WO2006070571A1 - Atomized gold powder, conductive gold paste using same and gold clay for decoration - Google Patents

Atomized gold powder, conductive gold paste using same and gold clay for decoration Download PDF

Info

Publication number
WO2006070571A1
WO2006070571A1 PCT/JP2005/022461 JP2005022461W WO2006070571A1 WO 2006070571 A1 WO2006070571 A1 WO 2006070571A1 JP 2005022461 W JP2005022461 W JP 2005022461W WO 2006070571 A1 WO2006070571 A1 WO 2006070571A1
Authority
WO
WIPO (PCT)
Prior art keywords
gold
gold powder
powder
atomized
clay
Prior art date
Application number
PCT/JP2005/022461
Other languages
French (fr)
Japanese (ja)
Inventor
Yukio Iijima
Masakatsu Sato
Koji Yamamoto
Yosuke Igarashi
Original Assignee
Nippon Atomized Metal Powders Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Atomized Metal Powders Corporation filed Critical Nippon Atomized Metal Powders Corporation
Publication of WO2006070571A1 publication Critical patent/WO2006070571A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • AHUMAN NECESSITIES
    • A44HABERDASHERY; JEWELLERY
    • A44CPERSONAL ADORNMENTS, e.g. JEWELLERY; COINS
    • A44C27/00Making jewellery or other personal adornments
    • A44C27/001Materials for manufacturing jewellery
    • A44C27/002Metallic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/07Metallic powder characterised by particles having a nanoscale microstructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys

Definitions

  • the present invention relates to a gold powder obtained by atomization and a conductive gold paste and a decorative gold clay using the same, and in particular, a conductor paste for forming an electronic circuit and a ring 'necklace' Such as jewelry ⁇ It relates to atomized gold powder used for gold clay to make decorative products.
  • Conductive paste is used as a material for forming conductive films (wirings, electrodes, etc.) of a predetermined pattern on ceramic wiring substrates used in integrated circuits, multichip modules, etc., and other electronic components etc.
  • conductive films wirings, electrodes, etc.
  • conductive metal powder which suppresses expansion and contraction phenomena in the firing process as much as possible, and the sintering start temperature is high!
  • Japanese Patent Application Laid-Open No. 2002-20809 discloses a spherical, uniform, high-purity, high-density, high-dispersion spherical particle size suitable for a thick film paste, particularly a conductor paste for producing a ceramic laminated electronic component.
  • a method of producing a fine, highly crystalline metal powder As a required characteristic for a conductive metal powder to be used for a conductor paste for forming an electronic circuit, it is necessary to use a fine powder having few impurities and having an average particle diameter of about 0.1 l m-l O ⁇ m.
  • the particle shape and the particle diameter are uniform, it is monodispersed particles without aggregation, the dispersibility in the paste is good, and the crystallinity is good so as not to cause non-uniform sintering.
  • good crystallinity means that it is in the form of spheres, low in activity, high in crystallinity, or single crystals in which expansion and contraction due to oxidation reduction does not occur during sintering and the sintering start temperature is high. Meaning, ru (paragraph 0002)
  • Japanese Patent Application Publication No. 2003-193101 discloses a paste for forming a gold film or a gold alloy film on the surface of a silver clay sintered body and a method of forming the same.
  • the gold or gold alloy powder contained in the fluid paste is made into a fine powder having an average particle diameter of 3 ⁇ m, which is finer than the silver powder contained in silver clay, the gold or gold alloy is simply applied to the flame. It is described that a film can be formed, and it is further described that a spherical gold fine powder with an average particle diameter of less than 3 / zm can be obtained by a chemical reduction method (paragraph 0005).
  • a method of producing a gold powder there are a spray pyrolysis method, a chemical reduction method, an atomization method and the like.
  • the properties of the conductive paste and clay material largely depend on the properties of the gold powder contained in them.
  • the powder properties of the gold powder vary greatly depending on the method of production.
  • Japanese Patent Application Laid-Open No. 10-102108 discloses a method of producing a noble metal powder for thick film paste by a spray pyrolysis method.
  • a solution containing a metal salt constituting a powder is sprayed into droplets, and the droplets are heated at a temperature higher than the decomposition temperature of the metal salt (above the melting point of the metal) to form the metal salt.
  • thermal decomposition to precipitate metal powder.
  • the chemical reduction method also described in JP-A-2003-193101 is a method of producing a powder by reducing a solution (a raw material salt solution) containing a salt of a metal constituting the powder.
  • the atomizing method is a method of heating a metal constituting a powder to a molten state, atomizing the molten metal to form droplets, and solidifying in the process of cooling to produce powder particles.
  • JP-A-8-134501 discloses a sintered material for precious metal products obtained by pulverizing a precious metal material by a water atomizing method.
  • an organic binder solution and lead oxide are added to a noble metal powder obtained by a water atomizing method, and either one or both of silicon oxide and alumina are further added to clay.
  • a precious metal jewelry product is manufactured by producing a metal-like material and forming and sintering it.
  • the oxide to be added to the gold powder in addition to silicon oxide or alumina, lead oxide is not essential. This is to obtain a sintered body having high color strength and high strength (paragraph 0011).
  • gold (Au) is one of metal powders used in conductive pastes and clay materials. As described above, for the conductive film formed on the ceramic wiring substrate or the like, it is necessary to suppress the expansion and contraction phenomena of the conductive film during firing as much as possible. In addition, in order to finish precious metal clay containing gold powder into jewelry of a desired size and shape, it is necessary to minimize the amount of expansion and contraction in the sintering process as much as possible.
  • the inventors of the present invention have found that the crystal grain size of gold powder is closely related to the expansion and contraction phenomena in the process of sintering paste and clay.
  • Japanese Patent Application Laid-Open Nos. 2002-20809, 2003-193101, 10-102108 and 8-134501 cited above the description of the grain size of the gold powder is given. Absent.
  • the spray pyrolysis method it is possible to produce a powder having a fine texture, such as 50 nm (nm 2), in the crystal grain size that constitutes the base of the gold powder.
  • a powder having a fine texture such as 50 nm (nm 2)
  • the phenomenon of diffusion and sintering between gold powder particles significantly progresses at a low temperature during the heating process, resulting in abnormal shrinkage. Show the behavior.
  • This abnormal shrinkage behavior causes problems such as cracks in the paste thin film and peeling from the substrate, and causes appearance defects such as deformation of the jewelry and dimensional errors.
  • a more appropriate grain size range eg, ⁇ ! It is difficult to produce gold powder with a grain size of ⁇ 1 ⁇ m.
  • Japanese Patent Application Laid-Open No. 8-134501 describes the use of a gold powder obtained by a water atomization method as a sintered material for precious metal products. Then, in order to improve the strength of the sintered body, an organic binder solution and lead oxide are added to noble metal powder such as gold, and either one of silicon oxide and alumina, or It is characterized by adding both to make it like clay. In the case of this method, fine acid oxide particles tend to aggregate, so the strength of the sintered body is reduced rather than if sufficient stirring treatment is not performed. In addition, environmental aspect is also lead component It can be pointed out that the essential use of lead acid with acid is undesirable. Therefore, in order to improve the strength of the sintered body, another method that does not rely on an approach such as addition of acid oxide particles as disclosed in JP-A-8-134501 is required.
  • An object of the present invention is to provide a gold powder which can suppress the amount of expansion and contraction in the sintering process.
  • Another object of the present invention is to provide a conductive gold paste using the above-mentioned gold powder.
  • Still another object of the present invention is to provide a decorative gold clay using the above-mentioned gold powder.
  • the present invention is a gold powder obtained by an atomizing method, and has a crystal grain size of 100 to 800 nanometers (nm).
  • crystal grain size means an average crystal grain size.
  • the crystal grain size of the more preferable gold powder is 200 to 500 nm.
  • the average particle size of the preferred gold powder is 1 to: LO / z m, more preferably 3 to 5 ⁇ m
  • the gold powder has the property of not exhibiting expansion behavior during the sintering process.
  • the term “sintering” and the term “sintering” are not strictly used, but the terms “sintering” and “sintering” are mainly used as a concept including both.
  • the shrinkage behavior start temperature in the sintering process of the gold powder is 350 ° C. or more.
  • the melting point of the gold powder is 600 ° C. or more, more preferably 800 ° C. or more.
  • the gold powder is preferably a water-atomized gold powder obtained by solidifying a fine droplet from molten gold by spraying water.
  • the conductive gold paste according to the present invention is characterized by using the above-described atomized gold powder.
  • the decorative gold clay according to the present invention is characterized by using the above-described atomized gold powder.
  • the decorative gold clay comprises, in addition to the atomized gold powder, an organic binder solution and oxide particles.
  • the oxide particles are aluminum oxide, silicon oxide, It is one or more oxides selected from the group consisting of tin oxide, calcium oxide, magnesium oxide, copper oxide and silver oxide.
  • FIG. 1 is a view showing the results of measurement of expansion and contraction behavior of a gold powder produced by a water atomization method in the heating process using a dermatometer.
  • FIG. 2 is a diagram showing the results of measurement of expansion / contraction behavior in the heating process of a gold powder produced by a chemical reduction method using a delatometer.
  • FIG. 3 A diagram showing the results of measurement of expansion and contraction behavior of a gold powder produced by a spray pyrolysis method in the heating process using a dermatometer.
  • the inventors of the present invention have found that the grain size of the gold powder greatly affects the expansion / shrinkage behavior in the sintering process and the strength of the sintered body when it is used for the conductive paste or clay-like material. I found it.
  • the grain size of the gold powder needs to be in the range of 100 to 800 nanometers (nm), and a more preferable range is 200 to 500 nm.
  • the inventor of the present invention has found that, if the crystal grain size of the gold powder is less than lOOnm, the diffusion between the gold powder particles is likely to progress through a large number of trial manufactures and experiments. It has been found that an abnormal contraction phenomenon occurs in the burning process. Therefore, when a gold powder having a crystal grain size of less than 10 O nm is used as the conductive paste, shrinkage causes problems such as cracks in the paste film and peeling between the substrate and the paste. In addition, when gold powder with such a fine crystal grain size is used as a sintered clay material for jewelry, the dimensional change and deformation of the jewelry after sintering are remarkable as compared with the clay state before sintering. Therefore, it can not be used as jewelry and crafts.
  • FIG. 1 to FIG. 3 show the results of measurement of expansion / contraction behavior in the heating process by using a delatometer with respect to gold powders having different crystal grain sizes.
  • Fig. 1 shows the results when using gold powder produced by water atomization
  • Fig. 2 shows the results when using gold powder produced by chemical reduction
  • Fig. 3 shows spray pyrolysis. It is the result at the time of using the gold powder produced by the method.
  • the crystal grain size and the powder mean grain size of each powder were as follows.
  • the crystal grain size was 255 nm and the powder average grain size was 4.6 m.
  • the crystal grain size was 54 nm and the powder average grain size was 0.
  • the crystal grain size is 55 nm and the powder average grain size is 5. 7 ⁇ m7.
  • the water atomized gold powder with a grain size of 255 nm shown in FIG. 1 starts the shrinkage phenomenon at 407 ° C., whereas the gold powder by a chemical reduction method with a grain size of 5 lnm shown in FIG.
  • the contraction phenomenon starts in a low temperature region such as 221 ° C.
  • the gold powder according to the spray pyrolysis method with a crystal grain diameter of 55 mm in FIG. In the case where a gold powder causing such an expansion phenomenon is used as a conductive paste, there is a problem that the expansion phenomenon causes separation between the substrate and the paste.
  • the conductive paste and the clay-like material sinter at around 600 to 800 ° C.
  • the amount of shrinkage of each gold powder at 600 ° C is 0.4% in water atomized gold powder, but the gold by the chemical reduction method or the spray pyrolysis method is 0.4%.
  • the powder has a high value of 2.5% and 2. 7%, respectively!
  • the sintering progresses remarkably, and as a result, the amount of shrinkage in the sintering process increases, causing cracks in the paste film and the like. It causes appearance defects such as peeling from the substrate, cracks and deformations in jewelry, and dimensional errors.
  • the strength of the paste film or sintered clay after sintering is determined by the grain size of the gold powder. Should be small. When the crystal grain size exceeds 800 nm, sufficient strength and hardness can not be obtained in the sintered paste film or clay sintered body. In addition, in the case of a gold powder having a large grain size of more than 800 nm, it is difficult to obtain a good paste having high conductivity because the sinterability is lowered.
  • a gold powder is produced by an atomizing method and the crystal grain size thereof. Needs to be in the range of 100 nm to 800 nm. As a more preferable crystal grain size, it is 200-50 Onm.
  • the particle size of the gold powder is one of the factors governing the sinterability between the powders.
  • the average particle size of the atomized gold powder according to the invention is preferably in the range of 1 to: LO / z m. Furthermore, in order to suppress the abnormal shrinkage phenomenon in the sintering process and to ensure good sinterability, it is more desirable to make the average particle size of the gold powder in the range of 3 to 5 ⁇ m.
  • the average particle size of the gold powder is less than 1 ⁇ m, the surface diffusion among the powders is promoted, so the onset temperature of the shrinkage phenomenon accompanying sintering becomes below 350 ° C., and the paste or clay form When used in materials, the above-mentioned defects occur. In addition, powder agglomeration and reduced tap density cause problems which make it unsuitable for conductive paste.
  • the gold powder produced by the chemical reduction method is as fine as 0.5 to 1 ⁇ m or less in the average particle diameter of the powder, and therefore, as described above, the powder surface diffusion is facilitated to proceed as described above. Sintering between powders starts near C. Therefore, in the sintering at 600 to 800 ° C., an abnormal shrinkage phenomenon is accompanied and problems such as cracking in the paste film and peeling from the substrate occur.
  • the atomized gold powder has the property of not exhibiting expansion behavior in the sintering process in an inert gas atmosphere or in the air.
  • Anomalous shrinkage behavior in the low temperature range of the sintering process can be suppressed by setting the crystal grain size and the powder mean grain size of the gold powder in appropriate ranges.
  • the shrinkage behavior start temperature in the sintering process in an inert gas atmosphere or in the atmosphere is 350 ° C. or higher. is there.
  • the gold powder produced by the atomization method exhibits a higher melting point in the sintering process in an inert gas atmosphere or in the air, as compared to the gold powder produced by the spray pyrolysis method or the chemical reduction method.
  • the preferred melting point of the gold powder is 600 ° C. or more, more preferably 800 ° C. or more.
  • the atomizing method there is a force with a gas atomizing method and a water atomizing method.
  • a gas atomizing method In order to obtain gold powder having physical characteristics such as crystal grain diameter and powder average particle diameter in the appropriate range as described above, water atomizing method is used. Is preferred.
  • the gold powder is preferably a water atomized gold powder obtained by spraying water onto fine droplets of molten gold and solidifying it.
  • the conductive gold base using the atomized gold powder having the preferred physical properties as described above can suppress the expansion and contraction phenomena of the conductive film in the sintering process, so that the conductive film has high reliability. You can get
  • an organic binder solution and oxide particles are added to the atomized gold powder having preferable physical properties as described above to prepare gold clay, high strength and small amount of dimensional change, high dimensional accuracy can be obtained.
  • the oxide particles to be added are aluminum oxide, silicon oxide, tin oxide, calcium oxide, magnesium oxide, copper oxide, and a group of copper oxide and silver oxide, and one or more selected oxides. is there.
  • the addition of lead oxide is essential for the purpose of improving the strength of the sintered body. From the environmental point of view, it is not preferable to use lead acid containing lead.
  • the crystal grain diameter is in an appropriate range of 100 to 800 nm. Satisfyingly, it has high strength, and it is possible to have dimensional change before and after sintering, in particular, with abnormal shrinkage. You can get good gold jewelry and gold crafts.
  • Gold powder (average grain size: 280 nm) prepared by the water atomization method with an average particle size of 3 ⁇ m is prepared as 92% by weight ratio and 8% water-soluble cellulose clay, and they are mixed to obtain atomized gold Powdered gold clay (referred to as clay A) was prepared.
  • a gold powder (average grain size: 60 nm) prepared by a chemical reduction method having an average grain size of 1 is similarly mixed with a water-soluble cellulose clay at the same mixing ratio and contains a gold powder made from chemical reduction.
  • Gold clay (designated as clay B) was made.
  • Powder (powder B) and gold powder (powder C) having an average particle diameter of 0.9 / ⁇ and an average crystal particle diameter of 45 nm prepared by the ichological reduction method are prepared, and ceramic wiring boards are manufactured using these.
  • a conductive gold paste was prepared.
  • a wiring pattern was prepared on a substrate using each paste and fired. In powder A, a good wiring without cracks and without peeling from the substrate was obtained.
  • powder B was used, many cracks were generated in the paste thin film because sintering between gold powders did not proceed sufficiently.
  • powder C peeling occurred with the substrate where the amount of shrinkage of the paste after firing was large.
  • a gold powder having different average particle sizes and average crystal grain sizes was produced by a water atomization method.
  • heat treatment was performed on a part of the gold powder in a vacuum atmosphere in order to adjust the average grain size.
  • the average grain size and the average grain size of each powder are shown in Table 1.
  • Each gold The expansion and contraction behavior of the powder during the heating process was evaluated using a dermatometer. The contraction initiation temperature is shown in Table 1 below.
  • a mixture of gold powder and water-soluble cellulose clay is blended so that the content of gold powder is 92% by weight of the whole, and a ring-shaped test piece is produced from the obtained gold clay, Each was subjected to a drying step at 150 ° C. and baked at 800 ° C. for 20 minutes. The radial crushing strength of the obtained ring test piece was measured. The results are shown in Table 1 below.
  • sample Nos. 4 to 9 are inventive examples, and sample Nos. 1 to 3 and 10 are comparative examples.
  • atomized gold powder of the example of the present invention by having an appropriate average particle diameter and an average crystal grain diameter, a favorable ring-shaped sintered body free of cracks and the like is obtained after firing at 800 ° C. Moreover, the strength as a ring is also sufficient. On the other hand, the following problems were confirmed in the comparative example.
  • Gold powder having an average particle size of 3. 1 ⁇ m and an average crystal particle size of 315 nm prepared by a water atomizing method
  • an organic binder a 6% aqueous solution of methylcellulose and a mixed powder of tin oxide and aluminum oxide (70:30 by weight ratio) were prepared.
  • the gold clay was filled in a ring-shaped mold, and after being molded and solidified, the molded body was dried at 100 ° C. or less for 30 minutes and subsequently sintered at 780 ° C.
  • the obtained sintered body exhibited no cracks or deformation as small as 1.8% in average shrinkage ratio with respect to the size of the molded body before drying, and the strength was also sufficient. From this fact, it was found that by using this atomized gold powder, good gold clay can be obtained without using lead acid which has an influence on the environment and human body.
  • the purpose of the drying step is to evaporate and remove the moisture and the organic binder in the molded body.
  • the obtained sintered body exhibited no cracks or deformation as small as 2.1% of the average shrinkage ratio with respect to the size of the molded body before drying, and the strength was sufficient. From this, it was found that by using this atomized gold powder, good gold clay can be obtained without using lead oxide that affects the environment and human body.
  • the purpose of the drying step is to evaporate and remove the moisture and the organic binder in the molded body.
  • the present invention can be advantageously used for gold powder and conductive gold paste and decorative gold clay using it.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Powder Metallurgy (AREA)
  • Adornments (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Conductive Materials (AREA)

Abstract

Disclosed is a gold powder produced by an atomization process. The crystal grain size of the gold powder is 100-800 nm, and the average particle diameter of the powder is 1-10 μm. The temperature at which shrinking of the gold powder begins during the sintering process is not less than 350˚C.

Description

アトマイズ金粉末並びにそれを用いた導電性金ペーストおよび装飾用金 粘土  Atomized gold powder and conductive gold paste and decorative gold using it
技術分野  Technical field
[0001] この発明は、アトマイズ法によって得られた金粉末並びにそれを用いた導電性金ぺ 一ストおよび装飾用金粘土に関するものであり、特に、エレクトロニクス回路形成用導 体ペーストや、指輪'ネックレスなどの宝飾品 ·装飾製品を作製するための金粘土に 使用されるアトマイズ金粉末に関するものである。  The present invention relates to a gold powder obtained by atomization and a conductive gold paste and a decorative gold clay using the same, and in particular, a conductor paste for forming an electronic circuit and a ring 'necklace' Such as jewelry · It relates to atomized gold powder used for gold clay to make decorative products.
背景技術  Background art
[0002] ノ、イブリツド集積回路やマルチチップモジュールなどに用いられるセラミックス配線 基板やその他の電子部品等に、所定のパターンの導電膜 (配線や電極など)を形成 する材料として、導電性ペーストが用いられる。例えば基板上に導電膜を形成した場 合には、導電膜のデラミネーシヨンやクラックなどの構造欠陥の発生を防止しなけれ ばいけない。また焼成過程での膨張 ·収縮現象をできる限り抑制し、かつ焼結開始温 度が高!、導電性金属粉末が要求される。  Conductive paste is used as a material for forming conductive films (wirings, electrodes, etc.) of a predetermined pattern on ceramic wiring substrates used in integrated circuits, multichip modules, etc., and other electronic components etc. Be For example, when a conductive film is formed on a substrate, the occurrence of structural defects such as delamination and cracks of the conductive film must be prevented. In addition, conductive metal powder is required which suppresses expansion and contraction phenomena in the firing process as much as possible, and the sintering start temperature is high!
[0003] 例えば、特開 2002— 20809号公報は、厚膜ペースト、特にセラミック積層電子部 品を製造するための導体ペーストに適した球状で粒度の揃った高純度、高密度、高 分散性の微細な高結晶性金属粉末を製造する方法を開示して!/、る。この公報には、 エレクトロニクス回路形成用導体ペーストに使用される導電性金属粉末に対する要 求特性として、不純物が少ないこと、平均粒径が 0. l ^ m-lO ^ m程度までの微細 な粉末であること、粒子形状および粒径が揃っていること、凝集のない単分散粒子で あること、ペースト中での分散性が良いこと、不均一な焼結を起こさないよう結晶性が 良好であることが指摘されている(段落番号 0002)。ここで、結晶性が良好ということ は、焼成中に酸ィ匕還元による膨張収縮が起こりにくぐかつ焼結開始温度が高い、球 状で活性の低 、高結晶性または単結晶であることを意味して 、る(段落番号 0002)  [0003] For example, Japanese Patent Application Laid-Open No. 2002-20809 discloses a spherical, uniform, high-purity, high-density, high-dispersion spherical particle size suitable for a thick film paste, particularly a conductor paste for producing a ceramic laminated electronic component. Disclosed is a method of producing a fine, highly crystalline metal powder! In this publication, as a required characteristic for a conductive metal powder to be used for a conductor paste for forming an electronic circuit, it is necessary to use a fine powder having few impurities and having an average particle diameter of about 0.1 l m-l O ^ m. Certainly, the particle shape and the particle diameter are uniform, it is monodispersed particles without aggregation, the dispersibility in the paste is good, and the crystallinity is good so as not to cause non-uniform sintering. Is pointed out (paragraph 0002). Here, good crystallinity means that it is in the form of spheres, low in activity, high in crystallinity, or single crystals in which expansion and contraction due to oxidation reduction does not occur during sintering and the sintering start temperature is high. Meaning, ru (paragraph 0002)
[0004] 他方、最近では指輪やネックレスなどの貴金属宝飾品や美術工芸品などについて 、オリジナリティのあるものを個人が手軽にかつ容易に作製するための貴金属製粘土 が販売されている。そのような粘土状の加工材料を好みの形に造形したり、彫刻を施 したりした後、加熱 '焼結することで上記の宝飾品や工芸品などを作製する。その際、 焼結過程での膨張'収縮量をできる限り小さくすることにより、寸法や形状を好み通り にすることができる。 [0004] On the other hand, recently, with regard to precious metal jewelry such as rings and necklaces and art and crafts etc. Precious metal clays are marketed to allow individuals to easily and easily make originals. Such clay-like materials are shaped or sculpted into a desired shape, and then heated and sintered to produce the above-mentioned jewelry or craft. At that time, the size and shape can be made as desired by minimizing the expansion / contraction amount in the sintering process.
[0005] 特開 2003— 193101号公報は、銀粘土焼結体の表面に金被膜または金合金被 膜を形成するためのペーストおよびその形成方法を開示している。この公報には、流 動体ペーストに含まれる金または金合金粉末を銀粘土に含まれる銀粉末よりも一層 微細な平均粒径 3 μ mの微粉末にすると、火炎に当てるだけで金または金合金被膜 を形成することができることが記載され、さらに、化学還元法によって平均粒径 3 /z m 未満の球状金微粉末を得ることができることが記載されて ヽる(段落番号 0005)。  [0005] Japanese Patent Application Publication No. 2003-193101 discloses a paste for forming a gold film or a gold alloy film on the surface of a silver clay sintered body and a method of forming the same. According to this publication, if the gold or gold alloy powder contained in the fluid paste is made into a fine powder having an average particle diameter of 3 μm, which is finer than the silver powder contained in silver clay, the gold or gold alloy is simply applied to the flame. It is described that a film can be formed, and it is further described that a spherical gold fine powder with an average particle diameter of less than 3 / zm can be obtained by a chemical reduction method (paragraph 0005).
[0006] 金粉末の製造方法として、噴霧熱分解法、化学還元法、アトマイズ法などがある。 [0006] As a method of producing a gold powder, there are a spray pyrolysis method, a chemical reduction method, an atomization method and the like.
導電ペーストや粘土材料の特性は、それらに含まれる金粉末の特性に大きく依存し The properties of the conductive paste and clay material largely depend on the properties of the gold powder contained in them.
、また金粉末の粉体特性はその製造方法によって大きく異なる。 Also, the powder properties of the gold powder vary greatly depending on the method of production.
[0007] 特開平 10— 102108号公報は、噴霧熱分解法による厚膜ペースト用貴金属粉末 の製造方法を開示している。噴霧熱分解法は、粉末を構成する金属の塩を含む溶 液を噴霧して液滴にし、この液滴を金属塩の分解温度より高温 (金属の融点近傍以 上)で加熱して金属塩を熱分解し、金属粉末を析出させる方法である。 [0007] Japanese Patent Application Laid-Open No. 10-102108 discloses a method of producing a noble metal powder for thick film paste by a spray pyrolysis method. In the spray pyrolysis method, a solution containing a metal salt constituting a powder is sprayed into droplets, and the droplets are heated at a temperature higher than the decomposition temperature of the metal salt (above the melting point of the metal) to form the metal salt. By thermal decomposition to precipitate metal powder.
[0008] 特開 2003— 193101号公報にも記載されている化学還元法は、粉末を構成する 金属の塩を含む溶液 (原料塩溶液)を還元して粉末を製造する方法である。 The chemical reduction method also described in JP-A-2003-193101 is a method of producing a powder by reducing a solution (a raw material salt solution) containing a salt of a metal constituting the powder.
[0009] アトマイズ法は、粉末を構成する金属を加熱して溶融状態とし、この溶融金属を噴 霧して液滴にし、冷却する過程で凝固させて粉末粒子を製造する方法である。特開 平 8— 134501号公報は、貴金属原料を水アトマイズ法によって粉末化して得られる 貴金属製品用焼結材料を開示している。この公報には、水アトマイズ法によって得た 貴金属粉末に、有機系結合材溶液と酸ィ匕鉛とを添加し、さらに酸ィ匕珪素とアルミナの うちどちらか一方、或いは両方を添加して粘土状材料を作製し、これを成形'焼結す ることで貴金属宝飾品を製造することが記載されて 、る。ここで金粉末に添加する酸 化物として、酸ィ匕珪素またはアルミナのほかに、酸ィ匕鉛を必須のものとするのは、無 色で高 、強度の焼結体を得るためである(段落番号 0011)。 The atomizing method is a method of heating a metal constituting a powder to a molten state, atomizing the molten metal to form droplets, and solidifying in the process of cooling to produce powder particles. JP-A-8-134501 discloses a sintered material for precious metal products obtained by pulverizing a precious metal material by a water atomizing method. In this publication, an organic binder solution and lead oxide are added to a noble metal powder obtained by a water atomizing method, and either one or both of silicon oxide and alumina are further added to clay. It is described that a precious metal jewelry product is manufactured by producing a metal-like material and forming and sintering it. Here, as the oxide to be added to the gold powder, in addition to silicon oxide or alumina, lead oxide is not essential. This is to obtain a sintered body having high color strength and high strength (paragraph 0011).
[0010] 上記の先行技術に見られるように、導電性ペーストや粘土材料において用いられる 金属粉末の一つとして金 (Au)がある。前述したように、セラミックス配線基板等の上 に形成される導電膜については、焼成中における導電膜の膨張 ·収縮現象をできる 限り抑制することが必要である。また、金粉末を含む貴金属製粘土を所望の寸法や 形状の宝飾品に仕上げるには、焼結過程での膨張 ·収縮量をできる限り小さくするこ とが必要である。 [0010] As seen in the above prior art, gold (Au) is one of metal powders used in conductive pastes and clay materials. As described above, for the conductive film formed on the ceramic wiring substrate or the like, it is necessary to suppress the expansion and contraction phenomena of the conductive film during firing as much as possible. In addition, in order to finish precious metal clay containing gold powder into jewelry of a desired size and shape, it is necessary to minimize the amount of expansion and contraction in the sintering process as much as possible.
[0011] 本願発明者は、金粉末の結晶粒径が、ペーストや粘土を焼結する過程における膨 張 ·収縮現象と密接な関係があることを見出した。上記に引用した特開 2002— 208 09号公報、特開 2003— 193101号公報、特開平 10— 102108号公報および特開 平 8— 134501号公報には、金粉末の結晶粒径についての記載がない。  The inventors of the present invention have found that the crystal grain size of gold powder is closely related to the expansion and contraction phenomena in the process of sintering paste and clay. In Japanese Patent Application Laid-Open Nos. 2002-20809, 2003-193101, 10-102108 and 8-134501 cited above, the description of the grain size of the gold powder is given. Absent.
[0012] 噴霧熱分解法によれば、金粉末の素地を構成する結晶粒径が 50ナノメートル (nm )といった微細な組識構造を有する粉末を製造することが可能である。このように微細 な結晶粒径を有する金粉末をペーストや粘土材料として用いた場合、加熱過程にお いて金粉末粒子間での拡散 ·焼結現象が低温で顕著に進行するため、異常な収縮 挙動を示す。この異常な収縮挙動は、ペースト薄膜におけるクラックや基板との剥離 などの問題や、宝飾品の変形や寸法誤差などの外観不良を引き起こす。このような 異常な収縮挙動を生じさせないようにするには、金粉末の結晶粒径をより大きくする ことが必要である。しカゝしながら、噴霧熱分解法では、より適切な結晶粒径の範囲、 例えば、 ΙΟΟηπ!〜 1 μ mの結晶粒径を有する金粉末を製造することは困難である。  According to the spray pyrolysis method, it is possible to produce a powder having a fine texture, such as 50 nm (nm 2), in the crystal grain size that constitutes the base of the gold powder. When gold powder having such a fine grain size is used as a paste or clay material, the phenomenon of diffusion and sintering between gold powder particles significantly progresses at a low temperature during the heating process, resulting in abnormal shrinkage. Show the behavior. This abnormal shrinkage behavior causes problems such as cracks in the paste thin film and peeling from the substrate, and causes appearance defects such as deformation of the jewelry and dimensional errors. In order to prevent such anomalous shrinkage behavior, it is necessary to make the grain size of the gold powder larger. However, in spray pyrolysis, a more appropriate grain size range, eg, ΙΟΟπ! It is difficult to produce gold powder with a grain size of ~ 1 μm.
[0013] 化学還元法による金粉末の製造方法においても、噴霧熱分解法と同様、 lOOnm 〜1 μ m程度の結晶粒径を有する金粉末を製造することは困難である。  [0013] Also in the method of producing a gold powder by the chemical reduction method, it is difficult to produce a gold powder having a crystal grain size of about 100 nm to 1 μm as in the spray pyrolysis method.
[0014] 特開平 8— 134501号公報は、貴金属製品用焼結材料として、水アトマイズ法によ つて得られた金粉末の使用を記載している。そして、焼結体の強度向上のために、金 のような貴金属粉末に対して、有機系結合材溶液と酸ィ匕鉛とを添加し、さらに酸化珪 素とアルミナのうちどちらか一方、或いは両方を添加して粘土状にすることを特徴とし ている。この方法の場合、微細な酸ィ匕物粒子が凝集し易いため、十分な攪拌処理を 行なわないと却って焼結体の強度を低下させてしまう。また、環境面力もは、鉛成分 を有する酸ィ匕鉛の必須使用は好ましくないといった問題点を指摘できる。そこで、焼 結体の強度向上に関しては、特開平 8— 134501号公報に開示されたような酸ィ匕物 粒子の添加といったアプローチに頼らない別の手法が要望される。 Japanese Patent Application Laid-Open No. 8-134501 describes the use of a gold powder obtained by a water atomization method as a sintered material for precious metal products. Then, in order to improve the strength of the sintered body, an organic binder solution and lead oxide are added to noble metal powder such as gold, and either one of silicon oxide and alumina, or It is characterized by adding both to make it like clay. In the case of this method, fine acid oxide particles tend to aggregate, so the strength of the sintered body is reduced rather than if sufficient stirring treatment is not performed. In addition, environmental aspect is also lead component It can be pointed out that the essential use of lead acid with acid is undesirable. Therefore, in order to improve the strength of the sintered body, another method that does not rely on an approach such as addition of acid oxide particles as disclosed in JP-A-8-134501 is required.
発明の開示  Disclosure of the invention
[0015] この発明の目的は、焼結過程における膨張 ·収縮量を抑制することのできる金粉末 を提供することである。  [0015] An object of the present invention is to provide a gold powder which can suppress the amount of expansion and contraction in the sintering process.
[0016] この発明の他の目的は、上記の金粉末を用いた導電性金ペーストを提供すること である。  [0016] Another object of the present invention is to provide a conductive gold paste using the above-mentioned gold powder.
[0017] この発明のさらに他の目的は、上記の金粉末を用いた装飾用金粘土を提供するこ とである。  [0017] Still another object of the present invention is to provide a decorative gold clay using the above-mentioned gold powder.
[0018] この発明は、アトマイズ法によって得られた金粉末であって、その結晶粒径が 100 〜800ナノメートル (nm)であることを特徴とする。なお、本明細書においては、「結晶 粒径」は、平均結晶粒径のことを意味する。  The present invention is a gold powder obtained by an atomizing method, and has a crystal grain size of 100 to 800 nanometers (nm). In the present specification, “crystal grain size” means an average crystal grain size.
[0019] より好ましい金粉末の結晶粒径は、 200〜500nmである。  The crystal grain size of the more preferable gold powder is 200 to 500 nm.
[0020] 好ましい金粉末の平均粒径は、 1〜: LO /z mであり、より好ましくは、 3〜5 μ mである  The average particle size of the preferred gold powder is 1 to: LO / z m, more preferably 3 to 5 μm
[0021] 好ましくは、金粉末は、焼結過程で膨張挙動を示さない特性を有する。なお、本明 細書においては、「焼結」という用語と、「焼成」という用語とを厳格に使い分けておら ず、両者を含む概念として主に「焼結」と ヽぅ用語を使用する。 [0021] Preferably, the gold powder has the property of not exhibiting expansion behavior during the sintering process. In the present specification, the term "sintering" and the term "sintering" are not strictly used, but the terms "sintering" and "sintering" are mainly used as a concept including both.
[0022] 好ましくは、金粉末の焼結過程での収縮挙動開始温度が 350°C以上である。 Preferably, the shrinkage behavior start temperature in the sintering process of the gold powder is 350 ° C. or more.
[0023] 好ましくは、金粉末の融点が 600°C以上であり、より好ましくは 800°C以上である。 Preferably, the melting point of the gold powder is 600 ° C. or more, more preferably 800 ° C. or more.
[0024] 金粉末は、好ましくは、金溶湯からの微細液滴に水を噴霧して凝固後に得られた水 アトマイズ金粉末である。 The gold powder is preferably a water-atomized gold powder obtained by solidifying a fine droplet from molten gold by spraying water.
[0025] この発明に従った導電性金ペーストは、上記のアトマイズ金粉末を用いたことを特 徴とする。 The conductive gold paste according to the present invention is characterized by using the above-described atomized gold powder.
[0026] この発明に従った装飾用金粘土は、上記のアトマイズ金粉末を用いたことを特徴と する。好ましくは、装飾用金粘土は、アトマイズ金粉末に加えて、有機系結合材溶液 と、酸化物粒子とを含む。この場合、酸化物粒子は、酸化アルミニウム、酸化珪素、 酸化錫、酸ィ匕カルシウム、酸化マグネシウム、酸化銅および酸化銀からなる群から選 ばれた 1または 2以上の酸化物である。 The decorative gold clay according to the present invention is characterized by using the above-described atomized gold powder. Preferably, the decorative gold clay comprises, in addition to the atomized gold powder, an organic binder solution and oxide particles. In this case, the oxide particles are aluminum oxide, silicon oxide, It is one or more oxides selected from the group consisting of tin oxide, calcium oxide, magnesium oxide, copper oxide and silver oxide.
[0027] 本発明の構成は上記の通りであるが、各構成の作用効果、意義等については、以 下の「発明を実施するための最良の形態」の項で説明する。 図面の簡単な説明  [0027] The configuration of the present invention is as described above, but the function, effect, meaning and the like of each component will be described in the section "Best Mode for Carrying Out the Invention" below. Brief description of the drawings
[0028] [図 1]水アトマイズ法によって作製した金粉末の加熱過程における膨張 ·収縮挙動を デラートメ一ターで測定した結果を示す図である。  FIG. 1 is a view showing the results of measurement of expansion and contraction behavior of a gold powder produced by a water atomization method in the heating process using a dermatometer.
[図 2]化学還元法によって作製した金粉末の加熱過程における膨張'収縮挙動をデ ラートメーターで測定した結果を示す図である。  FIG. 2 is a diagram showing the results of measurement of expansion / contraction behavior in the heating process of a gold powder produced by a chemical reduction method using a delatometer.
[図 3]噴霧熱分解法によって作製した金粉末の加熱過程における膨張,収縮挙動を デラートメ一ターで測定した結果を示す図である。  [FIG. 3] A diagram showing the results of measurement of expansion and contraction behavior of a gold powder produced by a spray pyrolysis method in the heating process using a dermatometer.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0029] (1)アトマイズ金粉末の結晶粒径  (1) Grain size of atomized gold powder
本願発明者は、金粉末の結晶粒径が、導電性ペーストや粘土状材料に用いた場 合における、焼結過程での膨張'収縮挙動と焼結体の強度に大きく影響を及ぼすこ とを見出した。金粉末の結晶粒径は 100〜800ナノメートル (nm)の範囲にすること が必要であり、より好ましい範囲は、 200〜500nmである。  The inventors of the present invention have found that the grain size of the gold powder greatly affects the expansion / shrinkage behavior in the sintering process and the strength of the sintered body when it is used for the conductive paste or clay-like material. I found it. The grain size of the gold powder needs to be in the range of 100 to 800 nanometers (nm), and a more preferable range is 200 to 500 nm.
[0030] 本願発明者は、多くの試作および実験等を通して、金粉末の結晶粒径が lOOnm 未満の場合には、金粉末粒子間での拡散が進行し易くなるために、 350°Cまでの焼 成過程において異常な収縮現象が生じることを見出した。そのため、結晶粒径が 10 Onm未満の金粉末を導電性ペーストとして用いた場合には、収縮によってペースト 膜におけるクラックや基板とペーストの間での剥離といった問題が生じる。またそのよ うな微細な結晶粒径の金粉末を宝飾品用焼結粘土材料として用いた場合、焼結前 の粘土状態と比較して、焼結後の宝飾品での寸法変化や変形が顕著になるので宝 飾品や工芸品として利用できなくなる。  [0030] The inventor of the present invention has found that, if the crystal grain size of the gold powder is less than lOOnm, the diffusion between the gold powder particles is likely to progress through a large number of trial manufactures and experiments. It has been found that an abnormal contraction phenomenon occurs in the burning process. Therefore, when a gold powder having a crystal grain size of less than 10 O nm is used as the conductive paste, shrinkage causes problems such as cracks in the paste film and peeling between the substrate and the paste. In addition, when gold powder with such a fine crystal grain size is used as a sintered clay material for jewelry, the dimensional change and deformation of the jewelry after sintering are remarkable as compared with the clay state before sintering. Therefore, it can not be used as jewelry and crafts.
[0031] さらに、結晶粒径が lOOnm未満の金粉末の場合には、融点が 700〜800°Cを下 回るようになり、その結果、焼結過程において粘土成形体が溶融して宝飾品の製作 が困難となる。 [0032] 図 1〜図 3は、結晶粒径の異なる金粉末について、加熱過程における膨張'収縮挙 動をデラートメ一ターで測定した結果を示す。図 1は、水アトマイズ法によって作製し た金粉末を用いた場合の結果であり、図 2は、化学還元法によって作製した金粉末 を用いた場合の結果であり、図 3は、噴霧熱分解法によって作製した金粉末を用いた 場合の結果である。各粉末の結晶粒径および粉末平均粒径は、次の通りであった。 Furthermore, in the case of a gold powder having a crystal grain size of less than 100 nm, the melting point falls below 700 to 800 ° C., and as a result, the clay molded body melts in the sintering process, resulting in a jewelery product. Production becomes difficult. FIG. 1 to FIG. 3 show the results of measurement of expansion / contraction behavior in the heating process by using a delatometer with respect to gold powders having different crystal grain sizes. Fig. 1 shows the results when using gold powder produced by water atomization, Fig. 2 shows the results when using gold powder produced by chemical reduction, and Fig. 3 shows spray pyrolysis. It is the result at the time of using the gold powder produced by the method. The crystal grain size and the powder mean grain size of each powder were as follows.
[0033] 図 1の水アトマイズ法によって作製した金粉末の場合、結晶粒径が 255nmであり、 粉末平均粒径が 4. 6 mであった。図 2の化学還元法によって作製した金粉末の場 合、結晶粒径が 54nmであり、粉末平均粒径が 0. であった。図 3の噴霧熱分 解法によって作製した金粉末の場合、結晶粒径が 55nmであり、粉末平均粒径が 5. 7 μ mであつ 7こ。  In the case of the gold powder produced by the water atomization method of FIG. 1, the crystal grain size was 255 nm and the powder average grain size was 4.6 m. In the case of the gold powder produced by the chemical reduction method of FIG. 2, the crystal grain size was 54 nm and the powder average grain size was 0. In the case of the gold powder prepared by the spray heat decomposition method of Fig. 3, the crystal grain size is 55 nm and the powder average grain size is 5. 7 μm7.
[0034] 図 1に示す結晶粒径 255nmの水アトマイズ金粉末では、 407°Cにおいて収縮現象 が開始するのに対して、図 2に示す結晶粒径 5 lnmの化学還元法による金粉末では 、 221°Cといった低温度域において収縮現象が開始する。また図 3の結晶粒径 55η mの噴霧熱分解法による金粉末では、 400°C付近において膨張現象を示す。このよ うな膨張現象を起こす金粉末を導電性ペーストとして用いた場合には、膨張現象によ つて基材とペースト間での剥離を引き起こすといった問題を伴う。  The water atomized gold powder with a grain size of 255 nm shown in FIG. 1 starts the shrinkage phenomenon at 407 ° C., whereas the gold powder by a chemical reduction method with a grain size of 5 lnm shown in FIG. The contraction phenomenon starts in a low temperature region such as 221 ° C. Further, in the case of the gold powder according to the spray pyrolysis method with a crystal grain diameter of 55 mm in FIG. In the case where a gold powder causing such an expansion phenomenon is used as a conductive paste, there is a problem that the expansion phenomenon causes separation between the substrate and the paste.
[0035] 一方、各粉末の融点を比較すると、図 1の水アトマイズ法による金粉末は約 1000°C の融点を有するのに対して、図 2および図 3に示す lOOnm未満の微細な結晶粒径を 有する化学還元法あるいは噴霧熱分解法による金粉末は 680〜700°Cといった低 V、融点を有することがわかる。  On the other hand, when comparing the melting point of each powder, while the gold powder by the water atomizing method in FIG. 1 has a melting point of about 1000 ° C., fine grains of less than lOOnm shown in FIG. 2 and FIG. It can be seen that gold powder by chemical reduction or spray pyrolysis with diameter has a low V, melting point such as 680-700 ° C.
[0036] 導電性ペーストおよび粘土状材料は、 600〜800°C付近で焼結する。図 1〜図 3に おいて、例えば 600°Cにおける各金粉末の収縮量を比較すると、水アトマイズ金粉 末では 0. 4%であるのに対して、化学還元法あるいは噴霧熱分解法による金粉末は 、それぞれ 2. 5%と 2. 7%と高!/、値を示して!/、る。この結果力らゎ力るように、 100η m未満の微細な結晶粒径を有する金粉末では、焼結が顕著に進行する結果、焼結 過程での収縮量が増大してペースト膜の亀裂や基板との剥離、宝飾品における亀裂 や変形、寸法誤差などの外観不良を引き起こす。  [0036] The conductive paste and the clay-like material sinter at around 600 to 800 ° C. In Figs. 1 to 3, for example, when the amount of shrinkage of each gold powder at 600 ° C is compared, it is 0.4% in water atomized gold powder, but the gold by the chemical reduction method or the spray pyrolysis method is 0.4%. The powder has a high value of 2.5% and 2. 7%, respectively! As a result, in the case of a gold powder having a fine crystal grain size of less than 100 mm, the sintering progresses remarkably, and as a result, the amount of shrinkage in the sintering process increases, causing cracks in the paste film and the like. It causes appearance defects such as peeling from the substrate, cracks and deformations in jewelry, and dimensional errors.
[0037] 他方、焼結後のペースト膜や粘土焼結体の強度の観点力 は、金粉末の結晶粒径 は小さい方が望ましい。結晶粒径が 800nmを超えると、焼結後のペースト膜や粘土 焼結体において十分な強度や硬さが得られなくなる。また、 800nmを超えるような大 きな結晶粒径の金粉末では焼結性が低下するために、高い導電性を有する良好な ペーストを得ることが困難となる。 On the other hand, the strength of the paste film or sintered clay after sintering is determined by the grain size of the gold powder. Should be small. When the crystal grain size exceeds 800 nm, sufficient strength and hardness can not be obtained in the sintered paste film or clay sintered body. In addition, in the case of a gold powder having a large grain size of more than 800 nm, it is difficult to obtain a good paste having high conductivity because the sinterability is lowered.
[0038] 以上のように、焼結過程での収縮量を出来る限り低減し、しかも焼結後の強度を向 上させるためには、金粉末をアトマイズ法よつて作製し、かつその結晶粒径を lOOnm 〜800nmの範囲にすることが必要である。より好ましい結晶粒径としては、 200〜50 Onmである。  As described above, in order to reduce the amount of shrinkage in the sintering process as much as possible and to improve the strength after sintering, a gold powder is produced by an atomizing method and the crystal grain size thereof. Needs to be in the range of 100 nm to 800 nm. As a more preferable crystal grain size, it is 200-50 Onm.
[0039] (2)アトマイズ金粉末の平均粒径  (2) Average Particle Size of Atomized Gold Powder
金粉末の粒子径は、粉末間の焼結性を支配する要因の一つである。本発明に従つ たアトマイズ金粉末の平均粒径は、好ましくは、 1〜: LO /z mの範囲である。さらに、焼 結過程における異常な収縮現象を抑えて、良好な焼結性を確保するには、金粉末の 平均粒径を 3〜5 μ mの範囲にすることがより望ましい。  The particle size of the gold powder is one of the factors governing the sinterability between the powders. The average particle size of the atomized gold powder according to the invention is preferably in the range of 1 to: LO / z m. Furthermore, in order to suppress the abnormal shrinkage phenomenon in the sintering process and to ensure good sinterability, it is more desirable to make the average particle size of the gold powder in the range of 3 to 5 μm.
[0040] 金粉末の平均粒径が 1 μ m未満の場合、粉末間での表面拡散が促進するので焼 結に伴う収縮現象の開始温度が 350°Cを下回るようになり、ペーストや粘土状材料に 用いた場合には上述のような欠陥が生じる。また粉末の凝集や、タップ密度が低下 するといつた問題が生じるため、導電ペーストに適さなくなる。  When the average particle size of the gold powder is less than 1 μm, the surface diffusion among the powders is promoted, so the onset temperature of the shrinkage phenomenon accompanying sintering becomes below 350 ° C., and the paste or clay form When used in materials, the above-mentioned defects occur. In addition, powder agglomeration and reduced tap density cause problems which make it unsuitable for conductive paste.
[0041] 他方、金粉末の平均粒径が 10 μ mを超える場合、ペーストとしての要求特性である 、微細な電子回路パターンの形成が困難となる。  On the other hand, when the average particle diameter of the gold powder exceeds 10 μm, it becomes difficult to form a fine electronic circuit pattern, which is a required characteristic as a paste.
[0042] なお、化学還元法により作製した金粉末では、粉末平均粒径が 0. 5〜1 μ m以下と 微細であるため、粉末表面拡散が進行し易ぐ前述のように 220〜250°C付近で粉 末間の焼結が開始する。そのため、 600〜800°Cでの焼結においては異常な収縮 現象を伴い、ペースト膜中の亀裂や基板との剥離といった問題が生じる。  The gold powder produced by the chemical reduction method is as fine as 0.5 to 1 μm or less in the average particle diameter of the powder, and therefore, as described above, the powder surface diffusion is facilitated to proceed as described above. Sintering between powders starts near C. Therefore, in the sintering at 600 to 800 ° C., an abnormal shrinkage phenomenon is accompanied and problems such as cracking in the paste film and peeling from the substrate occur.
[0043] (3)アトマイズ金粉末の焼結過程での挙動および融点  (3) Behavior and melting point in the sintering process of atomized gold powder
前述したように、焼結過程で膨張現象を起こす金粉末を導電性ペーストとして用い ると、膨張現象によって基材とペースト間での剥離を引き起こす。そこで、好ましくは、 アトマイズ金粉末は、不活性ガス雰囲気中または大気中での焼結過程で膨張挙動を 示さない特性を有する。 [0044] 金粉末の結晶粒径および粉末平均粒径を適正な範囲にすることにより、焼結過程 の低温度域での異常な収縮挙動を抑えることができる。焼結に伴う多少の収縮現象 は避けられないが、本発明の金粉末の場合、好ましくは、不活性ガス雰囲気中また は大気中の焼結過程での収縮挙動開始温度が 350°C以上である。 As described above, when gold powder which causes expansion phenomenon in the sintering process is used as the conductive paste, the expansion phenomenon causes separation between the substrate and the paste. Therefore, preferably, the atomized gold powder has the property of not exhibiting expansion behavior in the sintering process in an inert gas atmosphere or in the air. Anomalous shrinkage behavior in the low temperature range of the sintering process can be suppressed by setting the crystal grain size and the powder mean grain size of the gold powder in appropriate ranges. Although some shrinkage phenomena accompanying sintering can not be avoided, in the case of the gold powder of the present invention, preferably, the shrinkage behavior start temperature in the sintering process in an inert gas atmosphere or in the atmosphere is 350 ° C. or higher. is there.
[0045] 噴霧熱分解法や化学還元法によって作製した金粉末に比べて、アトマイズ法によ つて作製した金粉末は、不活性ガス雰囲気中または大気中の焼結過程で高い融点 を示す。好ましい金粉末の融点は 600°C以上であり、より好ましくは 800°C以上であ る。  [0045] The gold powder produced by the atomization method exhibits a higher melting point in the sintering process in an inert gas atmosphere or in the air, as compared to the gold powder produced by the spray pyrolysis method or the chemical reduction method. The preferred melting point of the gold powder is 600 ° C. or more, more preferably 800 ° C. or more.
[0046] アトマイズ法には、ガスアトマイズ法と水アトマイズ法とがある力 上述したような適正 範囲の結晶粒径および粉末平粒径等の物理特性を有する金粉末を得るには、水ァ トマイズ法が好ましい。具体的には、金粉末は、好ましくは、金溶湯からの微細液滴 に水を噴霧して凝固後に得られた水アトマイズ金粉末である。  In the atomizing method, there is a force with a gas atomizing method and a water atomizing method. In order to obtain gold powder having physical characteristics such as crystal grain diameter and powder average particle diameter in the appropriate range as described above, water atomizing method is used. Is preferred. Specifically, the gold powder is preferably a water atomized gold powder obtained by spraying water onto fine droplets of molten gold and solidifying it.
[0047] (4)アトマイズ金粉末を用いた導電性金ペースト  (4) Conductive gold paste using atomized gold powder
上述したような好ま 、物理特性を有するアトマイズ金粉末を用いた導電性金べ一 ストであれば、焼結過程での導電膜の膨張 ·収縮現象を抑制できるので、信頼性の 高 、導電膜を得ることができる。  The conductive gold base using the atomized gold powder having the preferred physical properties as described above can suppress the expansion and contraction phenomena of the conductive film in the sintering process, so that the conductive film has high reliability. You can get
[0048] (5)アトマイズ金粉末を用いた装飾用金粘土  (5) Gold clay for decoration using atomized gold powder
上述したような好ま ヽ物理特性を有するアトマイズ金粉末に、有機系結合材溶液 と酸化物粒子とを加えて金粘土を作製すれば、高強度でかつ寸法変化量が少な 、、 高寸法精度を有する金製宝飾品や金製工芸品などを製造できる。添加する酸化物 粒子は、酸ィ匕アルミニウム、酸化珪素、酸化錫、酸ィ匕カルシウム、酸化マグネシウム、 酸化銅および酸ィ匕銀力もなる群力 選ばれた 1または 2以上の酸ィ匕物である。  If an organic binder solution and oxide particles are added to the atomized gold powder having preferable physical properties as described above to prepare gold clay, high strength and small amount of dimensional change, high dimensional accuracy can be obtained. Can produce gold jewelry and gold crafts etc. The oxide particles to be added are aluminum oxide, silicon oxide, tin oxide, calcium oxide, magnesium oxide, copper oxide, and a group of copper oxide and silver oxide, and one or more selected oxides. is there.
[0049] 前述したように、特開平 8— 134501号公報に開示された金粘土の作製方法では、 焼結体の強度向上の目的から、酸化鉛の添加が必須である。環境面を考慮すると、 鉛成分を有する酸ィ匕鉛の利用は好ましくない。これに対して、本発明の好ましい実施 形態である水アトマイズ金粉末にお 、ては、酸化鉛以外の酸化物粒子を用いた場合 であっても、結晶粒径が 100〜800nmといった適正範囲を満足することで、高い強 度を有し、しかも焼結前後における寸法変化、特に異常収縮現象を伴うことなぐ良 好な金製宝飾品や金製工芸品を得ることができる。 As described above, in the method for producing gold clay disclosed in JP-A-8-134501, the addition of lead oxide is essential for the purpose of improving the strength of the sintered body. From the environmental point of view, it is not preferable to use lead acid containing lead. On the other hand, even in the case of using oxide particles other than lead oxide in the water atomized gold powder which is a preferred embodiment of the present invention, the crystal grain diameter is in an appropriate range of 100 to 800 nm. Satisfyingly, it has high strength, and it is possible to have dimensional change before and after sintering, in particular, with abnormal shrinkage. You can get good gold jewelry and gold crafts.
実施例 1  Example 1
[0050] 余 リングの'鹿)^きに: ける の比  [0050] In the ring of 'deer) ^ ratio: ratio of
平均粒径が 3 μ mの水アトマイズ法により作製した金粉末 (平均結晶粒径: 280nm )を重量比で 92%、水溶性セルロース粘土を 8%準備し、それらを混鍊してアトマイズ 製金粉末入りの金粘土 (粘土 Aとする)を作製した。一方、平均粒径が 1. の化 学還元法により作製した金粉末 (平均結晶粒径: 60nm)も同様に、同配合比率で水 溶性セルロース粘土と混鍊し、化学還元製金粉末入りの金粘土 (粘土 Bとする)を作 製した。粘土 A、粘土 B力も厚み 3mm、直径 13mmのリング状試験片を各 5個ずつ 作製し、内部雰囲気温度が 150°Cの乾燥機にそれぞれ 10分間入れて乾燥させた。 その後 800°Cの焼成炉内で 10分間加熱保持して焼成し、収縮率を測定した。その 際、焼成前の試験片の直径に対して 5%以上の膨張収縮が生じる力否かを評価した 。その結果、粘土 Aの試験片は全て 5%未満の収縮であった。これに対して粘土 Bの 試験片はいずれも 7〜12%程度と大きな収縮現象が観察できた。  Gold powder (average grain size: 280 nm) prepared by the water atomization method with an average particle size of 3 μm is prepared as 92% by weight ratio and 8% water-soluble cellulose clay, and they are mixed to obtain atomized gold Powdered gold clay (referred to as clay A) was prepared. On the other hand, a gold powder (average grain size: 60 nm) prepared by a chemical reduction method having an average grain size of 1 is similarly mixed with a water-soluble cellulose clay at the same mixing ratio and contains a gold powder made from chemical reduction. Gold clay (designated as clay B) was made. Five ring-shaped test pieces each having a thickness of 3 mm and a diameter of 13 mm were prepared for each of clay A and clay B force, and each was put in a drier with an internal atmosphere temperature of 150 ° C. for 10 minutes for drying. After that, it was heated and held in a baking furnace at 800 ° C. for 10 minutes for baking, and the shrinkage rate was measured. At that time, it was evaluated whether the force at which 5% or more expansion and contraction occurred with respect to the diameter of the test piece before firing was generated. As a result, all of the test pieces of clay A had a shrinkage of less than 5%. On the other hand, in each of the specimens of clay B, a large shrinkage phenomenon of about 7 to 12% was observed.
実施例 2  Example 2
[0051] 水アトマイズ法により作製した平均粒径が 3. l ^ m,平均結晶粒径 315nmの金粉 末 (粉末 A)と、その金粉末を熱処理して平均結晶粒径を 2. とした金粉末 (粉 末 B)、またィヒ学還元法によって作製した平均粒径が 0. 9 /ζ πι、平均結晶粒径 45nm の金粉末 (粉末 C)を準備し、これらを用いてセラミックス配線基板用導電性金ペース トを作製した。各ペーストを用いて基板上に配線パターンを作製し、焼成したところ、 粉末 Aではペースト薄膜に亀裂もなぐまた基板との間に剥離もない良好な配線が得 られた。他方、粉末 Bを用いた場合には、金粉末間での焼結が十分に進行しないた めにペースト薄膜内に多数の亀裂が発生した。また粉末 Cにおいては、焼成後のぺ 一ストの収縮量が大きぐ基板との間で剥離が生じた。  [0051] A gold powder (powder A) having an average particle diameter of 3. 1 ^ m and an average crystal particle diameter of 315 nm produced by a water atomizing method, and the gold powder heat treated to give an average crystal particle diameter of 2. Powder (powder B) and gold powder (powder C) having an average particle diameter of 0.9 / ζπι and an average crystal particle diameter of 45 nm prepared by the ichological reduction method are prepared, and ceramic wiring boards are manufactured using these. A conductive gold paste was prepared. A wiring pattern was prepared on a substrate using each paste and fired. In powder A, a good wiring without cracks and without peeling from the substrate was obtained. On the other hand, when powder B was used, many cracks were generated in the paste thin film because sintering between gold powders did not proceed sufficiently. In powder C, peeling occurred with the substrate where the amount of shrinkage of the paste after firing was large.
実施例 3  Example 3
[0052] 水アトマイズ法によって異なる平均粒径および平均結晶粒径を有する金粉末を作 製した。また一部の金粉末においては、平均結晶粒径を調整するために真空雰囲気 中で熱処理を行った。各粉末の平均粒径および平均結晶粒径を表 1に示す。各金 粉末の加熱過程における膨張 ·収縮挙動をデラートメ一ターを用いて評価した。収縮 開始温度を同表 1に示す。また各金粉末と水溶性セルロース粘土の混合体にぉ 、て 、金粉末の含有量が全体の 92重量%となるように配合し、得られた金粘土からリング 状試験片を作製して、それぞれを 150°Cでの乾燥工程を経て 800°Cで 20分間焼成 した。得られたリング試験片の圧環強度を測定した。その結果を同表 1に示す。 [0052] A gold powder having different average particle sizes and average crystal grain sizes was produced by a water atomization method. In addition, heat treatment was performed on a part of the gold powder in a vacuum atmosphere in order to adjust the average grain size. The average grain size and the average grain size of each powder are shown in Table 1. Each gold The expansion and contraction behavior of the powder during the heating process was evaluated using a dermatometer. The contraction initiation temperature is shown in Table 1 below. In addition, a mixture of gold powder and water-soluble cellulose clay is blended so that the content of gold powder is 92% by weight of the whole, and a ring-shaped test piece is produced from the obtained gold clay, Each was subjected to a drying step at 150 ° C. and baked at 800 ° C. for 20 minutes. The radial crushing strength of the obtained ring test piece was measured. The results are shown in Table 1 below.
[0053] [表 1] [Table 1]
Figure imgf000012_0001
Figure imgf000012_0001
[0054] 表 1中、試料 No. 4〜9は本発明例であり、試料 No. 1〜3, 10は比較例である。 In Table 1, sample Nos. 4 to 9 are inventive examples, and sample Nos. 1 to 3 and 10 are comparative examples.
[0055] 本発明例のアトマイズ製金粉末においては、適正な平均粒径および平均結晶粒径 を有することで、 800°Cでの焼成後に亀裂等のない良好なリング状焼成体が得られ、 またリングとしての強度も十分である。他方、比較例においては以下のような問題が 確認された。 In the atomized gold powder of the example of the present invention, by having an appropriate average particle diameter and an average crystal grain diameter, a favorable ring-shaped sintered body free of cracks and the like is obtained after firing at 800 ° C. Moreover, the strength as a ring is also sufficient. On the other hand, the following problems were confirmed in the comparative example.
[0056] すなわち、試料 No. 1, 2では、平均粒径および平均結晶粒径が小さいために焼成 過程で大きな異常収縮が生じ、その結果、試料 No. 1ではリング形状が維持できず、 測定が不可能であった。また試料 No. 2では変形によってリング強度の低下が生じた 。試料 No. 3, 4では、平均結晶粒径が適正値を越えて大きいため、 800°Cでの焼成 において十分に焼結が進行せず、その結果、リング体の強度が低下した。  That is, in samples No. 1 and 2, since the average grain size and the average crystal grain size are small, large anomalous shrinkage occurs in the firing process, and as a result, in the sample No. 1, the ring shape can not be maintained. Was impossible. Further, in sample No. 2, the ring strength decreased due to the deformation. In Samples No. 3 and 4, since the average grain size was larger than the appropriate value, sintering did not proceed sufficiently in the firing at 800 ° C., and as a result, the strength of the ring body decreased.
実施例 4  Example 4
[0057] 水アトマイズ法により作製した平均粒径が 3. l ^ m,平均結晶粒径 315nmの金粉 末、有機系結合材として 6%濃度メチルセルロース水溶液、酸化錫と酸化アルミ-ゥ ムの混合粉末 (重量比で 70: 30)を準備した。重量基準で 98%の金粉末と 2%の上 記の混合酸化物粉末を配合し、この配合粉末に対して重量基準で 10%の上記メチ ルセルロース水溶液に配合粉末を添加 ·混鍊して粘土状とした。この金粘土をリング 状金型に充填し、成型固化した後、その成型体を 100°C以下で 30分間乾燥し、続い て 780°Cで 30分間焼成してリング状焼結体を作製した。得られた焼結体は、乾燥前 の成型体の寸法に対して、平均収縮率は 1. 8%と小さぐ亀裂や変形も見られず、ま た強度も十分であった。このことから本アトマイズ製金粉末を使用することで、環境や 人体に影響を及ぼす酸ィ匕鉛を使用せずに良好な金粘土が得られることがわ力つた。 なお、乾燥工程は成型体中の水分および有機系結合材を蒸発 ·除去することを目的 としている。 Gold powder having an average particle size of 3. 1 ^ m and an average crystal particle size of 315 nm prepared by a water atomizing method As an organic binder, a 6% aqueous solution of methylcellulose and a mixed powder of tin oxide and aluminum oxide (70:30 by weight ratio) were prepared. Mix 98% gold powder and 2% of the above mixed oxide powder by weight, add 10% of the above methylcellulose aqueous solution by weight to the above mixed powder, and mix it. It was clay-like. The gold clay was filled in a ring-shaped mold, and after being molded and solidified, the molded body was dried at 100 ° C. or less for 30 minutes and subsequently sintered at 780 ° C. for 30 minutes to prepare a ring-shaped sintered body. . The obtained sintered body exhibited no cracks or deformation as small as 1.8% in average shrinkage ratio with respect to the size of the molded body before drying, and the strength was also sufficient. From this fact, it was found that by using this atomized gold powder, good gold clay can be obtained without using lead acid which has an influence on the environment and human body. The purpose of the drying step is to evaporate and remove the moisture and the organic binder in the molded body.
実施例 5  Example 5
[0058] 水アトマイズ法により作製した平均粒径が 4. 2 m、平均結晶粒径 416nmの金粉 末、有機系結合材として 6%濃度ェチルセルロース水溶液、酸ィ匕マグネシウムと酸ィ匕 カルシウムの混合粉末 (重量比で 50: 50)を準備した。重量基準で 98%の金粉末と 2 %の上記の混合酸化物粉末を配合し、この配合粉末に対して重量基準で 10%の上 記ェチルセルロース水溶液に配合粉末を添カ卩 ·混鍊して粘土状とした。この金粘土 をリング状金型に充填し、成型固化した後、その成型体を 180°Cで 30分間乾燥し、 続いて 800°Cで 30分間焼成してリング状焼結体を作製した。得られた焼結体は、乾 燥前の成型体の寸法に対して、平均収縮率は 2. 1%と小さぐ亀裂や変形も見られ ず、また強度も十分であった。このことから本アトマイズ製金粉末を使用することで、 環境や人体に影響を及ぼす酸化鉛を使用せずに良好な金粘土が得られることがわ かった。なお、乾燥工程は成型体中の水分および有機系結合材を蒸発 ·除去するこ とを目的としている。  [0058] Gold powder having an average particle diameter of 4.2 m and an average crystal particle diameter of 416 nm prepared by a water atomizing method, a 6% aqueous solution of ethylcellulose as an organic binder, magnesium oxide and calcium oxide Mixed powder (50: 50 by weight) was prepared. Blend 98% gold powder and 2% of the above mixed oxide powder on a weight basis, add 10% on a weight basis to this blended powder to the aqueous solution of ethyl cellulose, and mix the mixed powder It was clay-like. The gold clay was filled in a ring-shaped mold, and after being molded and solidified, the molded body was dried at 180 ° C. for 30 minutes and subsequently baked at 800 ° C. for 30 minutes to prepare a ring-shaped sintered body. The obtained sintered body exhibited no cracks or deformation as small as 2.1% of the average shrinkage ratio with respect to the size of the molded body before drying, and the strength was sufficient. From this, it was found that by using this atomized gold powder, good gold clay can be obtained without using lead oxide that affects the environment and human body. The purpose of the drying step is to evaporate and remove the moisture and the organic binder in the molded body.
[0059] 以上、図面を参照してこの発明の実施形態を説明した力 この発明は、図示した実 施形態のものに限定されない。図示した実施形態に対して、この発明と同一の範囲 内において、あるいは均等の範囲内において、種々の修正や変形をカ卩えることが可 能である。 産業上の利用可能性 As described above, the force for which the embodiment of the present invention has been described with reference to the drawings. The present invention is not limited to the illustrated embodiment. Various modifications and variations can be made to the illustrated embodiment within the same or equivalent scope of the present invention. Industrial applicability
本発明は、金粉末ならびにそれを用いた導電性金ペーストおよび装飾用金粘土に 有利に利用され得る。  The present invention can be advantageously used for gold powder and conductive gold paste and decorative gold clay using it.

Claims

請求の範囲 The scope of the claims
[I] アトマイズ法によって得られた金粉末であって、その結晶粒径が 100〜800ナノメート ル (nm)であることを特徴とする、アトマイズ金粉末。  [I] An atomized gold powder, which is a gold powder obtained by an atomization method, and having a crystal grain size of 100 to 800 nm (nm).
[2] 前記金粉末の結晶粒径が 200〜500nmである、請求項 1に記載のアトマイズ金粉 末。  [2] The atomized gold powder according to claim 1, wherein the crystal grain size of the gold powder is 200 to 500 nm.
[3] 前記金粉末の平均粒径が 1〜: LO μ mである、請求項 1に記載のアトマイズ金粉末。  [3] The atomized gold powder according to claim 1, wherein the average particle size of the gold powder is 1 to: LO μm.
[4] 前記金粉末の平均粒径が 3〜5 μ mである、請求項 1に記載のアトマイズ金粉末。 [4] The atomized gold powder according to claim 1, wherein the average particle size of the gold powder is 3 to 5 μm.
[5] 前記金粉末は、焼結過程で膨張挙動を示さな!/、特性を有する、請求項 1に記載のァ トマイズ金粉末。 [5] The atomized gold powder according to claim 1, wherein the gold powder does not show expansion behavior in the sintering process!
[6] 前記金粉末の焼結過程での収縮挙動開始温度が 350°C以上である、請求項 1に記 載のアトマイズ金粉末。  [6] The atomized gold powder according to claim 1, wherein a contraction behavior start temperature in a sintering process of the gold powder is 350 ° C. or more.
[7] 前記金粉末の融点が 600°C以上である、請求項 1に記載のアトマイズ金粉末。 [7] The atomized gold powder according to claim 1, wherein the melting point of the gold powder is 600 ° C. or higher.
[8] 前記金粉末の融点が 800°C以上である、請求項 1に記載のアトマイズ金粉末。 [8] The atomized gold powder according to claim 1, wherein the melting point of the gold powder is 800 ° C. or higher.
[9] 前記金粉末は、金溶湯からの微細液滴に水を噴霧して凝固後に得られた水アトマイ ズ金粉末である、請求項 1に記載のアトマイズ金粉末。 [9] The atomized gold powder according to claim 1, wherein the gold powder is a water-atomized gold powder obtained by solidifying a fine droplet from a molten metal by spraying water.
[10] 請求項 1に記載のアトマイズ金粉末を用いた導電性金ペースト。 [10] A conductive gold paste using the atomized gold powder according to claim 1.
[I I] 請求項 1に記載のアトマイズ金粉末を用いた装飾用金粘土。  [I I] A decorative gold clay using the atomized gold powder according to claim 1.
[12] 前記装飾用金粘土は、前記アトマイズ金粉末に加えて、有機系結合材溶液と、酸ィ匕 物粒子とを含み、  [12] The decorative gold clay comprises, in addition to the atomized gold powder, an organic binder solution and acid oxide particles,
前記酸化物粒子は、酸化アルミニウム、酸化珪素、酸化錫、酸化カルシウム、酸ィ匕 マグネシウム、酸化銅および酸ィ匕銀カゝらなる群カゝら選ばれた 1または 2以上の酸ィ匕物 である、請求項 11に記載の装飾用金粘土。  The oxide particles may be selected from one or more of aluminum oxide, silicon oxide, tin oxide, calcium oxide, magnesium oxide, copper oxide and silver oxide. The ornamental gold clay according to claim 11, which is.
PCT/JP2005/022461 2004-12-27 2005-12-07 Atomized gold powder, conductive gold paste using same and gold clay for decoration WO2006070571A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-375794 2004-12-27
JP2004375794A JP2006183076A (en) 2004-12-27 2004-12-27 Atomizing gold powder, electrically conductive gold paste using the same and gold clay for decoration

Publications (1)

Publication Number Publication Date
WO2006070571A1 true WO2006070571A1 (en) 2006-07-06

Family

ID=36614696

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/022461 WO2006070571A1 (en) 2004-12-27 2005-12-07 Atomized gold powder, conductive gold paste using same and gold clay for decoration

Country Status (2)

Country Link
JP (1) JP2006183076A (en)
WO (1) WO2006070571A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023110997A1 (en) * 2021-12-15 2023-06-22 Rolex Sa Metal matrix composite material for horological part

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011125244A1 (en) * 2010-04-09 2011-10-13 三菱マテリアル株式会社 Clay-like composition for forming a sintered object, powder for a clay-like composition for forming a sintered object, method for manufacturing a clay-like composition for forming a sintered object, sintered silver object, and method for manufacturing a sintered silver object
JP5672945B2 (en) * 2010-07-27 2015-02-18 三菱マテリアル株式会社 Clay-like composition for forming sintered body, powder for clay-like composition for forming sintered body, method for producing clay-like composition for forming sintered body, silver sintered body, and method for producing silver sintered body
JP2012107323A (en) * 2010-10-22 2012-06-07 Mitsubishi Materials Corp Clay-like composition for forming sintered body, powder for clay-like composition for forming sintered body, method for producing clay-like composition for forming sintered body, gold sintered body, and method for producing gold sintered body
JP5862004B2 (en) * 2010-10-25 2016-02-16 三菱マテリアル株式会社 Method for producing a silver sintered body
JP5807740B2 (en) * 2011-08-04 2015-11-10 三菱マテリアル株式会社 Method for producing sintered silver-copper alloy
JP5861321B2 (en) * 2011-08-30 2016-02-16 三菱マテリアル株式会社 Powder for clay-like composition for forming silver-copper alloy sintered body using copper compound, clay-like composition, and method for producing clay-like composition
CN110322983A (en) * 2019-06-14 2019-10-11 太原氦舶新材料有限责任公司 A kind of slug type electronic conduction gold paste and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05205971A (en) * 1991-10-18 1993-08-13 Degussa Ag Manufacture of electronic component
JPH08134501A (en) * 1994-11-09 1996-05-28 Aida Kagaku Kogyo Kk Sintered material for noble-metal product

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3197454B2 (en) * 1995-03-10 2001-08-13 川崎製鉄株式会社 Ultra fine nickel powder for multilayer ceramic capacitors
JP2000096110A (en) * 1998-09-22 2000-04-04 Sumitomo Metal Mining Co Ltd Production of metallic powder
JP4150638B2 (en) * 2002-06-28 2008-09-17 三井金属鉱業株式会社 Inorganic oxide-coated metal powder and method for producing the inorganic oxide-coated metal powder
JP4109520B2 (en) * 2002-09-12 2008-07-02 三井金属鉱業株式会社 Low cohesive silver powder, method for producing the low cohesive silver powder, and conductive paste using the low cohesive silver powder

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05205971A (en) * 1991-10-18 1993-08-13 Degussa Ag Manufacture of electronic component
JPH08134501A (en) * 1994-11-09 1996-05-28 Aida Kagaku Kogyo Kk Sintered material for noble-metal product

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023110997A1 (en) * 2021-12-15 2023-06-22 Rolex Sa Metal matrix composite material for horological part

Also Published As

Publication number Publication date
JP2006183076A (en) 2006-07-13

Similar Documents

Publication Publication Date Title
WO2006070571A1 (en) Atomized gold powder, conductive gold paste using same and gold clay for decoration
KR100462274B1 (en) A method of manufacturing tungsten- copper based composite powder and sintered alloy for heat sink using the same
CA2216683C (en) Metal powder and process for preparing the same
KR20090105843A (en) Copper Powder For Conductive Paste and Method For Preparation Thereof
JP4277803B2 (en) Method for producing metal fine powder
JP7272834B2 (en) Silver powder and its manufacturing method
JP5092630B2 (en) Fine silver powder, method for producing the same, and dispersion liquid for conductive paste using the fine silver powder
KR19980086381A (en) Nickel powder and its manufacturing method
JP2000178602A (en) Nickel blended particle and production thereof
JPH07505605A (en) Method for manufacturing fine-grained ceramic molded bodies containing Al↓2O↓3 by using powdered aluminum metal
US5346720A (en) Palladium thick film resistor containing boron nitride
JP5966990B2 (en) Method for producing sulfur-containing nickel powder
TWI641697B (en) Preparation method for preparing high-purity and dense tungsten-titanium metal
JP4197151B2 (en) Two-layer coated copper powder, method for producing the two-layer coated copper powder, and conductive paste using the two-layer coated copper powder
JP3414502B2 (en) Noble metal powder and conductor paste for high temperature firing
JP4150638B2 (en) Inorganic oxide-coated metal powder and method for producing the inorganic oxide-coated metal powder
EP0834370B1 (en) Coated metal powder and process for preparing the same by decomposition
JPH0312809A (en) Nanocomposite substrate
JP2004084069A5 (en)
JP4081387B2 (en) Silver powder for conductive material of ceramic multilayer substrate and manufacturing method thereof
JPH0519807B2 (en)
JPH01198403A (en) Palladium coated silver powder and its manufacture and conductive film forming composition
JPH0289056A (en) Manufacture of metallic toner
JP6179423B2 (en) Method for producing sulfur-containing nickel powder
JP2861383B2 (en) Silicide target and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05814477

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5814477

Country of ref document: EP