WO2006067367A1 - Mecanisme de verrouillage polyvalent utilisant une commutation materielle active - Google Patents

Mecanisme de verrouillage polyvalent utilisant une commutation materielle active Download PDF

Info

Publication number
WO2006067367A1
WO2006067367A1 PCT/GB2005/004570 GB2005004570W WO2006067367A1 WO 2006067367 A1 WO2006067367 A1 WO 2006067367A1 GB 2005004570 W GB2005004570 W GB 2005004570W WO 2006067367 A1 WO2006067367 A1 WO 2006067367A1
Authority
WO
WIPO (PCT)
Prior art keywords
mechanism according
release member
locking mechanism
resilient portion
spring
Prior art date
Application number
PCT/GB2005/004570
Other languages
English (en)
Inventor
Simon Powell
Original Assignee
Pbt (Ip) Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pbt (Ip) Limited filed Critical Pbt (Ip) Limited
Publication of WO2006067367A1 publication Critical patent/WO2006067367A1/fr

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05BLOCKS; ACCESSORIES THEREFOR; HANDCUFFS
    • E05B47/00Operating or controlling locks or other fastening devices by electric or magnetic means
    • E05B47/06Controlling mechanically-operated bolts by electro-magnetically-operated detents
    • E05B47/0607Controlling mechanically-operated bolts by electro-magnetically-operated detents the detent moving pivotally or rotatively
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05BLOCKS; ACCESSORIES THEREFOR; HANDCUFFS
    • E05B47/00Operating or controlling locks or other fastening devices by electric or magnetic means
    • E05B47/0001Operating or controlling locks or other fastening devices by electric or magnetic means with electric actuators; Constructional features thereof
    • E05B47/0009Operating or controlling locks or other fastening devices by electric or magnetic means with electric actuators; Constructional features thereof with thermo-electric actuators, e.g. heated bimetals
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05BLOCKS; ACCESSORIES THEREFOR; HANDCUFFS
    • E05B47/00Operating or controlling locks or other fastening devices by electric or magnetic means
    • E05B47/0001Operating or controlling locks or other fastening devices by electric or magnetic means with electric actuators; Constructional features thereof
    • E05B47/0011Operating or controlling locks or other fastening devices by electric or magnetic means with electric actuators; Constructional features thereof with piezoelectric actuators
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05CBOLTS OR FASTENING DEVICES FOR WINGS, SPECIALLY FOR DOORS OR WINDOWS
    • E05C17/00Devices for holding wings open; Devices for limiting opening of wings or for holding wings open by a movable member extending between frame and wing; Braking devices, stops or buffers, combined therewith
    • E05C17/02Devices for holding wings open; Devices for limiting opening of wings or for holding wings open by a movable member extending between frame and wing; Braking devices, stops or buffers, combined therewith by mechanical means
    • E05C17/04Devices for holding wings open; Devices for limiting opening of wings or for holding wings open by a movable member extending between frame and wing; Braking devices, stops or buffers, combined therewith by mechanical means with a movable bar or equivalent member extending between frame and wing
    • E05C17/12Devices for holding wings open; Devices for limiting opening of wings or for holding wings open by a movable member extending between frame and wing; Braking devices, stops or buffers, combined therewith by mechanical means with a movable bar or equivalent member extending between frame and wing consisting of a single rod
    • E05C17/24Devices for holding wings open; Devices for limiting opening of wings or for holding wings open by a movable member extending between frame and wing; Braking devices, stops or buffers, combined therewith by mechanical means with a movable bar or equivalent member extending between frame and wing consisting of a single rod pivoted at one end, and with the other end running along a guide member
    • E05C17/28Devices for holding wings open; Devices for limiting opening of wings or for holding wings open by a movable member extending between frame and wing; Braking devices, stops or buffers, combined therewith by mechanical means with a movable bar or equivalent member extending between frame and wing consisting of a single rod pivoted at one end, and with the other end running along a guide member with braking, clamping or securing means at the connection to the guide member

Definitions

  • Locks and latches are made in a very large range of formats and sizes, but all ultimately want to retain or immobilise a component. It would be beneficial for there to be a very compact fundamental element that combines active material actuation with the single action of immobilising and releasing a part with the necessary accommodation of the changes that occur in such actuators over temperature variations and for such a design to have few or no pivots or other causes of cumulative tolerance build up.
  • the spring component has a high ratio of width to thickness such that the tensile strength of the spring is high, but the part lies flat against the moving parts and is highly compliant perpendicular to the relative motion of the main parts.
  • Fig. 1 shows a perspective view of a first part of a latch assembly
  • Fig.2 shows a perspective view of a second part of the latch assembly and arranged to inter-fit with the first part
  • Fig. 3 shows a plan view of the first and second parts in operative position and in a first condition
  • Fig. 4 shows a plan view similar to Fig.3 but with the parts in a second position
  • Fig 5 shows a plan view similar to Fig. 3 but with the parts influenced by a blocking plate so as to be in a third condition
  • Fig.6 shows a plan view similar to Fig. 5 but with the parts in a fourth condition
  • Fig. 7 shows a perspective view of an actuator device for use with the parts shown in Figs 5 and 6.
  • Fig. 8 shows a perspective view of the actuator device of Fig 7 in situ on the latch assembly
  • Fig. 9 shows a side view of the actuator device and latch assembly shown in Fig. 8;
  • Fig. 10 shows a perspective view from the back of the assembly shown in Fig. 9;
  • Fig. 11 shows a detailed perspective view of part of the assembly shown in
  • Fig. 12 shows one way of implementing use of the latch assembly; and Fig 13 shows a perspective view of a part of a further embodiment of the present invention.
  • a locking part 10 upon which is provided a mounting surface for a suitable actuator 20, locking blades 30 and a spline system 40 that interfaces with the travelling part 50 to ensure that the part can only move in one direction and this can be of any suitable form being shown in this case as a cruciform socket.
  • the travelling part 50 has a mating spline array 60 that interfaces with the locking part splines 40 to permit free motion in the direction of the arrow 55.
  • the travelling part 50 carries upon itself a locking spring 70 shown in Figs.
  • locking feature 72 has at least one locking feature 72.
  • the spring locking feature 72 is constructed such that when no external forces are acting upon it the feature will collide with and be retained by the locking feature 30 as the locking part 10 and travelling part 50 move apart. A small amount of free space exists before this engagement, and Figure 3 shows the assembly fully closed, whilst Figure 4 shows the assembly locked.
  • the width of the locking spring 70 is such that the spring extends beyond the locking blades 30 into a space below the actuator mount 20.
  • the actuator 15 is formed such that it is affixed to the mount 20 and its free end 17 moves towards the spring 70 upon activation.
  • the actuator 15 is fabricated from two blades 13, joined at the end of the first cantilever 12.
  • Each blade 13 comprises a controlled expansion alloy metal substrate and a piezo ceramic plate 14 bonded together with any appropriate process such that the piezo electric contraction of the piezo ceramic plate causes a curvature of the beam.
  • This technology is well known and does not require further explanation for the purposes of this invention.
  • a shunt plate 85 Affixed to the free end of the actuator 17 is a shunt plate 85 that has two symmetrical angles 86 upon its forward facing edges. This angle may be adjusted to take account of travel and friction, but must be such that when the assembly is at its most compressed, the spring locking feature 72 is above the face, and the face must completely cover the locking feature.
  • the actuator 15 is discharged and thus to its starting position and the travelling part 50 is urged back to the starting position, typically by means of a spring.
  • the inherent bias in the spring 70 causes the locking features 72 to realign over the locking blades 30 preventing repeated opening until the actuator 15 is once again energised.
  • the position of the actuator 15 is such that the effects of hysteresis across the temperature range of the lock do not permit the shunt plate 85 to remain in the actuating space 21 when the actuator 15 is discharged. This capability is achieved by the careful selection of the initial offset height 4.
  • Figs. 10 and 11 in order to facilitate incorporation of the device into latch systems there is provided on the face opposite the actuator an array of mounting features. On each of the main components there is a threaded mounting hole 90, and an aligning hole 91.
  • the threaded mounting hole 90 is used in conjunction with a shouldered bolt, permitting the parts to rotate on their mountings in the manner of a trunion.
  • FIG. 12 A typical trunion installation is shown in Figure 12, whereby the pivoted jaw 84 is shown closed and open, and the angular change of the system can be understood.
  • the device here described can be used to make latches that provide:
  • Push-Pull action such as on a drawer or cabinet Slam action, such as on a rim latch or mortice latch
  • Dead bolt action such as on a mortice lock or multiple point lock Sliding action, such as on a sliding door or hand bolt Snap in action, such as on a padlock
  • FIG 12 shows a further embodiment of the present invention with parts omitted for clarity.
  • the locking mechanism is housed in a container, only the end walls 101 and 102 of which are shown. The remainder of the container is not shown so as to expose the interior.
  • the travelling part is constituted by a rod 103 which extends through the end walls 101,102.
  • One or more spring members 105 are provided on the rod 103 by having one end 106 of the or each member 105 fixedly attached to the rod 103.
  • Each member 105 is generally flat plate provided with an elongate hole 107 and an inwardly directed finger 108.
  • the end wall 101 is formed with an axially extending portion 110 and a side wall of the portion 110 is provided with a projection 111 which is arranged to be received in the elongate hole 107 in the member 105.
  • 107 are sized and shaped such that there is limited axially movement permitted between the rod 103 with respect to end wall 101.
  • the end wall 101 is also provided with an electrically actuated device 115 which in this embodiment is in the form of a hairpin-shaped piezo-ceramic bender.
  • One end 116 of the bender is attached to the end wall 101 and the other end 117 of the hairpin is moveable depending on whether or not the bender is energized.
  • the end 117 contacts a slider element 120 so as to move the slider element 120 in a slideway towards and away from the rod 103 in the vicinity of the finger 108 of the member 105.
  • the slider 120 is in the path of movement of the finger 108 during limited axial relative movement between the projection 111 and the hole 107 such that the member 105 is bent away from the rod 103 sufficiently to release the member 105 from the projection 111 and permit extended movement of the member 105 and hence the rod 103 to which it is attached.
  • the bender 105 may be energized so as to be in the condition shown in Fig 12 in which case movement of the rod 103 is only possible when the bender 105 is energized and mechanical force is applied to the rod 103.
  • the rod need not extend completely from the end members 101 , 102 as shown.
  • This embodiment is useful if the container is filled with a damping fluid such as a water-excluding high dielectric silicone oil in view of the fact that despite movement of the rod 103, the parts located within the container remain a constant volume.
  • a damping fluid such as a water-excluding high dielectric silicone oil
  • two members 105 are shown, it is possible to utilise only a single member 105 in certain circumstances. All the above embodiments describe the use of a piezo-ceramic device for electrically controlling the latching member, it is possible to use alternative active materials such as shape memory, magnetic shape memory, electro-strictive and magneto-strictive devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Details Of Connecting Devices For Male And Female Coupling (AREA)

Abstract

L’invention concerne deux pièces engagées l’une avec l’autre (10, 50) dans un matériel adéquat, qui s’interfacent l’une avec l’autre de telle sorte qu’elles n’ont qu’un seul plan de mouvement relatif pour le dégagement et l’engagement. Une pièce est fixée à un élément non mobile et l’autre pièce est fixée à un élément mobile dans une configuration de verrou adéquate quelconque. Un ressort à lame ou un ressort en fils de construction adéquate est fixé à une pièce de telle sorte qu’il touche et est maintenu par un crochet, une saillie ou une fonctionnalité similaire sur l’autre pièce, et cette interférence empêche le mouvement relatif. Il existe une faible quantité de mouvement permis et l’insertion dans le trajet du composant à ressort d’un élément de guidage adéquat amènera le ressort à dévier de la taille de la fonctionnalité de crochet et donc le ressort ne pourra pas s’engager sur le crochet, ce qui permet un mouvement relatif sans restriction. Une utilisation préférée est dans le cadre d’une serrure de porte.
PCT/GB2005/004570 2004-12-20 2005-11-29 Mecanisme de verrouillage polyvalent utilisant une commutation materielle active WO2006067367A1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
GB0427875A GB0427875D0 (en) 2004-12-20 2004-12-20 Multiple purpose locking mechanism using active material switching
GB0427875.0 2004-12-20
GB0507187.3 2005-04-08
GB0507187A GB2421275A (en) 2004-12-20 2005-04-08 Multiple purpose locking mechanism using active material switching

Publications (1)

Publication Number Publication Date
WO2006067367A1 true WO2006067367A1 (fr) 2006-06-29

Family

ID=34090384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB2005/004570 WO2006067367A1 (fr) 2004-12-20 2005-11-29 Mecanisme de verrouillage polyvalent utilisant une commutation materielle active

Country Status (2)

Country Link
GB (2) GB0427875D0 (fr)
WO (1) WO2006067367A1 (fr)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0354191A2 (fr) * 1988-08-02 1990-02-07 BITRON S.p.A. Verrouillage de porte pour machine à laver ou sèche-linge
US5551187A (en) * 1993-03-10 1996-09-03 Brouwer; Nicolaas D. Release mechanism for a door spring
DE19901773A1 (de) * 1998-01-30 1999-08-05 Geze Grundstueck Beteiligung Feststellvorrichtung für eine mit einem Türschließer versehene Tür

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9908927D0 (en) * 1999-04-19 1999-06-16 Pbt Limited Electrically actuated mechanical release mechanism
GB2398826B (en) * 2003-02-28 2006-02-01 Pbt Electrically controllable latch mechanism
US20070001543A1 (en) * 2003-02-28 2007-01-04 Simon Powell Method and apparatus for electrically controlling the stroke of a mechanical member

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0354191A2 (fr) * 1988-08-02 1990-02-07 BITRON S.p.A. Verrouillage de porte pour machine à laver ou sèche-linge
US5551187A (en) * 1993-03-10 1996-09-03 Brouwer; Nicolaas D. Release mechanism for a door spring
DE19901773A1 (de) * 1998-01-30 1999-08-05 Geze Grundstueck Beteiligung Feststellvorrichtung für eine mit einem Türschließer versehene Tür

Also Published As

Publication number Publication date
GB0507187D0 (en) 2005-05-18
GB0427875D0 (en) 2005-01-19
GB2421275A (en) 2006-06-21

Similar Documents

Publication Publication Date Title
US6982515B2 (en) Dual position linear displacement micromechanism
JP5269884B2 (ja) ドア・ロック
US20070085349A1 (en) Inertia-actuated locking device
WO2005093191A1 (fr) Embrayage radial a fonctionnement piezo-ceramique
US5127691A (en) Strike with rectilinearly movable keeper locking member
RU2330149C2 (ru) Открыватель двери
US20210071457A1 (en) Door closer arrangement
EP1599888B1 (fr) Mecanisme de verrouillage electro-commande
US20070096860A1 (en) Compact MEMS thermal device and method of manufacture
WO2000036254A1 (fr) Serrure a pene demi-tour fonctionnant dans les deux sens
CN101882512B (zh) 用于中压熔丝开关的驱动机构及对应的中压熔丝开关
JP2010143326A (ja) パーキングロック装置
EP3805490B1 (fr) Unité de gâche électrique
WO2006067367A1 (fr) Mecanisme de verrouillage polyvalent utilisant une commutation materielle active
WO2011111799A1 (fr) Unité à ressort et mécanisme coulissant
GB2434398A (en) Locking mechanism for reciprocable member
WO2007049040A1 (fr) Mecanisme de verrouillage a faible consommation d'energie
WO2002023606A1 (fr) Micromecanisme de deplacement lineaire a double position
JP3994951B2 (ja) サーモスタット
AU2020202192A1 (en) Lock
JP2009024328A (ja) ドアストライク装置
US20060152017A1 (en) Reversing linkage
CN218676909U (zh) 安全锁定装置
US11454048B2 (en) Shape memory alloy locking apparatuses
CN108868390B (zh) 车辆用锁定装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05810298

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5810298

Country of ref document: EP