WO2006068537A1 - Procede d'echange de chaleur-masse-energie et dispositif de mise en oeuvre de ce procede - Google Patents
Procede d'echange de chaleur-masse-energie et dispositif de mise en oeuvre de ce procede Download PDFInfo
- Publication number
- WO2006068537A1 WO2006068537A1 PCT/RU2005/000612 RU2005000612W WO2006068537A1 WO 2006068537 A1 WO2006068537 A1 WO 2006068537A1 RU 2005000612 W RU2005000612 W RU 2005000612W WO 2006068537 A1 WO2006068537 A1 WO 2006068537A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- vortex
- flows
- vortex tubes
- excitation
- tubes
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/008—Processes for carrying out reactions under cavitation conditions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/10—Mixing gases with gases
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/20—Mixing gases with liquids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F31/00—Mixers with shaking, oscillating, or vibrating mechanisms
- B01F31/80—Mixing by means of high-frequency vibrations above one kHz, e.g. ultrasonic vibrations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/08—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
- B01J19/10—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing sonic or ultrasonic vibrations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/08—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
- B01J2219/0873—Materials to be treated
- B01J2219/0875—Gas
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/08—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
- B01J2219/0873—Materials to be treated
- B01J2219/0877—Liquid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/08—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
- B01J2219/0873—Materials to be treated
- B01J2219/0881—Two or more materials
- B01J2219/0884—Gas-liquid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/08—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
- B01J2219/0873—Materials to be treated
- B01J2219/0881—Two or more materials
- B01J2219/0888—Liquid-liquid
Definitions
- the invention relates to acoustic (for example, ultrasonic) methods for intensifying heat and mass energy exchange of liquid, gas, gas-liquid mixtures, suspensions and dispersions in mechano-physico-chemical processes of transformation, mixing, emulsification, dispersion, homogenization, heat treatment, saturation, extraction and the like.
- acoustic for example, ultrasonic
- a sound method for intensifying chemical reactions is known [RF patent 2232629, BOlJl 9/10, published July 20, 04], characterized in that sound energy is introduced into the liquid medium at the contact point of the reactants in the reaction chamber, and the sound transducers are arranged in pairs and oppositely directed relative to the input reagent flows, while establishing special frequency ranges of sound energy and the corresponding sound power.
- the disadvantages of this method include the need to use special sound transducers with certain frequency-amplitude and power characteristics, power loss and distortion of frequency-amplitude and power characteristics during the passage of sound through the wall, as well as the complexity of the technical implementation of the entire sounding technology, given that The term "sound energy" the authors interpret the sound waves in the infra-audio-ultra sound spectrum.
- the method of heating the liquid is based on the acoustic treatment of the liquid and includes feeding it into the cavity of the rotating impeller and discharging from the cavity through a series of outlet openings in the peripheral annular wall of the impeller into the annular chamber, and then into the collection chamber subject to certain ratios between the rotational speed of the impeller , the radius of the peripheral wall and the resonant frequency.
- the disadvantages of this method include the complexity of the technical implementation of this method, the selectivity of the excitation, the multi-factor dependence of the resonant excitation on the geometric, frequency parameters and the limited possibility of using this method for other heat and mass transfer processes. Description of the invention
- the objective of the present invention is to provide a method of acoustic intensification of heat and mass energy exchange, which would allow due to the special organization of the interaction of vortex flows: to increase the duration and power of the resonant excitation of the product in a wider and more controlled range of frequency-amplitude characteristics of scoring; to increase the efficiency of the destructive transformation of chemical bonds and the dispersed-aggregate state of the product, as well as the acoustic activation of chemical bonds at the molecular level; universally use this method in conducting heat and mass energy processes of various purposes.
- the problem is solved in that the intensification of heat and mass energy flows of product flows is carried out by passing counter-directed flows through interconnected vortex tubes, while the interaction of flows in the zone of their intersection occurs in their outer layers to a depth that ensures their acoustic excitation due to strain-shear interaction of flows occurring in the zone of intersection of vortex tubes. Then the excited streams are combined in a common acoustic chamber and the stream is brought to use.
- additional acoustic resonant excitation can be used by installing additional axial vortex resonators in the vortex tubes.
- additional acoustic excitation is possible with the help of additional tangential inlets of the product or reagent along the length of the pipe.
- a device for intensifying heat and mass-energy exchange consisting of two or more vortex tubes, which are communicated with each other by partially intersecting them along the generatrix, and then combined at the output by a common acoustic chamber.
- the output end of the vortex tubes can be made flat or any more complex configuration.
- a partition with one or more openings can be installed in the acoustic chamber between the outlet end of the vortex tubes and the outlet channel.
- Axes of vortex tubes can be mounted axial vortex displacement cylinders to enhance resonant excitation during the interaction of the outer layers of the vortex flows.
- Axes of vortex tubes can be mounted axial vortex resonators made in the form of movable cylinders with vortex channels facing its open part to the inner surface of the outer energy-active layer of the vortex flow.
- an additional resonant excitation arises from the interaction of the inner layers of the vortex flow with the vortex channels of the axial vortex resonator.
- Vortex tubes with tangential inlets can be made sectional, connected in their continuation to each other along their axes through partitions separating them or without them, each section may contain separate tangential inlets for the product or energy carrier.
- defor- mational-shear interaction of vortex flows refers to the optimal penetration depth of surface-active layers into each other, under which shear deformations of product flows create the most effective conditions for developed cavitation, acoustic excitation, without disturbing further interaction of vortex flows in acoustic modes excitations at other frequency-amplitude parameters.
- two can be counter-directed, located in the zone of intersection of the vortex tubes and offset on different sides relative to the chordal plane of intersection of the vortex tubes.
- Fig.l - shows a diagram of the interaction of vortex flows in two vortex tubes.
- Figure 2 - shows a diagram of the interaction of vortex flows in two vortex tubes with an additional installation of cylindrical displacers.
- Fig.3 - shows a diagram of the interaction of vortex flows in two vortex tubes with an additional installation of axial vortex resonators.
- Figure 4 device for the intensification of heat and mass energy with two vortex tubes (in section).
- Figure 5 device with cylindrical displacers, a cross section at the level of tangential inputs.
- Figure 6 device with axial vortex resonators, a cross section at the level of tangential inputs.
- Fig.7 - a device with axial vortex resonators and various options for the spatial configuration of the output end of the vortex tubes (in section).
- FIG.9 a device with several vortex tubes, a cross section at the level of tangential inputs.
- Figure 10 a device with vortex tubes in a step configuration with additional tangential inputs (in section).
- Fig.l 1 - a device with vortex tubes, made sectional and separating their annular partitions (in the context).
- FIG. 1 conditionally shows the interaction of the vortex flows 1 and 2 in the vortex tubes 3 and 4 (hereinafter, the pipes).
- Vortex flows 1 and 2 are formed in the pipes using tangential inlet nozzles 5 (hereinafter, tangential inlets), into which the product enters under pressure from an external source, for example, a pump, compressor.
- Vortices 1 and 2 are formed in pipes 3 and 4 in such a way that with their energy-active layers 6 in the zone of intersection 7 of pipes 3 and 4 they are directed towards each other.
- the energy-active layers of the vortex flow have a certain thickness, in which the kinetic energy slightly differs in the thickness of this layer.
- the concepts of the outer surface 8 of the outer layer and the inner surface 9 of the outer layer are introduced, which are the boundaries of the energy-active layer 6.
- the part of the vortex flow located in the vicinity of the axial space has a significantly smaller kinetic energy reserve and is practically not involved in the energy exchange process, which means that it is less susceptible to intensification of heat and mass energy exchange.
- cylindrical displacers 10 are introduced (see FIG. 2) along the axes of the vortex flows 1 and 2.
- an ineffective space is excluded from the vortex volume and thereby form an energy-efficient vortex-ring flow, which is completely exposed to acoustic excitation. It should be noted that with the passage of vortex flows along the length of the pipe kinetic energy decreases, and thereby the frequency-amplitude characteristics of sound excitation change.
- axial vortex resonators 11 are installed (see Fig. 3), then additional acoustic excitation arises from the interaction of the inner surface 9 of the energy-active layer of vortex rings with vortex channels 12 of the vortex resonator 11.
- axial vortex resonators 11 relative to zone 7 and tangential inputs 5 resonance can be obtained from two sources of excitation: the interaction of the outer surface 8 of the energy-active layer in zone 7 and the interaction of the inner surface 9 of the energy tive layer vihrevmi vortex formations in the channels 12 osevihrevogo resonator 11. Then eddy currents are combined in the acoustic chamber, exciting them further with other frequency-amplitude characteristics, and output the processed product use.
- FIG. 4 shows a device with cylindrical displacers 10, section at the level of tangential inputs.
- Figure 6 shows a device with axial vortex resonators 11, a cross section at the level of tangential inputs.
- FIG. 7 shows a device with axial vortex resonators 11, with a flat outlet end 18 of vortex tubes 3 and 4, variants with curly ends 19, 20 and with a partition 21.
- Fig. 8 shows the most preferred embodiment of the device, which around the central vortex tube 3 there are four pipes 4 in communication with each other, with installed cylindrical displacers 10 and an axial vortex resonator 11.
- Fig. 9 shows a variant of the arrangement of the pipes in a line.
- Figure 10 shows an embodiment of a device with vortex tubes of a stepped configuration and with additional tangential entries located along the length of the tubes. In this case, one pipe 22 is made stepwise tapering, and the second 23 is stepwise expanding.
- 11 shows an embodiment of a device in which vortex tubes 3 and 4 are made sectional, connected along the axes through the annular partitions separating them 24. In terms of constructive implementation, the device can be made in any combination of these options and other additional combinations.
- Fig. B and Fig. 7 The product is supplied under pressure through the inlet pipe 13 to the receiving chamber of the housing 14 and through the openings or openings (they are not shown in the drawing) of the nozzle cover 15 then enters the manifolds 16, from where through tangential inlets 5 in the form of flat (or round) jets at high speed enters tangentially into the vortex tubes 3 and 4.
- tangential inlets 5 in the form of flat (or round) jets at high speed enters tangentially into the vortex tubes 3 and 4.
- an energy-active vortex-ring flow is formed, which flows along a pipe along a spiral path to the exit to the acoustic chamber 17.
- the partition 21 can be in close contact with the end plane 18 and then, depending on the location of the holes in it (in the center, or around a circle, or according to another pattern) another mode of effective destruction of the vortex flows is formed.
- the shape and dynamics of the effective destruction of vortex flows, depending on the rheological properties of the product can be formed by changing the surface of the end plane 18 in the form of any surface 19 or 20 other than the end plane 15.
- Fig. 8 shows that feeding separately to the four product collector 16 different products , it is possible in the most efficient way to carry out their normalized mixing.
- Figure 9 shows the location of the vortex chambers in line.
- the device can be implemented in the form of vortex tubes with stepped contours of the vortex channels (see Fig.
- FIG. 10 shows an embodiment of the device in which vortex tubes are made sectional, connected along their axes through or without annular partitions separating them, each section may contain tangential inlets for the product or energy carrier.
- the prototypes made by the author showed good results when preparing water-fuel emulsions with their help: fuel oil 70% - water 30%; diesel fuel 60% - water 40%. At the same time, efficient combustion, minimal smokiness of the products and high stability of the emulsions were observed.
- the use of the proposed method of intensification and device for its implementation allows to intensify heat and mass and energy exchange at lower energy and labor costs.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2004137176 | 2004-12-21 | ||
RU2004137176/15A RU2268772C1 (ru) | 2004-12-21 | 2004-12-21 | Способ тепломассоэнергообмена и устройство для его осуществления |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2006068537A1 true WO2006068537A1 (fr) | 2006-06-29 |
Family
ID=36047834
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/RU2005/000612 WO2006068537A1 (fr) | 2004-12-21 | 2005-11-30 | Procede d'echange de chaleur-masse-energie et dispositif de mise en oeuvre de ce procede |
Country Status (3)
Country | Link |
---|---|
LT (1) | LT5360B (ru) |
RU (1) | RU2268772C1 (ru) |
WO (1) | WO2006068537A1 (ru) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2310503C1 (ru) * | 2006-10-25 | 2007-11-20 | Овченкова Оксана Анатольевна | Способ тепломассоэнергообмена и устройство для его осуществления |
RU2344356C1 (ru) * | 2007-08-02 | 2009-01-20 | Овченкова Оксана Анатольевна | Способ тепломассоэнергообмена и устройство для его осуществления |
RU2350856C1 (ru) * | 2008-01-10 | 2009-03-27 | Овченкова Оксана Анатольевна | Способ тепломассоэнергообмена и устройство для его осуществления |
RU2457896C1 (ru) * | 2010-11-29 | 2012-08-10 | Владимир Семенович Аникин | Способ акустической обработки многофазного продукта и устройство для его осуществления |
RU2462301C1 (ru) * | 2011-03-10 | 2012-09-27 | Овченкова Оксана Анатольевна | Устройство для тепломассоэнергообмена |
WO2013119138A1 (ru) * | 2012-02-10 | 2013-08-15 | Норфолда Лимитед | Устройство для деструкции нефти в скважине |
RU2497580C1 (ru) * | 2012-03-05 | 2013-11-10 | Долгополов Юрий Яковлевич | Ультразвуковой диспергатор долгополова |
RU2543182C2 (ru) * | 2013-06-04 | 2015-02-27 | Сергей Николаевич Тумаков | Способ тепломассоэнергообмена и устройство для его осуществления |
RU2658057C1 (ru) * | 2017-09-11 | 2018-06-19 | Эль-Гадбан Илья Шакиб | Устройство для тепломассоэнергообмена |
RU2726488C2 (ru) * | 2018-11-12 | 2020-07-14 | Талатай Василий Алексеевич | Гидростабилизированное топливо, способ его получения и теплоэнергообменный реактор |
RU206204U1 (ru) * | 2021-06-03 | 2021-08-31 | Игорь Викторович Доронин | Устройство для получения гидростабилизированного топлива |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1983000446A1 (en) * | 1981-07-28 | 1983-02-17 | SCHAUFFLER, Noël (deceased) | Method, devices and application for producing emulsions by ultra sonic whistles |
SU1327947A1 (ru) * | 1986-01-07 | 1987-08-07 | Дальневосточное высшее инженерное морское училище им.адм.Г.И.Невельского | Устройство дл получени эмульсии |
SU1333397A1 (ru) * | 1985-08-28 | 1987-08-30 | Научно-производственное объединение по созданию и выпуску средств автоматизации горных машин | Вихревой гидродинамический смеситель |
RU2232630C2 (ru) * | 2002-05-06 | 2004-07-20 | Селиванов Николай Иванович | Способ резонансного возбуждения жидкости и способ и устройство для нагревания жидкости |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3137927A (en) | 1960-07-13 | 1964-06-23 | Honeywell Regulator Co | Dispersion hardened materials |
CH558847A (de) | 1973-06-08 | 1975-02-14 | Rueti Ag Maschf | Einrichtung zum speichern von schussfaeden. |
FR2232629A1 (en) | 1973-06-08 | 1975-01-03 | Carroll Robert | False twist bush driven by peripheral contact with drive element - has mssmooth outer surface produced by single finishing operation |
-
2004
- 2004-12-21 RU RU2004137176/15A patent/RU2268772C1/ru not_active IP Right Cessation
-
2005
- 2005-11-30 WO PCT/RU2005/000612 patent/WO2006068537A1/ru active Application Filing
-
2006
- 2006-04-03 LT LT2006021A patent/LT5360B/lt unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1983000446A1 (en) * | 1981-07-28 | 1983-02-17 | SCHAUFFLER, Noël (deceased) | Method, devices and application for producing emulsions by ultra sonic whistles |
SU1333397A1 (ru) * | 1985-08-28 | 1987-08-30 | Научно-производственное объединение по созданию и выпуску средств автоматизации горных машин | Вихревой гидродинамический смеситель |
SU1327947A1 (ru) * | 1986-01-07 | 1987-08-07 | Дальневосточное высшее инженерное морское училище им.адм.Г.И.Невельского | Устройство дл получени эмульсии |
RU2232630C2 (ru) * | 2002-05-06 | 2004-07-20 | Селиванов Николай Иванович | Способ резонансного возбуждения жидкости и способ и устройство для нагревания жидкости |
Also Published As
Publication number | Publication date |
---|---|
LT5360B (lt) | 2006-09-25 |
LT2006021A (en) | 2006-08-25 |
RU2268772C1 (ru) | 2006-01-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2006068537A1 (fr) | Procede d'echange de chaleur-masse-energie et dispositif de mise en oeuvre de ce procede | |
US6361747B1 (en) | Reactor with acoustic cavitation | |
RU2553861C1 (ru) | Гидродинамический смеситель | |
EA009880B1 (ru) | Гидродинамический генератор акустических колебаний ультразвукового диапазона и способ создания акустических колебаний ультразвукового диапазона | |
US5760348A (en) | Noise attenuating apparatus | |
RU2344356C1 (ru) | Способ тепломассоэнергообмена и устройство для его осуществления | |
RU2310503C1 (ru) | Способ тепломассоэнергообмена и устройство для его осуществления | |
RU2462301C1 (ru) | Устройство для тепломассоэнергообмена | |
RU2478438C2 (ru) | Способ и комбинированное устройство для генерирования колебаний давления в потоке жидкости | |
RU2304261C1 (ru) | Способ тепломассоэнергообмена и устройство для его осуществления | |
RU2350856C1 (ru) | Способ тепломассоэнергообмена и устройство для его осуществления | |
RU2434674C1 (ru) | Устройство для физико-химической обработки жидкой среды | |
RU2618078C1 (ru) | Гидродинамический смеситель | |
RU134076U1 (ru) | Устройство для тепломассоэнергообмена | |
RU2787081C1 (ru) | Кавитационный теплогенератор | |
RU2658448C1 (ru) | Многоступенчатый кавитационный теплогенератор (варианты) | |
RU2363528C1 (ru) | Ультразвуковое устройство для обработки жидких сред | |
RU2354461C2 (ru) | Генератор кавитационных процессов | |
RU54816U1 (ru) | Устройство приготовления водно-мазутной эмульсии | |
RU2015749C1 (ru) | Гидродинамический генератор колебаний | |
RU2331465C1 (ru) | Устройство для тепломассоэнергообмена | |
RU85838U1 (ru) | Эжектор с газоструйными ультразвуковыми генераторами | |
US10233097B2 (en) | Liquid treatment apparatus with ring vortex processor and method of using same | |
RU2457896C1 (ru) | Способ акустической обработки многофазного продукта и устройство для его осуществления | |
RU2658057C1 (ru) | Устройство для тепломассоэнергообмена |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2006021 Country of ref document: LT Ref document number: LT2006021 Country of ref document: LT |
|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWP | Wipo information: published in national office |
Ref document number: LT2006021 Country of ref document: LT Ref document number: 2006021 Country of ref document: LT |
|
WWG | Wipo information: grant in national office |
Ref document number: 2006021 Country of ref document: LT |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 05844898 Country of ref document: EP Kind code of ref document: A1 |