WO2006070158A1 - Electrode nanostructuree pour microbatterie - Google Patents
Electrode nanostructuree pour microbatterie Download PDFInfo
- Publication number
- WO2006070158A1 WO2006070158A1 PCT/FR2005/051124 FR2005051124W WO2006070158A1 WO 2006070158 A1 WO2006070158 A1 WO 2006070158A1 FR 2005051124 W FR2005051124 W FR 2005051124W WO 2006070158 A1 WO2006070158 A1 WO 2006070158A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrode
- electrolyte
- battery
- anode
- lithium
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
- H01M4/0421—Methods of deposition of the material involving vapour deposition
- H01M4/0428—Chemical vapour deposition
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0561—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
- H01M10/0562—Solid materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
- H01M10/0585—Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
- H01M4/0421—Methods of deposition of the material involving vapour deposition
- H01M4/0423—Physical vapour deposition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/133—Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/134—Electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1393—Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1395—Processes of manufacture of electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
- H01M4/587—Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M6/00—Primary cells; Manufacture thereof
- H01M6/40—Printed batteries, e.g. thin film batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0068—Solid electrolytes inorganic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0088—Composites
- H01M2300/0094—Composites in the form of layered products, e.g. coatings
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the invention relates to the field of energy storage devices, and mainly micro-batteries manufactured in thin films by vacuum deposition techniques.
- the invention relates to an electrode for a battery, in particular lithium, the structure of which is defined so as to optimize the reliability of the energy storage.
- all the components of the micro-battery that is to say the current collectors, the positive and negative electrodes, the electrolyte, and even the encapsulation, are thin layers, obtained by deposition, mainly by physical vapor deposition (PVD) or chemical vapor deposition (CVD).
- PVD physical vapor deposition
- CVD chemical vapor deposition
- the operating principle of such a battery is based on the insertion and removal, also called “uninsertion", of an alkali metal ion or a proton in and from the positive electrode, and the deposition. or the extraction of this ion on and of the negative electrode.
- the operating voltage of this type of battery is between 1 and 4 V, and the surface capacitances are of the order of some 10 ⁇ Ah / cm 2 to several hundreds of ⁇ Ah / cm 2 .
- Charging a micro-battery that is to say the transfer of ions from the anode to the cathode, is usually complete after a few minutes of charging.
- the main systems use Li + as ion transport current species: the Li + ion extracted from the cathode during discharge of the battery is deposited on the anode, and conversely, it is removed from the anode to intercalate in the cathode during charging.
- a metal lithium anode the melting point of lithium, at 181 ° C., limits the potential use of the battery for high temperatures; in particular, it is impossible to reflow ("solder reflow process”) different layers of material.
- the high reactivity of lithium metal with respect to the ambient atmosphere is penalizing, even for encapsulation.
- metallic lithium is impossible to spray, which leads to the need for thermal evaporation.
- Li + ion battery Li + ion insertion material
- a cathode whose material contains lithium.
- Li + ion Li + ion insertion material
- Si Li + ion insertion material
- the stresses generated by such a difference in volume strongly solicit the superimposed layers, and in particular can lead to damage or cracks, the juxtaposed electrolyte, which can create short circuits putting the battery out of service.
- Li + cathode is performed directly on a substrate, said blocking.
- the protuberances generated by the deposit are also the source of strong deformations and potential rupture of the electrolyte.
- the object of the invention is to overcome the problems of the state of the art as regards the stability of the storage and the supply of energy. More particularly, the invention recommends the use of a new family of electrodes whose architecture and design make it possible to eliminate the stresses on the electrolyte during charging and discharging of the micro-battery.
- the invention relates to a micro-battery of which an electrode is constituted by independent electrode elements, which thus define spaces without an electrode between them, or voids.
- the void ratio is greater than 50%, for example of the order of 80%.
- the electrode concerned is mainly the anode, the cathode and the solid electrolyte then being in the form of layers of material deposited more or less uniformly.
- the anode is preferably composed of protuberances extending outwards from a current collector substrate.
- the anode is composed of carbon nanotubes or silicon nanowires.
- the energy storage device according to the invention can be encapsulated in order to isolate the ion exchange elements from the outside.
- the invention relates to a nanowire or nanotube structure on a conductive substrate that can be used for the manufacture of lithium batteries as an electrode.
- FIG. 1 schematically represents an energy storage device according to the invention.
- Figures 2A and 2B show a device according to the invention respectively in the state of charge and in discharged state.
- an energy storage device comprises, in the usual way, a substrate 12, cathode collectors 14a and anode 14b (the latter may be an integral part of the substrate 12), a cathode 16, an electrolyte 18, and an anode 20.
- the micro-battery 10 can be protected by an encapsulation layer 22: the electrodes 16, 20, especially when they are lithium, are indeed very reactive to the air, and it may be advantageous to encapsulate also the other elements 14, 18.
- the total thickness of the stack 14, 16, 18, 20 is usually between 10 and 50 microns, advantageously of the order of 15 microns.
- Such a micro-battery 10, with the exception of the anode 20 which will be described later, can be made by any known technique, and in particular with different materials: -
- the current collectors 14 are metallic and can be for example deposits based on Pt, Cr, Au, Ti.
- the positive electrode 16 may be in particular made of LiCoO 2, LiNiO 2, LiMn 2 O 4, CuS, CuS 2, WOyS 2 TiOyS 2, V 2 O 5, deposited by conventional technique, with possible thermal annealing to increase crystallization and insertion capabilities (especially for lithiated oxides).
- Electrolyte 18, which is a good ionic conductor and an electronic insulator, is generally made of a vitreous material based on oxide boron, lithium salts or oxides, in particular lithium oxynitride.
- the electrolyte is phosphate based, such as LiPON, or LiSiPON.
- the anode 20 is instead made according to an architecture that makes it possible to eliminate any expansion in the direction perpendicular to the surface of the collector substrate 14b, and at the adjacent surface of electrolyte 18.
- the proportion of void 26 initially present compensates for the volume increase related to the insertion of lithium into the elements 24.
- This optimization is specific to each insertion material, but the void ratio is usually greater than 50%, preferably 80%.
- Figure 2A shows the charged state of the battery 10, wherein the anode 20 does not include Li + ions. During charging, the lithium ions are inserted into the anode elements 24, causing them to swell, so that the residual vacuum 26 decreases.
- FIG. 2B shows the overall volume of the anode layer 20 has not changed, only the vacuum level 26 has decreased, so that neither the electrolyte 18, or the collecting layer 14b, have not been stressed.
- the materials used to make the protuberances 24 are materials that can insert lithium (in parentheses is indicated a preferred vacuum ratio): germanium (80%), silicon-germanium (80%), silver, tin (70%) ,. .. and especially silicon (80%) or carbon (50%).
- nanometric structures that is to say of dimensions in section of less than a few tens of nanometers, in particular nanotubes and nanowires, is recommended in obtaining optimal results for expansion problems.
- electrode elements 24 in the form of nanotubes an additional advantage lies in the fact that the growth of these nanotubes makes it possible to dispense with the lithographic photo-etching step, which is very difficult because of the accuracy required.
- Any technology that makes it possible to obtain structures of this type (very small diameter dimension) can be used, as the full-layer deposit and then the definition of small patterns by lithography photo.
- deposition of nanotubes or nanofibers techniques are described for example in the documents of Sharma S et al.
- the electrode elements 24 can be positioned randomly, forming a sponge type network.
- the electrode elements are in the form of protruding projections 24 from the collector substrate surface 14b, in particular in the form of a regular grating, for example a square or hexagonal grating.
- the diameter of the protuberances 24 and the pitch of the network can be optimized to obtain the desired vacuum ratio.
- a growth of nanowires or nanotubes is preferred, and the grating obtained may be regular, with in particular protuberances 24 all protruding from the base surface 14b, at an angle advantageously as close as possible to 90 °.
- the protuberances 24 may thus consist of a network of son 5 to 50 nm in diameter spaced from 50 to 100 nm with heights of between 200 nm and 5 microns.
- a micro-battery 10 comprises an array of nanowires 24 of Si with a diameter of the order of 10 nm, with a vacuum level of 26. 80%, deposited on an insulating substrate 12 on which was deposited the current collector 14b, for example Pt.
- the height of the nanotubes 24, or thickness of the anode 20, is 1 micron.
- a 1 ⁇ m layer of LiPON electrolyte 18 is deposited by radiofrequency cathodic sputtering; the cathode 16 is then made of a layer of LiCoO 2 over 3 microns, deposited for example by sputtering or magnetron or radiofrequency.
- the electrode structure according to the invention generally makes it possible to increase the conduction properties necessary for the proper functioning of a battery electrode material. Furthermore, it is preferable that the device 10 according to the invention is encapsulated in fine; this encapsulation can take place for an isolated device, or for a set of micro-batteries.
- the encapsulation 22, which is intended to protect the active stack 14, 16, 18, 20 from the external environment and specifically moisture, can be manufactured from ceramic, polymer (such as hexamethyldisiloxane or parylene) or metal, as well as by a superposition of layers of these different materials.
- the encapsulation whose layer, like that of the electrolyte, is sensitive to the problems of stress and deformation, is facilitated: - there is no change volume of the device 10; the non-use of metallic lithium makes it possible to generate a less chemically sensitive electrode material and a surface on which the encapsulation layers 22 are deposited, which is more smooth.
- the electrode structure according to the invention can also be used for the cathode, or for both electrodes.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Nanotechnology (AREA)
- Composite Materials (AREA)
- Crystallography & Structural Chemistry (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/793,893 US7829225B2 (en) | 2004-12-23 | 2005-12-22 | Nanostructured electrode for a microbattery |
JP2007547599A JP2008525954A (ja) | 2004-12-23 | 2005-12-22 | ナノ構造のマイクロ電池向けの電極 |
EP05850639A EP1854163A1 (fr) | 2004-12-23 | 2005-12-22 | Electrode nanostructuree pour microbatterie |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0453182A FR2880198B1 (fr) | 2004-12-23 | 2004-12-23 | Electrode nanostructuree pour microbatterie |
FR0453182 | 2004-12-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2006070158A1 true WO2006070158A1 (fr) | 2006-07-06 |
Family
ID=34954718
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/FR2005/051124 WO2006070158A1 (fr) | 2004-12-23 | 2005-12-22 | Electrode nanostructuree pour microbatterie |
Country Status (5)
Country | Link |
---|---|
US (1) | US7829225B2 (fr) |
EP (1) | EP1854163A1 (fr) |
JP (2) | JP2008525954A (fr) |
FR (1) | FR2880198B1 (fr) |
WO (1) | WO2006070158A1 (fr) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008075251A1 (fr) * | 2006-12-18 | 2008-06-26 | Koninklijke Philips Electronics N.V. | Source d'énergie électrochimique et dispositif électronique doté de cette source d'énergie électrochimique |
US20080261112A1 (en) * | 2007-04-17 | 2008-10-23 | Kaoru Nagata | Electrode material for electrochemcial device, method for producing the same, electrode using the electrode material, and electrochemical device using the electrode material |
US20100190057A1 (en) * | 2007-07-17 | 2010-07-29 | Mino Green | Method |
EP2277045A2 (fr) * | 2008-04-14 | 2011-01-26 | Bandgap Engineering, Inc. | Procédé de fabrication de réseaux de nanofils |
Families Citing this family (63)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB0601319D0 (en) | 2006-01-23 | 2006-03-01 | Imp Innovations Ltd | A method of fabricating pillars composed of silicon-based material |
FR2901639B1 (fr) * | 2006-05-24 | 2008-08-22 | Commissariat Energie Atomique | Micro-composant integre associant les fonctions de recuperation et de stockage de l'energie |
FR2910721B1 (fr) * | 2006-12-21 | 2009-03-27 | Commissariat Energie Atomique | Ensemble collecteur de courant-electrode avec des cavites d'expansion pour accumulateur au lithium sous forme de films minces. |
US8740873B2 (en) * | 2007-03-15 | 2014-06-03 | Hologic, Inc. | Soft body catheter with low friction lumen |
GB0709165D0 (en) * | 2007-05-11 | 2007-06-20 | Nexeon Ltd | A silicon anode for a rechargeable battery |
GB0713898D0 (en) | 2007-07-17 | 2007-08-29 | Nexeon Ltd | A method of fabricating structured particles composed of silcon or a silicon-based material and their use in lithium rechargeable batteries |
US7816031B2 (en) * | 2007-08-10 | 2010-10-19 | The Board Of Trustees Of The Leland Stanford Junior University | Nanowire battery methods and arrangements |
US9882241B2 (en) | 2008-08-01 | 2018-01-30 | Seeo, Inc. | High capacity cathode |
WO2010014966A1 (fr) | 2008-08-01 | 2010-02-04 | Seeo, Inc | Anodes à grande capacité |
US20100035152A1 (en) * | 2008-08-05 | 2010-02-11 | Sakti3, Inc. | Electrochemical cell including functionally graded and architectured components and methods |
FR2936106B1 (fr) | 2008-09-16 | 2010-10-01 | Commissariat Energie Atomique | Micro-batterie au lithium comportant une couche d'encapsulation et procede de fabrication. |
US8920970B2 (en) * | 2008-12-30 | 2014-12-30 | University Of Louisville Research Foundation | Anode materials for lithium-ion batteries |
US20100178568A1 (en) * | 2009-01-13 | 2010-07-15 | Nokia Corporation | Process for producing carbon nanostructure on a flexible substrate, and energy storage devices comprising flexible carbon nanostructure electrodes |
US9406985B2 (en) * | 2009-01-13 | 2016-08-02 | Nokia Technologies Oy | High efficiency energy conversion and storage systems using carbon nanostructured materials |
US20100216023A1 (en) * | 2009-01-13 | 2010-08-26 | Di Wei | Process for producing carbon nanostructure on a flexible substrate, and energy storage devices comprising flexible carbon nanostructure electrodes |
US8940438B2 (en) | 2009-02-16 | 2015-01-27 | Samsung Electronics Co., Ltd. | Negative electrode including group 14 metal/metalloid nanotubes, lithium battery including the negative electrode, and method of manufacturing the negative electrode |
KR101819035B1 (ko) * | 2009-02-16 | 2018-01-18 | 삼성전자주식회사 | 14족 금속나노튜브를 포함하는 음극, 이를 채용한 리튬전지 및 이의 제조 방법 |
JP2010262752A (ja) * | 2009-04-30 | 2010-11-18 | Furukawa Electric Co Ltd:The | リチウムイオン二次電池用の負極、それを用いたリチウムイオン二次電池、リチウムイオン二次電池用の負極の製造方法 |
US8257866B2 (en) | 2009-05-07 | 2012-09-04 | Amprius, Inc. | Template electrode structures for depositing active materials |
US20140370380A9 (en) * | 2009-05-07 | 2014-12-18 | Yi Cui | Core-shell high capacity nanowires for battery electrodes |
US11996550B2 (en) | 2009-05-07 | 2024-05-28 | Amprius Technologies, Inc. | Template electrode structures for depositing active materials |
GB2470056B (en) | 2009-05-07 | 2013-09-11 | Nexeon Ltd | A method of making silicon anode material for rechargeable cells |
US20100285358A1 (en) | 2009-05-07 | 2010-11-11 | Amprius, Inc. | Electrode Including Nanostructures for Rechargeable Cells |
US20100285365A1 (en) * | 2009-05-08 | 2010-11-11 | Robert Bosch Gmbh | Li-ION BATTERY WITH POROUS ANODE |
US8354824B2 (en) * | 2009-05-08 | 2013-01-15 | Robert Bosch Gmbh | System and method for charging and discharging a Li-ion battery pack |
US20100285351A1 (en) * | 2009-05-08 | 2010-11-11 | Robert Bosch Gmbh | Li-ION BATTERY WITH ANODE EXPANSION AREA |
US20100285361A1 (en) * | 2009-05-08 | 2010-11-11 | Robert Bosch Gmbh | Li-ION BATTERY WITH LOAD LEVELER |
US8405351B2 (en) * | 2009-05-08 | 2013-03-26 | Robert Bosch Gmbh | System and method for charging and discharging a Li-ion battery |
US8313864B2 (en) * | 2009-05-08 | 2012-11-20 | Robert Bosch Gmbh | Li-ion battery with blended electrode |
US8563173B2 (en) * | 2009-05-08 | 2013-10-22 | Robert Bosch Gmbh | Li-ion battery with anode current collector coating |
US9123974B2 (en) | 2009-05-08 | 2015-09-01 | Robert Bosch Gmbh | Li-ion battery with load leveler |
US8673491B2 (en) * | 2009-05-08 | 2014-03-18 | Robert Bosch Gmbh | Li-ion battery with selective moderating material |
US8426052B2 (en) * | 2009-05-08 | 2013-04-23 | Robert Bosch Gmbh | Li-ion battery with porous anode support |
US8426046B2 (en) * | 2009-05-08 | 2013-04-23 | Robert Bosch Gmbh | Li-ion battery with over-charge/over-discharge failsafe |
US8329327B2 (en) * | 2009-05-08 | 2012-12-11 | Robert Bosch Gmbh | Li-ion battery with variable volume reservoir |
US8859123B2 (en) * | 2009-05-08 | 2014-10-14 | Robert Bosch Gmbh | System and method for pressure determination in a Li-ion battery |
US8450012B2 (en) | 2009-05-27 | 2013-05-28 | Amprius, Inc. | Interconnected hollow nanostructures containing high capacity active materials for use in rechargeable batteries |
US20100330419A1 (en) * | 2009-06-02 | 2010-12-30 | Yi Cui | Electrospinning to fabricate battery electrodes |
KR101098518B1 (ko) * | 2009-06-18 | 2011-12-26 | 국립대학법인 울산과학기술대학교 산학협력단 | 리튬 이차 전지용 음극 활물질, 이의 제조 방법 및 리튬 이차 전지 |
WO2011017173A2 (fr) * | 2009-07-28 | 2011-02-10 | Bandgap Engineering Inc. | Réseaux de nanofils de silicium sur un conducteur organique |
US9005806B2 (en) * | 2009-10-15 | 2015-04-14 | Nokia Corporation | Nano-structured lithium-sulfur battery and method of making same |
US9061902B2 (en) | 2009-12-18 | 2015-06-23 | The Board Of Trustees Of The Leland Stanford Junior University | Crystalline-amorphous nanowires for battery electrodes |
JP5581716B2 (ja) * | 2010-02-05 | 2014-09-03 | ソニー株式会社 | リチウムイオン二次電池用負極、リチウムイオン二次電池、電動工具、電気自動車および電力貯蔵システム |
US9172088B2 (en) | 2010-05-24 | 2015-10-27 | Amprius, Inc. | Multidimensional electrochemically active structures for battery electrodes |
US9780365B2 (en) | 2010-03-03 | 2017-10-03 | Amprius, Inc. | High-capacity electrodes with active material coatings on multilayered nanostructured templates |
US8513804B2 (en) | 2010-04-13 | 2013-08-20 | The Board Of Trustees Of The Leland Stanford Junior University | Nanotube-based electrodes |
GB201014707D0 (en) | 2010-09-03 | 2010-10-20 | Nexeon Ltd | Electroactive material |
WO2012067943A1 (fr) | 2010-11-15 | 2012-05-24 | Amprius, Inc. | Électrolytes destinés à des piles rechargeables |
KR20140051928A (ko) | 2011-07-01 | 2014-05-02 | 암프리우스, 인코포레이티드 | 향상된 접착 특성을 가진 템플레이트 전극 구조체 |
US9251934B2 (en) * | 2013-01-11 | 2016-02-02 | Infineon Technologies Ag | Method for manufacturing a plurality of nanowires |
US20150118572A1 (en) * | 2013-10-29 | 2015-04-30 | Battery Energy Storage Systems-Technologies | Solid-state battery and methods of fabrication |
WO2015175509A1 (fr) | 2014-05-12 | 2015-11-19 | Amprius, Inc. | Dépôt de silicium sur des nanofils commandé de manière structurelle |
DE102014008739A1 (de) * | 2014-06-12 | 2015-12-17 | Daimler Ag | Elektrodenmaterial für einen elektrochemischen Speicher, Verfahren zur Herstellung eines Elektrodenmaterials sowie elektrochemischer Energiespeicher |
FR3023417B1 (fr) * | 2014-07-01 | 2016-07-15 | I-Ten | Batterie entierement solide comprenant un electrolyte solide et une couche de materiau polymere solide |
CA2956706A1 (fr) * | 2014-07-31 | 2016-02-04 | Rensselaer Polytechnic Institute | Anodes au silicium evolutives et role de films de parylene dans l'amelioration de caracteristiques de performances d'electrode dans des systemes de stockage d'energie |
US10403889B2 (en) | 2014-10-21 | 2019-09-03 | RAMOT AT TEL-AVIV UNlVERSITY LTD. | High-capacity silicon nanowire based anode for lithium-ion batteries |
US10581111B2 (en) | 2017-01-31 | 2020-03-03 | Keracel, Inc. | Ceramic lithium retention device |
US10903672B2 (en) * | 2017-03-30 | 2021-01-26 | International Business Machines Corporation | Charge method for solid-state lithium-based thin-film battery |
US10622680B2 (en) | 2017-04-06 | 2020-04-14 | International Business Machines Corporation | High charge rate, large capacity, solid-state battery |
US10741835B1 (en) * | 2017-08-18 | 2020-08-11 | Apple Inc. | Anode structure for a lithium metal battery |
US10971760B2 (en) | 2018-01-31 | 2021-04-06 | Keracel, Inc. | Hybrid solid-state cell with a sealed anode structure |
CN111727524B (zh) | 2018-01-31 | 2024-02-09 | 萨库公司 | 具有密封阳极结构的混合固态电池 |
FR3080957B1 (fr) | 2018-05-07 | 2020-07-10 | I-Ten | Electrodes mesoporeuses pour dispositifs electrochimiques en couches minces |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4439502A (en) * | 1981-07-28 | 1984-03-27 | Varta Batterie Aktiengesellschaft | Galvanic element having a porous solid-electrolyte sinter framework containing the cathode material |
WO1999065821A1 (fr) * | 1998-06-19 | 1999-12-23 | The Research Foundation Of State University Of New York | Nanotubes de carbone autonomes alignes et leur synthese |
WO2001006578A2 (fr) * | 1999-07-16 | 2001-01-25 | Quallion, Llc | Procede d'application de couche mince de lithium sur une electrode pour accroitre la capacite de batterie |
US20020086212A1 (en) * | 2000-12-28 | 2002-07-04 | Ericsson Mobile Communications Ab | Vanadium oxide electrode materials and methods |
WO2003049219A1 (fr) * | 2001-11-30 | 2003-06-12 | The Trustees Of Boston College | Electrodes a reseau de nanotubes de carbone revetus |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5486680A (en) * | 1994-01-10 | 1996-01-23 | Lieberman; Mitchell J. | Warming system using a flexible battery |
JP2002515847A (ja) * | 1997-05-29 | 2002-05-28 | ウィリアム・マーシュ・ライス・ユニバーシティ | 単層カーボンナノチューブ類から形成された炭素繊維類 |
US6168884B1 (en) | 1999-04-02 | 2001-01-02 | Lockheed Martin Energy Research Corporation | Battery with an in-situ activation plated lithium anode |
US6686095B2 (en) * | 1999-12-28 | 2004-02-03 | Kabushiki Kaisha Toshiba | Gel electrolyte precursor and chemical battery |
FR2831331B1 (fr) | 2001-10-22 | 2004-11-19 | Commissariat Energie Atomique | Procede de fabrication d'une micro-batterie |
FR2831327B1 (fr) * | 2001-10-22 | 2004-06-25 | Commissariat Energie Atomique | Composant micro ou nano-electronique comportant une source d'energie et des moyens de protection de la source d'energie |
US6713987B2 (en) | 2002-02-28 | 2004-03-30 | Front Edge Technology, Inc. | Rechargeable battery having permeable anode current collector |
US6770176B2 (en) | 2002-08-02 | 2004-08-03 | Itn Energy Systems. Inc. | Apparatus and method for fracture absorption layer |
JP3989389B2 (ja) * | 2003-03-14 | 2007-10-10 | 独立行政法人科学技術振興機構 | 固体薄膜二次電池を内蔵する半導体装置 |
JP2004311073A (ja) * | 2003-04-02 | 2004-11-04 | Matsushita Electric Ind Co Ltd | 過電流保護機能付きエネルギーデバイス及びその製造方法 |
FR2860925A1 (fr) | 2003-10-14 | 2005-04-15 | Commissariat Energie Atomique | Microbatterie dont au moins une electrode et l'electrolyte comportent chacun le groupement [xy1y2y3y4] et procede de fabrication d'une telle microbatterie. |
FR2862437B1 (fr) | 2003-11-14 | 2006-02-10 | Commissariat Energie Atomique | Procede de fabrication d'une micro-batterie au lithium |
FR2862436B1 (fr) | 2003-11-14 | 2006-02-10 | Commissariat Energie Atomique | Micro-batterie au lithium munie d'une enveloppe de protection et procede de fabrication d'une telle micro-batterie |
JP2005259637A (ja) * | 2004-03-15 | 2005-09-22 | Matsushita Electric Ind Co Ltd | 二次電池用負極、その製造方法及びこれを用いた二次電池 |
FR2873854A1 (fr) | 2004-07-30 | 2006-02-03 | Commissariat Energie Atomique | Procede de fabrication d'une electrode lithiee, electrode lithiee susceptible d'etre obtenue par ce procede et ses utilisations |
FR2874128B1 (fr) | 2004-08-03 | 2006-10-13 | Commissariat Energie Atomique | Microbatterie comportant des connexions traversantes et procede de realisation d'une telle microbatterie |
US20080008925A1 (en) * | 2004-11-02 | 2008-01-10 | California Institute Of Technology | Applications of double-walled nanotubes |
FR2880197B1 (fr) * | 2004-12-23 | 2007-02-02 | Commissariat Energie Atomique | Electrolyte structure pour microbatterie |
-
2004
- 2004-12-23 FR FR0453182A patent/FR2880198B1/fr not_active Expired - Fee Related
-
2005
- 2005-12-22 JP JP2007547599A patent/JP2008525954A/ja not_active Withdrawn
- 2005-12-22 US US11/793,893 patent/US7829225B2/en not_active Expired - Fee Related
- 2005-12-22 EP EP05850639A patent/EP1854163A1/fr not_active Withdrawn
- 2005-12-22 WO PCT/FR2005/051124 patent/WO2006070158A1/fr active Application Filing
-
2013
- 2013-03-21 JP JP2013058491A patent/JP2013168372A/ja active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4439502A (en) * | 1981-07-28 | 1984-03-27 | Varta Batterie Aktiengesellschaft | Galvanic element having a porous solid-electrolyte sinter framework containing the cathode material |
WO1999065821A1 (fr) * | 1998-06-19 | 1999-12-23 | The Research Foundation Of State University Of New York | Nanotubes de carbone autonomes alignes et leur synthese |
WO2001006578A2 (fr) * | 1999-07-16 | 2001-01-25 | Quallion, Llc | Procede d'application de couche mince de lithium sur une electrode pour accroitre la capacite de batterie |
US20020086212A1 (en) * | 2000-12-28 | 2002-07-04 | Ericsson Mobile Communications Ab | Vanadium oxide electrode materials and methods |
WO2003049219A1 (fr) * | 2001-11-30 | 2003-06-12 | The Trustees Of Boston College | Electrodes a reseau de nanotubes de carbone revetus |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008075251A1 (fr) * | 2006-12-18 | 2008-06-26 | Koninklijke Philips Electronics N.V. | Source d'énergie électrochimique et dispositif électronique doté de cette source d'énergie électrochimique |
US20080261112A1 (en) * | 2007-04-17 | 2008-10-23 | Kaoru Nagata | Electrode material for electrochemcial device, method for producing the same, electrode using the electrode material, and electrochemical device using the electrode material |
US20100190057A1 (en) * | 2007-07-17 | 2010-07-29 | Mino Green | Method |
US9012079B2 (en) * | 2007-07-17 | 2015-04-21 | Nexeon Ltd | Electrode comprising structured silicon-based material |
EP2277045A2 (fr) * | 2008-04-14 | 2011-01-26 | Bandgap Engineering, Inc. | Procédé de fabrication de réseaux de nanofils |
EP2277045A4 (fr) * | 2008-04-14 | 2012-09-19 | Bandgap Eng Inc | Procédé de fabrication de réseaux de nanofils |
Also Published As
Publication number | Publication date |
---|---|
FR2880198B1 (fr) | 2007-07-06 |
US7829225B2 (en) | 2010-11-09 |
JP2013168372A (ja) | 2013-08-29 |
FR2880198A1 (fr) | 2006-06-30 |
JP2008525954A (ja) | 2008-07-17 |
US20080044732A1 (en) | 2008-02-21 |
EP1854163A1 (fr) | 2007-11-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2006070158A1 (fr) | Electrode nanostructuree pour microbatterie | |
EP1675207B1 (fr) | Electrolyte structuré pour microbatterie | |
JP5687491B2 (ja) | 電極及びその製造方法 | |
EP2409352B1 (fr) | Microbatterie au lithium et son procédé de fabrication | |
EP2475032B1 (fr) | Procédé de préparation d'électrode à partir d'un matériau poreux, électrode ainsi obtenue et système électrochimique correspondant | |
EP2543095B1 (fr) | Microbatterie et son procede de fabrication | |
FR2910721A1 (fr) | Ensemble collecteur de courant-electrode avec des cavites d'expansion pour accumulateur au lithium sous forme de films minces. | |
EP3596765B1 (fr) | Accumulateur déformable | |
US8551656B2 (en) | Solid electrolyte cell and positive electrode active material | |
CN106784611B (zh) | 一种具有凹坑图案的用于二次电池的电极及其制备方法和用途 | |
US20100330411A1 (en) | Thin film battery and method of connecting electrode terminal of thin film battery | |
FR2905028A1 (fr) | Dispositif de memoire electrochimique | |
EP2812940B1 (fr) | Ensemble collecteur de courant-electrode a base de silicium | |
WO2003036750A1 (fr) | Procede de fabrication d'une micro-batterie | |
EP2270900B1 (fr) | Microbatterie lithium-ion non équilibrée | |
CA2191019C (fr) | Anode de lithium rechargeable pour accumulateur a electrolyte polymere | |
FR3064402A1 (fr) | Cathode de pile au lithium | |
EP3229300B1 (fr) | Dispositif électrochimique, tel qu'une microbatterie, et son procédé de réalisation | |
Tredenick et al. | A multilayer Doyle-Fuller-Newman model to optimise the rate performance of bilayer cathodes in Li ion batteries | |
KR101575438B1 (ko) | 리튬 기반 전지 음극을 위한 니켈 실리사이드 나노와이어에 임베디드된 실리콘 나노와이어 구조체 | |
FR3054727A1 (fr) | Dispositif electrochimique, tel qu’une microbatterie ou un dispositif electrochrome, et son procede de realisation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DPE2 | Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2005850639 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 11793893 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007547599 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWP | Wipo information: published in national office |
Ref document number: 2005850639 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 11793893 Country of ref document: US |