RU2350856C1 - Способ тепломассоэнергообмена и устройство для его осуществления - Google Patents
Способ тепломассоэнергообмена и устройство для его осуществления Download PDFInfo
- Publication number
- RU2350856C1 RU2350856C1 RU2008100061/06A RU2008100061A RU2350856C1 RU 2350856 C1 RU2350856 C1 RU 2350856C1 RU 2008100061/06 A RU2008100061/06 A RU 2008100061/06A RU 2008100061 A RU2008100061 A RU 2008100061A RU 2350856 C1 RU2350856 C1 RU 2350856C1
- Authority
- RU
- Russia
- Prior art keywords
- vortex
- vortex tube
- axial
- tube
- ring
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/08—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
- B01J19/10—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing sonic or ultrasonic vibrations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/10—Mixing by creating a vortex flow, e.g. by tangential introduction of flow components
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F31/00—Mixers with shaking, oscillating, or vibrating mechanisms
- B01F31/80—Mixing by means of high-frequency vibrations above one kHz, e.g. ultrasonic vibrations
- B01F31/84—Mixing by means of high-frequency vibrations above one kHz, e.g. ultrasonic vibrations for material continuously moving through a tube, e.g. by deforming the tube
- B01F31/841—Mixing by means of high-frequency vibrations above one kHz, e.g. ultrasonic vibrations for material continuously moving through a tube, e.g. by deforming the tube with a vibrating element inside the tube
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/18—Stationary reactors having moving elements inside
- B01J19/1806—Stationary reactors having moving elements inside resulting in a turbulent flow of the reactants, such as in centrifugal-type reactors, or having a high Reynolds-number
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/18—Stationary reactors having moving elements inside
- B01J19/1887—Stationary reactors having moving elements inside forming a thin film
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
Изобретение относится к акустическим способам тепломассоэнергообмена жидких, газовых, газожидкостных смесей, взвесей и дисперсий. Предлагается способ и устройство тепломассоэнергообмена, при котором с помощью концентрично расположенных вихревых труб за счет деформационно-сдвигового взаимодействия, происходящего в зоне пересечения боковых поверхностных слоев, обеспечивают возбуждение двух и более вихревых продуктовых потоков. Внешняя вихревая труба выполнена длиннее внутренней вихревой трубы. По осевой внутренней вихревой трубы установлен первый осевой вытеснитель, образующий вихреформирующую кольцевую полость на выступающую из внутренней вихревой трубы часть, на которую установлен второй осевой вытеснитель, образующий регулируемый кольцевой зазор и с внешней вихревой трубой акустическую камеру. Напорные камеры по входу снабжены регулирующими вентилями. Использование изобретения позволит увеличить мощность и длительность акустического возбуждения и регулирование частотно-амплитудных характеристик акустического возбуждения. 2 н. и 1 з.п. ф-лы, 3 ил.
Description
Изобретение относится к акустическим (например, ультразвуковым) способам тепломассоэнергообмена жидких, газовых, газожидкостных смесей, взвесей и дисперсий в механо-физико-химических процессах превращения, кроме этого, таким способом воздействуют на воду с целью нагрева ее как теплоносителя.
Известны способы тепломассоэнергообмена при акустическом возбуждении проходных потоков продуктов путем передачи жидкости колебательной энергии с помощью источника механических колебаний, взаимодействующего с жидкостью. Используется этот способ в гидродинамических ультразвуковых излучателях с пластинчатыми и стержневыми резонансными колебательными устройствами, в вихревых и роторно-пульсационных аппаратах. Другим способом тепломассоэнергообмена при акустическом возбуждении может быть взаимодействие струйных потоков между собой путем передачи кинетической энергии одного потока другому. Этот способ используется в струйно-вихревых аппаратах (инжекторах, вихревых трубах), в которых происходит преобразование потенциальной энергии в кинетическую с последующим тепломассоэнергообменом взаимодействующих сред. В результате такого взаимодействия возникает резонанс и кавитационный эффект, в результате чего рвутся связи между молекулами и атомами, при восстановлении которых выделяется энергия в виде тепла. На этой основе работают теплогенераторы.
Известен способ резонансного возбуждения жидкости и устройство для нагревания жидкости [патент РФ 2232630, 7 B01J 19/10, опубликован 20.07.04], который основан на обработке жидкости источником механических колебаний на частоте из ряда основных частот, подчиняющихся определенной эмпирической зависимости. Способ нагревания жидкости основан на акустической обработке жидкости и включает ее подачу в полость вращающегося рабочего колеса и выпуск из полости через ряд выходных отверстий в периферийной кольцевой стенке рабочего колеса в кольцевую камеру, а затем в сборную камеру при соблюдении определенных соотношений между частотой вращения рабочего колеса, радиусом периферийной стенки и резонансной частотой. К недостаткам этого способа следует отнести сложность технической реализации, избирательность возбуждения, многофакторная зависимость резонансного возбуждения от геометрических, частотных параметров и ограниченная возможность использования этого способа для проведения других тепломассоэнергообменных процессов.
Наиболее близким по технической сущности является способ тепломассоэнергообмена и устройство для его осуществления [патент РФ 2268772, 7 B01J 19/10, 7 B01F 11/02, опубликован 27.01.2006], при котором возбуждение осуществляется с помощью сообщенных между собой вихревых труб, путем частичного соприкосновения встречно направленных поверхностно-наружных слоев двух и более вихревых потоков на глубину, обеспечивающую их акустическое возбуждение за счет деформационного взаимодействия, происходящего в зоне пересечения вихревых труб. Устройство для осуществления этого способа выполнено в виде двух и более вихревых труб, сообщенных между собой с помощью частичного пересечения их по образующим.
Однако этот способ и устройство имеют ряд недостатков. Во-первых, встречно направленные поверхностно-наружные слои двух и более вихревых потоков на глубину деформационно-сдвигового взаимодействия создают противоположно направленные центробежные силы, которые деформируют вихреобразование, в результате чего уменьшают время взаимодействия вихрей и эффективную полосу спектра амплитудно-частотных характеристик акустического возбуждения. Это приводит к тому, что в конце вихревых труб на выходе потоков резко падает интенсивность возбуждения. Во-вторых, регулирование акустического возбуждения при неизменных диаметрах вихревых труб и сечений тангенциальных сопел возможно только изменением напорно-расходных значений потока на входе в напорную камеру, а это приводит к резким изменениям гидродинамических режимов возбуждения, т.е. уменьшению диапазона регулирования интенсивности эффективного возбуждения и падению производительности. В-третьих, соприкосновение или трение наружных поверхностей вихревых потоков происходит только в зоне пересечения вихревых труб, которая определена геометрическими размерами. Такая схема взаимодействия вихревых потоков формирует точечные источники акустического возбуждения, что приводит к снижению мощности и длительности акустического вихревзаимодействия.
Техническим результатом, на который направлено предлагаемое изобретение, является увеличение мощности и длительности акустического возбуждения, а также регулирование частотно-амплитудных характеристик акустического возбуждения.
Технический результат достигается тем, что с помощью вихревых труб формируют два и более раздельных концентрических одинаково или противоположно направленных по вращению вихрекольцевых продуктовых потока и перемещают их по общей осевой в одном направлении. При этом внешний вихрекольцевой продуктовый поток перемещают на большую длину, чем внутренний вихрекольцевой продуктовый поток. Затем внутренний вихрекольцевой продуктовый поток с помощью осевого вытеснителя и кольцевого зазора между осевым вытеснителем и торцом внутренней вихревой трубы соприкасаются с внешним вихрекольцевым продуктовым потоком. Возбуждают объединенный продуктовый поток путем задания с помощью регулируемых вентилей разных линейных скоростей вихрекольцевых продуктовых потоков в вихревых трубах и выводят возбужденный продуктовый поток на использование.
Для осуществления настоящего способа предлагается устройство тепломассоэнергообмена, содержащее напорные камеры, сообщенные с вихревыми трубами тангенциальными пазами, при этом вихревые трубы установлены концентрично одна в другую с образованием раздельных вихреформирующих полостей. Внешняя вихревая труба выполнена длиннее внутренней вихревой трубы. По осевой внутренней вихревой трубы установлен первый осевой вытеснитель, который длиннее внутренней вихревой трубы и образует вихреформирующую кольцевую полость на выступающую из внутренней вихревой трубы часть, на которую установлен регулируемый по высоте второй осевой вытеснитель. Второй осевой вытеснитель образует регулируемый кольцевой зазор для истечения продукта из внутренней вихревой трубы в вихрекольцевую полость возбуждения и с внешней вихревой трубой акустическую камеру, которая заканчивается выходным патрубком. Напорные камеры по входу снабжены регулирующими вентилями.
Вихревые трубы могут быть выполнены цилиндрическими, коническими или цилиндроконическими в различных сочетаниях.
Предлагаемое техническое решение позволяет:
- увеличить мощность и длительность акустического взаимодействия вихревых потоков за счет увеличения зоны возбуждения по окружности;
- управлять кавитационно-акустическим возбуждением за счет разницы линейных скоростей внешнего и внутреннего вихрекольцевых потоков и изменения кольцевого зазора для истечения продукта из внутренней вихрекольцевой полости.
Предлагаемое техническое решение допускает два варианта исполнения:
- со встречно направленными вихрекольцевыми потоками, т.е. взаимно противоположными направлениями вращения;
- с одинаково направленными вихрекольцевыми потоками, т.е. вращающимися в одном направлении.
В случае встречно направленного вращения вихрекольцевых потоков происходят интенсивные сдвиговые деформации продукта за счет того, что поверхностно-активный слой внутреннего вихрекольцевого потока по всей окружности трется о внутреннюю поверхность наружного вихрекольцевого потока, при этом центробежные силы направлены в одну сторону, что способствует увеличению длительности возбуждения.
В случае однонаправленного вращения вихрекольцевых потоков происходит, за счет разницы линейных скоростей, более мягкая и более длительная деформация трущихся поверхностей вихрекольцевых потоков, что значительно увеличивает время возбуждения и дает возможность плавного регулирования устойчивого акустического возбуждения.
Эти и другие особенности настоящего изобретения будут понятны из нижеследующего описания примеров его осуществления со ссылками на прилагаемые чертежи.
Краткое описание чертежей, на которых условно представлено:
фиг.1 - схема взаимодействия встречно направленных вихревых потоков в зоне их соприкосновения;
фиг.2 - схема взаимодействия одинаково направленных вихревых потоков в зоне их соприкосновения (возбуждения);
фиг.3 - конструкция устройства.
На чертежах фиг.1 и фиг.2 условно изображены вращающиеся вихревые потоки: 1 - наружный поток, 2 - внутренний поток и 3 - граничная зона соприкосновения потоков. Граничная зона соприкосновения потоков 3 (наружного потока 1 и внутреннего потока 2) представляет собой окружность, по которой взаимодействуют наружная энергоактивная поверхность внутреннего потока 2 и внутренняя энергоактивная поверхность наружного потока 1. В результате сдвиговых деформаций в граничной зоне соприкосновения потоков 3 происходит акустическое возбуждение продукта. При этом схема по фиг.1 со встречно направленными вращениями вихрекольцевых потоков предпочтительна при деструкции, гомогенизации, диспергировании продуктов. Регулируя линейные скорости вихревых потоков, можно менять частотно-амплитудные характеристики и интенсивность возбуждения.
В случае использования схемы по фиг.2 очевидно, что при равенстве линейных скоростей вихревых потоков реализуется режим вихревой трубы, а при разнице их формируется возбуждение, при этом в случае кратности этих скоростей целому числу, возникает резонанс на низких частотах. Такой режим возбуждения эффективен при структурировании и активации продуктов при проведении физико-химических превращений.
Устройство для реализации этого способа тепломассоэнергообмена условно изображено на фиг.3. Оно состоит из наружного 4 и внутреннего 5 колпаков с входящими в них первой 6 и второй 7 магистралями, которые имеют первый 8 и второй 9 регулирующие вентили. Наружный 4 и внутренний 5 колпаки образуют раздельные первую 10 и вторую 11 расходно-напорные камеры. Первая расходно-напорная камера 10 раздельно сообщена первыми тангенциальными пазами 12 с полостью наружной вихревой трубы 13. Вторая расходно-напорная камера 11 раздельно сообщена вторыми тангенциальными пазами 14 с внутренней вихревой трубой 15, которая концентрично-соосно установлена внутри наружной вихревой трубы 13. Внутри внутренней вихревой трубы 15 установлен первый осевой вытеснитель 16, закрепленный на крышке 17. Наружная вихревая труба 13 и первый осевой вытеснитель 16 длиннее внутренней вихревой трубы 15. Наружная вихревая труба 13, внутренняя вихревая труба 15 и первый осевой вытеснитель 16 образуют первую 18 и вторую 19 вихрекольцевые полости. На выступающий из внутренней вихревой трубы 15 конец первого осевого вытеснителя 16 установлен второй осевой вытеснитель 20, диаметр которого больше диаметра первого осевого вытеснителя 16, за счет чего формируется вихрекольцевая зона возбуждения 21. Между выходным торцом внутренней вихревой трубы 15 и вторым осевым вытеснителем 20 образован кольцевой зазор 22 для истечения продукта из внутренней вихревой трубы 15 в зону возбуждения 21. На выходе наружной вихревой трубы 13 расположена акустическая камера 23, которая заканчивается выходным патрубком 24.
Работа устройства происходит следующим образом.
Продукт по первой 6 и второй 7 входным магистралям через первый 8 и второй 9 регулирующие вентили поступает под давлением в первую 10 и вторую 11 расходно-напорные камеры и через первые 12 и вторые 14 тангенциальные пазы поступает в первую 18 и вторую 19 вихрекольцевые полости, где создаются вихрекольцевые потоки, вращающиеся в разных или одинаковых направлениях и перемещающиеся по оси в одном направлении. На выходе из внутренней вихревой трубы 15 через кольцевой зазор 22 вихрекольцевые потоки соединяются в один поток по схеме фиг.1 или фиг.2, в зависимости от требования технологического процесса. Регулируя расходно-напорные параметры потоков первым 8 и вторым 9 регулирующими вентилями, создают разницу линейных скоростей вихревых потоков в первой 18 и второй 19 вихрекольцевых полостях, тем самым изменяя гидродинамический режим соприкосновения потоков, а следовательно, и частотно-амплитудные характеристики акустического возбуждения. Возбужденные потоки перемещаясь в вихрекольцевой зоне возбуждения 21 поступают в акустическую камеру 23 и выводятся через выходной патрубок 24 на использование.
Узлы и детали описанного устройства могут быть изготовлены на обычном оборудовании, что подтверждает промышленную применимость изобретения.
Таким образом, применение способа тепломассоэнергообмена и устройства для его осуществления позволяет увеличить мощность и длительность акустического взаимодействия вихревых потоков и управлять кавитационно-акустическим возбуждением продукта в ограниченном пространстве.
Claims (3)
1. Способ тепломассоэнергообмена путем соприкосновения боковых поверхностных слоев двух и более вихревых продуктовых потоков на глубину, обеспечивающую возбуждение за счет деформационно-сдвигового взаимодействия, происходящего в зоне их пересечения, отличающийся тем, что с помощью вихревых труб формируют два и более раздельных концентрических одинаково или противоположно направленных по вращению вихрекольцевых продуктовых потока, перемещают их по общей осевой в одном направлении, при этом внешний вихрекольцевой продуктовый поток перемещают на большую длину, чем внутренний вихрекольцевой продуктовый поток, затем внутренний вихрекольцевой продуктовый поток с помощью осевого вытеснителя и кольцевого зазора между ним и торцом внутренней вихревой трубы соприкасают с внешним вихрекольцевым продуктовым потоком, возбуждают объединенный продуктовый поток путем задания разных линейных скоростей вихрекольцевым продуктовым потокам в вихревых трубах с помощью регулируемых вентилей и выводят возбужденный продуктовый поток на использование.
2. Устройство тепломассоэнергообмена, содержащее напорные камеры, сообщенные с вихревыми трубами тангенциальными пазами, отличающееся тем, что две и более вихревые трубы установлены концентрично одна в другую с образованием раздельных вихреформирующих полостей, при этом внешняя вихревая труба выполнена длиннее внутренней вихревой трубы, по осевой внутренней вихревой трубы установлен первый осевой вытеснитель, образующий вихреформирующую кольцевую полость на выступающую из внутренней вихревой трубы часть, на которую установлен регулируемый по высоте второй осевой вытеснитель, образующий регулируемый кольцевой зазор и с внешней вихревой трубой акустическую камеру, напорные камеры по входу снабжены регулирующими вентилями.
3. Устройство по п.2, отличающееся тем, что вихревые трубы могут быть выполнены цилиндрическими, коническими, цилиндроконическими в различных сочетаниях.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2008100061/06A RU2350856C1 (ru) | 2008-01-10 | 2008-01-10 | Способ тепломассоэнергообмена и устройство для его осуществления |
PCT/RU2008/000791 WO2009091289A1 (fr) | 2008-01-10 | 2008-12-23 | Procédé d'échange de masse, d'énergie et de chaleur et dispositif pour sa mise en oeuvre |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2008100061/06A RU2350856C1 (ru) | 2008-01-10 | 2008-01-10 | Способ тепломассоэнергообмена и устройство для его осуществления |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2350856C1 true RU2350856C1 (ru) | 2009-03-27 |
Family
ID=40542945
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2008100061/06A RU2350856C1 (ru) | 2008-01-10 | 2008-01-10 | Способ тепломассоэнергообмена и устройство для его осуществления |
Country Status (2)
Country | Link |
---|---|
RU (1) | RU2350856C1 (ru) |
WO (1) | WO2009091289A1 (ru) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112413917B (zh) * | 2020-11-17 | 2022-04-08 | 南京航空航天大学 | 一种双层结构涡流管 |
CN113786786A (zh) * | 2021-06-25 | 2021-12-14 | 广东富腾能源科技有限公司 | 一种轻烃燃料气化用反应釜 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1140837A (en) * | 1966-02-22 | 1969-01-22 | Ashbrook Corp | Method and apparatus for mixing streams of gas |
RU2079067C1 (ru) * | 1994-08-25 | 1997-05-10 | Чуркин Рудольф Кузьмич | Вихревой термотрансформатор |
RU2106581C1 (ru) * | 1996-05-23 | 1998-03-10 | Акционерное общество закрытого типа "Грааль" | Способ температурной стратификации газа и устройство для его осуществления (труба леонтьева) |
RU2268772C1 (ru) * | 2004-12-21 | 2006-01-27 | Закрытое Акционерное Общество "Вектор" | Способ тепломассоэнергообмена и устройство для его осуществления |
RU2304261C1 (ru) * | 2006-03-23 | 2007-08-10 | Овченкова Оксана Анатольевна | Способ тепломассоэнергообмена и устройство для его осуществления |
-
2008
- 2008-01-10 RU RU2008100061/06A patent/RU2350856C1/ru not_active IP Right Cessation
- 2008-12-23 WO PCT/RU2008/000791 patent/WO2009091289A1/ru active Application Filing
Also Published As
Publication number | Publication date |
---|---|
WO2009091289A1 (fr) | 2009-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2006068537A1 (fr) | Procede d'echange de chaleur-masse-energie et dispositif de mise en oeuvre de ce procede | |
RU2350856C1 (ru) | Способ тепломассоэнергообмена и устройство для его осуществления | |
RU2344356C1 (ru) | Способ тепломассоэнергообмена и устройство для его осуществления | |
RU1773469C (ru) | Роторный аппарат | |
RU2310503C1 (ru) | Способ тепломассоэнергообмена и устройство для его осуществления | |
RU2304261C1 (ru) | Способ тепломассоэнергообмена и устройство для его осуществления | |
RU134076U1 (ru) | Устройство для тепломассоэнергообмена | |
RU2462301C1 (ru) | Устройство для тепломассоэнергообмена | |
RU2658448C1 (ru) | Многоступенчатый кавитационный теплогенератор (варианты) | |
RU54816U1 (ru) | Устройство приготовления водно-мазутной эмульсии | |
RU2331465C1 (ru) | Устройство для тепломассоэнергообмена | |
US10233097B2 (en) | Liquid treatment apparatus with ring vortex processor and method of using same | |
RU175742U1 (ru) | Гидроакустический аппарат с модуляцией потока | |
RU2228912C1 (ru) | Устройство для ультразвуковой обработки жидкости | |
RU2695193C1 (ru) | Роторно-импульсный аппарат и способ его эксплуатации | |
RU2429066C1 (ru) | Устройство для физико-химической обработки жидкой среды | |
RU2787081C1 (ru) | Кавитационный теплогенератор | |
RU2658057C1 (ru) | Устройство для тепломассоэнергообмена | |
RU2472075C1 (ru) | Гидродинамический кавитатор | |
RU2279018C1 (ru) | Вихревой теплогенератор гидросистемы | |
RU2434674C1 (ru) | Устройство для физико-химической обработки жидкой среды | |
RU2517986C2 (ru) | Устройство для нагрева жидкости | |
RU2600049C1 (ru) | Роторный гидродинамический аппарат | |
RU85838U1 (ru) | Эжектор с газоструйными ультразвуковыми генераторами | |
RU2149680C1 (ru) | Устройство для растворения, эмульгирования и диспергирования различных материалов |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20100111 |
|
NF4A | Reinstatement of patent |
Effective date: 20110320 |
|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20130111 |