WO2006070158A1 - Electrode nanostructuree pour microbatterie - Google Patents

Electrode nanostructuree pour microbatterie Download PDF

Info

Publication number
WO2006070158A1
WO2006070158A1 PCT/FR2005/051124 FR2005051124W WO2006070158A1 WO 2006070158 A1 WO2006070158 A1 WO 2006070158A1 FR 2005051124 W FR2005051124 W FR 2005051124W WO 2006070158 A1 WO2006070158 A1 WO 2006070158A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
electrolyte
battery
anode
lithium
Prior art date
Application number
PCT/FR2005/051124
Other languages
English (en)
Inventor
Raphaël Salot
Frédéric GAILLARD
Emmanuelle Rouviere
Steve Martin
Original Assignee
Commissariat A L'energie Atomique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique filed Critical Commissariat A L'energie Atomique
Priority to US11/793,893 priority Critical patent/US7829225B2/en
Priority to JP2007547599A priority patent/JP2008525954A/ja
Priority to EP05850639A priority patent/EP1854163A1/fr
Publication of WO2006070158A1 publication Critical patent/WO2006070158A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • H01M4/0428Chemical vapour deposition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • H01M4/0423Physical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/40Printed batteries, e.g. thin film batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0094Composites in the form of layered products, e.g. coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to the field of energy storage devices, and mainly micro-batteries manufactured in thin films by vacuum deposition techniques.
  • the invention relates to an electrode for a battery, in particular lithium, the structure of which is defined so as to optimize the reliability of the energy storage.
  • all the components of the micro-battery that is to say the current collectors, the positive and negative electrodes, the electrolyte, and even the encapsulation, are thin layers, obtained by deposition, mainly by physical vapor deposition (PVD) or chemical vapor deposition (CVD).
  • PVD physical vapor deposition
  • CVD chemical vapor deposition
  • the operating principle of such a battery is based on the insertion and removal, also called “uninsertion", of an alkali metal ion or a proton in and from the positive electrode, and the deposition. or the extraction of this ion on and of the negative electrode.
  • the operating voltage of this type of battery is between 1 and 4 V, and the surface capacitances are of the order of some 10 ⁇ Ah / cm 2 to several hundreds of ⁇ Ah / cm 2 .
  • Charging a micro-battery that is to say the transfer of ions from the anode to the cathode, is usually complete after a few minutes of charging.
  • the main systems use Li + as ion transport current species: the Li + ion extracted from the cathode during discharge of the battery is deposited on the anode, and conversely, it is removed from the anode to intercalate in the cathode during charging.
  • a metal lithium anode the melting point of lithium, at 181 ° C., limits the potential use of the battery for high temperatures; in particular, it is impossible to reflow ("solder reflow process”) different layers of material.
  • the high reactivity of lithium metal with respect to the ambient atmosphere is penalizing, even for encapsulation.
  • metallic lithium is impossible to spray, which leads to the need for thermal evaporation.
  • Li + ion battery Li + ion insertion material
  • a cathode whose material contains lithium.
  • Li + ion Li + ion insertion material
  • Si Li + ion insertion material
  • the stresses generated by such a difference in volume strongly solicit the superimposed layers, and in particular can lead to damage or cracks, the juxtaposed electrolyte, which can create short circuits putting the battery out of service.
  • Li + cathode is performed directly on a substrate, said blocking.
  • the protuberances generated by the deposit are also the source of strong deformations and potential rupture of the electrolyte.
  • the object of the invention is to overcome the problems of the state of the art as regards the stability of the storage and the supply of energy. More particularly, the invention recommends the use of a new family of electrodes whose architecture and design make it possible to eliminate the stresses on the electrolyte during charging and discharging of the micro-battery.
  • the invention relates to a micro-battery of which an electrode is constituted by independent electrode elements, which thus define spaces without an electrode between them, or voids.
  • the void ratio is greater than 50%, for example of the order of 80%.
  • the electrode concerned is mainly the anode, the cathode and the solid electrolyte then being in the form of layers of material deposited more or less uniformly.
  • the anode is preferably composed of protuberances extending outwards from a current collector substrate.
  • the anode is composed of carbon nanotubes or silicon nanowires.
  • the energy storage device according to the invention can be encapsulated in order to isolate the ion exchange elements from the outside.
  • the invention relates to a nanowire or nanotube structure on a conductive substrate that can be used for the manufacture of lithium batteries as an electrode.
  • FIG. 1 schematically represents an energy storage device according to the invention.
  • Figures 2A and 2B show a device according to the invention respectively in the state of charge and in discharged state.
  • an energy storage device comprises, in the usual way, a substrate 12, cathode collectors 14a and anode 14b (the latter may be an integral part of the substrate 12), a cathode 16, an electrolyte 18, and an anode 20.
  • the micro-battery 10 can be protected by an encapsulation layer 22: the electrodes 16, 20, especially when they are lithium, are indeed very reactive to the air, and it may be advantageous to encapsulate also the other elements 14, 18.
  • the total thickness of the stack 14, 16, 18, 20 is usually between 10 and 50 microns, advantageously of the order of 15 microns.
  • Such a micro-battery 10, with the exception of the anode 20 which will be described later, can be made by any known technique, and in particular with different materials: -
  • the current collectors 14 are metallic and can be for example deposits based on Pt, Cr, Au, Ti.
  • the positive electrode 16 may be in particular made of LiCoO 2, LiNiO 2, LiMn 2 O 4, CuS, CuS 2, WOyS 2 TiOyS 2, V 2 O 5, deposited by conventional technique, with possible thermal annealing to increase crystallization and insertion capabilities (especially for lithiated oxides).
  • Electrolyte 18, which is a good ionic conductor and an electronic insulator, is generally made of a vitreous material based on oxide boron, lithium salts or oxides, in particular lithium oxynitride.
  • the electrolyte is phosphate based, such as LiPON, or LiSiPON.
  • the anode 20 is instead made according to an architecture that makes it possible to eliminate any expansion in the direction perpendicular to the surface of the collector substrate 14b, and at the adjacent surface of electrolyte 18.
  • the proportion of void 26 initially present compensates for the volume increase related to the insertion of lithium into the elements 24.
  • This optimization is specific to each insertion material, but the void ratio is usually greater than 50%, preferably 80%.
  • Figure 2A shows the charged state of the battery 10, wherein the anode 20 does not include Li + ions. During charging, the lithium ions are inserted into the anode elements 24, causing them to swell, so that the residual vacuum 26 decreases.
  • FIG. 2B shows the overall volume of the anode layer 20 has not changed, only the vacuum level 26 has decreased, so that neither the electrolyte 18, or the collecting layer 14b, have not been stressed.
  • the materials used to make the protuberances 24 are materials that can insert lithium (in parentheses is indicated a preferred vacuum ratio): germanium (80%), silicon-germanium (80%), silver, tin (70%) ,. .. and especially silicon (80%) or carbon (50%).
  • nanometric structures that is to say of dimensions in section of less than a few tens of nanometers, in particular nanotubes and nanowires, is recommended in obtaining optimal results for expansion problems.
  • electrode elements 24 in the form of nanotubes an additional advantage lies in the fact that the growth of these nanotubes makes it possible to dispense with the lithographic photo-etching step, which is very difficult because of the accuracy required.
  • Any technology that makes it possible to obtain structures of this type (very small diameter dimension) can be used, as the full-layer deposit and then the definition of small patterns by lithography photo.
  • deposition of nanotubes or nanofibers techniques are described for example in the documents of Sharma S et al.
  • the electrode elements 24 can be positioned randomly, forming a sponge type network.
  • the electrode elements are in the form of protruding projections 24 from the collector substrate surface 14b, in particular in the form of a regular grating, for example a square or hexagonal grating.
  • the diameter of the protuberances 24 and the pitch of the network can be optimized to obtain the desired vacuum ratio.
  • a growth of nanowires or nanotubes is preferred, and the grating obtained may be regular, with in particular protuberances 24 all protruding from the base surface 14b, at an angle advantageously as close as possible to 90 °.
  • the protuberances 24 may thus consist of a network of son 5 to 50 nm in diameter spaced from 50 to 100 nm with heights of between 200 nm and 5 microns.
  • a micro-battery 10 comprises an array of nanowires 24 of Si with a diameter of the order of 10 nm, with a vacuum level of 26. 80%, deposited on an insulating substrate 12 on which was deposited the current collector 14b, for example Pt.
  • the height of the nanotubes 24, or thickness of the anode 20, is 1 micron.
  • a 1 ⁇ m layer of LiPON electrolyte 18 is deposited by radiofrequency cathodic sputtering; the cathode 16 is then made of a layer of LiCoO 2 over 3 microns, deposited for example by sputtering or magnetron or radiofrequency.
  • the electrode structure according to the invention generally makes it possible to increase the conduction properties necessary for the proper functioning of a battery electrode material. Furthermore, it is preferable that the device 10 according to the invention is encapsulated in fine; this encapsulation can take place for an isolated device, or for a set of micro-batteries.
  • the encapsulation 22, which is intended to protect the active stack 14, 16, 18, 20 from the external environment and specifically moisture, can be manufactured from ceramic, polymer (such as hexamethyldisiloxane or parylene) or metal, as well as by a superposition of layers of these different materials.
  • the encapsulation whose layer, like that of the electrolyte, is sensitive to the problems of stress and deformation, is facilitated: - there is no change volume of the device 10; the non-use of metallic lithium makes it possible to generate a less chemically sensitive electrode material and a surface on which the encapsulation layers 22 are deposited, which is more smooth.
  • the electrode structure according to the invention can also be used for the cathode, or for both electrodes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

Une nouvelle configuration d'anode (20) est proposée pour une micro-batterie au lithium (10). L'anode (20) est composée de préférence de nanotubes ou de nanofils (24) tels que le vide (26) laissé entre les différents éléments (24) permet de compenser le gonflement inhérent à la décharge de la micro-batterie (10). L'absence de contraintes sur l'électrolyte (18) permet d'augmenter la durée de vie de la batterie (10).

Description

ELECTRODE NANOSTRUCTtJREE POtJR MICROBATTERIE
DESCRIPTION
DOMAINE TECHNIQtJE
L'invention se rapporte au domaine des dispositifs de stockage d'énergie, et principalement des micro-batteries fabriquées en films minces par des techniques de dépôts sous vide.
Plus particulièrement, l'invention concerne une électrode pour une batterie, notamment au lithium, dont la structure est définie de façon à optimiser la fiabilité du stockage d'énergie.
ÉTAT DE LA TECHNIQtJE ANTERIEURE
Parmi les dispositifs de stockage d'énergie, des micro-batteries particulièrement utilisées, dites « tout solide », sont sous la forme de films : tous les composants de la micro-batterie, c'est-à-dire les collecteurs de courant, les électrodes positive et négative, l' électrolyte, et même 1' encapsulation, sont des couches minces, obtenues par dépôt, principalement par dépôt physique en phase vapeur (PVD) ou dépôt chimique en phase vapeur (CVD) . Les techniques utilisées permettent la réalisation d'objets de formes quelconques.
Comme usuel, le principe de fonctionnement d'une telle batterie repose sur l'insertion et le retrait, aussi appelé « désinsertion », d'un ion de métal alcalin ou d'un proton dans et depuis l'électrode positive, et le dépôt ou l'extraction de cet ion sur et de l'électrode négative. Selon les matériaux utilisés, la tension de fonctionnement de ce type de batterie est comprise entre 1 et 4 V, et les capacités surfaciques sont de l'ordre de quelques 10 μAh/cm2 à quelques centaines de μAh/cm2. La recharge d'une micro-batterie, c'est-à-dire le transfert des ions de l'anode vers la cathode, est en général complète après quelques minutes de chargement .
Les principaux systèmes utilisent Li+ comme espèce ionique de transport de courant : l'ion Li+ extrait de la cathode lors de la décharge de la batterie vient se déposer sur l'anode, et inversement, il s'extrait de l'anode pour s'intercaler dans la cathode lors de la charge. Aussi une des options est- elle de choisir une anode en lithium métallique. Cependant, le point de fusion du lithium, à 1810C, limite l'utilisation potentielle de la batterie pour des hautes températures ; en particulier, il est impossible d'effectuer une refusion (« solder reflow process ») des différentes couches de matériau. Par ailleurs, la forte réactivité du lithium métallique vis-à-vis de l'atmosphère ambiante est pénalisante, même pour l' encapsulation. Enfin, le lithium métallique est impossible à pulvériser, ce qui entraîne la nécessité de faire de l' évaporation thermique.
Une autre option est de choisir une anode fabriquée à partir d'un matériau d'insertion de l'ion Li+ (batterie « Li-ion ») , qui provient d'une cathode dont le matériau contient du lithium. Or l'insertion de l'ion Li+ entraîne un gonflement du matériau qui le reçoit : même les matériaux les plus performants utilisés comme anodes d'insertion, tel Si, conduisent à des expansions volumiques importantes (jusqu'à 400 %) . Les contraintes engendrées par une telle différence de volume sollicitent fortement les couches superposées, et en particulier peuvent amener des détériorations, voire des fissures, de l' électrolyte juxtaposé, ce qui peut créer des courts-circuits mettant la batterie hors service.
Une autre alternative est la batterie sans anode (aussi connue sous le terme de « Li-free ») : le dépôt du Li+ de la cathode s'effectue directement sur un substrat, dit bloquant. Les protubérances générées par le dépôt sont cependant également la source de fortes déformations et de rupture potentielle de 1' électrolyte.
Les problèmes de contraintes dans les micro-batteries « Li-ion » ou « Li-free » conduisent à des taux de courts-circuits de l'ordre de 90 % après 1000 cycles de charge / décharge (contre 5 % pour les anodes de lithium métallique) .
Ces problèmes ne se posent naturellement pas dans les batteries à électrolyte liquide ou sous forme de gel, qui peut être dispersé entre les électrodes, et dont des exemples sont donnés dans le document WO 99/65821.
Pour les batteries « tout solide », il a certes été proposé de modifier l' électrolyte pour le réaliser en plusieurs parties, en insérant en son sein de fines couches d'un autre matériau également conducteur ionique de lithium, pour limiter la diffusion éventuelle de fissures de part en part de la couche d' électrolyte (voir par exemple US-B-6 770 176) .
Une telle solution a cependant pour conséquence de multiplier le nombre de couches à déposer (avec au moins deux cibles différentes pour l' électrolyte) , ce qui augmente le coût du procédé de fabrication, et ne peut que dégrader la conductivité ionique de 1' électrolyte.
EXPOSÉ DE I/ INVENTION
L'invention a pour but de pallier les problèmes de l'état de la technique quant à la stabilité du stockage et de la fourniture d'énergie. Plus particulièrement, l'invention préconise l'utilisation d'une nouvelle famille d'électrodes dont l'architecture et la conception permettent de supprimer les contraintes sur l' électrolyte lors de la charge et de la décharge de la micro-batterie.
En particulier, l'expansion de l'anode dans la direction perpendiculaire au substrat et à la couche d' électrolyte est supprimée. Sous un aspect, l'invention concerne une micro-batterie dont une électrode est constituée par des éléments d'électrodes indépendants, qui définissent ainsi des espaces sans électrode entre eux, ou des vides. De préférence, le taux de vide est supérieur à 50 %, par exemple de l'ordre de 80 %.
L'électrode concernée est principalement l'anode, la cathode et l' électrolyte solide étant alors sous forme de couches de matériau, déposées plus ou moins uniformément. L'anode est de préférence composée de protubérances s' étendant en faisant saillie à partir d'un substrat collecteur de courant. En particulier pour une micro-batterie au lithium, l'anode est composée de nanotubes en carbone ou de nanofils en silicium. Ainsi, l' électrolyte solide repose sur l'extrémité libre des éléments d'anode ou, plus généralement, la couche d' électrolyte est maintenue au- dessus de cavités présentes entre les éléments de l'électrode concernée.
Le dispositif de stockage d'énergie selon l'invention peut être encapsulé afin d'isoler les éléments échangeurs d'ion de l'extérieur.
Selon un autre aspect, l'invention concerne une structure en nanofils ou en nanotubes sur un substrat conducteur qui peut être utilisée pour la fabrication de batteries au lithium, en tant qu' électrode.
BRÈVE DESCRIPTION DES DESSINS
Les caractéristiques et avantages de l'invention seront mieux compris à la lecture de la description qui va suivre et en référence aux dessins annexés, donnés à titre illustratif et nullement limitatifs .
La figure 1 représente schématiquement un dispositif de stockage d'énergie selon l'invention. Les figures 2A et 2B montrent un dispositif selon l'invention respectivement en état de charge et en état déchargé. EXPOSE DETAILLE DE MODES DE REALISATION PARTICULIERS
Tel que schématisé sur la figure 1, un dispositif de stockage d'énergie comprend, de façon habituelle, un substrat 12, des collecteurs cathode 14a et anode 14b (ce dernier pouvant être partie intégrante du substrat 12), une cathode 16, un électrolyte 18, et une anode 20. Par ailleurs, la micro-batterie 10 peut être protégée par une couche d' encapsulation 22 : les électrodes 16, 20, notamment lorsqu'elles sont au lithium, sont en effet très réactives à l'air, et il peut être avantageux d'encapsuler également les autres éléments 14, 18.
L'épaisseur totale de l'empilement 14, 16, 18, 20 est habituellement comprise entre 10 et 50 μm, avantageusement de l'ordre de 15 μm. Une telle micro-batterie 10, à l'exception de l'anode 20 qui sera décrite plus loin, peut être réalisée par toute technique connue, et en particulier avec différents matériaux : - Les collecteurs de courant 14 sont métalliques et peuvent être par exemple des dépôts à base de Pt, Cr, Au, Ti.
- L'électrode positive 16 peut être notamment constituée de LiCoO2, LiNiO2, LiMn2O4, CuS, CuS2, WOyS2, TiOyS2, V2O5, déposés par technique classique, avec un éventuel recuit thermique pour augmenter la cristallisation et les capacités d'insertion (notamment pour les oxydes lithiés) .
- L' électrolyte 18, qui est un bon conducteur ionique et un isolant électronique, est en général constitué d'un matériau vitreux à base d'oxyde de bore, de sels ou d'oxydes de lithium, en particulier un oxynitrure de lithium. De préférence, l' électrolyte est à base de phosphate, comme du LiPON, ou du LiSiPON. Dans un dispositif 10 selon l'invention, et tel qu'illustré sur la figure 1, l'anode 20 est par contre fabriquée selon une architecture qui permet d'éliminer toute expansion dans la direction perpendiculaire à la surface du substrat collecteur 14b, et à la surface adjacente d' électrolyte 18. Cet avantage est obtenu grâce à une électrode 20 comprenant des éléments d'électrode 24 espacés les uns des autres, et donc une anode 20 comprenant des « vides » 26 : lors de la décharge de la cathode 16, les ions lithium viennent gonfler les éléments d'anode 24, mais l'expansion est réalisée dans le vide résiduel 26. De ce fait, l' électrolyte 18, maintenu par les extrémités libres des éléments d'anode 24, ne subit plus de stress induit lors de la charge et de la décharge. De plus, ce vide permet aussi d'accueillir les ions Li+ non insérés dans l'anode et qui se déposent sous forme de lithium métal. Contrairement à la géométrie proche décrite dans le document WO 99/65821, l' électrolyte 18, sous forme de couche, n'est pas du tout sollicité par l'expansion car, à l'inverse du liquide ou d'un gel, l' électrolyte 18 ne s'imbrique pas dans le vide résiduel 26.
Avantageusement, la proportion de vide 26 initialement présent compense l'augmentation volumique liée à l'insertion de lithium dans les éléments 24. Cette optimisation est propre à chaque matériau d'insertion, mais le taux de vide est habituellement supérieur à 50 %, de préférence à 80 %. Un exemple est schématisé sur les figures 2 : la figure 2A représente l'état chargé de la batterie 10, dans lequel l'anode 20 ne comprend pas d'ions Li+. Au cours de la charge, les ions lithium viennent s'insérer dans les éléments d'anode 24, les faisant gonfler, de sorte que le vide résiduel 26 diminue. Cependant, même dans l'état totalement déchargé de la batterie, schématisé en figure 2B, le volume global de la couche d'anode 20 n'a pas varié, seul le taux de vide 26 ayant diminué, de sorte que ni 1' électrolyte 18, ni la couche collectrice 14b, n'ont subi de contrainte.
Les matériaux utilisés pour réaliser les protubérances 24 sont des matériaux pouvant insérer le lithium (entre parenthèses est indiqué un taux de vide préféré) : germanium (80 %) , silicium-germanium (80 %) , argent, étain (70 %),... et surtout silicium (80 %) ou carbone (50 %) .
L'utilisation de structures nanométriques, c'est-à-dire de dimensions en coupe inférieures à quelques dizaines de nanomètres, en particulier les nanotubes et les nanofils, est préconisée dans l'obtention de résultats optimaux pour les problèmes d'expansion. En particulier, dans le cas d'éléments d'électrode 24 sous forme de nanotubes, un avantage supplémentaire réside dans le fait que la croissance de ces nanotubes permet de s'affranchir de l'étape de photo lithogravure, très difficile à cause de la précision requise. Toute technologie permettant d'obtenir des structures de ce type (diamètre de très faible dimension) peut être utilisée, comme le dépôt pleine couche puis la définition de petits motifs par photo lithogravure. En ce qui concerne le dépôt de nanotubes ou nanofibres, des techniques sont décrites par exemple dans les documents de Sharma S et coll. : « Diameter control of Ti-catalyzed silicon nanowires », J Crystal Growth 2004 ; 267 : 613-618, ou de Tang H et coll. : « High dispersion and electrocatalytic properties of platinum on well-aligned carbon nanotube arrays », Carbon 2004 ; 42 : 191-197.
Les éléments d'électrode 24 peuvent être positionnés de façon aléatoire, formant un réseau de type éponge. De préférence, les éléments d'électrodes sont sous la forme de protubérances saillantes 24 depuis la surface de substrat collecteur 14b, en particulier sous forme de réseau régulier, par exemple un réseau carré ou hexagonal. Le diamètre des protubérances 24 et le pas du réseau peuvent être optimisés pour obtenir le taux de vide recherché. En particulier, une croissance de nanofils ou de nanotubes est préférée, et le réseau obtenu peut être régulier, avec notamment des protubérances 24 faisant toutes saillie à partir de la surface de base 14b, selon un angle avantageusement le plus proche possible de 90°. Les protubérances 24 peuvent ainsi consister en un réseau de fils de 5 à 50 nm de diamètre espacés de 50 à 100 nm avec des hauteurs comprises entre 200 nm et 5 μm.
Par exemple, une micro-batterie 10 selon l'invention comprend un réseau de nanofils 24 de Si de diamètre de l'ordre de 10 nm, avec un taux de vide 26 de 80 %, déposé sur un substrat 12 isolant sur lequel a été déposé le collecteur de courant 14b, par exemple en Pt. La hauteur des nanotubes 24, ou épaisseur de l'anode 20, est de 1 μm. Ensuite est déposée une couche de 1 μm d' électrolyte 18 en LiPON par pulvérisation cathodique radiofréquence ; la cathode 16 est alors constituée d'une couche de LiCoO2 sur 3 μm, déposée par exemple par pulvérisation cathodique ou magnétron ou radiofréquence. Outre l'avantage d'éviter tout gonflement de l'anode 20, la structure d'électrode selon l'invention permet généralement d'augmenter les propriétés de conduction nécessaires au bon fonctionnement d'un matériau d'électrode de batterie. Par ailleurs, il est préférable que le dispositif 10 selon l'invention soit encapsulé in fine ; cette encapsulation peut avoir lieu pour un dispositif isolé, ou pour un ensemble de micro-batteries. L' encapsulation 22, qui a pour objet de protéger l'empilement actif 14, 16, 18, 20 de l'environnement extérieur et spécifiquement de l'humidité, peut être fabriquée à partir de céramique, de polymère (comme l'hexaméthyldisiloxane ou le parylène) ou de métal, ainsi que par une superposition de couches de ces différents matériaux.
Il est à noter en outre que, grâce à l'invention, l' encapsulation, dont la couche, comme celle de l' électrolyte, est sensible aux problèmes de contraintes et de déformation, est facilitée : - il ne se produit pas de changement de volume du dispositif 10 ; - la non utilisation de lithium métallique permet de générer un matériau d'électrode moins sensible chimiquement et une surface, sur laquelle sont déposées les couches d' encapsulation 22, plus lisse. Bien que décrit pour l'anode, il est clair que la structure d'électrode selon l'invention peut également être utilisée pour la cathode, voire pour les deux électrodes.
Parmi les applications visées, outre les cartes à puces et les étiquettes « intelligentes », qui permettent par exemple la mesure récurrente de paramètres par des implants miniaturisés, figurent l'alimentation de microsystèmes. Ces applications imposent que toutes les couches nécessaires au fonctionnement de la batterie soient fabriquées avec des techniques compatibles avec les procédés industriels de la microélectronique, ce qui est le cas du dispositif selon l'invention.

Claims

REVENDICATIONS
1. Dispositif de stockage d'énergie (10) comprenant au moins une première électrode (20), composée d'une pluralité d'éléments d'électrode (24) définissant entre eux des espaces (26), une deuxième électrode (16) et un électrolyte (18) localisé entre les deux électrodes (16, 20), caractérisé en ce que 1' électrolyte (18) est solide.
2. Dispositif selon la revendication 1 dans lequel le volume occupé par les éléments d'électrode (24) est inférieur à 50 %, de préférence de l'ordre de 20 %, du volume défini par la première électrode (20) .
3. Dispositif selon l'une des revendications 1 à 2 dans lequel la première électrode (20) est positionnée sur une surface d'un substrat collecteur (14b) .
4. Dispositif selon la revendication 3 dans lequel les éléments d'électrode (24) forment un réseau de protubérances faisant saillie de la surface du substrat collecteur (14b) .
5. Dispositif selon la revendication 4 dans lequel les protubérances (24) ont une surface incluse dans un cercle de diamètre compris entre 5 et 50 nm et sont espacées de 50 à 100 nm entre elles.
6. Dispositif selon la revendication 4 ou 5 dans lequel les protubérances (24) s'étendent sur 200 nm à 5 μm perpendiculairement à la surface du substrat collecteur (14b) .
7. Dispositif selon l'une des revendications 1 à 6 dans lequel la première électrode est l'anode (20) .
8. Dispositif selon la revendication 7 dans lequel les éléments d'électrode (24) sont des nanotubes ou des nanofils en carbone ou en silicium.
9. Dispositif selon l'une des revendications 1 à 8 dans lequel la deuxième électrode
(16) et l' électrolyte (18) sont composés chacun d'une couche de matériau.
10. Dispositif selon l'une des revendications précédentes qui est une micro-batterie au lithium.
11. Dispositif selon la revendication 10 dans lequel l' électrolyte (18) est un oxynitrure de lithium.
12. Dispositif selon l'une des revendications précédentes comprenant en outre une couche d' encapsulation (22) qui isole les électrodes (16, 20) et l' électrolyte (18) de l'environnement extérieur.
13. Utilisation d'un composant (20) constitué de nanofils ou de nanotubes (24) sur un substrat (14b) conducteur d'électricité dans la fabrication d'une électrode de batterie au lithium dont 1' électrolyte (18) est solide.
PCT/FR2005/051124 2004-12-23 2005-12-22 Electrode nanostructuree pour microbatterie WO2006070158A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/793,893 US7829225B2 (en) 2004-12-23 2005-12-22 Nanostructured electrode for a microbattery
JP2007547599A JP2008525954A (ja) 2004-12-23 2005-12-22 ナノ構造のマイクロ電池向けの電極
EP05850639A EP1854163A1 (fr) 2004-12-23 2005-12-22 Electrode nanostructuree pour microbatterie

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0453182A FR2880198B1 (fr) 2004-12-23 2004-12-23 Electrode nanostructuree pour microbatterie
FR0453182 2004-12-23

Publications (1)

Publication Number Publication Date
WO2006070158A1 true WO2006070158A1 (fr) 2006-07-06

Family

ID=34954718

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2005/051124 WO2006070158A1 (fr) 2004-12-23 2005-12-22 Electrode nanostructuree pour microbatterie

Country Status (5)

Country Link
US (1) US7829225B2 (fr)
EP (1) EP1854163A1 (fr)
JP (2) JP2008525954A (fr)
FR (1) FR2880198B1 (fr)
WO (1) WO2006070158A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008075251A1 (fr) * 2006-12-18 2008-06-26 Koninklijke Philips Electronics N.V. Source d'énergie électrochimique et dispositif électronique doté de cette source d'énergie électrochimique
US20080261112A1 (en) * 2007-04-17 2008-10-23 Kaoru Nagata Electrode material for electrochemcial device, method for producing the same, electrode using the electrode material, and electrochemical device using the electrode material
US20100190057A1 (en) * 2007-07-17 2010-07-29 Mino Green Method
EP2277045A2 (fr) * 2008-04-14 2011-01-26 Bandgap Engineering, Inc. Procédé de fabrication de réseaux de nanofils

Families Citing this family (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0601319D0 (en) 2006-01-23 2006-03-01 Imp Innovations Ltd A method of fabricating pillars composed of silicon-based material
FR2901639B1 (fr) * 2006-05-24 2008-08-22 Commissariat Energie Atomique Micro-composant integre associant les fonctions de recuperation et de stockage de l'energie
FR2910721B1 (fr) * 2006-12-21 2009-03-27 Commissariat Energie Atomique Ensemble collecteur de courant-electrode avec des cavites d'expansion pour accumulateur au lithium sous forme de films minces.
US8740873B2 (en) * 2007-03-15 2014-06-03 Hologic, Inc. Soft body catheter with low friction lumen
GB0709165D0 (en) * 2007-05-11 2007-06-20 Nexeon Ltd A silicon anode for a rechargeable battery
GB0713898D0 (en) 2007-07-17 2007-08-29 Nexeon Ltd A method of fabricating structured particles composed of silcon or a silicon-based material and their use in lithium rechargeable batteries
US7816031B2 (en) * 2007-08-10 2010-10-19 The Board Of Trustees Of The Leland Stanford Junior University Nanowire battery methods and arrangements
US9882241B2 (en) 2008-08-01 2018-01-30 Seeo, Inc. High capacity cathode
WO2010014966A1 (fr) 2008-08-01 2010-02-04 Seeo, Inc Anodes à grande capacité
US20100035152A1 (en) * 2008-08-05 2010-02-11 Sakti3, Inc. Electrochemical cell including functionally graded and architectured components and methods
FR2936106B1 (fr) 2008-09-16 2010-10-01 Commissariat Energie Atomique Micro-batterie au lithium comportant une couche d'encapsulation et procede de fabrication.
US8920970B2 (en) * 2008-12-30 2014-12-30 University Of Louisville Research Foundation Anode materials for lithium-ion batteries
US20100178568A1 (en) * 2009-01-13 2010-07-15 Nokia Corporation Process for producing carbon nanostructure on a flexible substrate, and energy storage devices comprising flexible carbon nanostructure electrodes
US9406985B2 (en) * 2009-01-13 2016-08-02 Nokia Technologies Oy High efficiency energy conversion and storage systems using carbon nanostructured materials
US20100216023A1 (en) * 2009-01-13 2010-08-26 Di Wei Process for producing carbon nanostructure on a flexible substrate, and energy storage devices comprising flexible carbon nanostructure electrodes
US8940438B2 (en) 2009-02-16 2015-01-27 Samsung Electronics Co., Ltd. Negative electrode including group 14 metal/metalloid nanotubes, lithium battery including the negative electrode, and method of manufacturing the negative electrode
KR101819035B1 (ko) * 2009-02-16 2018-01-18 삼성전자주식회사 14족 금속나노튜브를 포함하는 음극, 이를 채용한 리튬전지 및 이의 제조 방법
JP2010262752A (ja) * 2009-04-30 2010-11-18 Furukawa Electric Co Ltd:The リチウムイオン二次電池用の負極、それを用いたリチウムイオン二次電池、リチウムイオン二次電池用の負極の製造方法
US8257866B2 (en) 2009-05-07 2012-09-04 Amprius, Inc. Template electrode structures for depositing active materials
US20140370380A9 (en) * 2009-05-07 2014-12-18 Yi Cui Core-shell high capacity nanowires for battery electrodes
US11996550B2 (en) 2009-05-07 2024-05-28 Amprius Technologies, Inc. Template electrode structures for depositing active materials
GB2470056B (en) 2009-05-07 2013-09-11 Nexeon Ltd A method of making silicon anode material for rechargeable cells
US20100285358A1 (en) 2009-05-07 2010-11-11 Amprius, Inc. Electrode Including Nanostructures for Rechargeable Cells
US20100285365A1 (en) * 2009-05-08 2010-11-11 Robert Bosch Gmbh Li-ION BATTERY WITH POROUS ANODE
US8354824B2 (en) * 2009-05-08 2013-01-15 Robert Bosch Gmbh System and method for charging and discharging a Li-ion battery pack
US20100285351A1 (en) * 2009-05-08 2010-11-11 Robert Bosch Gmbh Li-ION BATTERY WITH ANODE EXPANSION AREA
US20100285361A1 (en) * 2009-05-08 2010-11-11 Robert Bosch Gmbh Li-ION BATTERY WITH LOAD LEVELER
US8405351B2 (en) * 2009-05-08 2013-03-26 Robert Bosch Gmbh System and method for charging and discharging a Li-ion battery
US8313864B2 (en) * 2009-05-08 2012-11-20 Robert Bosch Gmbh Li-ion battery with blended electrode
US8563173B2 (en) * 2009-05-08 2013-10-22 Robert Bosch Gmbh Li-ion battery with anode current collector coating
US9123974B2 (en) 2009-05-08 2015-09-01 Robert Bosch Gmbh Li-ion battery with load leveler
US8673491B2 (en) * 2009-05-08 2014-03-18 Robert Bosch Gmbh Li-ion battery with selective moderating material
US8426052B2 (en) * 2009-05-08 2013-04-23 Robert Bosch Gmbh Li-ion battery with porous anode support
US8426046B2 (en) * 2009-05-08 2013-04-23 Robert Bosch Gmbh Li-ion battery with over-charge/over-discharge failsafe
US8329327B2 (en) * 2009-05-08 2012-12-11 Robert Bosch Gmbh Li-ion battery with variable volume reservoir
US8859123B2 (en) * 2009-05-08 2014-10-14 Robert Bosch Gmbh System and method for pressure determination in a Li-ion battery
US8450012B2 (en) 2009-05-27 2013-05-28 Amprius, Inc. Interconnected hollow nanostructures containing high capacity active materials for use in rechargeable batteries
US20100330419A1 (en) * 2009-06-02 2010-12-30 Yi Cui Electrospinning to fabricate battery electrodes
KR101098518B1 (ko) * 2009-06-18 2011-12-26 국립대학법인 울산과학기술대학교 산학협력단 리튬 이차 전지용 음극 활물질, 이의 제조 방법 및 리튬 이차 전지
WO2011017173A2 (fr) * 2009-07-28 2011-02-10 Bandgap Engineering Inc. Réseaux de nanofils de silicium sur un conducteur organique
US9005806B2 (en) * 2009-10-15 2015-04-14 Nokia Corporation Nano-structured lithium-sulfur battery and method of making same
US9061902B2 (en) 2009-12-18 2015-06-23 The Board Of Trustees Of The Leland Stanford Junior University Crystalline-amorphous nanowires for battery electrodes
JP5581716B2 (ja) * 2010-02-05 2014-09-03 ソニー株式会社 リチウムイオン二次電池用負極、リチウムイオン二次電池、電動工具、電気自動車および電力貯蔵システム
US9172088B2 (en) 2010-05-24 2015-10-27 Amprius, Inc. Multidimensional electrochemically active structures for battery electrodes
US9780365B2 (en) 2010-03-03 2017-10-03 Amprius, Inc. High-capacity electrodes with active material coatings on multilayered nanostructured templates
US8513804B2 (en) 2010-04-13 2013-08-20 The Board Of Trustees Of The Leland Stanford Junior University Nanotube-based electrodes
GB201014707D0 (en) 2010-09-03 2010-10-20 Nexeon Ltd Electroactive material
WO2012067943A1 (fr) 2010-11-15 2012-05-24 Amprius, Inc. Électrolytes destinés à des piles rechargeables
KR20140051928A (ko) 2011-07-01 2014-05-02 암프리우스, 인코포레이티드 향상된 접착 특성을 가진 템플레이트 전극 구조체
US9251934B2 (en) * 2013-01-11 2016-02-02 Infineon Technologies Ag Method for manufacturing a plurality of nanowires
US20150118572A1 (en) * 2013-10-29 2015-04-30 Battery Energy Storage Systems-Technologies Solid-state battery and methods of fabrication
WO2015175509A1 (fr) 2014-05-12 2015-11-19 Amprius, Inc. Dépôt de silicium sur des nanofils commandé de manière structurelle
DE102014008739A1 (de) * 2014-06-12 2015-12-17 Daimler Ag Elektrodenmaterial für einen elektrochemischen Speicher, Verfahren zur Herstellung eines Elektrodenmaterials sowie elektrochemischer Energiespeicher
FR3023417B1 (fr) * 2014-07-01 2016-07-15 I-Ten Batterie entierement solide comprenant un electrolyte solide et une couche de materiau polymere solide
CA2956706A1 (fr) * 2014-07-31 2016-02-04 Rensselaer Polytechnic Institute Anodes au silicium evolutives et role de films de parylene dans l'amelioration de caracteristiques de performances d'electrode dans des systemes de stockage d'energie
US10403889B2 (en) 2014-10-21 2019-09-03 RAMOT AT TEL-AVIV UNlVERSITY LTD. High-capacity silicon nanowire based anode for lithium-ion batteries
US10581111B2 (en) 2017-01-31 2020-03-03 Keracel, Inc. Ceramic lithium retention device
US10903672B2 (en) * 2017-03-30 2021-01-26 International Business Machines Corporation Charge method for solid-state lithium-based thin-film battery
US10622680B2 (en) 2017-04-06 2020-04-14 International Business Machines Corporation High charge rate, large capacity, solid-state battery
US10741835B1 (en) * 2017-08-18 2020-08-11 Apple Inc. Anode structure for a lithium metal battery
US10971760B2 (en) 2018-01-31 2021-04-06 Keracel, Inc. Hybrid solid-state cell with a sealed anode structure
CN111727524B (zh) 2018-01-31 2024-02-09 萨库公司 具有密封阳极结构的混合固态电池
FR3080957B1 (fr) 2018-05-07 2020-07-10 I-Ten Electrodes mesoporeuses pour dispositifs electrochimiques en couches minces

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4439502A (en) * 1981-07-28 1984-03-27 Varta Batterie Aktiengesellschaft Galvanic element having a porous solid-electrolyte sinter framework containing the cathode material
WO1999065821A1 (fr) * 1998-06-19 1999-12-23 The Research Foundation Of State University Of New York Nanotubes de carbone autonomes alignes et leur synthese
WO2001006578A2 (fr) * 1999-07-16 2001-01-25 Quallion, Llc Procede d'application de couche mince de lithium sur une electrode pour accroitre la capacite de batterie
US20020086212A1 (en) * 2000-12-28 2002-07-04 Ericsson Mobile Communications Ab Vanadium oxide electrode materials and methods
WO2003049219A1 (fr) * 2001-11-30 2003-06-12 The Trustees Of Boston College Electrodes a reseau de nanotubes de carbone revetus

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5486680A (en) * 1994-01-10 1996-01-23 Lieberman; Mitchell J. Warming system using a flexible battery
JP2002515847A (ja) * 1997-05-29 2002-05-28 ウィリアム・マーシュ・ライス・ユニバーシティ 単層カーボンナノチューブ類から形成された炭素繊維類
US6168884B1 (en) 1999-04-02 2001-01-02 Lockheed Martin Energy Research Corporation Battery with an in-situ activation plated lithium anode
US6686095B2 (en) * 1999-12-28 2004-02-03 Kabushiki Kaisha Toshiba Gel electrolyte precursor and chemical battery
FR2831331B1 (fr) 2001-10-22 2004-11-19 Commissariat Energie Atomique Procede de fabrication d'une micro-batterie
FR2831327B1 (fr) * 2001-10-22 2004-06-25 Commissariat Energie Atomique Composant micro ou nano-electronique comportant une source d'energie et des moyens de protection de la source d'energie
US6713987B2 (en) 2002-02-28 2004-03-30 Front Edge Technology, Inc. Rechargeable battery having permeable anode current collector
US6770176B2 (en) 2002-08-02 2004-08-03 Itn Energy Systems. Inc. Apparatus and method for fracture absorption layer
JP3989389B2 (ja) * 2003-03-14 2007-10-10 独立行政法人科学技術振興機構 固体薄膜二次電池を内蔵する半導体装置
JP2004311073A (ja) * 2003-04-02 2004-11-04 Matsushita Electric Ind Co Ltd 過電流保護機能付きエネルギーデバイス及びその製造方法
FR2860925A1 (fr) 2003-10-14 2005-04-15 Commissariat Energie Atomique Microbatterie dont au moins une electrode et l'electrolyte comportent chacun le groupement [xy1y2y3y4] et procede de fabrication d'une telle microbatterie.
FR2862437B1 (fr) 2003-11-14 2006-02-10 Commissariat Energie Atomique Procede de fabrication d'une micro-batterie au lithium
FR2862436B1 (fr) 2003-11-14 2006-02-10 Commissariat Energie Atomique Micro-batterie au lithium munie d'une enveloppe de protection et procede de fabrication d'une telle micro-batterie
JP2005259637A (ja) * 2004-03-15 2005-09-22 Matsushita Electric Ind Co Ltd 二次電池用負極、その製造方法及びこれを用いた二次電池
FR2873854A1 (fr) 2004-07-30 2006-02-03 Commissariat Energie Atomique Procede de fabrication d'une electrode lithiee, electrode lithiee susceptible d'etre obtenue par ce procede et ses utilisations
FR2874128B1 (fr) 2004-08-03 2006-10-13 Commissariat Energie Atomique Microbatterie comportant des connexions traversantes et procede de realisation d'une telle microbatterie
US20080008925A1 (en) * 2004-11-02 2008-01-10 California Institute Of Technology Applications of double-walled nanotubes
FR2880197B1 (fr) * 2004-12-23 2007-02-02 Commissariat Energie Atomique Electrolyte structure pour microbatterie

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4439502A (en) * 1981-07-28 1984-03-27 Varta Batterie Aktiengesellschaft Galvanic element having a porous solid-electrolyte sinter framework containing the cathode material
WO1999065821A1 (fr) * 1998-06-19 1999-12-23 The Research Foundation Of State University Of New York Nanotubes de carbone autonomes alignes et leur synthese
WO2001006578A2 (fr) * 1999-07-16 2001-01-25 Quallion, Llc Procede d'application de couche mince de lithium sur une electrode pour accroitre la capacite de batterie
US20020086212A1 (en) * 2000-12-28 2002-07-04 Ericsson Mobile Communications Ab Vanadium oxide electrode materials and methods
WO2003049219A1 (fr) * 2001-11-30 2003-06-12 The Trustees Of Boston College Electrodes a reseau de nanotubes de carbone revetus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008075251A1 (fr) * 2006-12-18 2008-06-26 Koninklijke Philips Electronics N.V. Source d'énergie électrochimique et dispositif électronique doté de cette source d'énergie électrochimique
US20080261112A1 (en) * 2007-04-17 2008-10-23 Kaoru Nagata Electrode material for electrochemcial device, method for producing the same, electrode using the electrode material, and electrochemical device using the electrode material
US20100190057A1 (en) * 2007-07-17 2010-07-29 Mino Green Method
US9012079B2 (en) * 2007-07-17 2015-04-21 Nexeon Ltd Electrode comprising structured silicon-based material
EP2277045A2 (fr) * 2008-04-14 2011-01-26 Bandgap Engineering, Inc. Procédé de fabrication de réseaux de nanofils
EP2277045A4 (fr) * 2008-04-14 2012-09-19 Bandgap Eng Inc Procédé de fabrication de réseaux de nanofils

Also Published As

Publication number Publication date
FR2880198B1 (fr) 2007-07-06
US7829225B2 (en) 2010-11-09
JP2013168372A (ja) 2013-08-29
FR2880198A1 (fr) 2006-06-30
JP2008525954A (ja) 2008-07-17
US20080044732A1 (en) 2008-02-21
EP1854163A1 (fr) 2007-11-14

Similar Documents

Publication Publication Date Title
WO2006070158A1 (fr) Electrode nanostructuree pour microbatterie
EP1675207B1 (fr) Electrolyte structuré pour microbatterie
JP5687491B2 (ja) 電極及びその製造方法
EP2409352B1 (fr) Microbatterie au lithium et son procédé de fabrication
EP2475032B1 (fr) Procédé de préparation d'électrode à partir d'un matériau poreux, électrode ainsi obtenue et système électrochimique correspondant
EP2543095B1 (fr) Microbatterie et son procede de fabrication
FR2910721A1 (fr) Ensemble collecteur de courant-electrode avec des cavites d'expansion pour accumulateur au lithium sous forme de films minces.
EP3596765B1 (fr) Accumulateur déformable
US8551656B2 (en) Solid electrolyte cell and positive electrode active material
CN106784611B (zh) 一种具有凹坑图案的用于二次电池的电极及其制备方法和用途
US20100330411A1 (en) Thin film battery and method of connecting electrode terminal of thin film battery
FR2905028A1 (fr) Dispositif de memoire electrochimique
EP2812940B1 (fr) Ensemble collecteur de courant-electrode a base de silicium
WO2003036750A1 (fr) Procede de fabrication d'une micro-batterie
EP2270900B1 (fr) Microbatterie lithium-ion non équilibrée
CA2191019C (fr) Anode de lithium rechargeable pour accumulateur a electrolyte polymere
FR3064402A1 (fr) Cathode de pile au lithium
EP3229300B1 (fr) Dispositif électrochimique, tel qu'une microbatterie, et son procédé de réalisation
Tredenick et al. A multilayer Doyle-Fuller-Newman model to optimise the rate performance of bilayer cathodes in Li ion batteries
KR101575438B1 (ko) 리튬 기반 전지 음극을 위한 니켈 실리사이드 나노와이어에 임베디드된 실리콘 나노와이어 구조체
FR3054727A1 (fr) Dispositif electrochimique, tel qu’une microbatterie ou un dispositif electrochrome, et son procede de realisation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2005850639

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11793893

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2007547599

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005850639

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11793893

Country of ref document: US