WO2006064721A1 - 低温活性型サチライシン - Google Patents

低温活性型サチライシン Download PDF

Info

Publication number
WO2006064721A1
WO2006064721A1 PCT/JP2005/022619 JP2005022619W WO2006064721A1 WO 2006064721 A1 WO2006064721 A1 WO 2006064721A1 JP 2005022619 W JP2005022619 W JP 2005022619W WO 2006064721 A1 WO2006064721 A1 WO 2006064721A1
Authority
WO
WIPO (PCT)
Prior art keywords
subtilisin
amino acid
mutant
activity
mutation
Prior art date
Application number
PCT/JP2005/022619
Other languages
English (en)
French (fr)
Inventor
Atsuo Tamura
Masanori Kawabata
Original Assignee
The New Industry Research Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The New Industry Research Organization filed Critical The New Industry Research Organization
Priority to JP2006548798A priority Critical patent/JPWO2006064721A1/ja
Publication of WO2006064721A1 publication Critical patent/WO2006064721A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/52Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from bacteria or Archaea
    • C12N9/54Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from bacteria or Archaea bacteria being Bacillus

Definitions

  • the present invention relates to a mutant enzyme capable of exhibiting an enzyme activity superior to that of a wild-type enzyme in a low-temperature environment and a method for producing the same.
  • Enzyme activity depends on temperature, pH, ionic strength, presence of metal ions, and the like.
  • temperature as in general chemical reactions, the reaction rate increases with increasing temperature, and because of the enzyme S protein, many enzymes usually have high activity around 37 ° C.
  • an enzyme that maintains its activity in a high temperature environment may be desired, and an enzyme that maintains its activity even at low temperatures is desired to save energy and maintain the environment. In some cases.
  • Non-Patent Document 1 alkaline serine protease derived from Bacillus amiloliquefaciens
  • Subtilisin is a very highly active microbial extracellular enzyme widely used industrially.
  • Subtilisin is a protein with a power of 275 amino acids, and many mutations related to enzyme stability have been reported (Non-patent Document 2).
  • Non-Patent Documents 3 and 4 the mutant subtilisin in which the glycine at position 131 is mutated is screened by the above-described random mutagenesis method and is active even in a low-temperature environment.
  • development of subtilisin having higher activity is desired.
  • Non-Patent Document 1 Proc. Natl. Acad. Sci. USA, 90, p.5618 (1993)
  • Non-Patent Document 2 Biochemica et Biophysica Acta 1543, p.203-222 (2000)
  • Non-Patent Document 3 Applied and Environmental Microbiology, p.492-495 (1998)
  • Non-Patent Document 4 Applied and Environmental Microbiology, p.1410-1415 (2000) Disclosure of Invention
  • An object of the present invention is to provide a mutant subtilisin that can exhibit an enzyme activity superior to that of a wild-type enzyme in a low-temperature environment.
  • the present inventors mutated wild-type subtilisin (wild-type enzyme) based on the amino acid sequence (SEQ ID NO: 2) based on the nucleotide sequence represented by SEQ ID NO: 1 by random mutation introduction.
  • the mutant subtilisin with the 205th amino acid mutated at the N end force has an activity 1.2 times higher than that of the wild-type enzyme in a certain environment selected from 0 to 30 ° C.
  • the present invention has been completed.
  • the present invention is as follows.
  • the N-terminal force of the amino acid sequence represented by SEQ ID NO: 2 in the sequence listing contains the 205th amino acid mutation and counts between the wild-type enzyme under a certain environment selected from 0 to 30 ° C. 1.
  • the mutation at the 205th amino acid is from the wild-type enzyme isoleucine, 2.
  • mutant subtilisin according to item 1 or 2 further comprising a mutation at the 107th amino acid in the amino acid sequence represented by SEQ ID NO: 2 in the sequence listing.
  • the 131st amino acid of the amino acid sequence represented by SEQ ID NO: 2 in the sequence listing includes a mutation from the wild-type enzyme glycine to ferulalanin, aspartic acid, tryptophan, methionine or arginine.
  • the mutant satylicin according to any one of 1 to 4.
  • a host cell comprising the expression vector according to item 7 above.
  • the mutated subtilisin in which at least the 205th amino acid of the present invention is mutated has an enzyme activity superior to that of wild-type subtilisin under a certain environment selected from 0 to 30 ° C.
  • the mutant subtilisin in which the 107th amino acid and the Zth or 131st amino acid are mutated in addition to the 205th amino acid mutation of the N-terminal force of the present invention is compared to the wild type subtilisin at 4 ° C.
  • Enzyme activity is about 4 times higher.
  • the enzyme activity is about 4.6 times higher than that of wild-type subtilisin at 25 ° C. It should be noted that the highest activity at 4 ° C and the mutant subtilisin is about 1.2 times higher than the wild type subtilisin at 25 ° C.
  • FIG. 1 is a diagram showing the structure of a subtilisin precursor gene and restriction enzyme sites.
  • FIG. 2 is a diagram showing an outline of the flow of mutation introduction.
  • FIG. 3 is a diagram showing the production of a reduced activity mutant (negative mutant).
  • FIG. 4 is a diagram showing the flow of production of random mutants. (Example 1)
  • FIG. 5a is a diagram showing a screening method (screening on a plate).
  • FIG. 5b is a diagram showing a screening method (membrane filter assembly).
  • FIG. 6 is a diagram showing the production of an activity-enhanced body (positive mutant) (when one amino acid mutation is started in a cage shape). (Example 1)
  • FIG. 7 shows the expression of mutant-type subtilisin in Bacillus subtilis. (Example 2)
  • FIG. 8 is a diagram showing the results of activity measurement (low temperature: 4 ° C.). (Example 3)
  • FIG. 9 is a graph showing the results of activity measurement (low temperature: 25 ° C.). (Example 3)
  • FIG. 10 is a diagram showing an activation temperature correlation. (Example 3)
  • the wild-type enzyme of the mutant subtilisin of the present invention is subtilisin BPN '.
  • Subtilisin BPN ' is synthesized as a precursor in Bacillus subtilis, secreted out of Bacillus subtilis by the action of a prepeptide, and further matured with the aid of a propeptide.
  • the structure of these corresponding genes and the restriction enzyme sites are shown (Fig. 1).
  • the gene region used in the experiment has a base force of 2050 bp, and the pre-peptide / propeptide / mature region of the wild-type subtilis gene consists of 1152 bp in total, and the mature region has a base force of 828 bp.
  • Mature subtilisin BPN ' is a protein consisting of 275 amino acids with the amino acid sequence shown in SEQ ID NO: 2 in the sequence listing.
  • the wild-type enzyme refers to the mature form of subtilisin BPN ′ (hereinafter also simply referred to as “subtilisin”).
  • the mutant subtilisin of the present invention comprises a mutation at the 205th amino acid from the N-terminal of the amino acid sequence represented by SEQ ID NO: 2, and is a wild-type enzyme under a constant environment of 0 to 30 ° C. It is characterized by having 1.2 times or more activity compared to For example, when measured in an environment of 4 ° C or 25 ° C, the activity is 1.2 times or more compared to the wild-type enzyme in a certain environment selected from 0 to 30 ° C. It is 1.2 times more active than type enzyme. In addition, the activity of 1.2 times or more compared to the wild-type enzyme means that the activity measured using a synthetic substrate capable of measuring the subtilisin activity is 1.2 times or more.
  • Sigma AAPF-pNA The case where it measures on the conditions normally performed using a reagent.
  • the activity of 1.2 times or more means a comparison with the enzyme activity of the wild-type enzyme measured under the same conditions, and those having activity of 2.5 times or more, more preferably 3 times or more.
  • Any subtilisin having such properties may contain mutations at other sites. Also, it can be a mutant subtilisin produced by any method.
  • the 205th amino acid mutation may be any amino acid mutation as long as it has 1.2 times or more activity compared to wild-type subtilisin under the above conditions. Is preferably a mutation from isoleucine to alanine, norin, or threonine
  • the mutant subtilisin of the present invention has any other site of mutation of the 205th amino acid as long as it has an activity 1.2 times or more that of wild type subtilisin under the above conditions.
  • the amino acid may be mutated. Particularly preferred are those in which the 107th and Zth or 131st amino acids are mutated. These mutations may be any amino acid mutation as long as the conditions of the present invention are satisfied.
  • the mutation at the 107th amino acid is preferably a mutation from wild-type subtilisin isoleucine to Norin.
  • the 131st amino acid is a mutation from glycine of wild-type subtilisin to ferulalanin, aspartic acid, tryptophan, methionine, or arginine.
  • the present invention also extends to DNAs encoding these mutant subtilisins.
  • the DNA encoding wild-type subtilisin in the present specification consists of the base sequence represented by SEQ ID NO: 1 in the sequence listing.
  • the DNA encoding the mutant subtilisin is not only a DNA that also has the base sequence ability associated with the mutation of the amino acid of the mutant subtilisin, but also has an activity 1.2 times or more compared to the wild type subtilisin under the above conditions. Any DNA that can constitute a mutant subtilisin is also included. Specifically, the following base sequence is also included.
  • the stringent conditions are the conditions of 60 ° C, 6 X SSC buffer, 5 X Denhardt's solution, lOOmM phosphate buffer, 50mMPIPES, and lOOmM phosphate buffer.
  • the mutant subtilisin of the present invention is a mutant subtilis produced by any method as described above.
  • Chilysin may be used.
  • it may be screened using a method of adapting subtilisin having an optimum temperature to room temperature at low temperature using an evolutionary molecular engineering technique.
  • a method of mutagenizing wild-type subtilisin by the random mutagenesis method and screening the mutant-type subtilisin is repeated twice.
  • an error prone PCR method (Non-patent Document 1) in which the DNA replication efficiency of DNA polymerase is artificially reduced can be used.
  • the wild-type subtilisin gene is mutagenized and the mutant is screened for negative mutants that are less active than the wild-type.
  • the second round is the activity obtained in the first round. Mutations can be introduced using the degenerate gene as a pupa type! ⁇ , and a positive mutant with a higher activity than the wild type can be selected and obtained by screening (Fig. 2). For example, a reduced activity library can be made to have mutations only in the subtilisin BPN ′ body, and an increased activity library can be made to have mutations in the propeptide and the subtilisin body (FIG. 2).
  • the mutant subtilisin of the present invention may be a recombinant mutant subtilisin obtained by expressing a mutant subtilisin DNA obtained by the above screening by a genetic engineering technique. Further, it may be a mutant subtilisin obtained by artificially mutating amino acids by protein engineering techniques. These methods for producing mutant subtilisins can be produced using known means.
  • the present invention extends to a mutant subtilisin expression vector obtained by expressing the mutant subtilisin of the present invention by genetic engineering techniques, and a host cell containing the expression vector.
  • M13 RV sense primer 5'-CAGGAAACAGCTATGAC-3 '(SEQ ID NO: 3)
  • M13 M4 antisense primer 5'-GTTTTCCCAGTCACGAC-3' (SEQ ID NO: 4)
  • the obtained PCR product was recovered by running on agarose gel electrophoresis (1% agarose) and purified with Wizard TM SV Gel PCR PCR-UP System. [0025] Thereafter, the amplified product obtained by purification was cleaved with restriction enzymes Sph I (Takara) and Bgl II (Toyobo), and again subjected to agarose gel electrophoresis (1% agarose). The gene fragment of mutant subtilisin was recovered. This DNA fragment is the body (mature region) of the subtilisin gene. Therefore, error-blown PCR for the production of reduced activity was performed only on the main body (mature region) of the subtilisin gene ( Figure 2).
  • the wild-type subtilisin plasmid was cleaved with restriction enzymes Sph 1 (Takara) and Bgl II (Toyobo), and the mutant subtilisin fragment obtained by the error blow PCR method was inserted.
  • the product was connected using Using the mutant satylicin plasmid library, Escherichia coli JM109 containing 3% skim milk plate (Skim milk solid medium containing ampicillin 50 / zg / mL (Difco), 1% ratatose, 1% yeast extract, 1% Agar) (hereinafter simply referred to as “skimmed milk plate”, unless otherwise specified, containing 50 g / mL ampicillin) (Appl. Microbiol.
  • the mutant subtilisin group obtained by the first mutagenesis also selected a mutant that did not form a clear zone or had a small clear zone formation and reduced activity (99 clones). Thereafter, further screening was performed using PVDF (Polyvinylidene difluoride) membrane filter (Immobilon TM) (hereinafter simply referred to as “filter”) and 3% skim milk plate (Fig. 5b). Bacteria cannot pass through the membrane, but subtilisin can pass through. First, the above filter was placed on a 3% skim milk plate, the cells were streaked, inoculated on the filter, and incubated at 37 ° C for 16 hours.
  • PVDF Polyvinylidene difluoride
  • Immobilon TM 3% skim milk plate
  • the filter was then removed, transferred to another 3% skimmed milk plate, and allowed to stand at 4 ° C for 1 week. Then through the filter A mutant with a clear zone with little slight force, that is, a clone that further reduced the activity, was selected as an activity-reduced variant (72 clones).
  • the DNA base sequence of the obtained clone was examined based on the dideoxy method using ABI PRISM TM. Based on the obtained DNA base sequence, it was classified into groups of 1, 2, and 3 or more amino acid mutations.
  • the second error-prone PCR was performed using the following solutions.
  • the average number of amino acid mutations was set to two.
  • the obtained PCR product was recovered by running on agarose gel electrophoresis (1% agarose) and purified by Wizard TM SV Gel and PCR Clean-UP System.
  • the amplified product obtained by purification is cleaved with restriction enzymes Sac I (Toyobo) and Hind III (Toyobo), and again run on agarose gel electrophoresis (1% agarose).
  • the treated mutant subtilisin gene fragment was recovered.
  • This DNA fragment is the propeptide of the subtilisin gene and the subtilisin body (mature region). Therefore, error-blown PCR for the production of elevated activity was performed only on the propeptide and the subtilisin body (mature region) ( Figure 2).
  • Mutant subtilisin gene fragment obtained by error-blown PCR treatment is inserted into propeptide and subtilisin body (mature region), and wild-type subtilisin PUC18 plasmid is used as restriction enzymes Sac I (Toyobo) and Hind III (Toyobo) ) was used as a vector, and ligated using a ligation kit as a mutant subtilisin plasmid library (“pU ⁇ S mutant library”). Escherichia coli JM109 was transformed on a 5% skim milk plate using the mutant subtilisin plasmid library.
  • the transformed E. coli was incubated at 37 ° C for 16 hours to form colonies, and further incubated at 4 ° C for 1 week to express the mutant subtilisin group (9696 clones). Due to skim milk degradation activity of subtilisin expressed in E. coli, On the rate, skim milk around the colony was decomposed to form a clear zone.
  • the clones (Group A, Group B, Group C, Group D) that formed a clear zone and increased activity (reconstructed) obtained by the second mutagenesis were screened for mutation.
  • Type subtilisin was obtained (439 clones).
  • clones in which a clear zone was seen over the filter were selected from the obtained clones (90 clones). Furthermore, these clones were screened with a 7% skim milk plate and a filter, and 11 clones in which a clear zone larger than the clear zone of wild-type subtilisin was obtained as a control, and were selected as mutants with increased activity. These 11 clones were examined for DNA base sequence using ABI PRISM TM.
  • Mutant subtilisin having the increased activity of Example 1 was expressed in E. coli, and it was confirmed whether or not these mutant subtilisins could be expressed in Bacillus subtilis.
  • the shuttle vector PHY300PLK Opn. J. Genet ”60, 235 (1985) for E. coli and Bacillus subtilis was used (FIG. 7).
  • Example 1 Eleven clones with increased activity in Example 1 were cultured in Terrific broth containing tetracycline, and then the plasmid was extracted by the miniprep method (Mag Extracter Kit: manufactured by Toyobo).
  • the extracted PHY300PLK plasmid vector (4.87kb) was cleaved with restriction enzymes Eco RI (Toyobo) and Hind III (Toyobo), and the recovered mutant subtilisin gene fragment (highly active subtilisin BPN 'gene) was used as an insert.
  • the PHY300PLK plasmid vector was cleaved with restriction enzymes Eco RI (Toyobo) and Hind III (Toyobo) and ligated using a ligation kit.
  • Escherichia coli JM109 was transformed with the plasmid, and a plasmid (“ ⁇ Sj t”) was obtained from the obtained colony force by a miniprep method.
  • Solution conditions for obtaining a Bacillus subtilis transformant are as follows (for ISample).
  • Trp tryptophan
  • Trp tryptophan
  • LB solution medium per liter: 10 g of polypeptone, 5 g of yeast extract, and 10 g of NaCl
  • 500 / z L of LB solution medium per liter: 10 g of polypeptone, 5 g of yeast extract, and 10 g of NaCl
  • the cells were collected by ultracentrifugation, seeded on a 5% skim milk plate containing tetracycline (12.5 ⁇ g / mL), and incubated at 37 ° C for 1 hour. Those that formed clear zones were selected as those that expressed subtilisin.
  • the DNA base sequence of the mutant subtilisin obtained in Example 2 was confirmed using ABI PRISM TM.
  • the reaction solution conditions are as follows.
  • each RV primer is a sense primer and the FW primer is an antisense primer.
  • Sub2-RV 5 -TTACGGCGTATCACAAATTA-3 '(SEQ ID NO: 6)
  • Sub3-RV 5 -GTTGATAAAGCCGTTGCATC-3 '(SEQ ID NO: 7)
  • the solution prepared by mixing (1) to (6) is heated at 96 ° C for 1 minute, and then subjected to PCR reaction for 30 cycles of 96 ° C for 10 seconds ⁇ 50 ° C for 5 seconds ⁇ 60 ° C for 4 minutes. It was. Thereafter, the reaction was carried out at 4 ° C for 10 minutes and at 15 degrees for 1 minute to complete the PCR reaction.
  • the obtained PCR product was purified by isopropanol precipitation. Thereafter, 20 L of TSR (Template Suppression Reagent) (Applied Biosystems) was added to the vacuum-dried PCR product, heated at 90 ° C. for 2 minutes, and rapidly cooled on ice.
  • TSR Temporal Suppression Reagent
  • the PCR product was subjected to ABI PRISM TM strength, and the DNA base sequence was determined. After determining the DNA base sequence, it was translated into an amino acid sequence based on the sequence. Each amino acid was numbered positively in the direction of the N-terminal force of mature subtilisin and the first amino acid force in the C-terminal direction. Prepeptides and propeptides were numbered negatively in the direction of the N-terminal amino acid force just before the mature subtilisin. For example, S221C indicates a mutant in which the 221st amino acid of mature type satachilysin (subtilisin main body) is replaced with serine Castine.
  • Tables 1 and 2 show the results of Tables 1 and 2.
  • Table 1 shows the increase in activity when a single amino acid mutation is in the cocoon shape.
  • the results of amino acid mutation sites revealed after DNA sequencing of mutants (6 clones selected as highly active by plate screening and expressed in Bacillus subtilis) are shown. As a result of measuring the activity of these 6 clones, the mutant whose activity was increased was C-19.
  • Table 2 shows the amino acid clarified after DNA sequencing of the mutants with increased activity when 2 amino acid mutations were made into the cocoon type (2 clones that were expressed in Bacillus subtilis and increased in activity as a result of activity measurement). The result of the mutation site is shown.
  • the activity of the obtained mutant subtilisin was measured at low temperature (4 ° C) and normal temperature (25 ° C).
  • a synthetic substrate N-succinyL L-Ala-L-Ala-L-Pro-L-Phe-p-nitroanilide (manufactured by SIGMA) was used.
  • a plate reader (manufactured by Molecular Devices), which is a visible ultraviolet absorptiometer, was used.
  • a Absorption change due to ⁇ -nitroaline (pNA) generated by hydrolysis of APF-pNA was followed at an absorption wavelength of 405 nm to determine the initial enzyme reaction rate.
  • ⁇ - ⁇ (25 ⁇ ⁇ , 50 ⁇ , 100 ⁇ , 200 ⁇ , 300 ⁇ total 5 points) is a buffer solution for measurement (0.1M Tris-HCl (pH 8.6), 2 mM non-aqueous CaCl, 0.0005% Tween 20 (10%) (PIERCE)) (J. BiotechnoL, 66, 157 (1998)
  • the buffer for measurement contains 0.1M Tris-HCl (pH 8.6) and 2mM anhydrous CaCl2.
  • the solution was prepared as a stock, and Tween 20 (10%) was added to the 96-well plate (SUMILON) for the purpose of preventing nonspecific adsorption of the protein. Sachiraishi The measurement buffer was used for all dilutions of the solution and AAPF-pNA solution.
  • SSI Streptomyces subtilisin inhibitor
  • “High activity” means that the specific activity of k / K is high. That is, k is large
  • mutant C-19 increased activity 1.86 times at 4 ° C and 1.86 times at 25 ° C compared to wild type.
  • the amino acid mutation of this mutant was I205T.
  • mutant E-2 and mutant E-8 showed a 1.27-fold increase in activity at 4 ° C and a 1.48-fold increase at 25 ° C compared to the wild type. . Both amino acid mutations of this mutant were I 107V.
  • Each UPPER primer is a sense primer and the LOWER primer is an antisense primer.
  • the random replacement primer SEQ ID NO: 25
  • NNS N: A, T, G, C! Random replacement was made to occur as C, G !, and the displacement force.With this primer, random replacement was successful.
  • Mutants I205G, I205A, I205V were prepared individually by preparing primers each containing one amino acid mutation.
  • SUB- I107V- UPPER 5'- AGCTGGGTCATTAACGGAATC- 3 '(SEQ ID NO: 11) SUB- I107V- LOWER: 5,-GTTAATGACCCAGCTGTATTG- 3' (SEQ ID NO: 12) SUB-I107A-UPPER: 5'-AGCTGGGCCATTAACGGAATC-3 '( SEQ ID NO: 13) SUB- I107A- LOWER: 5,-GTTAATGGCCCAGCTGTATTG-3 '(SEQ ID NO: 14) SUB- G 131 F-UPPER: 5 and CCTTCTTTTTCTGCTGCTTTA- 3' (SEQ ID NO: 15) SUB— G 131 F— LOWER: 5 AGCAGAAAAAGAAGGTCCGCC— 3 (SEQ ID NO: 16) SUB-I205G-UPPER: 5′-GTATCTGGCCAAAGCACGCTT-3 ′ (SEQ ID NO: 17) SUB— I205G— LOWER:
  • the solution conditions for the first PCR reaction are as follows.
  • the amount of 90 ng of wild type subtilisin gene was defined as X / z.
  • the obtained PCR products (A chain and B chain) were collected by running on agarose gel electrophoresis (1% agarose) and purified by Wizard TM SV Gel and PCR Clean-UP System.
  • the mixture was heated at 94 ° C for 1 minute, and subjected to 25-cycle PCR reaction at 94 ° C for 30 seconds at '55 ° C for 30 seconds at '72 ° C for 2 minutes. Thereafter, the reaction was performed at 72 ° C for 10 minutes and at 15 ° C for 10 seconds to complete the PCR reaction.
  • the obtained PCR product was used as an insert, and the subsequent operations were performed in the same manner as in the subtilisin expression column.
  • DNA base sequence was examined by ABI PRISM TM and it was confirmed that 1 amino acid mutation was introduced.
  • the mutants whose activity increased compared to the wild type were I205A, I205V, and I205S.
  • the increase in activity was 1.24 times, 1.20 times, 1.12 times, and 1.26 times, 1.22 times, and 1.08 times at 25 ° C, respectively.
  • I205G, I205H, I205P, and I205D the amount of subtilisin expression was small and the activity could not be measured well.
  • This mutant was extremely small compared to the wild type that attempted to form a clear zone using skim milk plates! Based on this, it was considered that I205G, I205H, I205P, and I205D mutants were less active than the wild type.
  • I107G and I107A were produced focusing on the 107th site.
  • I107G did not show any clear zone formation on the skim milk plate and could not measure the activity.
  • I107A although clear zone formation was slightly observed on the skim milk plate, the activity was markedly lower than that of the wild type when the activity was measured. Based on the above results, I205T and I107V obtained by random mutation were the best among the single amino acid substitutions produced this time.
  • a G131F / I205T double mutant was prepared by combining G131F with ⁇ 205.
  • G131F was combined with ⁇ 205 ⁇ and I205V, which have more than 1.2 times the activity obtained when introducing one amino acid mutation.
  • Double mutants of G131F / I205A and G131F / I205V were prepared.
  • I107V / I205T double mutant was prepared by paying attention to the two amino acid mutations of I205T and I107V (the pU ⁇ S of I205T obtained by random mutagenesis was used as a saddle type, and I107V was converted into one amino acid site. (Made by designated mutagenesis).
  • the solution conditions for the first PCR reaction are as follows.
  • the PCR reaction was carried out in the same manner as when the single amino acid mutation was introduced.
  • LA Taq TM (5U / ⁇ L) (Mg 2+ free) (manufactured by Takara) 0.5 ⁇ L Note) *** The amount of wild-type subtilisin gene at 90 ng was defined as X / z.
  • G131F / I205A, G131F / I205V, G131F / I205T, and I107V / I205T double mutants are 2.92 times, 2.38 times, 3.39 times, 2.73 times, and 2.66 times at 25 ° C, respectively, at 4 ° C compared to the wild type. 2.59-fold, 3.61-fold, and 2.46-fold increased activity. It was confirmed that G131F and I205T were the most optimal combination of amino acid mutations that were active alone. In addition, it was considered that the 131st and 205th sites independently contributed to increased activity.
  • the G131F / I205A, G131 F / I205V, and G131F / I205T pUAS obtained by the introduction of the 2-amino acid mutation were used as the ⁇ type to introduce the I107V 1-amino acid mutation, and the 3-amino acid mutation mutation.
  • the bodies I107V / G131F / I205A, I107V / G131F / I205V, and I107V / G131F / I205T were prepared.
  • the triple mutants of I107V / G131F / I205A, I107V / G131F / I205V, and I107V / G131F / I205T are 3.27 times, 2.99 times, 3.94 times, 2.95 times and 3.51 times at 25 ° C compared to the wild type, respectively.
  • the activity increased by 4.57 times.
  • I107V, G131F, I205T and amino with good activity alone The combination power of acid mutations was confirmed to be the best.
  • the 107th, 131st, and 205th sites were considered to contribute to the increase in activity independently.
  • the mutant whose activity increased more than the wild type at 4 ° C and 25 ° C was I107V / G131F / I205T. It was also confirmed that there was a difference in temperature dependence (Table 5, Fig. 10).
  • the mutant subtilisin of the present invention has an enzyme activity superior to that of wild-type subtilisin under a certain environment selected from 0 to 30 ° C.
  • the mutant subtilisin is effectively used in fields such as foods, detergents, and tanning. If it is not necessary to maintain the environment of the enzyme reaction above room temperature, it has excellent effects in terms of energy saving and environmental!
  • food processing may be preferably performed in a low-temperature environment, but it can also be used effectively in such cases.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

 本発明は、0~30°Cから選択される一定の環境下で、野生型酵素に比べて優れた酵素活性を発揮しうる変異型サチライシン(subtilisin)を提供することを課題とする。かかる課題は、配列番号1に表されたアミノ酸配列からなる野生型サチライシン(野生型酵素)の、N末から数えて第205番目のアミノ酸が少なくとも変異した変異型サチライシンにより、解決される。さらに、第107番目及び/又は第131番目のアミノ酸が改変された変異型サチライシンも優れた酵素活性を有する。

Description

明 細 書
低温活性型サチライシン
技術分野
[0001] 本発明は、低温環境下で野生型酵素に比べて優れた酵素活性を発揮しうる変異 型酵素及びその製造方法に関する。
[0002] 本出願は、参照によりここに援用されるところの、日本特許出願特願 2004— 3593 36号からの優先権を請求する。
背景技術
[0003] 酵素活性は、温度、 pH、イオン強度、金属イオンの存在等に依存する。特に温度に ついては、一般の化学反応と同様、温度を上げれば反応速度が増すこと、及び酵素 力 Sタンパク質であることにより、通常 37°C付近で高活性を有する酵素が多い。しかし、 酵素が使用される環境によって、高温度環境下で活性を維持する酵素が望まれる場 合もあるし、またエネルギー節減や環境保持のために、低温でも活性を維持する酵 素が望まれる場合もある。
[0004] 特定の生物活性を有するタンパク質は、生物の属間で多様性を示し、し力も同種生 物間においても差異が存在することが知られている。この多様性は、ゲノムレベルで は一層顕著である。同じ生物活性を有するタンパク質をコードする遺伝子間につい て生物間でみられる多様性は、ある環境下で生物が生存してゆく上で、進化の過程 にお ヽて遺伝子の最適化を反映して ヽるものと考えられる。
[0005] しかし、天然の生物活性分子は、人工的な環境、特に工業目的で使用される環境 に対しては必ずしも最適化されて!/、るとは 、えな 、。 目的とする使用状況に対して最 適な生物活性を有するタンパク質を同定することは、工業上興味深い。例えば、洗剤 中に用いる酵素の技術分野では、天然のタンパク質分解酵素、脂質分解酵素、アミ ラーゼ及びセルラーゼ等の酵素を、人工的な環境下で使用しやすいように有意に改 良され、実用化されている。
[0006] 遺伝的多様性^ ilj作する多数の方法、例えば、部位特異的又はランダム変異導入 による方法が、文献及び特許出願において提唱及び記載されている(非特許文献 1) [0007] サチライシン(subtilisin:枯草菌 Bacillus amiloliquefaciens由来のアルカリセリンプロ テアーゼ)は、工業的にも広く利用されている非常に高活性な微生物菌体外酵素で ある。サチライシンは 275個のアミノ酸力もなるタンパク質であり、酵素の安定性に関 連する変異については数多く報告されている (非特許文献 2)。また、上述のランダム 変異導入による方法によりスクリーニングを行い、第 131番目のグリシンが変異した変 異型サチライシンが、低温環境下でも活性を有することが既に開示されている (非特 許文献 3、 4)。し力しながら、さらに高活性を有するサチライシンの開発が望まれてい る。
[0008] 非特許文献 1 : Proc. Natl. Acad. Sci. USA, 90, p.5618 (1993)
非特許文献 2 : Biochemica et Biophysica Acta 1543, p.203-222 (2000)
非特許文献 3 : Applied and Enviromental Microbiology, p.492- 495 (1998)
非特許文献 4 : Applied and Enviromental Microbiology, p.1410- 1415 (2000) 発明の開示
発明が解決しょうとする課題
[0009] 本発明は、低温環境下で野生型酵素に比べて優れた酵素活性を発揮しうる変異 型サチライシン (subtilisin)を提供することを課題とする。
課題を解決するための手段
[0010] 本発明者らは、鋭意研究を重ねた結果、配列番号 1に表された塩基配列に基づく アミノ酸配列 (配列番号 2)力 なる野生型サチライシン (野生型酵素)をランダム変異 導入により変異させたところ、 N末力 数えて第 205番目のアミノ酸が変異した変異型 サチライシンが、 0〜30°Cから選択される一定の環境下で野生型酵素と比較して 1.2 倍以上の活性を有することを見出し、本発明を完成した。
[0011] すなわち、本発明は以下のとおりである。
1.配列表の配列番号 2に表されたアミノ酸配列の N末力 数えて第 205番目のァミノ 酸の変異を含み、 0〜30°Cから選択される一定の環境下で、野生型酵素と比較して 1. 2倍以上の活性を有することを特徴とする変異型サチライシン。
2.前記第 205番目のアミノ酸の変異が、野生型酵素のイソロイシンから、ァラニン、バ リン、又はトレォニンのいずれかへの変異である前項 1に記載の変異型サチライシン
3.さらに、配列表の配列番号 2に表されたアミノ酸配列の第 107番目のアミノ酸の変 異を含む前項 1又は 2に記載の変異型サチライシン。
4.前記第 107番目のアミノ酸の変異力 野生型酵素のイソロイシンから、パリンへの 変異である前項 3に記載の変異型サチライシン。
5.さらに、配列表の配列番号 2に表されたアミノ酸配列の第 131番目のアミノ酸が、 野生型酵素のグリシンから、フエ-ルァラニン、ァスパラギン酸、トリプトファン、メチォ ニン又はアルギニンへの変異を含む前項 1〜4のいずれか一に記載の変異型サチラ イシン。
6.前項 1〜5のいずれか一に記載の変異型サチライシンをコードする DNA。
7.前項 6に記載の DNAを含有する変異型組換えサチライシン発現ベクター。
8.前項 7に記載の発現ベクターを含む宿主細胞。
発明の効果
[0012] 本発明の少なくとも第 205番目のアミノ酸が変異した変異型サチライシンは、 0〜30 °Cから選択される一定の環境下で、野生型サチライシンと比較して優れた酵素活性 を有する。特に、本発明の N末力 数えて第 205番目のアミノ酸の変異の他、第 107番 目及び Z又は第 131番目のアミノ酸が変異した変異型サチライシンは、 4°Cでの野生 型サチライシンに比べて 4倍程度高い酵素活性を有する。又、 25°Cでの野生型サチ ライシンに比べて 4.6倍程度高い酵素活性を有する。特筆すべきことは、 4°Cで 1番活 性の高 、変異型サチライシンは、 25°Cでの野生型サチライシンよりも 1.2倍程度高 ヽ 酵素活性を有する点である。
図面の簡単な説明
[0013] [図 1]サチライシン前駆体遺伝子の構成と制限酵素部位を示す図である。
[図 2]変異導入の流れの概略を示す図である。
[図 3]活性低下体 (negative mutant)の作製を示す図である。
[図 4]ランダム変異体の作製の流れを示す図である。(実施例 1)
[図 5a]スクリーニングの方法(プレート上でのスクリーニング)を示す図である。 [図 5b]スクリーニングの方法 (メンブレンフィルターアツセィ)を示す図である。
[図 6]活性上昇体 (positive mutant)の作製 (アミノ酸変異 1個を铸型にして出発した場 合)を示す図である。(実施例 1)
[図 7]変異型サチライシンの枯草菌での発現を示す図である。(実施例 2)
[図 8]活性測定の結果 (低温: 4°C)を示す図である。(実施例 3)
[図 9]活性測定の結果 (低温: 25°C)を示す図である。(実施例 3)
[図 10]活性温度相関を示す図である。(実施例 3)
発明を実施するための最良の形態
[0014] 本発明の変異型サチライシンの野生型酵素はサチライシン (subtilisin) BPN'である 。サチライシン BPN'は、枯草菌体内で前駆体として合成され、プレペプチドの働きに より枯草菌体外へ分泌され、さらにプロペプチドの介助により成熟型となる。これら〖こ 対応する遺伝子の構成と制限酵素部位を示す (図 1)。実験に用いた遺伝子領域は 2 050bpの塩基力 なり、野生型サチライシ遺伝子のプレペプチド ·プロペプチド ·成熟 領域 (mature)は合わせて 1152bpの塩基からなり、成熟領域は 828bpの塩基力 なる。 成熟型サチライシン BPN'は、配列表の配列番号 2に表されるアミノ酸配列力 なり、 アミノ酸数が 275個よりなるタンパク質である。本明細書において、野生型酵素とは該 成熟型のサチライシン BPN' (以下、単に「サチライシン」ともいう。)をいう。
[0015] 本発明の変異型サチライシンは、配列番号 2に表されたアミノ酸配列の N末から数 えて第 205番目のアミノ酸の変異を含み、 0〜30°Cの一定の環境下で野生型酵素と比 較して 1.2倍以上の活性を有することを特徴とする。 0〜30°Cから選択される一定の環 境下で野生型酵素と比較して 1.2倍以上の活性を有するとは、例えば 4°C又は 25°Cの 環境下で測定した場合に、野生型酵素と比較して 1.2倍以上の活性を有することであ る。また、野生型酵素と比較して 1.2倍以上の活性とは、サチライシン活性を測定しう る合成基質を用いて測定した活性が 1.2倍以上であることを 、 、、例えばシグマ社の AAPF-pNA試薬を用いて通常行われる条件にて測定した場合をいう。また、 1.2倍以 上の活性とは、同じ条件下で測定した場合の野生型酵素の酵素活性と比較した場 合をいい、 2.5倍以上、より好適には 3倍以上の活性を有するものをいう。このような性 質を有するサチライシンであれば、その他の部位で変異を含むものであっても良 、し 、またどのような製法で生産された変異型サチライシンであっても良 、。
[0016] 前記第 205番目のアミノ酸の変異は、上記条件下で野生型サチライシンと比較して 1 .2倍以上の活性を有するものであれば、どのようなアミノ酸の変異でも良いが、具体 的にはイソロイシンから、ァラニン、ノ リン、トレオニンへの変異であるのが好適である
[0017] さらに、本発明の変異型サチライシンは、上記条件下で野生型サチライシンと比較 して 1.2倍以上の活性を有するものであれば、前記第 205番目のアミノ酸の変異の他 のいずれの部位でアミノ酸が変異しているものであっても良い。特に第 107番目及び Z又は第 131番目のアミノ酸が変異しているものが好適である。本発明の条件を満た すものであれば、これらの変異は、どのようなアミノ酸の変異であっても良い。具体的 には、第 107番目のアミノ酸の変異力 野生型サチライシンのイソロイシンから、ノ リン への変異であるのが好適である。また、第 131番目のアミノ酸が、野生型サチライシン のグリシンから、フエ-ルァラニン、ァスパラギン酸、トリプトファン、メチォニン又はァ ルギニンへの変異であるのが好適である。
[0018] 本発明は、これらの変異型サチライシンをコードする DNAにも及ぶ。本明細書にお ける野生型サチライシンをコードする DNAは、配列表の配列番号 1に表された塩基配 列からなる。本発明において、変異型サチライシンをコードする DNAとは、上記変異 型サチライシンのアミノ酸の変異に伴う塩基配列力もなる DNAのほか、上記条件下で 野生型サチライシンと比較して 1.2倍以上の活性を有する変異型サチライシンを構成 しうるあらゆる DNAも包含される。具体的には、次の塩基配列も含まれる。
1)上記変異型サチライシンのアミノ酸の変異に伴う塩基配列とストリンジヱントな条件 下でノ、イブリダイスし、かつ野生型サチライシンと比較して 1.2倍以上の活性を有する タンパク質をコードする DNA。ここにおいてストリンジェントな条件とは、 60°C、 6 X SSC 緩衝液、 5 Xデンハート溶液、 lOOmMリン酸緩衝液、 50mMPIPES、 lOOmMリン酸緩衝 液の条件をいう。
2)遺伝子コドン縮重による塩基の相違を含み、上記変異型サチライシン又は上記 1) に示されるタンパク質をコードする DNA。
[0019] 本発明の変異型サチライシンは、上述の如くどのような製法で生産された変異型サ チライシンであっても良い。例えば、進化分子工学的手法を用いて、常温に最適温 度を持つサチライシンを低温適応化させる方法を用いて、スクリーニングしたものであ つても良い。例えば、ランダム変異導入法により野生型サチライシンに変異導入し、 変異型サチライシンをスクリーニングする工程を 2回繰り返す方法が挙げられる。ラン ダム変異導入法として、 DNAポリメラーゼの DNA複製効率を人為的に低下させたェ ラープローン (error prone) PCR法 (非特許文献 1)を用いることができる。例えば、 1 回目は野生型のサチライシン遺伝子を铸型として変異導入を行い、野生型よりも活 性の低い活性低下変異体 (negative mutant)をスクリーニングし、 2回目は、 1回目に 得られた活性低下体遺伝子を铸型として変異導入を行!ヽ、野生型よりも活性の高 ヽ 活性上昇変異体 (positive mutant)をスクリーニングにより選択し、得ることができる(図 2)。例えば、活性低下ライブラリ一は、サチライシン BPN'本体のみに変異を有するよ う作製し、活性上昇ライブラリ一は、プロペプチドとサチライシン本体に変異を有する よう作製することができる(図 2)。
本発明の変異型サチライシンは、上記スクリーニングにより得られた変異型サチライ シンの DNAを遺伝子工学的手法により発現させて得た組換変異型サチライシンであ つても良い。さらに、タンパク質工学の手法により、人為的にアミノ酸を変異させて得 た変異型サチライシンであっても良い。これらの変異型サチライシンの製造方法は、 公知の手段を用いて生産することができる。
[0020] さらに本発明は、本発明の変異型サチライシンを遺伝子工学的手法により発現させ て得る場合の変異型サチライシン発現ベクター及び該発現ベクターを含む宿主細胞 にも及ぶ。
実施例
[0021] 以下に、本発明の理解をより確実にするために、変異型サチライシンのスクリーニン グ方法及びタンパク質工学的手法による作製方法を実施例を示して説明するが、本 発明はこれら実施例に何ら限定されるものではな 、ことは 、うまでもな!/、。
[0022] (実施例 1)変異型サチライシンのスクリーニング
1)活性低下変異体 (negative mutant)の獲得(図 3)
転写制御配列 · 30残基のプレペプチド · 77残基のプロペプチド · 275残基の成熟領 域を含む野生型サチライシン遺伝子を PUC18のマルチクローユングサイトに組み込 んだものを野生型サチライシンプラスミド (pU Δ S)とした。
野生型サチライシン遺伝子内に制限酵素サイトが含まれているもの (J. Biochem., 1
14, 906 (1993)を改変)を 1回目の変異導入 (エラーブローン PCR)を行う際の铸型とし た。铸型プラスミドの抽出は、 Mag Extracter Kit (東洋紡社製)を用いた。
PCR用プライマーは以下を用 ヽた。
M13 RVセンスプライマー : 5'- CAGGAAACAGCTATGAC- 3' (配列番号 3) M13 M4アンチセンスプライマー: 5'- GTTTTCCCAGTCACGAC- 3' (配列番号 4) [0023] 1回目のエラープローン PCRは次の溶液条件で行った。
(1) 10 X LA PCRバッファー 2 (Mg2+フリー)(タカラ製) lO ^ L
(2) 25mM MgCl (タカラ製) 30 ;z L
2
(3) 5mM MnCl l μ L
2
(4) lOOmM dATP, dGTP 0.2 μ L
(5) lOOmM dTTP, dCTP 1 μ L
(6) 20 M M13 RVセンスプライマー(配列番号 3) 2.5 μ L
(7) 20 M M13 M4アンチセンスプライマー(配列番号 4) 2.5 μ L
(8) 25η§/ /^野生型サチライシン遺伝子 (pU A S) 0A μ L
(9) Nuclease— Free Water (プロメガ社製) 51 ^ L
(10) LA Taq™ (5U/ μ L)(Mg2+フリー)(タカラ製) 1 μ L
(1ト (10) 計 100.8 /z L
[0024] 上記 (1)〜(9)を混合した溶液を 90°Cで 4分間加熱後、(10)を 1 μ L添加し、 94°Cで 30 秒間 · 55°Cで 30秒間 · 72°Cで 2分間を 40サイクル PCR反応させた。その後、 72°Cで 10 分間、 15°Cで 10分間反応を行い、 PCR反応を終了させた。本明細書の実施例では、 PCR反応は PROGRAM TEMP CONTROL SYSTEM PC701 (ASTEC社製)を用いて 行った。
上記条件により、平均アミノ酸変異数が 1.6個になるように設定した。得られた PCR 産物をァガロースゲル電気泳動(1%ァガロース)に流して回収し、 Wizard™ SV Gel an d PCR Clean- UP Systemで精製した。 [0025] その後、精製して得た増幅産物を、制限酵素 Sph I (タカラ製)及び Bgl II (東洋紡社 製)で切断し、再びァガロースゲル電気泳動(1%ァガロース)に流し、制限酵素処理 後の変異型サチライシンの遺伝子断片を回収した。この DNA断片はサチライシン遺 伝子の本体 (成熟領域)である。ゆえに、活性低下体作製の際のエラーブローン PCR は、サチライシン遺伝子の本体 (成熟領域)のみにかけたことになる(図 2)。
[0026] 2)活性低下体のスクリーニング(図 3)
野生型サチライシンプラスミドを制限酵素 Sph 1 (タカラ製)及び Bgl II (東洋紡製)で 切断し、上記エラーブローン PCR法により得られた変異サチライシンの断片を挿入し 、ライゲーシヨンキット (二ツボンジーン社製)を用いて連結させた。その変異型サチラ イシンプラスミドライブラリーを用いて、大腸菌 JM109を 3%スキムミルクプレート(アンピ シリン 50 /z g/mL含有のスキムミルク固体培地 (Difco社製)、 1%ラタトース、 1%酵母抽出 液、 1%寒天)(以下単に「スキムミルクプレート」といい、特記しない場合は、アンピシリ ン 50 g/mLを含む)(Appl. Microbiol. BiotechnoL, 41, 239 (1994))上で形質転換さ せた。大腸菌の培養は、 Terrific broth (A液 900ml:ポリペプトン 12g,酵母抽出液 24g, グリセロール 4mL+ α , Β液 100mL:0.17M KH PO ,0.72M K HPO )を用いた(図 4)。
2 4 2 4
[0027] その後、 37°Cで 16時間インキュベートすることでコロニーを形成させ、さらに 4°Cで 1 週間インキュベートすることで変異型サチライシン群を発現させた(1232クローン)。大 腸菌で発現したサチライシンのスキムミルク分解活性により、 3%スキムミルクプレート 上で、コロニー周辺のスキムミルクが分解されて透明領域 (クリアゾーン)が形成され た(図 5a)。
[0028] 1回目の変異導入で得られた変異型サチライシン群カもクリアゾーンを形成しない、 若しくはクリアゾーン形成が小さ 、活性の低下した変異体を選択した (99クローン)。 その後、 PVDF (Polyvinylidene difluoride)メンブレンフィルター(Immobilon™) (以下、 単に「フィルター」という。)と 3%スキムミルクプレートを用いてさらにスクリーニングを行 つた(図 5b)。菌体は膜を通りぬけられないが、サチライシンは通り抜けが可能である 。まず、 3%スキムミルクプレート上に上述のフィルターを置き、菌体をストリークしてフィ ルター上に植菌し、 37°Cで 16時間インキュベートした。その後フィルターをはずし、別 の 3%スキムミルクプレート上に移し、 4°Cで 1週間静置した。その後、フィルター越しに クリアゾーンが僅か〖こし力認められな力つた変異体、すなわち、さらに活性低下を生 じたクローンを選択し、活性低下変異体とした(72クローン)。
[0029] 得られたクローンの DNA塩基配列を、 ABI PRISM™を用いてジデォキシ法に基づ き調べた。得られた DNA塩基配列をもとに、アミノ酸変異数が 1個、 2個及び 3個以上 のグループに分類した。
[0030] 3)活性上昇変異体 (positive mutant)の獲得(図 6)
上記 2)の工程で得た活性低下変異体のうち、アミノ酸変異数が 1個のクローン (23 クローン)及び 2個のクローン(25クローン)を 2回目の変異導入(エラープローン PCR) を行う際の铸型とした。各クローンが等モルずつ存在するように铸型プラスミドを調整 した。
2回目のエラープローン PCRは、以下の溶液を用いて行った。
[0031] A:アミノ酸変異数が 1個のクローンの場合
(1 10 X LA PCR ノ ッファー 2 (Mg フリー)(タカラ製) 10 し
(2; 25mM MgCl (タカラ製) 30 し
2
(3: 5mM MnCl 0.5 ,u L
(4: lOOmM dATP, dGTP, dTTP, dCTP 1 μ L (5: 20 μ Μ M13 RVプライマー(センス)(配列番号 3) 2.5 μ L (6 20 μ Μ M13 Μ4プライマー(アンチセンス)(配列番号 4) 2.5 μ L (7 189.88ng/ μ L アミノ酸変異 1個サチライシン遺伝子(lOOng) 0.53 μ L (8 Nuclease- Free Water (プロメガ社製) 49.77 μ L (9) LA Taq™ (5U/ L) (Mg2+フリー)(タカラ製) 1 /zし (1)〜(9) 計 100.8 L
B:アミノ酸変異が 2個のクローンの場合
(1 10 X LA PCR ノ ッファー 2 (Mg2+フリー)(タカラ製) 10 し
(2; 25mM MgCl (タカラ製) 30 し
2
(3: 5mM MnCl 0.5 ,u L
2
(4: lOOmM dATP, dGTP, dTTP, dCTP 1 /zし (5: 20 /z M M13 RV センスプライマー (配列番号 3) 2.5 し (6) 20 /z M M13 M4 アンチセンスプライマー (配列番号 4) 2.5 μ L
(7) 167. l ing/ Lアミノ酸変異 2個サチライシン遺伝子(lOOng) 0.60 /z L
(8) Nuclease— Free Water (プロメガ製) 49.70 ,u L
(9) LA Taq™ (5U/ μ L) (Mg2+フリー)(タカラ製) 1 μ L (1)〜(9) 計 100.8 /z L
[0033] 各々につ 、て、上記 (1)〜(8)を混合した溶液を 90°Cで 4分間加熱後、(9)を 1 μ L添カロ し、 94°Cで 30秒間 ' 47°Cで 30秒間 · 72°Cで 2分 30秒間を 40サイクル PCR反応させた。 その後、 72°Cで 10分間、 15°Cで 10分間反応を行い、 PCR反応を終了させた。
上記条件により、平均アミノ酸変異数が 2個になるように設定した。得られた PCR産 物をァガロースゲル電気泳動(1 %ァガロース)に流して回収し、 Wizard™ SV Gel and PCR Clean- UP Systemで精製した。
その後、精製して得た増幅産物を、制限酵素 Sac I (東洋紡社製)及び Hind III (東洋 紡社製)を用いて切断し、再びァガロースゲル電気泳動(1 %ァガロース)に流して、 制限酵素処理後の変異型サチライシン遺伝子断片を回収した。この DNA断片はサ チライシン遺伝子のプロペプチドとサチライシン本体 (成熟領域)である。ゆえに、活 性上昇体作製の際のエラーブローン PCRは、プロペプチドとサチライシン本体 (成熟 領域)のみにかけたことになる(図 2)。
[0034] 4)活性上昇体のスクリーニング(図 6)
A:アミノ酸変異 1個を铸型にした場合
プロペプチドとサチライシン本体 (成熟領域)に、エラーブローン PCR処理をして得 た変異型サチライシン遺伝子断片をインサートとし、野生型サチライシン PUC18ブラ スミドを制限酵素 Sac I (東洋紡製)及び Hind III (東洋紡製)で切断したものをベクター とし、ライゲーシヨンキットを用いて連結させたものを変異型サチライシンプラスミドライ ブラリー(「pU Δ S変異体ライブラリー」)とした。該変異型サチライシンプラスミドライブ ラリーを用いて 5%スキムミルクプレート上で大腸菌 JM109を形質転換させた。
[0035] 上記形質転換した大腸菌を、 37°Cで 16時間インキュベートすることでコロニーを形 成させ、さらに 4°Cで 1週間インキュベートすることで変異型サチライシン群を発現させ た (9696クローン)。大腸菌で発現したサチライシンのスキムミルク分解活性により、プ レート上でコロニー周辺のスキムミルクが分解されてクリアゾーンが形成された。 2回 目の変異導入で得られた変異型サチライシン群力ゝらクリアゾーンを形成し、活性が向 上 (復元)したクローン (A群 · B群 · C群' D群)をスクリーニングし、変異型サチライシン を得た(439クローン)。
[0036] その後、フィルターと 7%スキムミルクプレートを用い、得られたクローンのうちフィルタ 一越しにクリアゾーンが見られるクローンを選択した (90クローン)。さらに、これらのク ローンについて 7%スキムミルクプレートとフィルターでスクリーニングし、コントロールと した野生型サチライシンのクリアゾーンより大きいクリアゾーンが得られた 11クローンを 選択し、活性上昇変異体とした。この 11クローンについて、 ABI PRISM™を用いて DN A塩基配列を調べた。
[0037] B:アミノ酸変異 2個を铸型にした場合
アミノ酸変異 1個を铸型にした場合と同様の操作により、最終的に野生型サチライ シンのクリアゾーンより大きいクローン(E群 'F群)を 34選択した。
[0038] (実施例 2)変異型サチライシンの発現 (枯草菌 (Bacillus subtilis)での発現)
実施例 1の活性上昇変異体力 なる変異型サチライシンを大腸菌で発現させたが、 これらの変異型サチライシンが枯草菌でも発現可能力否かを確認した。枯草菌で発 現させるために、大腸菌及び枯草菌用のシャトルベクター PHY300PLK Opn. J. Gene t" 60, 235 (1985》を用いた(図 7)。
[0039] 実施例 1の活性上昇変異体 11クローンをテトラサイクリンを含む Terrific brothで培 養し、その後ミニプレップ法 (Mag Extracter Kit:東洋紡製)によりプラスミドを抽出し た。抽出した PHY300PLKプラスミドベクター (4.87kb)を制限酵素 Eco RI (東洋紡製)及 び Hind III (東洋紡製)で切断し、回収した変異型サチライシン遺伝子断片(高活性サ チライシン BPN'遺伝子)をインサートとし、 PHY300PLKプラスミドベクターを制限酵素 Eco RI (東洋紡社製)及び Hind III (東洋紡社製)で切断し、ライゲーシヨンキットを用い て連結させた。該プラスミドを用いて大腸菌 JM109を形質転換させ、得られたコロニー 力らミニプレップ法によりプラスミド(「ρΗ Δ Sj t 、う)を得た。
[0040] 枯草菌のプラスミドによる形質転換効率は、ダイマー化したプラスミドの含有量に大 きく依存するため(Jpn. J. Genet., 60, 235 (1985))、プラスミドをダイマー化させる recA +株である大腸菌 JM101を用いて形質転換を行った。その後、大腸菌 JM101から得ら れたプラスミド(「ρΗ Δ Δ Sj t 、う)を用いて枯草菌 UOT0999株を形質転換させた。
[0041] 枯草菌形質転換体を得るための溶液条件は以下の通りである(ISample分)。
(C1溶液)
(1) 10XSP 500 /zL
(K HPO 8.4g, KH PO 3.6g, (NH )SO 1.2g,
2 4 2 4 4 4
クェン酸ソーダ ·二水和物 0.6g, H 046.2mL )
2
(2) 1M MgSO 2 μL
4
(3) 1Mグルコース 125 μ L
(4) 5% カザミノ酸 (Casamino Acid) 20 μL
(5) lOmg/mL His (ヒスチジン) 25 L
(6) 10mg/mL Trp (トリプトファン) 25 L
(7) 10mg/mL Leu (ロイシン) 250 ;zL
(8) 滅菌水 4030 /zL
(1)〜(8) 計 5000 L
[0042] (C2溶液)
(1) 10XSP 50;zL
(K HPO 8.4g, KH PO 3.6g, (NH )SO 1.2g,
2 4 2 4 4 4
クェン酸ソーダ ·二水和物 0.6g, H 046.2mL )
2
(2) 1M MgSO 2. μL
4
(3) 1Mグルコース 12.5 μ L
(4) 5% カザミノ酸 (Casamino Acid) lμL
(5) 10mg/mL His (ヒスチジン) 0.25 L
(6) lOmg/mL Trp (トリプトファン) 0.25 L
(7) 10mg/mL Leu (ロイシン) 2.5 ;zL
(8) 滅菌水 431 /zL
(1)〜(8) 計 500/zL
[0043] CI溶液 5mLに 100 μ Lの枯草菌 UOT0999株の培養液を加え、 37°Cで 6時間振盪培 養した。その後、超遠心分離により菌体を回収し、菌体懸濁液とした。該菌体懸濁液 に、 500 /z Lの C2溶液と大腸菌 JM101から得られたプラスミド (ρΗ Δ A S) ^ ¾1 μ gカロ え、 37°Cで 1時間振盪培養した。
次に 500 /z Lの LB溶液培地(1Lあたり:ポリペプトン 10g、酵母抽出液 5g、 NaCl 10g) を加え、 37°Cで 1時間振盪培養した。最後に超遠心分離により菌体の回収を行い、 テトラサイクリン(12.5 μ g/mL)を含む 5%スキムミルクプレートに播種し、 37°Cで 1晚ィ ンキュペートした。クリアゾーンを形成したものをサチライシンが発現したものとして選 択した。
[0044] その結果、アミノ酸変異 1個を铸型にした場合、 11クローン中 6クローンでクリアゾー ンを形成した。アミノ酸変異 2個を铸型にした場合は、 34クローン中 27クローンがタリ ァゾーンを形成した。前記 6クローン及び 27クローンについて、 96穴プレート(BECTO N DICKINSON社製)を用いて、テトラサイクリン (12.5 μ g/mL)を含む LB液体培地で 、 37°C、 24時間、 BIO-SHAKER (TAITEC社製)で振盪培養し、クローンを過剰発現 させた。その後、超遠心分離により培養上清を得、培養上清中の枯草菌から分泌さ れた未精製のサチライシンを得た。この培養上清を用いて活性測定を行った。
[0045] (実施例 3)変異型サチライシンの配列の確認
実施例 2で得られた変異型サチライシンの DNA塩基配列は、 ABI PRISM™を用いて 確認した。
反応溶液条件は以下の通りである。
(1) Big-Dye terminator premix (Applied Biosystems社) 2 μ L
(2) 5 X Buffer(lM MgCl O.lmL, 1M Tris- HCl(pH=8.0) 4.0mL,滅菌水 45.9mL)
2
6 (し
(3) 铸型 DNA* 10 L
(4) プライマー(5pmol/ μ L) (配列番号 5〜10广 0.5 μ L
(5) 5%ジメチルスルフォキシド(DMSO) 0.5 ,u L
(6) Nuclease- Free Water (Promega社製) 丄 L (1)〜(6) 計 20 /z L
注) *アミノ酸変異 1個を铸型にした場合では、枯草菌で発現した 6クローンを、ァミノ 酸変異 2個を铸型にした場合では、活性測定の結果、活性が上昇した 2クローンを铸 型 DNA (Template DNA)として用いた。
注) **サチライシンの DNA塩基配列を 3つに分けて DNA塩基配列を読んだ。この際、 基本的にはセンス鎖を読むことにし、 Subl-RV (配列番号 5) 'Sub2-RV (配列番号 6) • Sub3-RV (配列番号 7)の 3つのプライマ を用いた(図 1)。このセンスプライマ で は読めない場合に、 Subl-FW (配列番号 8)、 Sub2-FW (配列番号 9)、 Sub3-FW (配 列番号 10)の 3つのプライマー(図 1)でアンチセンス鎖を読んだ。
[0046] 以下の 6種類のプライマーを使用した。各々 RVプライマーはセンスプライマーであり 、 FWプライマーはアンチセンスプライマーである。
Subl-RV : 5'- CTGTCTATTGGTTATTCTGC- 3' (配列番号 5)
Sub2-RV: 5 -TTACGGCGTATCACAAATTA-3' (配列番号 6)
Sub3-RV: 5 -GTTGATAAAGCCGTTGCATC-3' (配列番号 7)
Subl-FW: 5 -ATTGAACATGCGGAGGAAGA-3' (配列番号 8)
Sub2-FW: 5 -ATGACAGAAGGGTATTTACC-3' (配列番号 9)
Sub3-FW: 5 -ATACCGCTGTCGATAACCGC-3' (配列番号 10)
[0047] (1)〜(6)を混合した溶液を 96°Cで 1分間加熱後、 96°Cで 10秒間 · 50°Cで 5秒間 · 60°C で 4分間を 30サイクル PCR反応させた。その後、 4°Cで 10分間、 15度で 1分間反応を行 い、 PCR反応を終了させた。得られた PCR産物をイソプロパノ—ル沈殿により精製し た。その後、真空乾燥した PCR産物に 20 Lの TSR (Template Suppression Reagent) ( Applied Biosystems社製)を加え、 90°Cで 2分間加熱し、氷上で急冷した。
その PCR産物を ABI PRISM™〖こ力 4ナ、 DNA塩基配列の決定を行った。 DNA塩基配 列決定後に、その配列をもとにしてアミノ酸配列に翻訳した。各アミノ酸は、成熟型サ チライシンの N末端方向力 数えて 1番目のアミノ酸力 C末端方向へ正の番号をつ けた。プレペプチド、プロペプチドには、成熟型サチライシンの 1つ前のアミノ酸力 N 末端方向へ負の番号をつけた。例えば、 S221Cとは、成熟型サチライシン (サチライ シン本体)の 221番目のアミノ酸がセリンカ システィンに置き換わった変異体である ことを示す。
結果を表 1及び表 2に示す。表 1は、アミノ酸変異 1個を铸型にした場合の活性上昇 変異体 (プレートスクリーニングで高活性体として選択され、枯草菌で発現した 6クロ ーン)の DNA塩基配列決定後判明したアミノ酸変異部位の結果を示す。なお、これら 6クローンの活性測定の結果、活性が上昇した変異体は C-19であった。表 2は、アミ ノ酸変異 2個を铸型にした場合の活性上昇変異体 (枯草菌で発現し、活性測定の結 果、活性が上昇した 2クローン)の DNA塩基配列決定後判明したアミノ酸変異部位の 結果を示す。
[表 1] アミノ酸変異 1個を錶型とした場合の
活性上昇変異体の DNA塩基配列
Figure imgf000016_0001
[表 2] アミノ酸変異 2個を錶型とした場合の
活性上昇変異体の DNA塩基配列
Figure imgf000016_0002
(実験例 1)活性測定
得られた変異型サチライシンの活性測定は低温 (4°C)と常温 (25°C)で行った。 サチライシン活性測定用の基質として、合成基質 N-succiny卜 L-Ala-L-Ala-L-Pro- L-Phe-p-nitroanilide (AAPF- pNA) (SIGMA社製)を用いた。酵素反応の測定機器は 、可視紫外吸光光度計であるプレートリーダー(Molecular Devices社製)を用いた。 A APF-pNAの加水分解により生じた ρ-ニトロア-リン (pNA)による吸光変化を 405nmの 吸収波長で追跡し、酵素反応初速度を求めた。 ΑΑΡΡ-ρΝΑ(25 ^ Μ, 50 Μ, 100 Μ, 200 μ Μ, 300 μ Μの計 5点)は、測定用緩衝液 (0.1M Tris- HCl(pH 8.6)、 2mM無 水 CaCl 、 0.0005% Tween 20(10%) (PIERCE社製))(J. BiotechnoL, 66, 157(1998》に
2
溶かして調製した。測定用緩衝液は、 0.1M Tris- HCl(pH 8.6)、 2mM無水 CaCl を含
2 む溶液をストックとして準備し、 96穴プレート (SUMILON社製)にタンパク質が非特異 的に吸着することを防ぐ目的として Tween 20 (10%)を加え、用時調製した。サチライシ ン溶液や AAPF-pNA溶液の希釈にはすべて測定用緩衝液を用いた。
[0049] 測定用緩衝液 10 μ L、サチライシン溶液 30 μ Lを 96穴プレートに加え、最後に AAPF -ρΝΑ溶液 160 Lをカ卩えて酵素反応を開始させた。その後、該 96穴プレートをすぐに プレートリーダーにセットし、 10秒間攪拌を行った後に吸光度測定を開始した。測定 時間は 10分間で、 9秒おきに吸光度を測定し、測定するごとに 2秒間攪拌を行った。 縦軸に吸光度 (OD),横軸に時間 (秒)をとると比例関係が得られ、傾きが最大になる ものをこの反応の初速度(mOD/sec)とした(測定 ·解析ソフト: SOFT max PRO ver.3. 1 (Molecular Devices社製) )0一方、この酵素反応の測定と同時に、 [E] (初期酵素
0
濃度)を求めた。この際、サチライシンに特異的な阻害剤である Streptomyces subtilisi n inhibitor (SSI) (J. Biochem., 114, 906 (1993》を用いて活性部位滴定を行った(SSI は 2量体なので実行濃度は [SSI] 2である。 SSIの濃度は pH 7.0で吸光度 A (lmg.
280 ml) = 0.796より換算した)。 SSI溶液の調製には、測定用緩衝溶液を用いた。サチライ シンと SSIを反応させる時間として、低温 (4°C)で 1時間、常温 (25°C)で 40分を要した。
[0050] (データ解析)
活性測定後、以下の酵素反応のスキームに従い、得られた初速度をもとに Michaeli s-Menten式を描き、 Hanes plotで直線回帰を行い、基質解離定数 Kと最大速度 V m max を求めた。
[数 1]
[数 2]
[数 3]
— = + また代謝回転数 k は、次式により求めた。
cat
[数 4] [Elo これにより各変異体の酵素活性の指標となる k /Kが求められ、野生型と比較した
cat m
。本研究では、野生型の k /Kに対する変異体の k /Kの相対比を k /Kの比活
cat m cat m cat m
性と定義した。「活性が高い」とは、 k /Kの比活性が高いことを言う。つまり、 k が大
cat m cat きく(代謝回転数が大きく)、 κが小さい (基質解離定数が小さい)ほど活性が上昇し
m
ているといえる。
[0051] ランダム変異導入により得られた変異体の活性測定の結果を示す (表 3、表 4、図 8 、図 9)。
アミノ酸変異 1個を铸型にした場合、変異体 C-19が野生型に比べて 4°Cで 1.86倍、 25°Cで 1.86倍の活性上昇を示した。この変異体のアミノ酸変異は I205Tであった。一 方、アミノ酸変異 2個を铸型にした場合、変異体 E-2と変異体 E-8が野生型に比べて 4 °Cで 1.27倍、 25°Cで 1.48倍の活性上昇を示した。この変異体のアミノ酸変異はともに I 107Vであった。
[0052] (実施例 4)変異型サチライシンの構築 (部位指定変異導入の方法)
1) 1アミノ酸変異の導入
アミノ酸変異 1個を铸型とした場合に活性上昇を示した 205番目の部位に注目し、ィ ソロイシン力もランダムにアミノ酸置換(1アミノ酸変異の導入)を行った。その結果、 12
05G 、 I205A、 I205V、 I205S、 I205P、 I205D、 I205Hを作製する事ができた。また、アミ ノ酸変異 2個を铸型にした場合に活性上昇を示した 107番目の部位に注目し、文献( Protein Eng.l.319.(1987)) (Biochemistry.33.221. (1994)) (Biochemistry.32.8994.(199 3)を参考にして、活性上昇に効くと思われる I107G、 I107Aを作製した。
[0053] まず、変異導入箇所を含む 2つの DNA断片 (A鎖 (5'末端力 変異部位まで)、 B鎖( 変異部位力も 3'末端まで) )を増幅するために 1回目の PCR反応を行った。
アミノ酸変異導入用に以下のプライマーを設計し、使用した。各々 UPPERプライマ 一はセンスプライマーであり、 LOWERプライマーはアンチセンスプライマーである。ラ ンダム置換用のプライマー(配列番号 25) (配列番号 26)には、 205番目のアミノ酸に 対応する部位の塩基を NNS (N:A,T,G,Cの!、ずれか)(S:C,Gの!、ずれ力 とし、ランダ ム置換が起こるようにした。このプライマ一を用いてランダム置換がうまくできな力つた 変異体 (I205G、 I205A、 I205V)は、各 1アミノ酸変異を含むプライマーを用意して個 別に作製した。
[0054] M13 RV (センスプライマー) :5'- CAGGAAACAGCTATGAC- 3' (配列番号 3)
M13 M4 (アンチセンスプライマー):5し GTTTTCCCAGTCACGAC- 3'
(配列番号 4)
SUB- I107V- UPPER : 5'- AGCTGGGTCATTAACGGAATC- 3' (配列番号 11) SUB- I107V- LOWER : 5,- GTTAATGACCCAGCTGTATTG- 3' (配列番号 12) SUB-I107A-UPPER : 5'-AGCTGGGCCATTAACGGAATC-3' (配列番号 13) SUB- I107A- LOWER : 5,- GTTAATGGCCCAGCTGTATTG- 3' (配列番号 14) SUB- G 131 F - UPPER: 5し CCTTCTTTTTCTGCTGCTTTA- 3 ' (配列番号 15) SUB— G 131 F— LOWER: 5し AGCAGAAAAAGAAGGTCCGCC— 3 (配列番号 16) SUB-I205G-UPPER : 5'-GTATCTGGCCAAAGCACGCTT-3' (配列番号 17) SUB— I205G— LOWER: 5'— GCTTTGGCCAGATACGCCAGG— 3' (配列番号 18) SUB-I205A-UPPER : 5'-GTATCTGCCCAAAGCACGCTT-3' (配列番号 19) SUB-I205A-LOWER : 5'-GCTTTGGGCAGATACGCCAGG-3' (配列番号 20) SUB— I205V— UPPER : 5,— GTATCTGTCCAAAGCACGCTT— 3' (配列番号 21) SUB-I205V-LOWER : 5'-GCTTTGGACAGATACGCCAGG-3' (配列番号 22) SUB-I205T-UPPER : 5'-GTATCTACCCAAAGCACGCTT-3' (配列番号 23) SUB— I205T— LOWER : 5,— GCTTTGGGTAGATACGCCAGG— 3' (配列番号 24)
SUB- I205ALL— UPPER : 5,— GTATCTNNSCAAAGCACGCTT— 3 (配列番号 25) SUB- I205ALL- LOWER : 5'- GCTTTGSNNAGATACGCCAGG- 3' (配列番号 26) [0055] (A鎖の作製)(5'末端力 変異部位まで)
1回目の PCR反応の溶液条件は以下の通りである。
(1) 10 X LA PCR Buffer2 (Mg フリー)(タカラ製) 5 し
(2) dNTP混合液(各 2.5mM) (タカラ製) 8 し
(3) 25mM MgCl (最終 2.5mM) (タカラ製) 5 し
2
(4) 野生型サチライシン遺伝子 (pU A S) (90ng) X μ L
(5) 100 μ M M13 RVプライマー(配列番号 3) 0.5 ,u L (6) 100 μ M SUB- I107X、 I205X又は G131F- LOWERプライマー 0.5 μ L
(配列番号 12、 14、 20、 22、 24、 26又は 16)
(7) Nuclease— Free Water (Promega社製) (30.5— X) μ L
(8) LA Taq™ (5U/ μ L) (Mg2+フリー)(タカラ製) 0.5 μ L
注) *** 野生型サチライシン遺伝子が 90ngになる量を X /zしとした。
[0056] (B鎖の作製)(変異部位力も 3'末端まで)
以下に示す (5)(6)以外は、上記 A鎖作製の溶液条件と同様とした。
(5) 100 μ M SUB-I107X, Ι205Χ又は G131F— UPPERプライマー 0.5 μ L
(配列番号 11、 13、 19、 21、 23、 25又は 15)
(6) 100 μ M M13 Μ4 (アンチセンスプライマー)(配列番号 4) 0.5 μ L
[0057] 各々(1)〜 )を混合した溶液を 94°Cで 4分間加熱後、(8)を 0.5 μ L添加し、 94°Cで 30 秒間 · 55°Cで 30秒間 · 72°Cで 30秒力 2分間を 30サイクル PCR反応させた。その後、 7 2°Cで 10分間、 15°Cで 1分間反応を行い、 PCR反応を終了させた。
得られた PCR産物 (A鎖、 B鎖)をァガロースゲル電気泳動(1 %ァガロース)に流して 回収し、 Wizard™ SV Gel and PCR Clean- UP Systemで精製した。
次に、 1回目の PCR反応によって得られた DNA断片 (A鎖、 B鎖)を再会合させ、そ れを铸型とし、アミノ酸変異を含む変異型サチライシンの遺伝子を増幅させるために
2回目の PCRを行った。
[0058] 2回目の PCRの溶液条件は以下の通りである。
(1) 10 X LA PCR Buffer2 (Mg2+フリー)(タカラ製) 5 μ L
(2) dNTP 混合液(各 2.5mM) (タカラ製)
(3) 25mM MgCl (最終 2.5mM) (タカラ製) 5 μ L
2
(4) 1回目の PCR反応によって得られた DNA断片(A鎖) 2.5 /z L
(5) 1回目の PCR反応によって得られた DNA断片(B鎖) 2.5 /z L
(6) Nuclease- Free Water (Promega社製) 26.5 μ L
(7) LA Taq™ (5U/ μ L) (Mg2+フリー)(タカラ製) 0.5 μ L
[0059] (1)〜(6)を混合した溶液を 94°Cで 3分間加熱後、(7)を 0.5 μ L添加し、 94°Cで 30秒間 • 50°Cで 30秒間 · 72°Cで 2分間を 7サイクル PCR反応させた。弓 |き続きアミノ酸変異を 含む変異型サチライシンの遺伝子をさらに増幅させるために 3回目の PCR反応を行 つた。 2回目の PCR反応溶液を 25°Cで 10秒間置いた後、 M13 RVプライマー(配列番 号 3) (100 μ Μ)と M13 Μ4プライマー(配列番号 4) (100 μ Μ)とを 1.25 μ Lずつ加えた 。そして、 94°Cで 1分間加熱し、 94°Cで 30秒間 '55°Cで 30秒間 ' 72°Cで 2分間を 25サイ クル PCR反応させた。その後、 72°Cで 10分間、 15°Cで 10秒間反応を行い、 PCR反応 を終了させた。
得られた PCR産物をインサートとし、この後の操作は、サチライシンの発現の欄と同 様に操作した。また、 ABI PRISM™により DNA塩基配列を調べ、 1アミノ酸変異導入が されていることを確認した。
[0060] 1アミノ酸変異の導入により得られた変異体の活性測定の結果を示す (表 3、表 4、 図 8、図 9)。
205番目の部位に注目したランダムアミノ酸置換(1アミノ酸変異の導入)において、 野生型に比べて活性が上昇した変異体は、 I205A、 I205V、 I205Sであった。それぞ れ 4°Cで、 1.24倍、 1.20倍、 1.12倍、 25°Cで 1.26倍、 1.22倍、 1.08倍の活性上昇を示し た。 I205G、 I205H、 I205P、 I205Dに関しては、サチライシンの発現量が少なぐうまく 活性測定を行うことができな力つた。この変異体に関して、スキムミルクプレートを用い たクリアゾーン形成を試みた力 野生型に比べると極端に小さ!/、クリアゾーンだった。 このことより、 I205G、 I205H、 I205P、 I205Dの変異体は野生型より活性が低いと考え られた。一方、 107番目の部位に注目して I107G、 I107Aを作製した。し力し、 I107Gは スキムミルクプレート上でのクリアゾーン形成が全く見られず、活性測定を行うことがで きなかった。また、 I107Aについては、スキムミルクプレート上でのクリアゾーン形成が わずかに見られたものの、活性測定を行うと野生型に比べて著しく活性が低力つた。 以上の結果より、今回作製した 1アミノ酸置換体の中では、ランダム変異により獲得 した I205T、 I107Vがそれぞれ最適であった。
[0061] 2) 2アミノ酸変異の導入
205番目と既に報告例のある 131番目(非特許文献 4)に注目し、 Ι205Τに G131Fを 組み合わせた G131F/I205Tの二重変異体を作製した。さらに、 1アミノ酸変異の導入 の際に得られた 1.2倍以上の活性を有する Ι205Α及び I205Vに G131Fを組み合わせた G131F/I205A、 G131F/I205Vの二重変異体を作製した。また、 I205Tと I107Vの 2つ のアミノ酸変異に注目して I107V/I205Tの二重変異体を作製した (ランダム変異導入 により得られた I205Tの pU Δ Sを铸型にして、 I107Vを 1アミノ酸部位指定変異導入で 作製した)。
[0062] まず、変異導入箇所を含む 3つの DNA断片 (C鎖 : 5'末端から 131番目の変異部位 まで、 D鎖: 131番目の変異部位から 205番目の変異部位まで、 E鎖: 205番目の変異 部位力も 3'末端まで)を増幅するために 1回目の PCR反応を行った。
[0063] (C鎖の作製)(5'末端から 131番目の変異部位まで)
1回目の PCR反応の溶液条件は以下の通りである。 PCR反応は、 1アミノ酸変異の 導入時と同様に行った。
(1) 10 X LA PCR Buffer2 (Mg2+フリー)(タカラ製) 5 L
(2) dNTP 混合液(各 2.5mM) (タカラ製)
(3) 25mM MgCl (最終 2.5mM) (タカラ製) 5 μ L
2
(4) 野生型サチライシン遺伝子 (pU A S) (90ng) X /z L***
(5) 100 /z M M13 RVプライマー(配列番号 3) 0.5 L
(6) 100 μ M SUB-G131F LOWERプライマー(配列番号 16) 0.5 μ L
(7) Nuclease— Free Water (Promega社製) (30.5-X) μ L
(8) LA Taq™ (5U/ μ L) (Mg2+フリー)(タカラ製) 0.5 μ L 注) *** 野生型サチライシン遺伝子が 90ngになる量を X /zしとした。
[0064] (D鎖の作製)(131番目の変異部位から 205番目の変異部位まで)
以下に示す (5)(6)以外は、上記 C鎖の作製の溶液条件と同様とした。
(5) 100 M SUB- G131F- UPPERプライマー(配列番号 15) 0.5 L
(6) 100 μ M SUB— Ι205Χ— LOWERプライマー 0.5 μ L
(配列番号 18、 20、 22又は 24)
[0065] (E鎖の作製)(205番目の変異部位力も 3'末端まで)
以下に示す (5)(6)以外は、上記 C鎖の作製の溶液条件と同様とした。
(5) 100 μ M SUB— Ι205Χ— UPPERプライマー 0.5 μ L
(配列番号 17、 19、 21又は 23) (6) 100 μ M M13 M4 (配列番号 4) 0.5 μ L 2回目の PCRの溶液条件は以下の通りである。 PCR反応は、 1アミノ酸変異導入時と 同様に行った。
(1) 10 X LA PCR Buffer2 (Mg2+フリー)(タカラ製) 5 L
(2) dNTP 混合液(各 2.5mM) (タカラ製)
(3) 25mM MgCl (最終 2.5mM) (タカラ製) 5 μ L
2
(4) 1回目の PCR反応によって得られた DNA断片(C鎖) 2.5 /z L
(5) 1回目の PCR反応によって得られた DNA断片(D鎖) 2.5 /z L
(6) 1回目の PCR反応によって得られた DNA断片(E鎖) 2.5 /z L
(7) Nuclease- Free Water (Promega社製) 2 μ L
(8) LA Taq™ (5U/ μ L) (Mg2+フリー) (タカラ製) 0.5 μ L
[0067] 2アミノ酸変異の導入により得られた変異体の活性測定の結果を示す (表 3、表 4、 図 8、図 9)。
G131F/I205A, G131F/I205V, G131F/I205T, I107V/I205Tの二重変異体は、野生 型に比べてそれぞれ 4°Cで 2.92倍、 2.38倍、 3.39倍、 2.73倍、 25°Cで 2.66倍、 2.59倍、 3.61倍、 2.46倍の活性上昇を示した。 G131F、 I205Tと単独で活性の良力つたアミノ酸 変異の組み合わせ力 1番最適であることが確認された。また、 131番目、 205番目の 部位は独立に活性上昇に寄与していると考えられた。
[0068] 3) 3アミノ酸変異の導入
さらに活性の上昇を目指し、 2アミノ酸変異の導入で得られた G131F/I205A、 G131 F/I205V, G131F/I205Tの pU A Sを铸型として、 I107Vの 1アミノ酸変異導入を行い、 3 アミノ酸変異の変異体 I107V/G131F/I205A、 I107V/G131F/I205V, I107V/G131F/I2 05Tを作製した。
[0069] 3アミノ酸変異の導入により得られた変異体の活性測定の結果を示す (表 3、表 4、 図 8、図 9)。
I107V/G131F/I205A, I107V/G131F/I205V, I107V/G131F/I205Tの三重変異体 は、野生型に比べてそれぞれ 4°Cで 3.27倍、 2.99倍、 3.94倍、 25°Cで 2.95倍、 3.51倍 、 4.57倍の活性上昇を示した。 I107V、 G131F、 I205Tと単独で活性の良かったァミノ 酸変異の組み合わせ力 1番最適であることが確認された。また、 107番目、 131番目 、 205番目の部位は独立に活性上昇に寄与していると考えられた。
以上の結果より、 4°C及び 25°Cにおいて野生型よりも 1番活性が上昇した変異体は 、 I107V/G131F/I205Tであった。又、温度依存性に差異が生じていることが確認され た (表 5、図 10)。
[0070] [表 3]
AAPF-pNA活性(低 S4°C )
Figure imgf000024_0001
[0071] [表 4]
AAPF-pNA活性測定(常温: 25DC )
Figure imgf000024_0002
[0072] [表 5] 活性温度相関 (低温 (4°C) ■常温 (25°C))
k cat /Km比活性
Figure imgf000025_0001
産業上の利用可能性
以上説明したように、本発明の変異型サチライシンは、 0〜30°Cから選択される一定 の環境下で、野生型サチライシンと比較して優れた酵素活性を有する。該変異型サ チライシンは、食品、洗剤、皮なめし等の分野で有効活用される。酵素反応の環境を 室温以上に維持する必要なければ、エネルギーの節減や環境面にお!、て優れた効 果を有する。また、食品加工の際、低温環境下で行う方が好ましい場合があるが、こ のような場合にも有効活用することができる。

Claims

請求の範囲
[1] 配列表の配列番号 2に表されたアミノ酸配列の N末力 数えて第 205番目のアミノ酸 の変異を含み、 0〜30°Cから選択される一定の環境下で、野生型酵素と比較して 1.2 倍以上の活性を有することを特徴とする変異型サチライシン。
[2] 前記第 205番目のアミノ酸の変異力 野生型酵素のイソロイシンから、ァラニン、ノ リン
、又はトレオニンのいずれかへの変異である請求の範囲第 1項に記載の変異型サチ ライシン。
[3] さらに、配列表の配列番号 2に表されたアミノ酸配列の第 107番目のアミノ酸の変異を 含む請求の範囲第 1項又は第 2項に記載の変異型サチライシン。
[4] 前記第 107番目のアミノ酸の変異力 野生型酵素のイソロイシンから、パリンへの変異 である請求の範囲第 3項に記載の変異型サチライシン。
[5] さらに、配列表の配列番号 2に表されたアミノ酸配列の第 131番目のアミノ酸が、野生 型酵素のグリシンから、フエ-ルァラニン、ァスパラギン酸、トリプトファン、メチォニン 又はアルギニンへの変異を含む請求の範囲第 1項〜第 4項のいずれか一に記載の 変異型サチライシン。
[6] 請求の範囲第 1項〜第 5項のいずれか一に記載の変異型サチライシンをコードする DNA0
[7] 請求の範囲第 6項に記載の DNAを含有する変異型組換えサチライシン発現ベクター [8] 請求の範囲第 7項に記載の発現ベクターを含む宿主細胞。
PCT/JP2005/022619 2004-12-13 2005-12-09 低温活性型サチライシン WO2006064721A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006548798A JPWO2006064721A1 (ja) 2004-12-13 2005-12-09 低温活性型サチライシン

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004359336 2004-12-13
JP2004-359336 2004-12-13

Publications (1)

Publication Number Publication Date
WO2006064721A1 true WO2006064721A1 (ja) 2006-06-22

Family

ID=36587777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/022619 WO2006064721A1 (ja) 2004-12-13 2005-12-09 低温活性型サチライシン

Country Status (2)

Country Link
JP (1) JPWO2006064721A1 (ja)
WO (1) WO2006064721A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8948741B2 (en) 2009-09-24 2015-02-03 Wave Guard Technologies Ltd. System and method of online radiation management and control of non-ionizing radiation sources

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002510191A (ja) * 1996-11-04 2002-04-02 ノボザイムス アクティーゼルスカブ ズブチラーゼ変異体及び組成物
US6440717B1 (en) * 1993-09-15 2002-08-27 The Procter & Gamble Company BPN′ variants having decreased adsorption and increased hydrolysis
US20040197894A1 (en) * 2001-07-12 2004-10-07 Fano Tina Sejersgard Subtilase variants

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6440717B1 (en) * 1993-09-15 2002-08-27 The Procter & Gamble Company BPN′ variants having decreased adsorption and increased hydrolysis
JP2002510191A (ja) * 1996-11-04 2002-04-02 ノボザイムス アクティーゼルスカブ ズブチラーゼ変異体及び組成物
US20040197894A1 (en) * 2001-07-12 2004-10-07 Fano Tina Sejersgard Subtilase variants

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KANO H ET AL: "Cold adaptation of a mesophilic serine protease, subtilisin, by in vitro random mutagenesis.", APPL MICROBIOL BIOTECHNOL., vol. 47, no. 1, 1997, pages 46 - 51, XP002999428 *
RHEINNECKER M ET AL: "Variants of subtilisin BPN with altered specificity profiles.", BIOCHEMISTRY., vol. 33, no. 1, 1994, pages 221 - 225, XP002999430 *
TAGUCHI S ET AL: "The complete amino acid substitutions at position 131 that are positively involved in cold adaptation of subtilisin BPN'.", APPL ENVIRON MICROBIOL., vol. 66, no. 4, 2000, pages 1410 - 1415, XP002999429 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8948741B2 (en) 2009-09-24 2015-02-03 Wave Guard Technologies Ltd. System and method of online radiation management and control of non-ionizing radiation sources

Also Published As

Publication number Publication date
JPWO2006064721A1 (ja) 2008-06-12

Similar Documents

Publication Publication Date Title
US20060024789A1 (en) Lipase from Geobacillus sp. strain T1
WO2019142773A1 (ja) M23aファミリープロテアーゼの製造方法
JP2020174686A (ja) 酵素を用いた4−アミノ桂皮酸の製造方法
JP5392942B2 (ja) 新規なアルカリアルギン酸リアーゼとその利用
CN113604445B (zh) 一种酪氨酸酶及其制备与应用
CN111944790B (zh) 中性蛋白酶基因、中性蛋白酶及其制备方法和应用
De Pascale et al. PhAP protease from Pseudoalteromonas haloplanktis TAC125: gene cloning, recombinant production in E. coli and enzyme characterization
JP2011155932A (ja) アルカリケラチナーゼおよびこれをコードするdnaならびにその使用方法
WO2006064721A1 (ja) 低温活性型サチライシン
JP5283154B2 (ja) トリプシン様酵素
CN112852788B (zh) 一种碱性底物选择性提高的枯草蛋白酶e突变体及其应用
WO2006054595A1 (ja) 新規な高アルカリプロテアーゼ及びその利用
JP5260941B2 (ja) 新規なコラーゲン分解酵素とその利用
KR101228974B1 (ko) 락토바실러스 람노수스 유래 내열성물 생성 nadh 산화효소 및 그 생산 방법
WO2008047936A1 (fr) INHIBITEUR D'ENZYMES LYTIQUES, INHIBITEUR DE LYSE, INHIBITEUR DE LA DÉGRADATION DE L'ACIDE POLY-γ-GLUTAMIQUE, ET PROCÉDÉ DE PRODUCTION DE L'ACIDE POLY-γ-GLUTAMIQUE
JP2020080710A (ja) M23aファミリープロテアーゼの製造方法
JP2001292772A (ja) ロドコッカス属細菌由来のニトリルヒドラターゼ遺伝子およびアミダーゼ遺伝子
JP5354710B2 (ja) 高活性カタラーゼ産生微生物及びその使用
JP7389640B2 (ja) アルカリプロテアーゼ
US6403357B1 (en) Thermostable D-hydantoinase and the application thereof
Tanskul et al. An alkaline serine-proteinase from a bacterium isolated from bat feces: purification and characterization
JPWO2009057533A1 (ja) アミノペプチダーゼの製造方法
EP1536014A1 (en) Process for producing glucose dehydrogenases
JP2001069978A (ja) ロドコッカス属細菌由来のニトリルヒドラターゼ遺伝子およびアミダーゼ遺伝子
KR100707989B1 (ko) 남세균 시네코시스티스 속의 이소코리스메이트 합성효소 유전자를 이용하여 코리스메이트로부터 이소코리스메이트를 생합성하는 방법

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006548798

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05814732

Country of ref document: EP

Kind code of ref document: A1