いる構成が多力つた。
図 14は折り返しダイポールアンテナを示す図である。ダイポールアンテナ(Dipole Antenna) dpは、 1本の導線の中央部にある給電部(波源)から高周波を与えて電波 を飛ばすアンテナであり、線状アンテナの最も基本的な形のものである(アンテナ長 はえ /2を基本とする)。そして、折り返しダイポールアンテナ(Folded Dipole Antenna) fdpは、このダイポールアンテナ dpを基本にして、 1波長の導線を折り返し た構造を持つアンテナである。
[0026] 通常、カードは人の胸ポケットなどに入れて携帯されたり、カードを手に持ってリー ダ/ライタにかざしたりして使用するというように、カードが人体に触れるケースが多い 力 上記の折り返しダイポールアンテナ fdpを有する ICタグが埋め込まれた UHF帯 カードでは、人体の近傍位置にあると、人体によって電波の放射が遮断、吸収されて 、電波の放射'受信特性が劣化してしまうといった問題があった。
[0027] 図 15は従来の UHF帯カードの問題点を示す図である。人体近傍にダイポールァ ンテナ dpが存在する様子を示している(なお、折り返しダイポールアンテナ fdpとダイ ポールアンテナ dpの基本的な原理は同じなので、簡単のためダイポールアンテナ dp を図示して説明する)。
[0028] 通常は、ダイポールアンテナ dpに対して図に示すような電流 ilが流れて、電波 Vが 放射されるが、この場合にダイポールアンテナの近傍に人体の皮膚などがあると、導 体となった人体表面に、ダイポールアンテナ dpに流れる電流 ilとは逆方向に流れる 電流 i2が発生する。すると互いの電流 il、 i2が打ち消しあうかたちとなるので、ダイポ 一ルアンテナ dpには電流 ilが流れに《なり、電波 Vが十分に飛ばなくなってしまう。
[0029] また、 UHF帯などの周波数帯に限らず、 ICタグカードに対しては、アンテナとして 平面アンテナであるグラウンドプレーン(Ground Plane)アンテナも広く用いられて!/、る
[0030] 図 16はグラウンドプレーンアンテナを示す図である。グラウンドプレーンアンテナ 30 0は、誘電体基板 301の一方の面 (裏面)に GND板 (グラウンドプレーン) 302を設け 、誘電体基板 301の他方の面に (表面)に放射素子 303を設けた構造を持つアンテ ナである(給電には例えば、図には示さないが、同軸ケーブルの内部導体の芯線を 放射素子 303に接続し、同軸ケーブルの外部導体を GND板 302に接続して、高周 波信号を給電する)。
[0031] グラウンドプレーンアンテナ 300は、このように表裏が存在するが、放射素子 303が 設置する表側を、人体に向けた場合には、図 15で上述したことと同様な現象が生じ るので、グラウンドプレーンアンテナ 300に対しても、人体によって電波 Vの放射が遮 断、吸収されて、電波 Vの放射 ·受信特性が劣化してしまうといった問題があった。
[0032] 一方、 RFIDサービスでは、上述したように、 1つの周波数帯だけの通信ではなぐ 現状においては UHF帯や 13. 56MHz帯などの複数の周波数帯が混在されてサー ビスされることになる。
[0033] このため、カードにも UHF帯カードや、 13. 56MHz帯カードなどが存在することに なるので、人がカードを携帯する場合には、財布やパスケースなどに、これらの異な る周波数帯のカードが混在して収納されることが予想される。
[0034] し力し、このような状況において、 13. 56MHz帯カードに含まれる ICタグは、図 13 で上述したように、電磁誘導方式であるので、ループアンテナの前面または背面に、 別の UHF帯カードや 2. 45GHz帯カードが重ねて収納されると、ループアンテナで 発生する磁界が、重ねた他の ICタグにより通過を阻害され、ループ上に電流が発生 しなくなり、 13. 56MHz帯 ICタグが動作できずに、通信不能となってしまうといった 問題があった。
[0035] 例えば、 13. 56MHz帯カードと UHF帯カードとを重ねて、パスケースに収納した 状態のままで、 13. 56MHz帯カードをリーダ Zライタにかざすと、 UHF帯カード内 部の導体部分によって、 13. 56MHz帯カードで放射、受信すべき電波が阻害され てしまう現象が生じてしまう。
[0036] 本発明はこのような点に鑑みてなされたものであり、人体近傍にあっても電波の放 射'受信特性の劣化がなぐかつ他 ICタグの通信を阻害せずに、高品質な無線通信 を行うタグ装置を提供することを目的とする。
[0037] また、本発明の他の目的は、人体近傍にあっても電波の放射'受信特性の劣化が なぐかつ他 ICタグの通信を阻害せずに、高品質な無線通信を行うアンテナを提供 することである。
[0038] さらに、本発明の他の目的は、人体近傍にあっても電波の放射'受信特性の劣化 がなぐかつ他 ICタグの通信を阻害せずに、高品質な無線通信を行う携帯型カード を提供することである。
課題を解決するための手段
[0039] 本発明では上記課題を解決するために、図 1に示すような、無線通信を行うタグ装 置 1において、誘電体基板 30の表面に実装したループ状の金属箔であり、電波の送 受信を行うメインループ部 11と、メインループ部 11に接続する金属箔であり、キャパ シタンス成分の負荷を有する容量性負荷部 12と、から構成されるアンテナ部 10と、メ インループ部 11と接続し、電波を介して情報の制御を行う制御部 20と、を有すること を特徴とするタグ装置 1が提供される。
[0040] ここで、メインループ部 11は、誘電体基板 30の表面に実装したループ状の金属箔 であり、電波の送受信を行う。容量性負荷部 12は、メインループ部 11に接続する金 属箔であり、キャパシタンス成分の負荷を有する。制御部 20は、メインループ部 11と 接続し、電波を介して情報の制御を行う。
発明の効果 [0041] 本発明のタグ装置は、誘電体基板の表面に実装したループ状の金属箔であり、電 波の送受信を行うメインループ部と、メインループ部に接続する金属箔であり、キャパ シタンス成分の負荷を有する容量性負荷部とから構成されるアンテナ部を有する構 成とした。これにより、人体近傍にあっても電波の放射'受信特性の劣化がなぐかつ 他 ICタグの通信を阻害せずに、高品質な無線通信を行うことが可能になる。
[0042] また、本発明のアンテナは、誘電体基板の表面に実装したループ状の金属であり、 電波の送受信を行うメインループ部と、メインループ部に接続する金属であり、キャパ シタンス成分の負荷を有する容量性負荷部とから構成した。これにより、人体近傍に あっても電波の放射 ·受信特性の劣化がなぐかつ他 ICタグの通信を阻害せずに、 高品質な無線通信を行うことが可能になる。
[0043] さらに、本発明の携帯型カードは、誘電体基板の表面に実装したループ状の金属 箔であり、電波の送受信を行うメインループ部と、メインループ部に接続する金属箔 であり、キャパシタンス成分の負荷を有する容量性負荷部とから構成されるアンテナ 部を有し、人が携帯可能なカード状の部材で構成した。これにより、人体近傍にあつ ても電波の放射'受信特性の劣化がなぐかつ他 ICタグの通信を阻害せずに、高品 質な無線通信を行うことが可能になる。
[0044] 本発明の上記および他の目的、特徴および利点は本発明の例として好ま U、実施 の形態を表す添付の図面と関連した以下の説明により明らかになるであろう。
図面の簡単な説明
[0045] [図 1]タグ装置の原理図である。
[図 2]アンテナ部の概観を示す図である。
[図 3]アンテナ部に流れる電流を示す図である。
[図 4]タグ装置が人体近傍に位置する場合のメインループ部の動作を説明するため の図である。
[図 5]UHF帯の放射電波の電界強度を示す概念図である。
[図 6]容量性負荷部の有無による放射電磁波の電界強度を実験比較した図である。
[図 7]容量性負荷部の長さを変える様子を示す図である。
[図 8]メインループ部のインピーダンスを示す図である。 [図 9]磁気テープを有する IDカードと重ねた場合のタグ装置を示す図である。
[図 10]13. 56MHz帯カードと重ねた場合のタグ装置を示す図である。
[図 11]アンテナ部の変形例を示す図である。
[図 12]電波方式の概念を示す図である。
[図 13]電磁誘導方式の概念を示す図である。
[図 14]折り返しダイポールアンテナを示す図である。
[図 15]従来の UHF帯カードの問題点を示す図である。
[図 16]グラウンドプレーンアンテナを示す図である。
発明を実施するための最良の形態
[0046] 以下、本発明の実施の形態を図面を参照して説明する。図 1はタグ装置の原理図 である。タグ装置 1は、アンテナ部 10、制御部 20及び誘電体基板 30から構成されて 、無線通信を行う装置であり、例えば、 RFIDの UHF帯 ICタグとして利用される。
[0047] アンテナ部 10は、メインループ部 11と容量性負荷部 12から構成される。メインルー プ部 11は、誘電体基板 30の表面に実装したループ状の金属箔であり、電波の送受 信を行う(メインループ部 11がアンテナ機能の主要部となる)。容量性負荷部 12は、 メインループ部 11に接続する金属箔であり、キャパシタンス成分の負荷を有する。
[0048] ここで、アンテナ部 10は図に示すように、メインループ部 11は、誘電体基板 30の面 積よりも小さな面積を持つ細長ループの形状であり、誘電体基板 30を挟むように、誘 電体基板 30の表面 (表の面と裏面の両方)及び側面を覆!ヽ、かつ誘電体基板 30の 表面に対して水平方向に実装される。
[0049] また、容量性負荷部 12は、誘電体基板 30の表側の面を覆うメインループ部 11の 両端部 (誘電体基板 30の端部といってもよい)に設けられ、図には示してないが、誘 電体基板 30の裏側の面にあるメインループ部 11の両端部にも容量性負荷部 12は 同様にして設けられる(なお、容量性負荷部 12は誘電体基板 30の側面には設けな い)。
[0050] 制御部 20は、メインループ部 11と接続し、電波を介して情報の制御を行う電子回 路部品であり、 ICチップに該当するものである。制御部 20は、実際には、メインルー プ部 11上に実装される(図では、メインループ部 11の中心に実装されている)。 [0051] また、情報の制御とは、メインループ部 11を介して(リーダ Zライタから)受信した情 報に対して、復調処理や内部メモリへのデータ書き込み処理を行ったり、またはメイ ンループ部 11を介して(リーダ Zライタへ)送信すべき情報に対して、内部メモリのデ ータ読み出し処理や変調処理を行うことなどをいう。さらに、タグ装置 1は、上述した 電波方式により電源を得るので、制御部 20は、波源 (給電部)となり、内部には整流 回路も含まれる。
[0052] 図 2はアンテナ部 10の概観を示す図である。メインループ部 11は、細長ループの 形状であり、メインループ部 11の両端部に容量性負荷部 12が設けられる。また、ル ープ状のメインループ部 11の両端部に、容量性負荷部 12が垂直に接続することで、 アンテナ部 10は、 H字形状の構造を持つアンテナとなる。なお、タグ装置 1は、図 1に 示した誘電体基板 30を、このような形状のアンテナ部 10で挟んだ構造となる。
[0053] 図 3はアンテナ部 10に流れる電流を示す図である。アンテナ部 10に流れる電流を シミュレーションした図であり、電流の流れる様子を矢印で示している。電波の放射' 受信時には、アンテナ部 10に電流が流れる力 ほとんどの電流は、メインループ部 1 1上を流れ (ループ形状なので、表の面と裏の面をループ (一周)して流れる)、容量 性負荷部 12に流れる電流はわずかである。
[0054] 次にタグ装置 1により解決される問題点及び効果について説明する。タグ装置 1は 、図 2、図 3で上述したアンテナ部 10を有することで、 UHF帯 ICタグに対して従来あ つた問題点を解決し、以下の(1)一(4)の効果を得るものである。
[0055] (1)人体近傍においてタグ装置 1を使用しても良好な電波の放射 ·受信特性を得る ことができる。
(2)アンテナ (メインループ部 11)のインピーダンスを容易に調整可能なので、効率 よく ICチップ (制御部 20)とのインピーダンス整合をとることができる。
[0056] (3)電波の放射、受信を妨害する物体の近傍に置かれる場合であっても、電波妨 害を最小限に抑えることができる。
(4) 13. 56MHz帯 ICタグにタグ装置 1を重ねても、 13. 56MHz帯 ICタグで発生 する磁束を妨げず、 13. 56MHz帯 ICタグの通信に悪影響を与えない。
[0057] また、上記の効果の他にも、タグ装置 1では、従来の UHF帯 ICタグに比べて、広帯 域通信を可能にするといつた特徴を持つ。以降、これらの特徴に関連したタグ装置 1 の機能 ·動作につ!、て詳しく説明する。
[0058] なお、タグ装置 1は、人が携帯可能なカード形状の部材に、アンテナ部 10と制御部 20を収めることで携帯型カードとして使用され、例えば、 IDカード、キャッシュカード、 鉄道の定期券カードなどというように幅広く利用可能である。
[0059] また、カード形状の部材とは、例えば、プラスチックのような材質でよ!、し、アンテナ 部 10は、部材内部に収められても、部材表面に貼り付けられた構造をとつてもよい。 ただし、カード寸法は、国内においては、 54mm (縦) X 86mm (横) X O. 76mm ( 厚さ)と定められているので、タグ装置 1はこのカード寸法に入る大きさとなる。
[0060] 次に人体近傍でのタグ装置 1の動作について説明する。図 4はタグ装置 1が人体近 傍に位置する場合のメインループ部 11の動作を説明するための図である。
人体近傍に対して、タグ装置 1のメインループ部 11が存在する様子を示して!/、る。
[0061] メインループ部 11は、ライン L1一 L4力 なるループとし、電波の放射'受信時には 、メインループ部 11に反時計周りに電流が流れるとする。なお、説明のために、ライン L1に流れる電流を電流 II、ライン L2に流れる電流を電流 12、ライン L3に流れる電流 を電流 13、ライン L4に流れる電流を電流 14と便宜上符号を付ける。
[0062] メインループ部 11にループして電流が流れた場合、ライン L1につ ヽては、人体表 面に平行に位置するライン L 1に電流 11が下向きに流れると、人体表面を対象として 電流 IIとは逆の上向きに流れる電流 Ilaが発生する。ライン L2については、人体表 面に垂直に位置するライン L2に右向きの電流 12が流れると、人体表面には電流 12 の流れる向きに連続して流れるような同じ右向きの電流 I2aが発生する。
[0063] また、ライン L3については、人体表面に平行に位置するライン L3に電流 13が上向 きに流れると、人体表面を対象として電流 13とは逆の下向きに流れる電流 I3aが発生 する。ライン L4については、人体表面に垂直に位置するライン L4に左向きの電流 14 が流れると、人体表面には電流 14の流れる向きに連続して流れるような同じ左向きの 電流 I4aが発生する。
[0064] このような電流分布が生じると、人体表面に最も近接して 、るライン L1に流れる電 流 IIと、人体表面に生じた電流 Ilaとは互いに打ち消しあう形となる。すると、人体表 面とメインループ部 11との間に、あらたなループ状の電流分布が生成することになり 、等価的には、人体表面を介してあらたなループアンテナ RPが生成されることになる
[0065] したがって、タグ装置 1を含む携帯カードを胸ポケットに入れたままでも、手にとって リーダ Zライタにかざした場合でも、人体によって電波の放射 ·受信特性が阻害され ることがなくなり、人体近傍においてタグ装置 1を使用しても良好な電波の放射 '受信 特性を得ることが可能になる。
[0066] 次に容量性負荷部 12をメインループ部 11に設けることで実現した広帯域通信につ いて説明する。図 5は UHF帯の放射電波の電界強度を示す概念図である。縦軸は 放射電波の電界強度、横軸は周波数 (MHz)である。
[0067] グラフ G1は、 UHF帯として 953MHzを中心とした狭帯域の状態を示しており、ダラ フ G2は、 UHF帯として 953MHzを中心とした広帯域の状態を示して!/、る(グラフ G2 は、容量性負荷部 12を有することにより、 UHF帯で広帯域となった本発明の電界強 度分布状態である)。
[0068] UHF帯での RFID通信では、 952MHz— 954MHzの周波数帯が使用されること は上述したが、アンテナにおいては、グラフ G1のように 952MHz— 954MHzだけ十 分な電流が流れて、電波放射ができればよいというわけではなぐグラフ G2のように、 952MHz— 954MHzを中心にして、ある程度幅広い周波数にわたって十分な電波 放射が可能なアンテナを作った方がょ 、。
[0069] なぜなら、製品の製造時には、材質のばらつき等により周波数が変動するので、周 波数が多少変動したとしても、精度よく動作するアンテナの方が好ましいからである。 タグ装置 1では、メインループ部 11に容量性負荷部 12を接続することで、広帯域ィ匕 が可能となっている。
[0070] 図 6は容量性負荷部 12の有無による放射電磁波の電界強度を実験比較した図で ある。縦軸は電界強度 Ε ((1Β /ζ VZm)であり、横軸は周波数 (Hz)である(なお、 α Ε + β = α Χ 10 βである)。電界強度は、タグ装置 1から 2m離れた点での値をモーメ ント法によるシミュレーションにより算出したものである。
[0071] また、計算に用いたタグ装置 1の寸法は 4. 5cm X 7. 5cmX 0.5mmであり、誘電 体基板 30の電気的特性は、比誘電率 3. 9、誘電損失 0.008である。さらに、波源と なる制御部 20の内部インピーダンスは、 20 Ω— 18(¾ Ωであり、 IVの電圧源とした。
[0072] 図からわ力るように、容量性負荷部 12を接続したときのメインループ部 11の電界強 度を示すグラフ G3の方が、容量性負荷部 12が接続して 、な 、メインループ部 11の 電界強度を示すグラフ G4よりも、帯域が広がって ヽることがわかる。
[0073] 次にメインループ部 11と制御部 20とのインピーダンス整合について説明する。制 御部 20は、メインループ部 11と接続し、制御部 20が出力した電力はメインループ部 11を介して電波となってエア中に放出される。
[0074] メインループ部 11上では、どこでも電圧 Ζ電流 =インピーダンス(特'性インピーダン ス) Ζの関係を保ちながら進行波が伝わる力 インピーダンス Ζに等しい値の負荷抵 抗 Rをつなぐと、進行波は全部負荷抵抗 Rに入って熱となって消費され、負荷から し し
の反射は生じない。
[0075] すなわち、メインループ部 11のインピーダンスと、制御部 20の内部インピーダンスと を等しくすれば (整合をとれば)、制御部 20から出力した進行波だけが伝わり、進行 波が持って 、る電力エネルギがすべてアンテナであるメインループ部 11に供給され て放射されることになる。ただし、インピーダンスの完全整合は、理論的に可能な理 想状態であって、現実の設計においては、いかにこの理想状態に近づけるかが重要 となる。
[0076] ここで、容量性負荷部 12の面積を変えてメインループ部 11のインピーダンスを変 ィ匕させた際の実験測定結果について説明する。容量性負荷部 12の面積を変えるに は、容量性負荷部 12の一部をカット (切断)して長さを変えてやるのが簡単である。
[0077] 図 7は容量性負荷部 12の長さを変える様子を示す図である。容量性負荷部 12に 対して、図に示す部分の長さ Lを 0— 20mmの範囲で可変させる。
図 8はメインループ部 11のインピーダンスを示す図である。縦軸はインピーダンス ( Ω )、横軸は容量性負荷部 12の長さ L (mm)であり、図 7に示した長さ Lを 0— 20mm に可変したときのメインループ部 11のインピーダンスの変化を示している。
[0078] 図からわ力るように、容量性負荷部 12の長さ Lを変えることにより、インピーダンスが 変化している。ここで、単純な場合を想定すると、制御部 20の内部インピーダンスが 、ネットワークアナライザの測定結果から 120 Ω +j320 Qと求められたとすれば、容 量性負荷部 12の長さ Lを 15mmにすればインピーダンスが整合することになる。
[0079] なお、インピーダンス Zは、レジスタンス(抵抗成分)を R、リアクタンス(コンデンサや コイルによる容量成分)を Xとすれば、実数部に R、虚数部に Xが含まれた Z=R±jX の形で表せる(土の符号は、 ICのインピーダンスは Z =R -iX であり、アンテナの
IC IC IC
インピーダンスは Z =R +jXとなる)。
A A A
[0080] このように、本発明のタグ装置 1においては、容量性負荷部 12の面積を変えるだけ で、メインループ部 11のインピーダンスを可変にすることができるので、あらかじめ制 御部 20 (ICチップ)の内部インピーダンスをネットワークアナライザ等で測定しておき 、この測定値と略一致するように容量性負荷部 12の面積を変えてやれば、効率よくィ ンピーダンス整合を行うことができる(なお、インピーダンスは、上記の抵抗 Rとリアクタ ンス Xの 2つのパラメータを有するので、実際にはこれら両方を一致させることは難し いが、リアクタンス X側を優先して一致させるように容量性負荷部 12の長さを調整す ると、インピーダンス整合の精度があがることが実験的に認識された)。
[0081] 次に電波の放射、受信を妨害する物体の近傍に置かれる場合のタグ装置 1につ 、 て説明する。図 9は磁気テープを有する IDカードと重ねた場合のタグ装置 1を示す図 である。 IDカードとタグ装置 1を重ねた場合、 IDカードの磁気テープとタグ装置 1のメ インループ部 11が同じ位置にあって重なると、互 ヽに電波干渉を引き起こすことにな る。
[0082] したがって、タグ装置 1では、磁気テープとの相互作用が最小になるように、メイン ループ部 11は、磁気テープ (磁気テープに限らず電波の放射、受信を妨害する物 体)が存在する位置力 離れた位置にくるように、誘電体基板 30上に設けるようにす る。
[0083] 次に 13. 56MHz帯カードと重なる場合のタグ装置 1について説明する。
図 10は 13. 56MHz帯カードと重ねた場合のタグ装置 1を示す図である。上述したよ うに、 13. 56MHz帯カード内部にはループアンテナが存在し、磁束を発生させてい る。タグ装置 1のメインループ部 11がカード中心部にあって、 13. 56MHz帯カードと 重なると磁束の流れを遮断し、 13. 56MHz帯カードの読み取りを妨害することにな る(逆に磁束は、メインループ部 11に電波障害を与える)。
[0084] したがって、タグ装置 1では、 13. 56MHz帯カードが発生する磁束の流れを妨げ ないように、メインループ部 11は、 13. 56MHz帯カードのループアンテナ中央部か ら離れた位置にくるように、誘電体基板 30上に設けるようにする(図では、カード中央 部にあったメインループ部 11をカード端部に移動して 、る)。
[0085] 次にアンテナ部 10の変形例について説明する。図 11はアンテナ部 10の変形例を 示す図である。上述したアンテナ部 10は、ループ状のメインループ部 11の両端部に 、容量性負荷部 12が垂直に接続して、 H字形状の構造を持つアンテナであつたが、 変形例のアンテナ部 10aでは、ループ状のメインループ部 11の両端部の上下方向 に、容量性負荷部 12の端部が鋭角の角度を持って接続して、 N字形状の構造を持 つものである。
[0086] また、アンテナ部 10aが誘電体基板(図示せず)に実装する場合は、アンテナ部 10 aのメインループ部 11は、誘電体基板の面積よりも小さな面積を持つ細長ループの 形状で、誘電体基板を挟むように、誘電体基板の表面及び側面を覆い、かつ誘電体 基板の表面に対して斜線方向に実装される。
[0087] そして、容量性負荷部 12は、誘電体基板の表側の面を覆うメインループ部 11の両 端部及び誘電体基板の裏側の面を覆うメインループ部 11の両端部にそれぞれ設け られる(図には示さないが 2枚の N字アンテナで誘電体基板が挟まれる構造となる。 ただし、メインループ部 11は誘電体基板の側面を通じて表 ·裏をループし、容量性負 荷部 12は側面には設けな!/ヽ)。
[0088] 大きさが定められているカード(国内では 54mm (縦) X 86mm (横) X O. 76mm ( 厚さ))内にタグ装置 1を収める際に、メインループ部 11の長さ(アンテナ長)を伸ばし たい場合には、変形例のような N字形状のアンテナとしてもよぐ H字型と同じ効果が 得られる。
[0089] 以上説明したように、メインループ部 11と容量性負荷部 12からなるアンテナ部 10を 薄いカード内に設置したタグ装置 1及び携帯カードによれば、他の IDカード等と重ね て人体に装着した状態でも、良好な送受信特性を得ることが可能になる。また、 13. 56MHz帯の ICタグカードと重ねても、悪影響を及ぼさず、さらに容量性負荷の面積 を変化させることで、 ICチップ (制御部 20)との整合を調整することが可能になる。こ のため、将来のあらゆる産業界での IT化、自動化を推進する際に、効果的な RFID サービスを提供することが可能になる。
[0090] なお、上記では、 UHF帯カードに使用されるものとして、本発明を説明したが、 UH F帯に限られたものではなぐ他の周波数帯でも本発明の原理を幅広く適用すること ができる。
[0091] また、上記ではタグ装置 1が RFIDの携帯型カードに適用するものとして、アンテナ 部 10の形状を、 H字形状または N字形状としたが、アンテナ部 10は、 H字形状また は N字形状に限定されるものではなぐこれ以外の形状となるように、メインループ部 11と容量性負荷部 12を接続してもよぐ RFID分野に限らず、高周波を使用するそ の他の通信分野にぉ 、ても幅広!、応用が可能である。
[0092] 上記については単に本発明の原理を示すものである。さらに、多数の変形、変更が 当業者にとって可能であり、本発明は上記に示し、説明した正確な構成および応用 例に限定されるものではなぐ対応するすべての変形例および均等物は、添付の請 求項およびその均等物による本発明の範囲とみなされる。
符号の説明
[0093] 1 タグ装置
10 アンテナ部
11 メインループ部
12 容量性負荷部
20 制御部
30 誘電体基板

Claims

請求の範囲
[1] 無線通信を行うタグ装置において、
誘電体基板の表面に実装したループ状の金属箔であり、電波の送受信を行うメイ ンループ部と、前記メインループ部に接続する金属箔であり、キャパシタンス成分の 負荷を有する容量性負荷部と、から構成されるアンテナ部と、
前記メインループ部と接続し、前記電波を介して情報の制御を行う制御部と、 を有することを特徴とするタグ装置。
[2] 前記メインループ部は、前記誘電体基板の面積よりも小さな面積を持つ細長ルー プの形状で、前記誘電体基板を挟むように、前記誘電体基板の表面及び側面を覆 い、かつ前記誘電体基板の表面に対して水平方向に実装され、前記容量性負荷部 は、前記誘電体基板の表側の面を覆う前記メインループ部の両端部及び前記誘電 体基板の裏側の面を覆う前記メインループ部の両端部にそれぞれ設けられることを 特徴とする請求の範囲第 1項記載のタグ装置。
[3] 前記メインループ部は、前記誘電体基板の面積よりも小さな面積を持つ細長ルー プの形状で、前記誘電体基板を挟むように、前記誘電体基板の表面及び側面を覆 い、かつ前記誘電体基板の表面に対して斜線方向に実装され、前記容量性負荷部 は、前記誘電体基板の表側の面を覆う前記メインループ部の両端部及び前記誘電 体基板の裏側の面を覆う前記メインループ部の両端部にそれぞれ設けられることを 特徴とする請求の範囲第 1項記載のタグ装置。
[4] 人体近傍に位置する場合、前記アンテナ部は、前記メインループ部に流れる電流 により、人体表面と前記メインループ部との間にループ状の電流分布を生成して、等 価的に人体表面を介したループアンテナとなることを特徴とする請求の範囲第 1項記 載のタグ装置。
[5] 前記アンテナ部は、前記容量性負荷部が前記メインループ部に接続することにより 、前記メインループ部が送受信する前記電波の電界強度を広帯域にすることを特徴 とする請求の範囲第 1項記載のタグ装置。
[6] 前記容量性負荷部は、面積を可変にすることで、前記メインループ部のインピーダ ンスを可変とし、前記制御部が有するインピーダンスと前記メインループ部のインピー ダンスとが整合するように調整された面積で、前記誘電体基板上に設けられることを 特徴とする請求の範囲第 1項記載のタグ装置。
[7] 前記電波の放射、受信を妨害する物体の近傍に置かれる場合には、前記メインル ープ部は、前記物体が存在する位置力 離れた位置にくるように、前記誘電体基板 上に設けられることを特徴とする請求の範囲第 1項記載のタグ装置。
[8] 電磁誘導を行う機器の近傍に置かれる場合には、前記メインループ部は、前記電 磁誘導により生じる磁束を妨げない位置にくるように、前記誘電体基板上に設けられ ることを特徴とする請求の範囲第 1項記載のタグ装置。
[9] 電波の放射'捕捉を行うアンテナにおいて、
ループ状の金属であり、前記電波の送受信を行うメインループ部と、
前記メインループ部に接続する金属であり、キャパシタンス成分の負荷を有する容 量性負荷部と、
を有することを特徴とするアンテナ。
[10] ループ状の前記メインループ部の両端部に、前記容量性負荷部が垂直に接続して
、H字形状の構造を持つことを特徴とする請求の範囲第 9項記載のアンテナ。
[11] ループ状の前記メインループ部の両端部の上下方向に、前記容量性負荷部の端 部が鋭角を持って接続して、 N字形状の構造を持つことを特徴とする請求の範囲第 9 項記載のアンテナ。
[12] 誘電体基板に実装する場合には、前記メインループ部は、前記誘電体基板の面積 よりも小さな面積を持つ細長ループの形状で、前記誘電体基板を挟むように、前記 誘電体基板の表面及び側面を覆 、、かつ前記誘電体基板の表面に対して水平方向 に実装され、前記容量性負荷部は、前記誘電体基板の表側の面を覆う前記メインル ープ部の両端部及び前記誘電体基板の裏側の面を覆う前記メインループ部の両端 部にそれぞれ設けられることを特徴とする請求の範囲第 9項記載のアンテナ。
[13] 誘電体基板に実装する場合には、前記メインループ部は、前記誘電体基板の面積 よりも小さな面積を持つ細長ループの形状で、前記誘電体基板を挟むように、前記 誘電体基板の表面及び側面を覆 、、かつ前記誘電体基板の表面に対して斜線方向 に実装され、前記容量性負荷部は、前記誘電体基板の表側の面を覆う前記メインル ープ部の両端部及び前記誘電体基板の裏側の面を覆う前記メインループ部の両端 部にそれぞれ設けられることを特徴とする請求の範囲第 9項記載のアンテナ。
[14] 人体近傍に位置する場合、前記メインループ部に流れる電流により、人体表面と前 記メインループ部との間にループ状の電流分布を生成して、等価的に人体表面を介 したループアンテナとなることを特徴とする請求の範囲第 9項記載のアンテナ。
[15] 前記容量性負荷部が前記メインループ部に接続することにより、前記メインループ 部が送受信する前記電波の電界強度を広帯域にすることを特徴とする請求の範囲 第 9項記載のアンテナ。
[16] 前記容量性負荷部は、面積を可変にすることで、前記メインループ部のインピーダ ンスを可変とし、前記電波を介して情報の制御を行う制御部が前記メインループ部と 接続する際は、前記制御部が有するインピーダンスと前記メインループ部のインピー ダンスとが整合するように面積が調整されて 、ることを特徴とする請求の範囲第 9項 記載のアンテナ。
[17] 前記電波の放射、受信を妨害する物体の近傍に置かれる場合には、前記メインル ープ部は、前記物体が存在する位置力 離れた位置にくるように、前記容量性負荷 部と接続することを特徴とする請求の範囲第 9項記載のアンテナ。
[18] 電磁誘導を行う機器の近傍に置かれる場合には、前記メインループ部は、前記電 磁誘導により生じる磁束を妨げない位置にくるように、前記容量性負荷部と接続する ことを特徴とする請求の範囲第 9項記載のアンテナ。
[19] 無線通信を行う携帯型カードにおいて、
誘電体基板の表面に実装したループ状の金属箔であり、電波の送受信を行うメイ ンループ部と、前記メインループ部に接続する金属箔であり、キャパシタンス成分の 負荷を有する容量性負荷部と、から構成されるアンテナ部と、
前記メインループ部と接続し、前記電波を介して情報の制御を行う制御部と、 前記アンテナ部と前記制御部を含み、人が携帯可能なカード形状の部材と、 を有することを特徴とする携帯型カード。
[20] 前記メインループ部は、前記誘電体基板の面積よりも小さな面積を持つ細長ルー プの形状で、前記誘電体基板を挟むように、前記誘電体基板の表面及び側面を覆 い、かつ前記誘電体基板の表面に対して水平方向に実装され、前記容量性負荷部 は、前記誘電体基板の表側の面を覆う前記メインループ部の両端部及び前記誘電 体基板の裏側の面を覆う前記メインループ部の両端部にそれぞれ設けられることを 特徴とする請求の範囲第 19項記載の携帯型カード。
[21] 前記メインループ部は、前記誘電体基板の面積よりも小さな面積を持つ細長ルー プの形状で、前記誘電体基板を挟むように、前記誘電体基板の表面及び側面を覆 い、かつ前記誘電体基板の表面に対して斜線方向に実装され、前記容量性負荷部 は、前記誘電体基板の表側の面を覆う前記メインループ部の両端部及び前記誘電 体基板の裏側の面を覆う前記メインループ部の両端部にそれぞれ設けられることを 特徴とする請求の範囲第 19項記載の携帯型カード。
[22] 人体近傍に位置する場合、前記アンテナ部は、前記メインループ部に流れる電流 により、人体表面と前記メインループ部との間にループ状の電流分布を生成して、等 価的に人体表面を介したループアンテナとなることを特徴とする請求の範囲第 19項 記載の携帯型カード。
[23] 前記アンテナ部は、前記容量性負荷部が前記メインループ部に接続することにより 、前記メインループ部が送受信する前記電波の電界強度を広帯域にすることを特徴 とする請求の範囲第 19項記載の携帯型カード。
[24] 前記容量性負荷部は、面積を可変にすることで、前記メインループ部のインピーダ ンスを可変とし、前記制御部が有するインピーダンスと前記メインループ部のインピー ダンスとが整合するように調整された面積で、前記誘電体基板上に設けられることを 特徴とする請求の範囲第 19項記載の携帯型カード。
[25] 前記電波の放射、受信を妨害する物体の近傍に置かれる場合には、前記メインル ープ部は、前記物体が存在する位置力 離れた位置にくるように、前記誘電体基板 上に設けられることを特徴とする請求の範囲第 19項記載の携帯型カード。
[26] 電磁誘導を行う機器の近傍に置かれる場合には、前記メインループ部は、前記電 磁誘導により生じる磁束を妨げない位置にくるように、前記誘電体基板上に設けられ ることを特徴とする請求の範囲第 19項記載の携帯型カード。
PCT/JP2005/000091 2005-01-07 2005-01-07 タグ装置、アンテナ及び携帯型カード WO2006072990A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
DE602005024441T DE602005024441D1 (de) 2005-01-07 2005-01-07 Tag-einrichtung, antenne und tragbare karte
EP05703359A EP1835564B1 (en) 2005-01-07 2005-01-07 Tag device, antenna and portable card
CN2005800461581A CN101099266B (zh) 2005-01-07 2005-01-07 标签装置、天线及便携型卡
TW094100482A TWI262447B (en) 2005-01-07 2005-01-07 Tag device, antenna, and portable-type card
PCT/JP2005/000091 WO2006072990A1 (ja) 2005-01-07 2005-01-07 タグ装置、アンテナ及び携帯型カード
JP2006550567A JP4717830B2 (ja) 2005-01-07 2005-01-07 タグ装置
US11/822,528 US7880680B2 (en) 2005-01-07 2007-07-06 Tag device, antenna, and portable card

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/000091 WO2006072990A1 (ja) 2005-01-07 2005-01-07 タグ装置、アンテナ及び携帯型カード

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/822,528 Continuation US7880680B2 (en) 2005-01-07 2007-07-06 Tag device, antenna, and portable card

Publications (1)

Publication Number Publication Date
WO2006072990A1 true WO2006072990A1 (ja) 2006-07-13

Family

ID=36647478

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/000091 WO2006072990A1 (ja) 2005-01-07 2005-01-07 タグ装置、アンテナ及び携帯型カード

Country Status (7)

Country Link
US (1) US7880680B2 (ja)
EP (1) EP1835564B1 (ja)
JP (1) JP4717830B2 (ja)
CN (1) CN101099266B (ja)
DE (1) DE602005024441D1 (ja)
TW (1) TWI262447B (ja)
WO (1) WO2006072990A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009022404A1 (ja) 2007-08-13 2009-02-19 Fujitsu Limited 無線タグ及び無線タグの製造方法
JP2010081563A (ja) * 2008-08-27 2010-04-08 Fujitsu Component Ltd アンテナ装置及びこれを用いた通信システム
JP2011205384A (ja) * 2010-03-25 2011-10-13 Murata Mfg Co Ltd アンテナ装置及び無線通信デバイス
JP2011250406A (ja) * 2010-05-28 2011-12-08 China Steel Corp 容量性負荷を有するrfidタグ

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9026070B2 (en) * 2003-12-18 2015-05-05 Qualcomm Incorporated Low-power wireless diversity receiver with multiple receive paths
US7384496B2 (en) * 2004-02-23 2008-06-10 Checkpoint Systems, Inc. Security tag system for fabricating a tag including an integrated surface processing system
US9450665B2 (en) 2005-10-19 2016-09-20 Qualcomm Incorporated Diversity receiver for wireless communication
JPWO2009157081A1 (ja) * 2008-06-26 2011-12-01 富士通株式会社 Rfidタグ
US9013310B2 (en) * 2008-07-24 2015-04-21 International Business Machines Corporation Circuit structure and method of fabrication for facilitating radio frequency identification (RFID)
WO2011109419A2 (en) 2010-03-01 2011-09-09 Innovative Timing Systems, Llc Variably spaced multi-point rfid tag reader systems and methods
WO2012100231A2 (en) 2011-01-20 2012-07-26 Innovative Timing Systems, Llc Laser detection enhanced rfid tag reading event timing system and method
US9076278B2 (en) 2010-07-29 2015-07-07 Innovative Timing Systems, Llc Automated timing systems and methods having multiple time event recorders and an integrated user time entry interface
WO2011085405A2 (en) 2010-01-11 2011-07-14 Innovative Timing Systems Sports timing system (sts) integrated communication system and method
US8576051B2 (en) 2010-01-29 2013-11-05 Innovative Timing Systems, LLC. Spaced apart extended range RFID tag assemblies and methods of operation
EP2529336B1 (en) 2010-01-29 2018-12-12 Innovative Timing Systems Harsh operating environment rfid tag assemblies and methods
US8360331B2 (en) * 2010-01-29 2013-01-29 Innovative Timing Systems, Llc Harsh operating environment RFID tag assemblies and methods of manufacturing thereof
WO2014145728A2 (en) 2013-03-15 2014-09-18 Innovative Timing Systems, Llc System and method of an event timing system having integrated geodetic timing points
US8872634B2 (en) 2010-09-03 2014-10-28 Innovative Timing Systems, Llc Integrated detection point passive RFID tag reader and event timing system and method
US9508036B2 (en) 2011-01-20 2016-11-29 Innovative Timing Systems, Llc Helmet mountable timed event RFID tag assembly and method of use
US9489552B2 (en) 2011-01-20 2016-11-08 Innovative Timing Systems, Llc RFID timing system and method with integrated event participant location tracking
US9178669B2 (en) 2011-05-17 2015-11-03 Qualcomm Incorporated Non-adjacent carrier aggregation architecture
US9252827B2 (en) 2011-06-27 2016-02-02 Qualcomm Incorporated Signal splitting carrier aggregation receiver architecture
US9154179B2 (en) 2011-06-29 2015-10-06 Qualcomm Incorporated Receiver with bypass mode for improved sensitivity
US9349091B2 (en) 2011-11-04 2016-05-24 Teknologian Tutkimuskeskus Vtt Antenna construction, for example for an RFID transponder system
US8774334B2 (en) 2011-11-09 2014-07-08 Qualcomm Incorporated Dynamic receiver switching
EP2807612A4 (en) 2012-01-25 2015-03-11 Innovative Timing Systems Llc INTEGRATED TIMING SYSTEM AND METHOD WITH A EASILY PORTABLE RFID LABEL READER WITH GPS POSITION DETERMINATION
EP2807624A4 (en) 2012-01-25 2015-07-08 Innovative Timing Systems Llc SYNCHRONIZATION SYSTEM AND METHOD WITH INTEGRATED IMAGE CAPTURE MANAGEMENT SERVICES OF A PARTICIPANT EVENT
US9362958B2 (en) 2012-03-02 2016-06-07 Qualcomm Incorporated Single chip signal splitting carrier aggregation receiver architecture
US9172402B2 (en) 2012-03-02 2015-10-27 Qualcomm Incorporated Multiple-input and multiple-output carrier aggregation receiver reuse architecture
US9118439B2 (en) 2012-04-06 2015-08-25 Qualcomm Incorporated Receiver for imbalanced carriers
US9154356B2 (en) 2012-05-25 2015-10-06 Qualcomm Incorporated Low noise amplifiers for carrier aggregation
US9867194B2 (en) 2012-06-12 2018-01-09 Qualcomm Incorporated Dynamic UE scheduling with shared antenna and carrier aggregation
US9187154B2 (en) 2012-08-01 2015-11-17 Innovative Timing Systems, Llc RFID tag reading systems and methods for aquatic timed events
US9300420B2 (en) 2012-09-11 2016-03-29 Qualcomm Incorporated Carrier aggregation receiver architecture
US9543903B2 (en) 2012-10-22 2017-01-10 Qualcomm Incorporated Amplifiers with noise splitting
US8995591B2 (en) 2013-03-14 2015-03-31 Qualcomm, Incorporated Reusing a single-chip carrier aggregation receiver to support non-cellular diversity
GB2539839B8 (en) * 2014-04-28 2021-07-07 Murata Manufacturing Co Wireless IC device, clip-shaped RFID tag, and article having RFID tag
US10177722B2 (en) 2016-01-12 2019-01-08 Qualcomm Incorporated Carrier aggregation low-noise amplifier with tunable integrated power splitter
CN108306096A (zh) * 2017-01-12 2018-07-20 南宁富桂精密工业有限公司 一种抗金属标签天线及包含该天线的电子标签系统
CN211655071U (zh) * 2017-10-20 2020-10-09 株式会社村田制作所 卡式无线通信设备
CN109103575B (zh) * 2018-08-01 2020-09-11 中国航空工业集团公司雷华电子技术研究所 微带天线单元及微带天线

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09260925A (ja) * 1996-03-19 1997-10-03 Matsushita Electric Ind Co Ltd アンテナ装置
JP2003249814A (ja) 2002-02-25 2003-09-05 Tecdia Kk 非接触rfidタグ用同調コンデンサ付きループアンテナ
JP2004213582A (ja) * 2003-01-09 2004-07-29 Mitsubishi Materials Corp Rfidタグ及びリーダ/ライタ並びに該タグを備えたrfidシステム

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4547776A (en) * 1983-11-03 1985-10-15 The United States Of America As Represented By The Secretary Of The Navy Loop antenna with improved balanced feed
US5528222A (en) 1994-09-09 1996-06-18 International Business Machines Corporation Radio frequency circuit and memory in thin flexible package
JP3661432B2 (ja) * 1998-08-24 2005-06-15 株式会社村田製作所 表面実装型アンテナおよびそれを用いたアンテナ装置およびそれを用いた通信機
US6285342B1 (en) * 1998-10-30 2001-09-04 Intermec Ip Corp. Radio frequency tag with miniaturized resonant antenna
US6900773B2 (en) * 2002-11-18 2005-05-31 Ethertronics, Inc. Active configurable capacitively loaded magnetic diploe
US6919857B2 (en) * 2003-01-27 2005-07-19 Ethertronics, Inc. Differential mode capacitively loaded magnetic dipole antenna
JP4034676B2 (ja) * 2003-03-20 2008-01-16 日立マクセル株式会社 非接触通信式情報担体
JP2004355442A (ja) * 2003-05-30 2004-12-16 Navitas Co Ltd 非接触データキャリア
CA2489262A1 (en) * 2003-12-10 2005-06-10 Asahi Glass Company, Limited Planar antenna
JP4653440B2 (ja) 2004-08-13 2011-03-16 富士通株式会社 Rfidタグおよびその製造方法
JP4333555B2 (ja) 2004-10-27 2009-09-16 富士通株式会社 Rfidタグ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09260925A (ja) * 1996-03-19 1997-10-03 Matsushita Electric Ind Co Ltd アンテナ装置
JP2003249814A (ja) 2002-02-25 2003-09-05 Tecdia Kk 非接触rfidタグ用同調コンデンサ付きループアンテナ
JP2004213582A (ja) * 2003-01-09 2004-07-29 Mitsubishi Materials Corp Rfidタグ及びリーダ/ライタ並びに該タグを備えたrfidシステム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1835564A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009022404A1 (ja) 2007-08-13 2009-02-19 Fujitsu Limited 無線タグ及び無線タグの製造方法
EP2180432A1 (en) * 2007-08-13 2010-04-28 Fujitsu Limited Radio tag and process for producing the same
EP2180432A4 (en) * 2007-08-13 2010-11-03 Fujitsu Ltd FUNKETIKETT AND MANUFACTURING PROCESS THEREFOR
US8172149B2 (en) 2007-08-13 2012-05-08 Fujitsu Limited Wireless frequency tag and method for manufacturing wireless frequency tag
CN101802845B (zh) * 2007-08-13 2013-09-04 富士通株式会社 无线标签以及无线标签的制造方法
JP2010081563A (ja) * 2008-08-27 2010-04-08 Fujitsu Component Ltd アンテナ装置及びこれを用いた通信システム
JP2011205384A (ja) * 2010-03-25 2011-10-13 Murata Mfg Co Ltd アンテナ装置及び無線通信デバイス
JP2011250406A (ja) * 2010-05-28 2011-12-08 China Steel Corp 容量性負荷を有するrfidタグ

Also Published As

Publication number Publication date
US20070262871A1 (en) 2007-11-15
EP1835564A1 (en) 2007-09-19
CN101099266A (zh) 2008-01-02
TWI262447B (en) 2006-09-21
JPWO2006072990A1 (ja) 2008-06-12
TW200625180A (en) 2006-07-16
EP1835564B1 (en) 2010-10-27
DE602005024441D1 (de) 2010-12-09
EP1835564A4 (en) 2008-11-19
CN101099266B (zh) 2011-02-02
JP4717830B2 (ja) 2011-07-06
US7880680B2 (en) 2011-02-01

Similar Documents

Publication Publication Date Title
JP4717830B2 (ja) タグ装置
KR100912585B1 (ko) 태그 장치, 안테나 및 휴대형 카드
CN101416353B (zh) 无线集成电路设备
JP5057786B2 (ja) タグ
EP1826866B1 (en) Antenna and noncontact tag
US8743006B2 (en) Wireless communication-improving sheet member, wireless IC tag, antenna, and wireless communication system using the same
CN101145811B (zh) 通信系统、通信装置以及高频耦合器
JPWO2007000807A1 (ja) 無線周波数識別タグ
CN101295812B (zh) 骨架均衡天线、使用了该天线的rfid标签以及rfid系统
JP2006180043A (ja) 電子タグシステム
JP2008310453A (ja) 基体シート
Buffi et al. Numerical analysis of wireless power transfer in near-field UHF-RFID systems
KR100646745B1 (ko) 일체형 이중대역 안테나 및 이를 이용한 트랜스폰더
JP4859020B2 (ja) 無線タグ装置
JP7286969B2 (ja) Rfidシステムおよびリーダライタ装置
Kommey et al. Systematic design and prototyping of a low‐cost passive UHF‐RFID transponder
KR100976326B1 (ko) 다중 루프형 무선인식(rfid) 태그 안테나 및 이를이용한 rfid 태그
JP5092600B2 (ja) 無線icデバイス
JP2020184653A (ja) アンテナ部材及びrfidタグ
Jian et al. An innovative semicircular spiral antenna for on-metal passive RFID applications
Dhaouadi et al. Magnetic Tag antenna for UHF near-field and far-field RFID applications
Gandhimohan et al. Indirect Coupling Method of Chip Impedance Matched Dipole Antenna for UHF RFID Tag
Aydin HF/UHF dual mode RFID transponder antenna and HF range extension via wireless power transmission

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006550567

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2005703359

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200580046158.1

Country of ref document: CN

Ref document number: 11822528

Country of ref document: US

Ref document number: 1020077015567

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005703359

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11822528

Country of ref document: US