WO2006064667A1 - 工業的蒸発装置 - Google Patents

工業的蒸発装置 Download PDF

Info

Publication number
WO2006064667A1
WO2006064667A1 PCT/JP2005/022065 JP2005022065W WO2006064667A1 WO 2006064667 A1 WO2006064667 A1 WO 2006064667A1 JP 2005022065 W JP2005022065 W JP 2005022065W WO 2006064667 A1 WO2006064667 A1 WO 2006064667A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
polymer
industrial
evaporation
guide
Prior art date
Application number
PCT/JP2005/022065
Other languages
English (en)
French (fr)
Inventor
Shinsuke Fukuoka
Hiroshi Hachiya
Kazuhiko Matsuzaki
Original Assignee
Asahi Kasei Chemicals Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corporation filed Critical Asahi Kasei Chemicals Corporation
Priority to EA200701301A priority Critical patent/EA010115B1/ru
Priority to EP05811314A priority patent/EP1829911A1/en
Priority to BRPI0519059-2A priority patent/BRPI0519059A2/pt
Priority to CN2005800429196A priority patent/CN101080437B/zh
Priority to US11/667,490 priority patent/US20070283904A1/en
Priority to JP2006548756A priority patent/JP4143671B2/ja
Publication of WO2006064667A1 publication Critical patent/WO2006064667A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/001Removal of residual monomers by physical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/22Evaporating by bringing a thin layer of the liquid into contact with a heated surface
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/26Treatment of polymers prepared in bulk also solid polymers or polymer melts
    • C08F6/28Purification
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/785Preparation processes characterised by the apparatus used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/88Post-polymerisation treatment
    • C08G63/90Purification; Drying
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/205General preparatory processes characterised by the apparatus used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G85/00General processes for preparing compounds provided for in this subclass

Definitions

  • the present invention relates to a novel industrial evaporation apparatus. More specifically, the present invention relates to an apparatus for allowing a liquid containing a substance having a boiling point lower than that of the liquid to flow down along the external surface of the guide while the liquid itself is not a heating source, and evaporating the low-boiling substance during that time. .
  • Non-patent Document 1 Revised 6th edition Chemical Engineering Handbook, pages 403-405, edited by the Society of Chemical Engineering, 1999
  • the revised 6th edition Chemical Engineering Handbook includes submerged combustion method, natural circulation type dip tube type Natural circulation horizontal pipe type, vertical short pipe type, vertical long pipe ascending membrane type, horizontal pipe descending membrane type, vertical long pipe descending membrane type, forced circulation type horizontal pipe type, forced circulation type vertical pipe type, coil type, Stirring membrane type, centrifugal thin film type, plate type, and flash evaporation method are described.
  • the methods of flowing down the liquid from top to bottom are the horizontal pipe descending membrane type, the vertical long pipe descending membrane type, the forced circulation type horizontal pipe type, the forced circulation type vertical pipe type, and the stirring membrane.
  • the type is the same as the multi-tubular cylindrical heat exchanger except for the stirring membrane type.
  • the stirring film type is a cylindrical or conical heat transfer surface. The power scraper is rotated in the heat transfer surface to form a liquid film on the heat transfer surface and scraped off at the same time to achieve uniform evaporation and heat transfer. This is a method of evaporating and concentrating while promoting.
  • the heat exchanger type horizontal pipe descending membrane type and forced circulation type horizontal pipe type are a method of evaporating and concentrating liquid while flowing in the form of a liquid film on the outer surface of the horizontally installed pipe. Heated by a heating medium such as water vapor flowing through the heating medium.
  • the type of industrial evaporator closest to the present invention is a vertical long pipe descending membrane type and forced circulation type vertical pipe type, which are disposed in a vertically installed pipe.
  • This is a method of evaporating and concentrating while the liquid descends in the form of a film, and in the method of flowing down along the outer surface of the guide of the present invention, the pipe itself in which the liquid flows down inside the pipe is not connected to the outside of the pipe (body). It is heated by the flowing heating medium and is not a heating source itself as in the present invention. It is different from the guide.
  • a strand evaporator is also known that extrudes a polymer melt or the like into a strand or thread as a perforated plate force into the evaporation zone, and evaporates and concentrates the polymer melt while freely falling (Patent Document 1: U.S. Pat. No. 3,110,547; Patent Document 2: Japanese Patent Publication No. 30-2164).
  • Patent Document 1 U.S. Pat. No. 3,110,547
  • Patent Document 2 Japanese Patent Publication No. 30-2164.
  • the strand evaporator allows the liquid to be concentrated to fall freely, the residence time in the evaporation zone is short, resulting in poor evaporation efficiency.
  • the strands and filaments sway laterally and fuse with each other. There are drawbacks such as difficulty in continuous and stable operation.
  • Patent Document 3 US Patent No. 3044993; Patent Document 4: Japanese Patent Publication No. 48-8355
  • an apparatus has been proposed in which a loop-shaped wire is installed in the evaporation zone, and an evaporative concentration or degassing is performed while flowing a high-viscosity polymer melt along the wire loop, and in particular, a polycarbonate solution or a melt.
  • Patent Document 8 JP 2004-516172 A
  • Patent Document 9 International Publication No. 99Z36457
  • the regulation of the device capable of performing the evaporation operation stably for a long period on an industrial scale in which the evaporated liquid is 1 ton or more per hour.
  • the problem to be solved by the present invention is that a liquid containing a substance having a boiling point lower than that of the liquid is caused to flow down along the external surface of the guide, which itself does not have a heating source,
  • An apparatus for evaporating a boiling point substance is specifically disclosed as an apparatus that can be stably implemented for a long period on an industrial scale in which the evaporated liquid is 1 ton or more per hour.
  • the present invention specifically discloses an industrial evaporation apparatus free from problems caused by denaturation due to long-term residence of a part of the liquid.
  • the inventors of the present invention have studied the use of a guide contact flow type polymerization reactor in which the previously proposed molten polymer is dropped and dropped along a guide such as a wire for various uses.
  • the inventors have found an industrial evaporation apparatus having a specific structure having the following characteristics that can solve the problems, and have reached the present invention. That is, the present invention
  • a liquid supply zone for supplying the liquid to the guide of the evaporation zone through the liquid receiving port and the perforated plate
  • a liquid supply zone an evaporation zone provided with a plurality of guides extending downward from the perforated plate in a space surrounded by the perforated plate, the side casing, and the bottom casing, and provided in the evaporation zone It has an evaporant outlet and a liquid outlet provided at the bottom of the bottom casing,
  • the bottom casing constituting the bottom of the evaporation zone is connected to the upper side casing at an angle C degree inside thereof, and the angle C degree satisfies the formula (3).
  • the liquid receiving port force The space volume V (m 3 ) in which the liquid can exist in the liquid supply zone up to the upper surface of the porous plate, and the upper area of the porous plate including the upper area of the holes T (m 2 ) satisfies the equation ( 6 ), and
  • An industrial evaporator characterized by 2.
  • the casing of the evaporating zone has a cylindrical shape with an inner diameter D (cm) and a length L (cm), and the bottom casing connected to the bottom of the casing has a cone shape.
  • the liquid outlet is cylindrical with an inner diameter d (cm), and D, L, d satisfy the equations (9), (10), (11) and (12):
  • the industrial evaporation apparatus according to any one of the preceding items 1 to 4, characterized in that: 6.
  • the one guide is formed in a cylindrical shape with an outer diameter r (cm) or a liquid and Z or gaseous substance inside. Is pipe-shaped so that does not enter, and r satisfies equation (14):
  • the plurality of guides is the guide multiple force described in the preceding paragraph 6, and the individual guides are fixed in a lattice-like or mesh-like guide fixed by a lateral support material, and a plurality of lattice-like or mesh-like guides are moved forward and backward.
  • the liquid is a monomer for producing a condensation polymer and a mixture of two or more monomers, and Z or a prepolymer of the condensation polymer, and a melt of Z or the condensation polymer, the low boiling point
  • the substance is a by-product and Z or oligomer produced by polycondensation reaction, and evaporates and removes the low-boiling point substance from the melt, thereby improving the polymerization polymer prepolymer and z or the degree of polymerization of the polymer.
  • An industrial evaporation apparatus as described in any one of 1 to 8 above, which is a polymerization apparatus for a condensation polymer for
  • condensation polymer is a polyester, a polyamide, or a polycarbonate.
  • the liquid is a melt of thermoplastic polymer A
  • the low-boiling substance is a monomer, oligomer, or by-product contained in the polymer, and the low-boiling substance is removed by evaporation from the melt.
  • the industrial evaporation apparatus according to any one of the preceding items 1 to 8, which is a purification apparatus for improving the purity of the thermoplastic polymer A,
  • thermoplastic polymer A is a polystyrene polymer, polychlorinated bur polymer, poly-polyvinylidene polymer, polyacrylonitrile polymer, polyacrylate polymer, polymethacrylate polymer, thermoplastic
  • the liquid is a solution of the thermoplastic polymer B, and the low-boiling substance dissolves the thermoplastic polymer and is contained in the solvent and / or the polymer solution, and the monomer, oligomer, secondary It is a living organism and is a separation / recovery / purification device for separating and recovering the thermoplastic polymer and improving the purity of the thermoplastic polymer by evaporating and removing the low-boiling substance from the solution.
  • the industrial evaporation apparatus according to any one of the preceding items 1 to 8,
  • the invention's effect [0009]
  • the industrial evaporation apparatus of the present invention is an apparatus that can efficiently evaporate and concentrate a large amount of liquid for a long time, and can produce a concentrated liquid of 1 ton or more per hour. However, it is an evaporative concentrator that does not cause liquid denaturation for a long time. It is a device that exhibits an excellent effect in evaporating and concentrating liquids with relatively high viscosity.
  • the present invention is a continuous evaporation apparatus free from such drawbacks, and is particularly excellent as a condensation polymer polymerization apparatus, a thermoplastic polymer purification apparatus, a separation / recovery of the polymer from a thermoplastic polymer solution, and / or a purification apparatus. It is effective. In other words, it is a device that can produce a high-performance, high-purity polymer that is free of coloration and foreign matter contamination due to the generation of heat-denatured products and stably for a long time with a high productivity of 1 ton or more per hour. Furthermore, when the evaporation apparatus of the present invention is a polymerization vessel, the variation in molecular weight can be greatly reduced.
  • the present invention has been found that it is necessary to satisfy various conditions in order to solve the above problems as a continuous evaporator.
  • the present invention will be described more specifically with reference to cross-sectional views (FIGS. 1 and 2) showing the concept of the evaporation apparatus of the present invention and cross-sectional views (FIGS. 3 and 4) showing parts.
  • the liquid receiving port 1 is preferably provided in the upper part of the liquid supply zone 3.
  • the liquid receiving port 1 may be one place or a plurality of places. However, in the case of one place where it is preferable to arrange the liquid to be supplied to the multi-hole plate 2 as uniformly as possible in the liquid supply zone 3, the liquid supply zone It is preferable to provide in the center part of 3 upper part.
  • the flow path control component 20 having a function of causing the flow of the liquid supplied from the liquid receiving port 1 to the perforated plate 2 to flow mainly from the peripheral portion toward the central portion of the perforated plate 2 is the liquid supply zone. It is necessary to be installed in 3.
  • This flow path control component 20 directs the flow of liquid from the peripheral part to the central part of the perforated plate 2 so that the hole (for example, 21) of the perforated plate 2 This has the effect of preventing the liquid from staying in the space between the wall surface 22 for a long time.
  • the liquid that has flowed mainly from the peripheral part to the central part of the perforated plate 2 is supplied to the guide 4 with the pores existing therebetween.
  • the shape of the flow path control component 20 may be any shape as long as the effect can be exhibited, but the outer shape of the cross section thereof is similar to the outer shape of the cross section of the perforated plate 2. Preferred.
  • the cross section of the flow path control component 20 is a place showing the maximum area when the flow path control component 20 is cut along a plane in the horizontal direction.
  • the distance between the flow path control component 20 and the inner side wall surface 22 of the liquid supply zone 3 varies depending on the amount of liquid to be processed, the viscosity, etc., but the viscosity of the liquid to be evaporated is compared.
  • the range of lcm to 50 cm is usually more preferably 2 cm to 30 cm, and further preferably 3 cm to 20 cm.
  • the interval between the upper inner wall surface 23 of the liquid supply zone 3 and the flow path control component 20 may be any, but the residence time of the liquid in the liquid supply zone 3 should be minimized. It is preferable.
  • this interval is usually lcm to 200cm, preferably 2cm to 170cm, more preferably 3cm to 150cm.
  • the flow path control is such that the distance between the upper inner wall surface 23 of the liquid supply zone 3 and the flow path control component 20 is substantially the same distance from the liquid receiving port 1 to the inner side wall surface 22 of the liquid supply zone 3. It can be a part 20, or the interval can be gradually narrowed, or conversely, the flow path control part 20 can be gradually widened.
  • the distance between the flow path control component 20 and the porous plate 2 is usually 1 cm to 50 cm, preferably 2 cm to 30 cm, more preferably 3 cm to 20 cm.
  • the space between the perforated plate 2 and the flow path control component 20 may be a flow path control component that is substantially the same distance from the inner side wall surface 22 of the liquid supply zone 3 to the center of the perforated plate. It is possible to make it a flow path control part that gradually narrows the interval, or conversely widens, but preferably it is almost the same interval or gradually narrowed. It is a flow path control component.
  • the flow path control component 20 prevents the liquid supplied from the liquid receiving port 1 from being directly guided to the holes of the perforated plate 2, and thus may be considered as a kind of baffle plate. is there.
  • the angle E between the inner side wall surface 22 of the liquid supply zone and the perforated plate 2 satisfies the equation (8):
  • the angle formed by the inner side wall surface 22 and the perforated plate 2 at a cut surface at a plane perpendicular to the plane and perpendicular to the upper surface of the perforated plate 2 is E. is there .
  • the inner side wall surface 22 is a concave curved surface, the tangent at the point where the curve formed in the cut surface in the plane perpendicular to the concave surface and perpendicular to the upper surface of the porous plate 2 starts to rise and the upper surface of the porous plate 2
  • the angle formed is E.
  • a more preferable range of E is 120 ⁇ E ⁇ 180, and more preferably 145 ⁇ E ⁇ 180.
  • the vicinity of the joint between the upper inner wall surface 23 and the inner wall surface 22 of the liquid supply zone 3 is not a “dead space”.
  • the force to increase is 90 ° C or close to it, it is preferable that the liquid is not retained by making the vicinity of the joint concave, so that the lower part of the liquid receiving port 1 is used in the present invention.
  • the upper area T (m 2 ) of the perforated plate including the upper area of the holes must satisfy the equation (6).
  • V (m 3 ) is a substantial liquid volume in the liquid supply zone 3 during continuous operation of the evaporator of the present invention, and excludes the volume of the flow path control component.
  • the amount of liquid retained in the liquid supply zone is V (m 3 ), but this amount is small, but the residence time in the liquid supply zone is small and there is no adverse effect due to heat denaturation.
  • the liquid In order to obtain a concentrated liquid and a Z or polymer having a predetermined concentration or degree of polymerization that is stable for a long period of time, the liquid should be supplied as uniformly as possible to the holes of the perforated plate. is important. To that end, we have found that the value of ⁇ must be in this range.
  • a more preferred range of VZT values is 0.05 (m) ⁇ V / T ⁇ 0.4 (m), and even more preferred 0.1 (m) ⁇ V / T ⁇ 0.3 (m) It is.
  • YZV value must be in this range in order to evaporate a large amount of liquid per unit time that is stable and efficient over a long period of time without degrading physical properties due to thermal denaturation. It is.
  • a more preferred range of YZV values is 15 ⁇ YZV ⁇ 400, and even more preferred is 20 ⁇ Y / V ⁇ 300.
  • the spatial volume Y (m 3 ) of the evaporation zone referred to in the present invention is the spatial volume from the lower surface of the perforated plate to the liquid outlet, and includes the volume occupied by the guide.
  • a bottom casing 11 constituting the bottom of the evaporation zone is connected to the upper side casing 10 at an angle C degree inside, and the angle C degree is expressed by the following equation (3). It is also necessary to be satisfied:
  • C In order to reduce equipment costs, C should be as close to 90 degrees as possible.
  • the lower end force of Guide 4 The melt viscosity can be increased without degrading the quality of the concentrated liquid or polymer falling.
  • C In order to move these melts to the outlet 7, C can be expressed by the formula (3) You must be satisfied.
  • h is shorter than 150 cm, it is not preferable because the strength that can proceed with concentration and polymerization is not sufficient.
  • h is longer than 5000 cm, the difference in the viscosity of the liquid between the upper and lower parts of the guide becomes too large, so that the variation in concentration and the degree of polymerization tend to increase, which is preferable.
  • S is less than 2 m 2, it will not be possible to achieve the target evaporated liquid volume or production polymer production of 1 ton or more per hour, and this production volume will be reduced while reducing equipment costs. In order to achieve this and eliminate variations in physical properties, S must be 50000m 2 or less.
  • the evaporation apparatus of the present invention that satisfies the various conditions described above surprisingly exhibits the excellent effects described above, not only by solving the problems of the conventional evaporation apparatus.
  • the evaporation apparatus of the present invention is an industrial evaporation apparatus having such an excellent effect, probably in addition to the above-mentioned various reasons, in combination with the combination of these conditions. It is estimated that this is because of the effect.
  • high surface area guides satisfying equations (4) and (5) are very effective for efficient internal agitation and surface renewal of large volumes of liquids, prepolymers and polymers supplied at relatively low temperatures. Evaporation of low-boiling substances can be efficiently performed, and it is useful for obtaining high-quality concentrated liquids and polymers in large quantities of 1 ton or more per hour, and angle C satisfying equation (3) is a guide. This is presumed to reduce the heat history by reducing the time until a large amount of high-quality concentrated liquid or polymer falling from the outlet is discharged from the outlet 7.
  • a more preferable range of the internal sectional area A (m 2 ) in the horizontal plane of the side casing 10 of the evaporation zone 5 is 0.8 ⁇ A ⁇ 250, and more preferably 1 ⁇ A ⁇ 200.
  • a more preferable range of the ratio of the A (m 2 ) and the internal cross-sectional area B (m 2 ) in the horizontal plane of the liquid discharge port 7 is 25 ⁇ A / B ⁇ 900, and more preferably, 30 ⁇ A / B ⁇ 800.
  • a more preferable range of the angle C degrees that the bottom casing 11 constituting the bottom of the evaporation zone 5 forms with respect to the upper side casing 10 is 120 ⁇ C ⁇ 165, and more preferably, 135 ⁇ C ⁇ 165.
  • the corresponding angles are Cl, C2, C3, ..., Cl ⁇ C2 ⁇ C3 ⁇ ⁇ ⁇ ⁇ Preferably.
  • the required length h (cm) of the guide 4 indicates the amount, viscosity, and temperature of the liquid to be treated, the amount of the low boiling point substance, the boiling point, the pressure and temperature of the evaporation zone, and the required concentration. More preferable range is 200 ⁇ h ⁇ 3000, more preferably 400 ⁇ h ⁇ 2500, more preferably depending on factors such as degree or degree of polymerization. Also, the total external surface area S (m 2 ) of the entire guide required depends on the same factors as above, but the preferred range is 10 ⁇ S ⁇ 40000, more preferably 15 ⁇ S ⁇ 300 00.
  • the total external surface area of the entire guide as used in the present invention means the entire surface area of the guide that flows in contact with the liquid.
  • a guide such as a pipe
  • it means the outer surface area.
  • the surface area of the inner surface of the pipe that does not flow down is not included.
  • the shape of the internal cross section in the horizontal plane of the side casing 10 of the evaporation zone 5 may be any shape such as a polygon, an ellipse, and a circle.
  • Evaporation zone 5 is normally operated under reduced pressure, so what can withstand it? However, it is preferably a circular shape or a shape close thereto. Therefore, the side casing 10 of the evaporation zone 5 of the present invention is preferably cylindrical. In this case, it is preferable that a cone-shaped bottom casing is installed at the bottom of the cylindrical side casing 10 and a cylindrical liquid discharge port 7 is provided at the bottom of the bottom casing.
  • the side surface and bottom casing of the evaporation zone 5 are respectively formed of the cylindrical shape and the cone portion, and the concentrated liquid or polymer liquid discharge port 7 is a cylinder.
  • the inner diameter of the cylindrical portion of the side casing is D (cm)
  • the length is L (cm)
  • the inner diameter of the liquid discharge port 7 is d (cm)
  • D, L, d Is preferred to satisfy equations (9), (10), (11) and (12)! /:
  • a more preferable range of D (cm) is 150 ⁇ D ⁇ 1 500, and more preferably 200 ⁇ D ⁇ 1200.
  • a more preferable range of DZd is 6 ⁇ D / d ⁇ 45, and more preferably 7 ⁇ D / d ⁇ 40.
  • a more preferable range of L / D is 0.6 ⁇ L / D ⁇ 25, and more preferably 0.7 ⁇ L / D ⁇ 20.
  • a more preferable range of L (cm) is h — 10 ⁇ L ⁇ h + 250, and more preferably h ⁇ L ⁇ h + 200. If the relationship between D, d, and L force is not satisfied at the same time, it is difficult to achieve the object of the present invention.
  • the evaporation apparatus of the present invention is a high-quality, high-performance concentrated liquid or polymer that has a high evaporation rate and a high polymerization rate and is excellent in mechanical properties without coloration.
  • the exact reason why the production can be made without any variation in molecular weight is not clear, but the following can be considered. That is, in the evaporation apparatus of the present invention, the raw material liquid is guided from the liquid receiving port 1 through the liquid supply zone 3 and the porous plate 2 to the guide 4 and concentrated while flowing down along the guide 4. The force or degree of polymerization increases. In this case, liquid and molten prepolymers can flow effectively along the guide and effectively stir.
  • Evaporation concentration in the high-viscosity region and high molecular weight in the latter half of the polymerization, which were unavoidable with a mechanically stirred polymerizer, can be easily achieved. This is one of the excellent features of the evaporation apparatus of the present invention.
  • the liquid with the same viscosity and the polymer with the same degree of polymerization that are generated while flowing down the guide will accumulate in the lower part of the bottom casing. This results in a continuous production of the polymer without.
  • the concentrated liquid or polymer collected in the lower part of the bottom casing is continuously extracted by the discharge pump 8 through the liquid discharge port 7, and in the case of a polymer, it is normally pelletized through an extruder or the like. In this case, it is also possible to add an additive etc. with an extruder.
  • the perforated plate 2 constituting the evaporation apparatus of the present invention is usually selected from a force such as a flat plate, a corrugated plate, a plate with a thick central portion, and the shape of the cross section of the perforated plate 2 is usually circular, It is selected from shapes such as an ellipse, a triangle, and a polygon.
  • the cross section of the hole in the perforated plate is usually selected from shapes such as a circle, an ellipse, a triangle, a slit, a polygon, and a star.
  • the cross-sectional area of the hole is usually from 0.01 to 100 cm 2 , preferably from 0.05 to 10 cm 2 , particularly preferably It is in the range of 0.
  • the distance between the holes is usually 1 to 5 OOmm, preferably 25 to LOOmm, as the distance between the centers of the holes.
  • the holes of the perforated plate may be holes that penetrate the perforated plate or may be a case where a tube is attached to the perforated plate. Further, it may be tapered.
  • the guide constituting the evaporation apparatus of the present invention itself does not have a heat source such as a heat medium or an electric heater inside, and has an average length of the outer circumference of the horizontal section.
  • the ratio is usually in the range of 10 to: L, 000,000, and preferably ⁇ is in the range of 50 to: L00,000.
  • a shape force such as a circular shape, an oval shape, a triangular shape, a quadrangular shape, a polygonal shape, or a star shape is usually selected.
  • the shape of the cross section may be the same or different in the length direction.
  • the guide may be hollow. Since the guide of the present invention itself has a heating source, it is a great feature that there is no concern about thermal denaturation of the liquid on the surface of the guide.
  • the guide may be a wire-like or thin rod-like one, or a single one such as a thin or pipe-like one that does not contain liquid or molten polymer inside, but may be twisted, etc. Multiple combinations may be used depending on the method. Further, a net-like one or a punching plate-like one may be used. The surface of the guide may be smooth or uneven, or may have a projection or the like partially.
  • a preferable guide is a cylindrical shape such as a wire shape or a thin rod shape, a thin pipe-like net shape, or a punching plate shape.
  • the guided contact flow evaporator of the present invention that enables the production of high-quality concentrated liquids and polymers on an industrial scale (production volume, long-term stable production, etc.), it is particularly preferable to use a plurality of wires.
  • a wire mesh guide fixed at a suitable distance above and below, for example, lcm to 200 cm, using a horizontal support material from the top to the bottom of a plurality of wire-like or thin rod-like guides or the above-mentioned thin pipe-like guides Place several wire mesh guides back and forth and use them to support them in the vertical direction, for example, 1 en! ⁇ Three-dimensional guides joined at intervals of 200 cm, or a plurality of wire-like or thin !, rod-like or thin pipe-like guides, front and rear, left and right appropriate spacing using horizontal support materials
  • the support material in the horizontal direction not only helps to keep the distance between the guides approximately the same, but also helps to strengthen the strength of the guides that are flat or curved as a whole or three-dimensional guides.
  • These supporting materials may be the same material as the guide, or may be different.
  • r is represented by the formula (14). ) Satisfied! /, I prefer to be! / ⁇ :
  • the guide in the present invention advances the evaporation concentration and the polymerization reaction while flowing down the liquid and the molten prepolymer, but also has a function of holding the liquid and the molten prepolymer for a certain period of time.
  • This holding time is related to the evaporation time and polymerization reaction time, and as the liquid viscosity and melt viscosity increase with the progress of evaporation and polymerization, the holding time and holding amount increase. Is as described above.
  • the amount that the guide retains the liquid or molten prepolymer varies depending on the external surface area of the guide, that is, in the case of a cylinder or pipe, even if the melt viscosity is the same.
  • the guide installed in the evaporator of the present invention needs to be strong enough to support the weight of the liquid, molten prepolymer, or polymer that is being held.
  • the thickness of the guide is important, and in the case of a columnar shape or a noisy shape, it is preferable that the formula (14) is satisfied. If r is smaller than 0.1, stable operation for a long time can be achieved in terms of strength.If r is larger than 1, the guide itself becomes very heavy, for example, holding them in the evaporator. In order to achieve this, the thickness of the perforated plate must be made very thick!
  • the more preferable range of r is 0.15 ⁇ r ⁇ 0.8, and more preferably 0.2 ⁇ r ⁇ 0.6. It is.
  • Preference for such guides! / ⁇ materials are metals such as stainless steel, carbon steel, hastelloy, nickel, titanium, chromium, aluminum and other alloys, and polymer materials with high heat resistance. Power is chosen. Particularly preferred is stainless steel.
  • the surface of the guide may be subjected to various treatments as necessary, such as plating, lining, passivation treatment, acid washing, washing with a solvent or phenol.
  • the positional relationship between the guide and the perforated plate and the positional relationship between the guide and the hole in the perforated plate as long as the liquid, the raw material melted prepolymer and the polymer can be brought into contact with the guide and flow down, It is not limited.
  • the guide and the porous plate may or may not be in contact with each other.
  • the present invention is not limited to this. This is because even if the liquid falling from the perforated plate, the raw material melted polymer, or the polymer is designed to come into contact with the guide at an appropriate position, it will be.
  • the guide is preferably installed so as to correspond to the hole of the porous plate
  • the upper end of the guide is fixed to the lower surface of the flow path control component, etc.
  • Plate force Methods include extruding liquid, raw material melted polymer and polymer.
  • a predetermined amount of liquid or raw material melted polymer or polymer is supplied to the liquid supply zone of the evaporator under pressure using a supply pump, and the liquid or raw material melted polymer or polymer guided to the guide through the perforated plate is preferably used. It is a method that flows down along the guide by its own weight.
  • the evaporation apparatus of the present invention is a device that evaporates the low boiling point substance from the liquid containing the substance having a lower boiling point than the liquid in the liquid.
  • This liquid may be at room temperature, but is usually supplied to the receiving locus evaporator in a heated state. Further, it is preferable that a jacket or the like is usually installed on the outer wall surface of the evaporator. By heating this jacket with water vapor or heat medium as needed
  • the evaporation apparatus of the present invention is not only used as an apparatus for simply concentrating liquids, but also a polymerization apparatus for condensation polymers and a purification apparatus for thermoplastic polymers containing low-boiling substances such as monomers, oligomers and by-products. It is particularly preferable to use it as an evaporation apparatus for a liquid having a relatively high viscosity, such as an apparatus for separating and collecting the polymer from a thermoplastic polymer solution.
  • the liquid is a monomer and a mixture of two or more monomers for producing a condensation polymer, and Z or a polymer of the condensation polymer, and Z or a melt of the condensation polymer, A by-product produced by the polycondensation reaction of the low-boiling substance and
  • the present invention is a polymerization apparatus for a condensation polymer that is Z or an oligomer, and improves the polymerization polymer prepolymer and Z or the degree of polymerization of the polymer by evaporating and removing the low-boiling-point substance. It is preferable to use the industrial evaporator.
  • condensation polymers include aromatic monoaliphatic polyesters such as polyethylene terephthalate, polytrimethylene terephthalate, and polybutylene terephthalate, various copolyesters, polyesters of hydroxycarboxylic acids such as glycolic acid and lactic acid, and various copolyesters.
  • Polyesters such as aliphatic aliphatic polyesters and aliphatic copolyesters of aliphatic diols and aliphatic dicarboxylic acids, aromatic monoaromatic polyesters such as polyarylate, liquid crystal polyester, and various copolyesters; Nylon 66, Nylon 612, Nylon 12, Nylon 4, Nylon 3, Nylon 11 etc. And various copolyamides, polyamides and the like; aliphatic polycarbonates and aromatic polycarbonates, and various copolycarbonates, polycarbonates and the like; and polyester polycarbonates preferred.
  • the evaporation apparatus of the present invention it is possible to stably produce a high-purity, high-performance condensed polymer that is free from coloring, gel-like substances, and solid-state foreign matter and has no molecular weight variation.
  • the liquid is a melt of thermoplastic polymer soot, and the low-boiling point substance is the polymer.
  • the industrial evaporation apparatus of the present invention is used as a purification apparatus for improving the purity of the polymer by evaporating and removing the low-boiling substances from the melt. It is preferable to use it.
  • thermoplastic polymer A examples include nylons such as nylon 6 and nylon 46; polystyrene polymers such as polystyrene, high-impact polystyrene (HIPS), and various copolymers; Polysalt-buluyl polymers such as copolymers; Polysalt-vinylidene and various copolymers, polysalt-vinylidene-based polymers; AS resins, ABS resins and various copolymers, etc.
  • Acrylonitrile polymers A polyolefin such as polypropylene; a polyacrylate polymer; a polymethacrylate polymer such as PMMA and various copolymers; and a thermoplastic elastomer.
  • impurities such as residual monomers contained in these thermoplastic polymers A can be efficiently removed at a relatively low temperature, and there is no coloring such as high thermal purity.
  • a high-performance thermoplastic polymer A can be obtained.
  • the liquid is a solution of the thermoplastic polymer B
  • the low boiling point substance dissolves the thermoplastic polymer and is contained in the solvent and / or the polymer solution, Separation and recovery for improving the purity of the thermoplastic polymer as well as separating and recovering the thermoplastic polymer by evaporating and removing the low-boiling point substance from the solution.
  • the industrial evaporation apparatus of the present invention as Z or purification apparatus.
  • Such a solution of the thermoplastic polymer B is produced by solution polymerization using a chlorinated solvent (for example, methylene chloride or black benzene) of an aromatic polycarbonate or a solvent (for example, toluene or hexane).
  • Polymer solutions such as SBR, BR and EPDM are preferred. Further, it is also preferable to remove the solvent and the like from the molten aromatic polycarbonate containing the chlorinated solvent and the elastomers containing the polymerization solvent. With the evaporation apparatus of the present invention, these solvents and impurities can be efficiently removed at a relatively low temperature, and it is possible to obtain a high-purity, high-performance thermoplastic polymer B that does not undergo thermal decomposition and has no coloration. it can.
  • the industrial evaporation apparatus of the present invention is particularly suitable for evaporating and removing relatively high-viscosity liquid power low-boiling substances.
  • the industrial evaporation apparatus of the present invention can be combined with a condensation polymer polymer.
  • a condensation polymer polymer When used as a combiner, there are places where part of the liquid stays heated for a long time in conventional polymerizers, so that the retained liquid is colored, gelled, cross-linked, ultra-high molecular weight Deformation such as quantification, solidification, burning, carbonization, etc. occurs, and the powerful force that these metabolites are gradually or intensively mixed into the polymer is unavoidable. It has an excellent effect not found in the polymerization vessel.
  • the reaction temperature is usually 200 to 350 ° C. Range, especially in the latter half of the polymerization, the viscosity increases rapidly, and the aromatic monohydroxy compound produced by the ultra-high viscosity material force equilibrium reaction must be extracted. For example, even if a reactor for a horizontal biaxial stirring type ultra-high viscosity polymer is used, it must be reacted for a long time at a high temperature of 300 ° C or higher and under a high vacuum of 133 Pa or lower. This high molecular weight polymer was difficult to produce.
  • the preferable reaction temperature is 100 to 290 ° C
  • the preferable reaction temperature is 150 to 270 ° C. It is a feature of the polymerizer of the present invention that the polymerization can proceed sufficiently at a lower temperature than in the case of a conventional mechanically stirred polymerizer, and this is also a high-quality aromatic that does not cause coloring or deterioration in physical properties. This is one of the reasons why polycarbonate can be produced.
  • conventional polymerizers have drawbacks such as leakage of air from the seal portion of the stirrer under high vacuum and contamination with foreign matter.
  • the polymerizer of the present invention does not provide mechanical stirring. Because there is no seal part of the stirrer! /, There is very little leakage of air, etc. and foreign matter contamination! This is the reason why high-purity and high-performance aromatic polycarbonate can be produced. Such excellent effects are similarly exerted for other condensation polymers, particularly polyesters and polyamides. These excellent effects are remarkable when manufacturing polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, nylon 6, nylon 66
  • the conventional polycondensation reaction of polyethylene terephthalate is usually 265 to 290 ° C. As the degree of polymerization increases, it is finally maintained at a high temperature of 280 ° C or higher.
  • the polycondensation reaction of polybutylene terephthalate is usually carried out at 240 to 270 ° C. As the degree of polymerization increases, it is finally maintained at a high temperature of 260 ° C or higher. It is well known that the higher the polymerization temperature, the more the hue and polymer properties are impaired.
  • polyesters such as polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, etc.
  • aldehydes such as acetate aldehyde, acrolein, etc. It is also known that the amount of by-produced cyclic oligomers such as these increases as the polymerization temperature increases.
  • the polymerization temperature of the polyesters can be lowered usually by 10 ° C or more, preferably by 20 ° C or more.
  • the surface can be efficiently renewed and the low boiling point by-product generated by the equilibrium reaction can be efficiently removed, so that the polyester can be produced at a high polymerization rate. Therefore, when the evaporator of the present invention is used as a polymerization vessel, for example, polymerization of polyethylene terephthalate, polymerization can be performed at a high reaction rate even at 240 to 265 ° C., the content of acetonitrile is reduced by half, the oligomer is small, and the hue is low. Good, high purity, high performance polymer can be produced with high productivity.
  • the conventional polycondensation reaction of nylon 66 is usually carried out at 230 to 290 ° C.
  • the polycondensation reaction of nylon 6 is usually performed at 250 to 270 ° C, but eventually it is performed while maintaining a high temperature around 270 ° C as the degree of polymerization increases. It has been done.
  • the average residence time in the polymerization reactor is usually on the order of 10 to 20 hours, and long-term residence at high temperatures is essential, so the polymer is easily colored by heat. It was easy to cause deterioration of physical properties.
  • nylon 66 in particular, it is well known that gelation is very likely to occur due to heat denaturation and coloring.
  • nylon 6 it is well known that a large amount of monomer (around 10%) and oligomer (2 to 3%) remain in the polymer when using a conventional polymerization vessel! / RU
  • the equilibrium constant of nylon becomes smaller as the temperature increases (for example, the equilibrium constant at 222 ° C and 254 ° C is In the case of nylon 6, it is 480 and 254, respectively, and in the case of nylon 66, it is 365 and 300, respectively.Therefore, if it can be polymerized at a low temperature, the residual monomer can be reduced. there were.
  • the polycondensation temperature of nylons can be lowered by 10 ° C or more, preferably 20 ° C or more.
  • the surface is renewed efficiently and the low boiling point by-product generated by the equilibrium reaction can be efficiently removed, so that nylons can be produced at a high polymerization rate. Therefore, if the evaporator of the present invention is used as a polymerization vessel, for example, nylon 66 is polymerized, it can be polymerized at 210 to 270 ° C, and finally at a high reaction rate at a temperature of 250 to 270 ° C.
  • High-purity, high-performance polymer with good hue without coloration or gel formation by high-performance can be produced with high productivity. Furthermore, condensation polymers produced by melt polymerization using conventional polymerizers have sufficient performance as polymers for normal applications (for example, textile applications), but the degree of polymerization is further increased. In order to use them for high-functionality applications (for example, tire cord applications, bottle applications, engineering resin applications, etc.), it is usually necessary to further solid-phase polymerize these polymers. For example, it is a feature of the evaporator of the present invention that a polymer having a degree of polymerization equivalent to that produced by solid phase polymerization can be easily obtained.
  • the condensation polymer is produced using the industrial evaporation apparatus of the present invention
  • the low-boiling substances by-produced by the equilibrium reaction are removed from the reaction system as the polymerization reaction proceeds.
  • the reaction rate is increased. Therefore, inert gases that do not adversely affect the reaction, such as nitrogen, argon, helium, carbon dioxide and lower hydrocarbon gases, are introduced into the polymerization reactor, and these low-boiling substances are entrained in these gases and removed.
  • a method of reacting under reduced pressure are preferably used.
  • a method using these in combination is also preferred. In these cases as well, it is not necessary to introduce a large amount of inert gas into the polymerization vessel, but the inside can be maintained in an inert gas atmosphere.
  • the reaction pressure when producing a condensation polymer using the industrial evaporation apparatus of the present invention depends on the kind of low-boiling substance produced as a by-product, the kind and molecular weight of the polymer produced, the polymerization temperature, and the like. Different forces such as bisphenol A and diphenol carbonate When producing an aromatic polycarbonate from a melted prepolymer, if the number average molecular weight is in the range of 5,000 or less, the 400 to 3, OOOPa range is preferred, and if the number average molecular weight is 5,000 to 10,000, A range of 50 to 500 Pa is preferred. When the number average molecular weight is 10,000 or more, 300 Pa or less is preferred, and a range of 20 to 250 Pa is particularly preferred.
  • a guide contact flow type first polymerization device For example, use a guide contact flow type first polymerization device, a guide contact flow type second polymerization device, a guide contact flow type third polymerization device, and a guide contact flow type fourth polymerization device. If the total outer surface area of the entire guide of each polymerizer is Sl, S2, S3, S4'—, then S1 ⁇ S2 ⁇ S3 ⁇ S4 ⁇ ---- be able to.
  • the polymerization temperature may also be the same for each polymerization vessel, or may be increased in order. It is also possible to lower the polymerization pressure in each polymerization vessel in order. In this sense, for example, when the polymerization degree is increased in this order using two polymerizers of a guide contact flow type first polymerization vessel and a guide contact flow type second polymerization vessel, the first polymerization vessel It is preferable to use a guide in which the external total surface area SI (m 2 ) of the entire guide of the second polymer and the external total surface area S2 (m 2 ) of the entire guide of the second polymerization vessel satisfy the formula (15) ⁇ :
  • S1ZS2 is less than 1, there will be inconveniences such as large variations in molecular weight, making stable production difficult for a long period of time, and difficulty in obtaining a predetermined production volume. If S1ZS2 is greater than 20, As a result, the flow rate of the molten prepolymer that flows down the guide increases, and as a result, the residence time of the molten prepolymer is reduced, making it difficult to obtain a polymer having the required molecular weight. In this sense, a more preferable range is 1.5 ⁇ S1 / S2 ⁇ 15.
  • a concentrated liquid or polymer of 1 ton or more per hour can be easily produced, but the condensed polymer can also be produced as a molten monomer or a molten polymer.
  • the low-boiling substances produced as a by-product of the polymerization reaction are usually discharged while being discharged out of the system, more than 1 ton of molten monomer or molten polymer in 1 ton per hour is supplied to the polymerizer or polymerization equipment.
  • the amount of molten monomer or prepolymer that is a liquid supplied to the evaporator varies depending on the degree of polymerization and the degree of polymerization of the polymer to be produced, but is usually 10 per 1 ton / hr of polymer production. ⁇ 500kgZhr more, 1. 01 ⁇ : L 5 tons Zhr range.
  • the amount of liquid supplied depending on the content of the low-boiling substance and the required concentration or purification rate is usually 1.
  • the range is from 001 to 100 tons Zhr, preferably 1.005 to 50 tons Zhr, more preferably 1.01 to 20 tons Zhr.
  • the industrial evaporation apparatus of the present invention may be any apparatus as long as it satisfies the conditions described in the claims and has a mechanical strength corresponding to the conditions described in the claims. A device having any function may be added. Further, the industrial evaporation apparatus of the present invention may be a combination of a plurality of industrial evaporation apparatuses of the present invention, or may be an apparatus having any other function other than evaporation. Good. Example
  • An industrial evaporation apparatus having a disk-shaped flow path control component 20 and a guide 4 having a thickness of about 2 cm as shown in FIGS.
  • the disk-shaped flow path control component 20 has its upper force suspended and fixed so that the distance from the upper inner wall 23 of the liquid supply zone 3 is about 8 cm. Further, the distance between the inner side wall surface 22 of the liquid supply zone 3 and the flow path control component 20 is about 9 cm, and the distance between the perforated plate 2 and the flow path control component 20 is about 8 cm.
  • the peripheral portion of the disc-shaped flow path control component 20 is crafted so that the vertical cross section is a semicircle having a radius of about 1 cm, and is designed so that liquid does not stay in the peripheral portion.
  • connection portion between the inner side wall surface 23 of the liquid supply zone and the perforated plate 2 has a concave inner side as shown in FIG.
  • the angle E is about 170 degrees.
  • the material of this evaporator is all stainless steel.
  • the discharge pump 8 is a normal liquid feed pump when the concentrated liquid has a high viscosity and the gear pump is preferred and the viscosity is not so high.
  • the space volume Y of the evaporation zone is about 222.8 m 3 and the value of ⁇ / V is about 70.
  • the liquid containing the low boiling point substance supplied from the supply port 1 is between the upper surface of the flow path control component 20 and the upper inner wall surface 23 of the supply zone 3, and the inner side wall surface 22 of the supply zone 3. It is distributed uniformly to each guide 4 from the holes (21 etc.) of the perforated plate 2 while flowing mainly from the periphery to the center of the perforated plate 2 via the flow path control component 20.
  • the lower part of the evaporator is provided with an inert gas supply port 9 and the upper part is provided with an evaporant outlet 6 for a low-boiling substance (usually connected to a gas condenser and a decompressor).
  • a jacket or a heating medium heating tube is installed outside the evaporation apparatus so that the heating medium can be kept at a predetermined temperature.
  • An aromatic polycarbonate was produced using the industrial evaporation apparatus of Example 1 as a polymerizer for the condensation polymer.
  • Molten prepolymer number average molecular weight Mn is 4,000
  • diphenol carbonate molar ratio of bisphenol A to 1.05 maintained at 260 ° C
  • the molten polymer was continuously supplied to the evaporation zone 5 (polymerization reaction zone) from the holes of the porous plate while flowing from the peripheral part to the central part of the porous plate 2, and the molten prepolymer was supplied along the guide 4.
  • the polymerization reaction proceeded while flowing down.
  • the polymerization reaction zone is maintained at 80 Pa through the evaporant outlet 6.
  • Guide 4 The generated aromatic polycarbonate that has entered the bottom 11 of the polymerization vessel is continuously withdrawn from the discharge port 8 at a flow rate of 5.5 tons Zhr by the discharge pump 8 so that the amount at the bottom becomes constant. It was issued.
  • the number average molecular weight Mn of the aromatic polycarbonate extracted from the outlet 12 after 50 hours from the start of operation is 10,500, and a good color (3.2 mm thick test piece is measured by the CIELAB method.
  • the b * value was 3.2).
  • the tensile elongation was 98%. 60 hours, 100 hours, 500 hours, 1,000 hours, 2,000 hours, 3,000 hours, 4,000 hours, 5,000 hours and 5,000 hours after the start of operation
  • the extracted aromatic polycarbonate Mn is 10, 500, 10, 550, 10, 500, 10, 550, 10, 500, 10, 500, 10, 550, 10, 500, respectively, and is stable.
  • the collar (b * value measured by CIELAB method of a 3.2 mm thick specimen) was also the same 3.2.
  • the mixture of impurities such as colored substances and foreign substances based on long-term retention was not detected at all.
  • the content of the alkali metal and Z or alkaline earth metal compound used as the catalyst was 0.04 to 0.05 ppm in terms of these metal elements. .
  • Aromatic polycarbonate was produced using this polymerization equipment (first and second polymerizers).
  • the materials of these evaporators are all stainless steel.
  • the discharge pump 8 of each evaporator is a gear pump.
  • the flow path control component 20 has a slightly smaller cross-sectional diameter, it has the same shape as that described in Example 1, and the distance from the wall surface (23 and 22) of the liquid supply zone and the perforated plate 2 These intervals are the same as those described in Example 1.
  • the cross section of the connection portion between the inner side wall surface 23 of the liquid supply zone and the perforated plate 2 has a concave inner side as shown in FIG.
  • the angle E of the force section is about 170 degrees.
  • Lower part of the liquid receiving port 1 (junction between the receiving port and the upper inner wall of the liquid supply zone) force Volume volume in which the liquid can exist in the liquid supply zone 3 up to the upper surface of the perforated plate 2 V
  • the ratio of (approximately 2.03 m 3 ) to the upper area T (approximately 12.56 m 2 ) of the perforated plate including the upper area of the hole, the value of VZT is approximately 0.162 (m).
  • Space volume Y of the evaporation zone over emissions is about 135m 3, the value of YZV is about 67.
  • a molten polymer polybolymer (number average molecular weight Mn is 2,500) made of bisphenol A and diphenol carbonate (molar ratio of bisphenol A to 1.06) and kept at 265 ° C. Then, it was continuously supplied to the supply zone 3 from the supply port 1 of the first polymerization vessel by the supply pump.
  • the molten prepolymer which was continuously supplied to the polymerization reaction zone through the perforated plate 2 in the first polymerization vessel, proceeded with the polymerization reaction while flowing down along the guide 4.
  • the polymerization reaction zone of the first polymerization vessel is maintained at a pressure of 800 Pa through the vacuum vent 6.
  • the molten polycarbonate polymer (number average molecular weight Mn is 5,500) of the increased degree of polymerization that has entered the bottom part 11 of the polymerization vessel from the bottom part of the guide 4 has a constant amount at the bottom part.
  • the discharge pump 8 continuously extracted from the discharge port 7 at a constant flow rate.
  • This molten polymer was continuously fed to feed zone 3 from feed port 1 of the second polymerization vessel by a feed pump.
  • the molten prepolymer that was continuously supplied to the polymerization reaction zone through the perforated plate 2 in the second polymerization vessel was allowed to flow along the guide 4 and the polymerization reaction proceeded.
  • the polymerization reaction zone of the second polymerization vessel is maintained at a pressure of 50 Pa through the vacuum vent port 6.
  • the generated aromatic polycarbonate that has entered the bottom 11 of the second polymerization vessel under the lower force of the guide 4 is discharged from the discharge port 7 at a flow rate of 6 tons Zhr by the discharge pump 8 so that the amount at the bottom becomes constant. It was continuously extracted.
  • the number average molecular weight Mn of the aromatic polycarbonate extracted from the outlet 12 of the second polymerization vessel 50 hours after the start of operation was 11,500, and a good color (3.2 mm thick test piece was
  • the b * value measured by the CIELAB method was 3.2).
  • the tensile elongation was 99%. 60 hours, 100 hours, 500 hours, 1,000 hours, 2,000 hours, 3,000 hours, 4,000 hours, 5,000 hours and 5,000 hours after the start of operation.
  • the Mn values of the aromatic polycarbonates are 11, 500, 11, 550, 11, 500, 11, 550, 11, 500, 11, 500, 11, 550, and 11, 500, respectively.
  • the color (b * value measured by CIELAB method for a 3.2 mm thick specimen) was also the same 3.2.
  • the mixture of impurities such as colored substances and foreign substances based on long-term retention was not detected at all.
  • the content of the alkali metal and Z or alkaline earth metal compound used as the catalyst was 0.03 ppm in terms of 0.03 force in terms of these metal elements. .
  • the evaporation apparatus of the present invention efficiently concentrates a large amount of a liquid having a substance having a boiling point lower than that of the liquid without any disadvantages such as coloring, contamination by foreign matter, and deterioration of physical properties. It is preferably used as an industrial evaporator suitable for the above. It is particularly preferable to use it as an evaporation apparatus when the liquid has a relatively high viscosity. Particularly preferred applications of the industrial evaporation apparatus of the present invention are a polymerization apparatus for a condensation polymer, a purification apparatus for a thermoplastic polymer melt, and a separation / recovery / purification apparatus for the polymer having a thermoplastic polymer solution.
  • FIG. 1 is a cross-sectional view schematically showing an industrial evaporator according to the present invention.
  • FIG. 2 is a cross-sectional view schematically showing a cylindrical industrial evaporator according to the present invention.
  • FIG. 3 is a cross-sectional view schematically showing the upper part of the industrial evaporation apparatus of the present invention.
  • FIG. 4 is a cross-sectional view schematically showing the upper part of the industrial evaporation apparatus of the present invention.
  • FIG. 5 is a cross-sectional view schematically showing a device for eliminating the “dead space” between the inner wall surface of the liquid supply zone and the perforated plate and the flow path control component.
  • FIG. 6 is a cross-sectional view schematically showing a device for eliminating a “dead space” between the inner wall surface of the liquid supply zone and the perforated plate and the flow path control component.
  • 1 Liquid inlet
  • 2 Perforated plate
  • 3 Liquid supply zone
  • 4 Guide
  • 5 Evaporation zone
  • 6 Evaporate outlet
  • 7 Liquid outlet
  • 8 Liquid outlet pump
  • Desired 10 Side casing of the evaporation zone
  • 11 Bottom casing of the evaporation zone
  • 12 Liquid outlet
  • 20 Flow control part
  • 21 Example of holes in the perforated plate
  • 22 Inner side wall surface of liquid supply zone
  • 23 Upper inner wall surface of liquid supply zone.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

明 細 書
工業的蒸発装置
技術分野
[0001] 本発明は、新規な工業的蒸発装置に関する。さらに詳しくは、液体中に該液体より低 沸点の物質を含有する液体を、それ自身加熱源のな!、ガイドの外部表面に沿って流 下させ、その間に該低沸点物質を蒸発させる装置に関する。
背景技術
[0002] 液中の揮発成分及びまたは低沸点成分を蒸発除去させて該液を濃縮するための 工業的蒸発装置としては種々のものが知られている。例えば、改定 6版化学工学便 覧 (非特許文献 1 :改訂 6版 化学工学便覧、 403〜405頁、化学工学会編、 1999 年参照)には、液中燃焼方式、自然循環式浸管型、自然循環式水平管型、垂直短 管型、垂直長管上昇膜型、水平管下降膜型、垂直長管下降膜型、強制循環式水平 管型、強制循環式垂直管型、コイル型、攪拌膜型、遠心式薄膜型、プレート型、フラ ッシュ蒸発方式が記載されている。これらの工業的蒸発装置のなかで、液を上方から 下方に流下させる方式は、水平管下降膜型、垂直長管下降膜型、強制循環式水平 管型、強制循環式垂直管型、攪拌膜型であるが、攪拌膜型を除き全て多管円筒形 熱交換器と同様の形式のものである。攪拌膜型は外套加熱の円筒形または円錐形 伝熱面内で力きとり板を回転させ、伝熱面上に液膜を形成させると同時にそれをかき とり、蒸発の均一化と伝熱の促進を図りながら蒸発濃縮させる方式である。 また、熱 交換器型の水平管下降膜型、強制循環式水平管型は、水平に設置された管外面に 液体を液膜の状態で流しながら蒸発濃縮させる方式であって、管自身は内部を流れ る水蒸気ゃ熱媒などの加熱媒体によって加熱されている。
[0003] 液体の流れからみれば、本発明に最も近 、タイプの工業的蒸発装置は、垂直長管 下降膜型、強制循環式垂直管型であるが、これらは垂直に設置された管内を液体が 膜状に下降する間に蒸発濃縮させる方式であって、本発明のガイドの外部表面に沿 つて流下させる方式ではなぐし力も管内を液体が流下する管自身は管外部 (胴部) を流れる加熱媒体によって加熱されており、本発明のようにそれ自身加熱源のな ヽ ガイドとは異なっている。
[0004] また、ポリマーなどの溶融物を多孔板力も蒸発ゾーンにストランド状または糸状に押 し出し、自由落下させながらポリマー溶融物を蒸発濃縮させるストランド蒸発器も知ら れている(特許文献 1:米国特許第 3110547号明細書;特許文献 2:特公昭 30— 21 64号公報参照)。し力しながら、ストランド蒸発器は濃縮すべき液体を自由落下させ るため、蒸発ゾーンにおける滞留時間が短いので蒸発効率が悪いし、蒸発ゾーンで ストランドや糸状物が横方向に揺れ動き互いに融着しゃすく連続的に安定に操作す ることが困難である等の欠点がある。線状の支持体に沿ってモノマー混合物ゃプレ ポリマーを流下させながらポリアミドやポリエステルなどを製造する装置 (例えば、特 許文献 3:米国特許第 3044993号明細書;特許文献 4:特公昭 48— 8355号公報; 特許文献 5:特開昭 53— 17569号公報;特許文献 6:特開昭 60— 44527号公報;特 許文献 7 :特開昭 61— 207429号公報参照)も提案されている。さらに、ループ状の ワイヤーを蒸発ゾーンに設置し、該ワイヤーループに沿って高粘度のポリマー融液を 流下させながら蒸発濃縮またはガス抜きを行う装置が提案され、特にポリカーボネー ト溶液または溶融物の蒸発濃縮およびガス抜きのために使用することが有利であるこ とが記載されて ヽる(特許文献 8:特表 2004 - 516172号公報参照)が、この方法は 、本発明者らが既に提案しているワイヤーや有孔面状ガイドに沿って溶融重合原料 を流下させながら重合させてポリカーボネートを製造する方法およびその装置 (特許 文献 9 :国際公開第 99Z36457号参照)と実質的に同じである。しかしながら、このよ うなワイヤーや有孔面状ガイドを有する装置で、蒸発処理された液体が 1時間あたり 1 トン以上であるような工業的規模で長期間安定的に蒸発操作を実施できる装置の規 模ゃ使用に関する具体的な開示や示唆がなされるまでには到って 、なかった。
[0005] さらにこれまでの蒸発装置においては、液の一部の長時間滞留による、着色、ゲル ィ匕、架橋化、超高分子量化、固ィ匕、焼け、炭化等の変性を避ける為の工夫について 記載されて 、るものはな力つた。特に粘度の比較的高 、液体からの低沸点物質の蒸 発装置において、このような変性が起これば、この変生物が少しずつ、あるいは或る 時期に集中して濃縮された液に混合し、着色や固形異物の混入という、ポリマーなど の濃縮製品にとって致命的な問題を引き起こすことが長時間の連続運転を行うことで 初めてあきらかになった。
[0006] し力しながら、このような長時間運転に基づく変性に関しては、これまでの蒸発装置 では、全く考慮されていな力つたことは明らかである。例えば、線状支持体を用いる 蒸発装置である特許文献 5の図 1によれば、多孔板の孔部と中空体内部側壁面との 間にポリマーが長期間滞留し加熱される、いわゆる「デッドスペース」が多く存在して いることは明白で、この「デッドスペース」を減少させる工夫等は全く行っていない。従 つて、高粘度物供給口(7)から供給された高粘度物は、多孔板 (3)と中空体内部側 壁面との間の「デッドスペース」に長期間滞留するので、上記の問題が必ず発生する 。また、最近の提案である特許文献 8においてさえ、ディストリビュータ管 3 (図 2)、お よび多孔板への供給ゾーン(図 3a)における「デッドスペース」を減少させる工夫は全 くなされていない。
発明の開示
発明が解決しょうとする課題
[0007] 本発明が解決しょうとする課題は、液体中に該液体より低沸点の物質を含有する液 体を、それ自身加熱源のないガイドの外部表面に沿って流下させ、その間に該低沸 点物質を蒸発させる装置において、蒸発処理された該液体が 1時間あたり 1トン以上 であるような工業的規模で長期間安定的に実施できる装置を具体的に開示すること であり、さらには、該液体の一部の長期滞留による変性に起因する問題の無い工業 的蒸発装置を具体的に開示することである。
課題を解決するための手段
[0008] 本発明者等は、先に提案した溶融プレボリマーをワイヤーなどのガイドに沿わせて 落下させながら重合させるガイド接触流下式重合器を種々の用途に用いる検討を重 ねた結果、上記の課題を解決できる下記に示す特徴をもつ特定の構造を有するェ 業的蒸発装置を見出し、本発明に到達した。すなわち、本発明は、
1.液体中に該液体より低沸点の物質を含有する液体を、それ自身加熱源のないガ イドの外部表面に沿って流下させ、その間に該低沸点物質を蒸発させる装置であつ て、該蒸発装置が、
(1) 該液体受給口、多孔板を通して蒸発ゾーンの該ガイドに該液体を供給するた めの液体供給ゾーン、該多孔板と側面ケーシングと底部ケーシングとに囲まれた空 間に該多孔板から下方に延びる複数の該ガイドが設けられた蒸発ゾーン、該蒸発ゾ ーンに設けられた蒸発物抜出し口、底部ケーシングの最下部に設けられた液体排出 口を有するものであって、
(2) 該液体供給ゾーンにお!、て、該液体受給口から多孔板に供給される液体の流 れが主として多孔板の周辺部から中央部の方向に流す機能を有する流路制御部品 が該液体供給ゾーンに設置されており、
(3) 該蒸発ゾーンの側面ケーシングの水平面における内部断面積 A (m2)が、式(1 )を満足するものであって、
0. 7 ≤ A ≤ 300 式(1)
(4) 該 A(m2)と、液体排出口の水平面における内部断面積 B (m2)との比力 式(2 )を満足するものであって、
20 ≤ A/B ≤ 1000 式(2)
(5) 該蒸発ゾーンの底部を構成する底部ケーシングが、上部の側面ケーシングに 対してその内部において、角度 C度で接続されており、該角度 C度が式(3)を満足す るものであって、
110 ≤ C ≤ 165 式(3)
(6) 該ガイドの長さ h (cm)が、式 (4)を満足するものであって、
150 ≤ h ≤ 5000 式(4)
(7) 複数の該ガイド全体の外部総表面積 S (m2)が式 (5)を満足するものであって、
2 ≤ S ≤ 50000 式(5)
(8) 該液体受給口力 多孔板の上面までの該液体供給ゾーンにぉ 、て該液体が 存在することのできる空間容積 V(m3)と、孔の上部面積を含む多孔板の上部面積 T (m2)が式 (6)を満足するものであって、
0. 02 (m) ≤ V/T ≤ 0. 5 (m) 式(6)
(9) 該空間容積 V(m3)と、蒸発ゾーンの空間容積 Y(m3)が式 (7)を満足する:
10 ≤ Y/V ≤ 500 式(7)
ことを特徴とする工業的蒸発装置、 2.蒸発処理された液体が 1時間あたり 1トン以上であることを特徴とする前項 1に記 載の工業的蒸発装置、
3.該液体供給ゾーンの内部側壁面と該多孔板とのなす角度 E度が式 (8)を満足す る:
100 ≤ E < 180 式(8)
ことを特徴とする前項 1または 2に記載の工業的蒸発装置、
4.該蒸発ゾーンの該ケーシングが内径 D (cm)、長さ L (cm)の円筒形であって、そ の下部に接続された底部ケーシングがコーン形であり、該コーン形ケーシングの最下 部の液体排出口が内径 d (cm)の円筒形であって、 D、L、d が式 (9)、 (10)、 (11) および(12)を満足する:
100 ≤ D ≤ 1800 式(9)
5 ≤ D/d ≤ 50 式(10)
0. 5 ≤ L/D ≤ 30 式(11)
h- 20 ≤ L ≤ h+ 300 式(12)
ことを特徴とする前項 1ないし 3のうち何れか一項に記載の工業的蒸発装置、
5. hが式(13)を満足する:
400 < h ≤ 2500 式(13)
ことを特徴とする前項 1ないし 4のうち何れか一項に記載の工業的蒸発装置、 6. 1つの該ガイドが外径 r (cm)の円柱状または内側に液体及び Zまたはガス状物 質が入らないようにしたパイプ状のものであって、 r が式(14)を満足する:
0. 1 ≤ r ≤ 1 式(14)
ことを特徴とする前項 1ないし 5のうち何れか一項に記載の工業的蒸発装置、
7.該複数のガイドが、前項 6記載のガイド複数力 なり、それら個々のガイドが横方 向の支持材で結合されたものであることを特徴とする前項 1ないし 5のうち何れか一項 に記載の工業的蒸発装置、
8.該複数のガイドが、前項 6記載のガイド複数力 なり、それら個々のガイドが横方 向の支持材で固定された格子状または網状ガイド、複数の格子状または網状のガイ ドを前後に配置しそれらが横方向の支持材で固定された立体的なガイド、および複 数の個々のガイドが前後左右の横方向を支持材で固定されたジャングルジム状の立 体的なガイド、の 、ずれかであることを特徴とする前項 1な 、し 5のうち何れか一項に 記載の工業的蒸発装置。
9.該液体が縮合系ポリマーを製造するためのモノマー及び 2種以上のモノマー混合 物、及び Zまたは該縮合系ポリマーのプレボリマー、及び Zまたは該縮合系ポリマー の溶融液であって、該低沸点物質が重縮合反応で生成する副生物質及び Zまたは オリゴマーであり、該溶融液から該低沸点物質を蒸発除去することによって、該縮合 系ポリマーのプレボリマー及び zまたは該ポリマーの重合度を向上させるための縮合 系ポリマー用重合装置であることを特徴とする前項 1ないし 8のうち何れか一項に記 載の工業的蒸発装置、
10.該縮合系ポリマーがポリエステル類、ポリアミド類、ポリカーボネート類であること を特徴とする前項 9記載の工業的蒸発装置、
11.該液体が熱可塑性ポリマー Aの溶融液であって、該低沸点物質が該ポリマー中 に含有するモノマー、オリゴマー、副生物であり、該溶融液から該低沸点物質を蒸発 除去することによって、該熱可塑性ポリマー Aの純度を向上させるための精製装置で あることを特徴とする前項 1ないし 8のうち何れか一項に記載の工業的蒸発装置、
12.該熱可塑性ポリマー Aがポリスチレン系ポリマー、ポリ塩化ビュル系ポリマー、ポ リ塩ィ匕ビ-リデン系ポリマー、ポリアクリロニトリル系ポリマー、ポリアクリル酸エステル 系ポリマー、ポリメタクリル酸エステル系ポリマー、熱可塑性エラストマ一であることを 特徴とする前項 11記載の工業的蒸発装置、
13.該液体が熱可塑性ポリマー Bの溶液であって、該低沸点物質が該熱可塑性ポリ マーを溶解させて 、る溶媒及び/または該ポリマー溶液中に含有して 、るモノマー、 オリゴマー、副生物であり、該溶液から該低沸点物質を蒸発除去することによって、 該溶液力 該熱可塑性ポリマーを分離回収するとともに該熱可塑性ポリマーの純度 を向上させるための分離回収'精製装置であることを特徴とする前項 1ないし 8のうち 何れか一項に記載の工業的蒸発装置、
を提供する。
発明の効果 [0009] 本発明の工業的蒸発装置は、大量の液体を効率的に、長時間安定的に、蒸発濃 縮させることができる装置であって、 1時間あたり 1トン以上の濃縮液を製造でき、しか も液体の変性が長時間にお 、て起こらな 、蒸発濃縮装置である。特に粘度が比較 的高い液体の蒸発 '濃縮において優れた効果を発揮する装置である。このような比 較的高 、粘度を有する液体を蒸発濃縮させるこれまでの装置では、液の一部が長時 間加熱されたままで滞留する場所があり、そのことによって滞留した液が、着色、ゲル ィ匕、架橋化、超高分子量化、固化、焼け、炭化等の変性が起こり、それらの変生物が 徐々にまたは集中的に濃縮液に混入することによって、濃縮液の色や物性を悪化さ せていることがわ力つた。本発明はこのような欠点のない連続蒸発装置であって、特 に縮合系ポリマーの重合装置、熱可塑性ポリマーの精製装置、熱可塑性ポリマー溶 液からの該ポリマーの分離回収およびまたは精製装置として優れた効果を発揮する ものである。すなわち、熱変性物の生成に起因する着色や異物の混入のない高性能 •高純度ポリマーを長時間、安定的に、 1時間あたり 1トン以上の高生産性で製造でき る装置である。さらに本発明の蒸発装置が重合器の場合、分子量のバラツキを非常 に少なくすることができる。
発明を実施するための最良の形態
[0010] 本発明は、連続式蒸発装置として上記の課題を解決するためには、種々の条件を 満足させることが必要であることを見出したものである。本発明の蒸発装置の概念を 示す断面図(図 1、図 2)及び部分を示す断面図(図 3、 4)を用いて、本発明をより具 体的に説明する。
[0011] 液体受給口 1は、液体供給ゾーン 3の上部に設けることが好ましい。液体受給口 1 は一箇所でも複数箇所でもよいが、液体が液体供給ゾーン 3でできるだけ均一に多 孔板 2へと供給されるように配置することが好ましぐ一箇所の場合は液体供給ゾーン 3の上部の中央部に設けることが好ましい。液体供給ゾーン 3において、液体受給口 1から多孔板 2に供給される液体の流れが主として多孔板 2の周辺部から中央部の方 向に流す機能を有する流路制御部品 20が該液体供給ゾーン 3に設置されて ヽること が必要である。この流路制御部品 20は液体の流れを多孔板 2の周辺部から中央部 に向かわせることによって、多孔板 2の孔部(例えば 21)と液体供給ゾーン 3の内部側 壁面 22との間のスペースに液体が長期滞留することを防ぐ効果がある。主として多孔 板 2の周辺部から中央部に向力つて流された液体は、その間に存在する孔カもガイド 4に供給されるようになる。
[0012] この流路制御部品 20の形状は、その効果を発揮できればどのようなものであっても よいが、その横断面の外形は多孔板 2の横断面の外形と相似形であることが好ましい 。ここで、流路制御部品 20の横断面とは、流路制御部品 20を横方向の面で切断し た場合最大の面積を示す場所のことである。この流路制御部品 20と液体供給ゾーン 3の内部側壁面 22との間の間隔は、処理すべき液体の量、粘度などによって好まし い範囲は異なるが、蒸発処理すべき液体の粘度が比較的高い、ポリマーの重合器、 ポリマーの精製装置などとして用いる場合、通常 lcm〜50cmの範囲が好ましぐより 好ましくは 2cm〜30cmであり、さらに好ましくは 3cm〜20cmである。液体供給ゾー ン 3の上部内部壁面 23と流路制御部品 20との間の間隔はどのようなものであっても よいが、液体供給ゾーン 3内における液体の滞留時間をできるだけ少なくするように することが好ましい。
[0013] この意味でこの間隔は通常 lcm〜200cmであり、好ましくは 2cm〜 170cmであり 、より好ましくは 3cm〜 150cmである。液体供給ゾーン 3の上部内部壁面 23と流路 制御部品 20との間の間隔は、液体受給口 1から液体供給ゾーン 3の内部側壁面 22 に到るまでほぼ同じ間隔となるような流路制御部品 20とすることもできるし、その間隔 を徐々に狭くしていぐあるいは、逆に徐々に広げていくような流路制御部品 20とす ることもできる。また、流路制御部品 20と多孔板 2との間隔は通常 lcm〜50cmであり 、好ましくは 2cm〜30cmであり、より好ましくは 3cm〜20cmである。多孔板 2と流路 制御部品 20との間の間隔は、液体供給ゾーン 3の内部側壁面 22から多孔板の中央 部に到るまでほぼ同じ間隔となるような流路制御部品とすることもできるし、その間隔 を徐々に狭くしていぐあるいは逆に徐々に広げていくような流路制御部品とすること もできるが、好ましくは、ほぼ同じ間隔か、あるいは徐々に狭くしていくような流路制御 部品である。
[0014] この流路制御部品 20は、液体受給口 1から供給された液が多孔板 2の孔に直接導 かれることを邪魔しているので、ある種の邪魔板と考えてもよいものである。なお、多 孔板 2の面積が広い場合は、供給された液の一部を多孔板 2の周辺部を経由させず に多孔板 2の中央部付近に短絡させることも好ましぐその為に、流路制御部品 20の 中央部付近、あるいはその他適当な部分に一箇所またはそれ以上の孔を設けること も好ましい。液体供給ゾーン 3において「デッドスペース」を作らせないためには、さら に液体供給ゾーンの内部側壁面 22と多孔板 2とのなす角度 E度が式 (8)を満足する ことが好ましい:
100 ≤ E < 180 式(8)。
ここで、該内部側壁面 22が平面状の場合、その平面に垂直で且つ多孔板 2の上面 に垂直な面での切断面における該内部側壁面 22と多孔板 2とのなす角度が Eである 。また、該内部側壁面 22が凹面の曲面の場合、その凹面に垂直で且つ多孔板 2の 上面に垂直な面での切断面においてなす曲線が立ち上がり始める点における接線 と多孔板 2の上面とのなす角度が Eである。 より好ましい Eの範囲は、 120≤E< 18 0 であり、さらに好ましくは、 145≤E< 180 である。また、液体供給ゾーン 3の上部 内壁面 23と内側壁面 22との接合部付近も「デッドスペース」とならな 、ように工夫す ることも好ましぐこれらの両面がなす角度を 90°Cより大きくする力 90°Cまたはそれ に近 、場合は、接合部付近を凹面状にして液が滞留しな 、ようにすることが好ま ヽ 本発明にお 、ては、該液体受給口 1の下部 (液体受給口 1と液体供給ゾーン 3の上 部内壁との接合部)から多孔板 2の上面までの該液体供給ゾーン 3にお 、て該液体 が存在することのできる空間容積 V (m3)と、孔の上部面積を含む多孔板の上部面積 T (m2)が式 (6)を満足することが必要である。
0. 02 (m) ≤ V/T ≤ 0. 5 (m) 式(6)。
V(m3)は本発明の蒸発装置を連続運転中は該液体供給ゾーン 3における実質的 な液体の容積であって、該流路制御部品の容積は除くものである。液体供給ゾーン における液体保持量は V (m3)であるが、この量は少な 、方が液体供給ゾーンにおけ る滞留時間が少なくて熱変性による悪影響がないが、蒸発処理された液体が 1トン Z hr以上で且つ、長期間安定的に所定の濃縮度または重合度の濃縮液体及び Zまた はポリマーを得るためには、多孔板の孔に該液体を可能な限り均等に供給することが 重要である。そのためには、 νΖτの値力この範囲であることが必要であることを見出 したのである。より好ましい VZTの値の範囲は、 0. 05 (m)≤V/T ≤0. 4 (m) で あり、さらに好ましくは、 0. 1 (m)≤V/T ≤0. 3 (m)である。
[0016] 本発明においては、該空間容積 V(m3)と、蒸発ゾーンの空間容積 Y(m3)が式 (7) を満足することが必要である:
10 ≤ Y/V ≤ 500 式(7)。
熱変性による物性の低下を招かずに、長時間安定的に効率よぐ単位時間あたり 大量の液体を蒸発処理するためには、 YZVの値がこの範囲であることが必要である ことを見出したのである。より好ましい YZVの値の範囲は、 15≤YZV≤400 であ り、さらに好ましくは、 20≤Y/V≤300である。
なお、本発明でいう蒸発ゾーンの空間容積 Y(m3)とは、多孔板の下面から液体排 出口までの空間容積であって、ガイドの占める容積を含むものである。
[0017] 蒸発ゾーン 5の側面ケーシング 10の水平面 (a— a '面)における内部断面積 A (m2) 力 式(1)を満足するものであることが必要である:
0. 7 ≤ A ≤ 300 式(1)。
さらに、該 A (m2)と、液体排出口 7の水平面 (b—b '面)における内部断面積 B (m2 )との比が、式(2)を満足することも必要である:
20 ≤ A/B ≤ 1000 式(2)。
蒸発濃縮された液体やポリマー、または製造されたポリマーの品質を低下させるこ となく溶融粘度の高められたこれらの溶融物を排出するためには、 AZBは式(2)を 満足して!/ヽなければならな!/ヽ。
[0018] さらに、該蒸発ゾーンの底部を構成する底部ケーシング 11が、上部の側面ケーシ ング 10に対してその内部において、角度 C度で接続されており、該角度 C度が式(3) を満足することも必要である:
110 ≤ C ≤ 165 式(3)。
設備費を低下させるためには、 Cはできるだけ 90度に近い方がいいのである力 ガ イド 4の下端力 落下してくる濃縮された液体やポリマーの品質を低下させることなく 溶融粘度の高められたこれらの溶融物を排出口 7に移動させるためには、 Cは式(3) を満足して ヽなければならな ヽ。
[0019] さらに、該ガイド 4の長さ h (cm)力 式 (4)を満足することも必要である:
150 ≤ h ≤ 5000 式(4)。
hが 150cmより短い場合、濃縮や重合を進めることはできる力 その程度が十分で はないので、好ましくない。 hが 5000cmより長い場合、ガイドの上部と下部での液体 の粘度の違いが大きくなりすぎるため、濃縮度のバラツキや重合度のバラツキが大き くなりやす 、ので好ましくな 、。
さらに、該ガイド 4の外部総表面積 S (m2)が式 (5)を満足する必要がある:
2 ≤ S ≤ 50000 式(5)。
Sが 2m2よりも小さいと、 1時間あたり 1トン以上である目的とする蒸発処理された液 体量や製造ポリマーの生産量を達成できな 、し、設備費を低下させつつこの生産量 を達成し、且つ物性にバラツキをなくすためには、 Sは 50000m2以下にすることが必 要である。
[0020] このような種々の条件を満足する本発明の蒸発装置は、これまでの蒸発装置の課 題を解決するだけでなぐ驚くべきことに、先に記載の優れた効果を発揮するもので あり、着色がなく高品質 ·高性能の濃縮液体やポリマーを、 1時間あたり 1トン以上の 量でしかも、数 1, 000時間以上、たとえば 5, 000時間以上の長期間、安定的に製 造することができることが見出された。
[0021] 本発明の蒸発装置が、このような優れた効果を有する工業的蒸発装置であるのは 、恐らく上述の種々の理由に加えて、それらの条件が組み合わさった時にもたらされ る複合効果が現れたためであると推定される。例えば式 (4)および (5)を満足する高 表面積のガイドは、比較的低温度で供給される大量の液体やプレボリマーやポリマ 一の効率的な内部攪拌と表面更新に非常に有効であって、低沸点物質の蒸発を効 率的に行うことができ、高品質の濃縮液体やポリマーを 1時間あたり 1トン以上の大量 に得ることに役立つとともに、式 (3)を満足する角度 Cはガイドから落下してくる大量 の高品質の濃縮液体やポリマーが排出口 7から排出されるまでの時間を短縮でき熱 履歴を減らせるためと推定される。
[0022] なお、このような工業的規模での蒸発装置の性能は、大規模な製造設備を用いる 長時間運転によって初めて確立できるものであるが、その際の製造設備費は考慮す べき重要な因子であることは、論を待たない。本発明の蒸発装置は従来の蒸発装置 や重合器に比べ、性能に対する設備費を低くすることができることが、本発明の別の 効果である。
[0023] 本発明の工業的蒸発装置における特定の条件や寸法'角度等に要求される範囲 は、上記のとおりである力 さらに好ましい範囲は次のとおりである。蒸発ゾーン 5の 側面ケーシング 10の水平面における内部断面積 A (m2)のより好ましい範囲は、 0. 8 ≤ A ≤ 250 であり、さらに好ましくは、 1 ≤ A ≤ 200 である。また、 該 A (m2)と、液体排出口 7の水平面における内部断面積 B (m2)との比のより好まし い範囲は、 25 ≤ A/B ≤ 900 であり、さらに好ましくは、 30 ≤ A/B ≤ 800 である。また、蒸発ゾーン 5の底部を構成する底部ケーシング 11が、上部 の側面ケーシング 10に対してその内部においてなす角度 C度のより好ましい範囲は 、 120 ≤ C ≤ 165 であり、さらに好ましくは、 135 ≤ C ≤ 165 である 。なお、複数の蒸発装置を用いて順に濃縮度あるいは重合度を上げていく場合には 、それぞれに対応する角度を、 Cl、 C2、 C3、 · · ·とすれば、 Cl≤ C2 ≤ C3 ≤ · · · とすることが好ましい。
[0024] また、ガイド 4の必要な長さ h (cm)は、処理すべき液体の量や粘度や温度、低沸 点物質の量や、沸点、蒸発ゾーンの圧力や温度、必要とする濃縮度あるいは重合度 など要因の違いによって異なる力 より好ましい範囲は、 200 ≤ h ≤ 3000 で あり、さらに好ましくは、 400 < h ≤ 2500 である。また、必要なガイド全体の 外部総表面積 S (m2)も、上記と同様の要因の違いによって異なるが、そのより好まし い範囲は、 10 ≤ S ≤ 40000 であり、さらに好ましくは、 15≤ S ≤ 300 00 である。 本発明でいうガイド全体の外部総表面積とは、液体が接触して流下す るガイドの表面積全体を意味しており、例えばパイプなどのガイドの場合、外側の表 面積を意味しており、液体を流下させないパイプ内側の面の表面積は含めない。
[0025] 本発明の工業的蒸発装置において、蒸発ゾーン 5の側面ケーシング 10の水平面 における内部断面の形状は多角形、楕円形、円形等、どのような形状であってもよい 。蒸発ゾーン 5は、通常減圧下で操作されるため、それに耐えるものであればどのよう なものでもよいが、好ましくは円形または、それに近い形状である。従って、本発明の 蒸発ゾーン 5の側面ケーシング 10は、円筒形であることが好ましい。この場合、円筒 形の側面ケーシング 10の下部にコーン形の底部ケーシングが設置され、該底部ケ 一シングの最下部に円筒形の液体排出口 7が設けられることが好ましい。
[0026] 本発明の工業的蒸発装置において、蒸発ゾーン 5の側面及び底部ケーシングが、 それぞれ前記の円筒形及びコーン部からなっており、濃縮された液体、またはポリマ 一の液体排出口 7が円筒形である場合、該側面ケーシングの円筒形部の内径を D (c m)、長さを L (cm)とし、該液体排出口 7の内径を d (cm)とした時、 D、 L、 dが式(9)、 ( 10)、( 11)および( 12)を満足して!/、ることが好ま ヽ:
100 ≤ D ≤ 1800 式(9)
5 ≤ D/d ≤ 50 式(10)
0. 5 ≤ L/D ≤ 30 式(11) h- 20 ≤ L ≤ h+ 300 式(12)。
[0027] 本発明の蒸発装置において、 D (cm)のより好ましい範囲は、 150 ≤ D ≤ 1 500 であり、さらに好ましくは、 200 ≤ D ≤ 1200 である。また、 DZd のよ り好ましい範囲は、 6 ≤ D/d ≤ 45 であり、さらに好ましくは、 7 ≤ D/d ≤ 40 である。また、 L/Dのより好ましい範囲は、 0. 6 ≤ L/D ≤ 25 であ り、さらに好ましくは、 0. 7 ≤ L/D ≤ 20 である。 また、 L (cm)のより好まし い範囲は、 h — 10 ≤ L ≤ h + 250 であり、さらに好ましくは、 h ≤ L ≤ h + 200 である。なお、 D、d、L 力 れらの関係を同時に満足しない場合 は、本発明の課題を達成することが困難になる。
[0028] 本発明の蒸発装置が、速い蒸発速度や速い重合速度で、着色が無く機械的物性 に優れた高品質 ·高性能の濃縮液体やポリマーを、工業的規模で長期間安定的 (ポ リマー製造の場合分子量のバラツキ等が無く)に製造できる正確な理由は明らかで はないが、以下のことが考えられる。すなわち、本発明の蒸発装置においては、原料 の液体は液体受給口 1から、液体供給ゾーン 3および多孔板 2を経由して、ガイド 4に 導かれ、ガイド 4に沿って流下しながら濃縮される力 あるいは重合度が上昇していく 。この場合、液体や溶融プレボリマーはガイドに沿って流下しながら効果的な内部攪 拌と表面更新が行われ、低沸点物質の抜出しが効果的に行われるため、速い速度 で濃縮や重合が進行する。濃縮や重合の進行とともにその粘度が高くなつてくるため に、ガイド 4に対する粘着力が増大し、ガイド 4に粘着する液体や溶融物の量はガイド 4の下部に行くに従って増えてくる。このことは、液体や溶融プレボリマーのガイド上 での滞留時間、すなわち蒸発時間や重合反応時間が増えることを意味している。し 力も、ガイド 4に支えられながら自重で流下している液体や溶融プレボリマーは、重量 当たりの表面積が非常に広ぐその表面更新が効率的に行われているので、これま での蒸発装置や機械的攪拌式重合器ではどうしても不可能であった高粘度領域で の蒸発濃縮や重合後半の高分子量ィ匕が容易に達成できるのである。これが本発明 の蒸発装置の持つ、優れた特徴の 1つである。
[0029] 蒸発や重合の後半では、ガイドに粘着する液体や溶融物の量が増えてくるが、その 粘度に見合った粘着保持力しかないので、複数のガイドの同じ高さにおいては、ほ ぼ同じ粘度をもつほぼ同じ量の液体や溶融物が、それぞれのガイドに支えられてい ることになる。一方、ガイドには上部力 液体や溶融物が連続的に供給されているの で、ほぼ同じ粘度をもつ液体やほぼ同じ溶融粘度をもつ重合度のより高められた溶 融物が、ガイドの下端力 底部ケーシングに連続的に落下して行くことになる。すな わち底部ケーシングの下部には、ガイドを流下しながら生成したほぼ同じ粘度の液体 やほぼ同じ重合度のポリマーが溜まってくることになり、蒸発度のバラツキのない濃縮 液体や分子量のバラツキのないポリマーが連続的に製造されることになる。このこと は本発明の蒸発装置の持つ他の優れた特徴の 1つである。底部ケーシングの下部 に溜まった濃縮液体やポリマーは、液体排出口 7を経て、排出ポンプ 8によって連続 的に抜き出され、ポリマーの場合は、通常押出し機等を経て連続的にペレツトイ匕され る。この場合、押出し機で添加剤等を添加することも可能である。
[0030] 本発明の蒸発装置を構成する多孔板 2は、通常、平板、波板、中心部が厚くなつた 板など力 選ばれ、多孔板 2横断面の形状についは、通常、円状、長円状、三角形 状、多角形状などの形状から選ばれる。多孔板の孔の横断面は、通常、円状、長円 状、三角形状、スリット状、多角形状、星形状などの形状から選ばれる。孔の断面積 は、通常、 0. 01〜100cm2であり、好ましくは 0. 05〜10cm2であり、特に好ましくは 0. l〜5cm2の範囲である。孔と孔との間隔は、孔の中心と中心の距離で通常、 1〜5 OOmmであり、好ましくは 25〜: LOOmmである。多孔板の孔は、多孔板を貫通させた 孔であっても、多孔板に管を取り付けた場合でもよい。また、テーパー状になってい てもよい。
[0031] また、本発明の蒸発装置を構成するガイドとは、それ自身内部に熱媒ゃ電気ヒータ 一などの加熱源を持たないものであって、水平方向断面の外周の平均長さに対して 該断面と垂直方向の長さの比率が非常に大きい材料を表すものである。該比率は、 通常、 10〜: L, 000, 000の範囲であり、好まし <は 50〜: L00, 000の範囲である。水 平方向の断面の形状は、通常、円状、長円状、三角形状、四角形状、多角形状、星 形状などの形状力も選ばれる。該断面の形状は長さ方向に同一でもよいし異なって いてもよい。また、ガイドは中空状のものでもよい。本発明のガイドはそれ自身加熱源 をもって 、な 、ので、ガイドの表面での液体の熱変性の懸念が全くな 、ことは大きな 特徴である。
[0032] ガイドは、針金状のものや細い棒状のものや内側に液体や溶融プレボリマーが入ら な 、ようにした細 、パイプ状のもの等の単一なものでもよ 、が、捩り合わせる等の方 法によって複数組み合わせたものでもよい。また、網状のものや、パンチングプレート 状のものであっても良い。ガイドの表面は平滑であっても凹凸があるものであってもよ ぐ部分的に突起等を有するものでもよい。好ましいガイドは、針金状や細い棒状等 の円柱状のもの、前記の細いパイプ状のもの網状のもの、パンチングプレート状のも のである。
[0033] 工業的規模 (生産量、長期安定製造等)での高品質の濃縮液体やポリマーの製造 を可能とする本発明のガイド接触流下式蒸発装置において、特に好ましいのは、複 数の針金状または細 、棒状または前記の細 、パイプ状のガイドの上部から下部まで にお!/、て横方向の支持材を用いて上下の適当な間隔で各々のガイド間を結合したタ イブのガイドである。例えば、複数の針金状または細い棒状または前記の細いパイプ 状のガイドの上部から下部までにおいて横方向の支持材を用いて上下の適当な間 隔、例えば lcm〜200cmの間隔で固定した金網状ガイド、複数の金網状のガイドを 前後に配置しそれらを横方向の支持材を用いて上下の適当な間隔、例えば 1 en!〜 200cmの間隔で結合させた立体的なガイド、または複数の針金状または細!、棒状ま たは前記の細いパイプ状のガイドの前後左右を横方向の支持材を用いて上下の適 当な間隔、例えば 1 cm〜 200cmの間隔で固定したジャングルジム状の立体的なガ イドである。横方向の支持材は各ガイド間の間隔をほぼ同じに保っために役立つだ けでなぐ全体として平面状や曲面状になるガイド、あるいは立体的になるガイドの強 度の強化に役立っている。これらの支持材はガイドと同じ素材であってもよいし、異な るものであってもよい。
[0034] 本発明において、 1つのガイドが外径 r (cm)の円柱状または内側に液体やガス状 物質や溶融プレボリマーがはいらないようにしたパイプ状のものである場合、 r が式( 14)を満足して!/、ることが好まし!/ヽ:
0. 1 ≤ r ≤ 1 式(14)。
[0035] 本発明におけるガイドは、液体や溶融プレボリマーを流下させながら、蒸発濃縮や 重合反応を進めるものであるが、液体や溶融プレボリマーをある時間保持する機能も 有している。この保持時間は、蒸発時間や重合反応時間に関連するものであり、蒸 発や重合の進行とともにその液粘度や溶融粘度が上昇していくために、その保持時 間および保持量は増加して 、くことは前記のとおりである。ガイドが液体や溶融プレ ポリマーを保持する量は、同じ溶融粘度であってもガイドの外部表面積、即ち、円柱 状またはパイプ状の場合、その外径によって異なってくる。
[0036] また、本発明の蒸発装置に設置されたガイドは、ガイド自身の重量に加え、保持し ている液体や溶融プレボリマーやポリマーの重量をも支えるだけの強度が必要であ る。このような意味において、ガイドの太さは重要であり、円柱状またはノイブ状の場 合、式(14)を満足していることが好ましい。 r が 0. 1より小さいと、強度的な面で長 時間の安定運転ができに《なってくるし、 r が 1よりも大きいと、ガイド自身が非常に 重くなり、たとえばそれらを蒸発装置に保持するために多孔板の厚みを非常に厚くし なければならな!/、などの不都合があるだけでなぐ液体や溶融プレボリマーやポリマ 一を保持する量が多くなりすぎる部分が増え、濃縮度のバラツキや分子量のバラツキ が大きくなるなどの不都合が起こってくる。このような意味で、より好ましい r の範囲 は、 0. 15 ≤ r ≤ 0. 8 であり、さらに好ましいのは、 0. 2 ≤ r ≤ 0. 6 である。
[0037] このようなガイドの好まし!/ヽ材質は、ステンレススチール、カーボンスチール、ハステ ロイ、ニッケル、チタン、クロム、アルミニウム及びその他の合金等の金属や、耐熱性 の高いポリマー材料等の中力 選ばれる。特に好ましいのはステンレススチールであ る。また、ガイドの表面は、メツキ、ライニング、不働態処理、酸洗浄、溶媒やフエノー ル等での洗浄等必要に応じて種々の処理がなされてもよ 、。
[0038] ガイドと多孔板との位置関係及びガイドと多孔板の孔との位置関係については、液 体や原料溶融プレボリマーやポリマーがガイドに接触して流下していくことが可能で ある限り特に限定されない。ガイドと多孔板は互いに接触していてもよいし、接触して いなくてもよい。ガイドを多孔板の孔に対応させて設置するのが好ましいがこれに限 定されない。なぜならば、多孔板から落下する液体や原料溶融プレボリマーやポリマ 一が適当な位置でガイドに接触するように設計されて 、ても ヽからである。
[0039] ガイドを多孔板の孔に対応させて設置するのが好ましい具体例としては、 (1)ガイ ドの上端を流路制御部品の下部面などに固定して、ガイドが多孔板の孔の中心部付 近を貫通した状態でガイドを設けるやり方や、 (2)ガイドの上端を多孔板の孔の上 端の周縁部に固定して、ガイドが多孔板の孔を貫通した状態でガイドを設けるやり方 や、 (3)ガイドの上端を多孔板の下側面に固定するやり方、などが挙げられる。
[0040] この多孔板を通じて液体や原料溶融プレボリマーやポリマーをガイドに沿わせて流 下させる方法としては、液ヘッドまたは自重で流下させる方法、またはポンプなどを使 つて加圧にすることにより、多孔板力 液体や原料溶融プレボリマーやポリマーを押 し出す等の方法が挙げられる。好ましいのは、供給ポンプを用いて加圧下、所定量 の液体や原料溶融プレボリマーやポリマーを蒸発装置の液体供給ゾーンに供給し、 多孔板を経てガイドに導かれた液体や原料溶融プレボリマーやポリマーが自重でガ イドに沿って流下していく方式である。
[0041] 本発明の蒸発装置は、液体中に該液体より低沸点の物質を含有する液体から、該 低沸点物質を蒸発させる装置である力 この液体はどのようなものであってもよい。こ の液体は常温であってもよいが、通常加熱された状態で受給ロカ 蒸発装置に供給 される。また、この蒸発装置の外壁面には通常ジャケット等が設置されていることが好 ましぐ必要に応じてこのジャケットに水蒸気や熱媒等を通じて加熱することによって
、液体供給ゾーンゃ流路制御部品や多孔板の加熱及び Zまたは保温と、蒸発ゾー ンゃ多孔板の保温等を行うことが好まし 、。
[0042] 本発明の蒸発装置は液体の単なる濃縮のための装置として用いられるだけでなぐ 縮合系ポリマー用重合装置や、モノマーやオリゴマーや副生物などの低沸点物質を 含む熱可塑性ポリマーの精製装置や、熱可塑性ポリマー溶液からの該ポリマーの分 離回収装置など、粘度の比較的高い液体を対象とする蒸発装置として用いることが 特に好ましい。
[0043] 従って、該液体が縮合系ポリマーを製造するためのモノマー及び 2種以上のモノマ 一混合物、及び Zまたは該縮合系ポリマーのプレボリマー、及び Zまたは該縮合系 ポリマーの溶融液であって、該低沸点物質が重縮合反応で生成する副生物質及び
Zまたはオリゴマーであり、該溶融液力 該低沸点物質を蒸発除去することによって 、該縮合系ポリマーのプレボリマー及び Zまたは該ポリマーの重合度を向上させるた めの縮合系ポリマー用重合装置として本発明の工業的蒸発装置を使用することは好 ましい。このような縮合系ポリマーとしては、ポリエチレンテレフタレート、ポリトリメチレ ンテレフタレート、ポリブチレンテレフタレート等の芳香族一脂肪族ポリエステル及び 種々のコポリエステル、グリコール酸、乳酸などのヒドロキシカルボン酸のポリエステル 及び種々のコポリエステル、脂肪族ジオールと脂肪族ジカルボン酸との脂肪族 脂 肪族ポリエステル及び種々のコポリエステル、ポリアリレート、液晶ポリエステル等の 芳香族一芳香族ポリエステル及び種々のコポリエステル、等のポリエステル類; ナイ ロン 6、ナイロン 66、ナイロン 612、ナイロン 12、ナイロン 4、ナイロン 3、ナイロン 11等 の脂肪族ポリアミド及び種々のコポリアミド、ナイロン 6T、ナイロン 61、ポリメタキシリレ ンアジパミド等の脂肪族—芳香族ポリアミド及び種々のコポリアミド、等のポリアミド類; 脂肪族ポリカーボネートや芳香族ポリカーボネート及び種々のコポリカーボネート、 等のポリカーボネート類; ポリエステルポリカーボネート類などが好ましい。本発明の 蒸発装置を用いることによって、着色やゲル状物質や固形異物がなぐ分子量のバ ラツキのない、高純度、高性能の縮合系ポリマーを長時間安定的に製造できる。
[0044] また、該液体が熱可塑性ポリマー Αの溶融液であって、該低沸点物質が該ポリマー 中に含有するモノマー、オリゴマー、副生物であり、該溶融液から該低沸点物質を蒸 発除去することによって、該ポリマーの純度を向上させるための精製装置として本発 明の工業的蒸発装置を使用することは好ましい。このような該熱可塑性ポリマー Aと しては、ナイロン 6、ナイロン 46等のナイロン類; ポリスチレン、ハイインパクトポリスチ レン(HIPS)、及び種々のコポリマー、等のポリスチレン系ポリマー; ポリ塩化ビュル 及び種々のコポリマー、等のポリ塩ィ匕ビュル系ポリマー; ポリ塩ィ匕ビユリデン及び種 々のコポリマー、等のポリ塩ィ匕ビユリデン系ポリマー; AS榭脂、 ABS榭脂及び種々 のコポリマー、等のアクリロニトリル系ポリマー; ポリプロピレン等のポリオレフイン類; ポリアクリル酸エステル系ポリマー; PMMA及び種々のコポリマー、等のポリメタク リル酸エステル系ポリマー; 熱可塑性エラストマ一であることが好ましい。本発明の 蒸発装置では、比較的低温でこれらの熱可塑性ポリマー A中に含まれる 、わゆる残 モノマー等の不純物を効率的に除去することができ、熱分解などが無ぐ着色のない 高純度、高性能の熱可塑性ポリマー Aを得ることができる。
[0045] また、該液体が熱可塑性ポリマー Bの溶液であって、該低沸点物質が該熱可塑性 ポリマーを溶解させて 、る溶媒及び/または該ポリマー溶液中に含有して 、るモノマ 一、オリゴマー、副生物であり、該溶液から該低沸点物質を蒸発除去することによつ て、該溶液力 該熱可塑性ポリマーを分離回収するとともに該熱可塑性ポリマーの純 度を向上させるための分離回収及び Zまたは精製装置として本発明の工業的蒸発 装置を使用することは好ましい。このような熱可塑性ポリマー Bの溶液としては、芳香 族ポリカーボネートの塩素系溶媒 (例えば、塩化メチレン、クロ口ベンゼン)溶液、溶 媒 (例えば、トルエン、へキサン)などを用いて溶液重合で製造される SBRや BRや E PDMなどのポリマー溶液が好ましい。さらには塩素系溶媒が残存する芳香族ポリ力 ーボネートの溶融液や重合溶媒が残存するエラストマ一類から、溶媒等を除去するこ とも好ましい。本発明の蒸発装置では、比較的低温でこれらの溶媒や不純物を効率 的に除去することができ、熱分解などが無ぐ着色のない高純度、高性能の熱可塑 性ポリマー Bを得ることができる。
[0046] 本発明の工業的蒸発装置は、比較的粘度の高い液体力 低沸点物質を蒸発除去 するのに特に適している。例えば、本発明の工業的蒸発装置を縮合系ポリマーの重 合器として用いた場合、これまでの重合器では液の一部が長時間加熱されたままで 滞留する場所があり、そのことによって滞留した液が、着色、ゲル化、架橋化、超高分 子量化、固ィ匕、焼け、炭化等の変性が起こり、それらの変生物が徐々にまたは集中 的にポリマーに混入する欠点が避けられな力つた力 このような欠点がないだけでな ぐ従来の重合器にはない優れた効果を有している。
[0047] 即ち、例えば、芳香族ジヒドロキシィ匕合物とジァリールカーボネートとから得られる 溶融プレボリマーを重合させて芳香族ポリカーボネートを製造する場合の反応の温 度は、通常 200〜350°Cの範囲が必要とされ、特に重合の後半ではその粘度が急 激に高くなり、その超高粘度物質力 平衡反応で生成してくる芳香族モノヒドロキシ 化合物を抜き出さねばならないため、これまでの重合器、例えば、横型 2軸撹拌式超 高粘度ポリマー用リアクターを用いても、 300°C以上の高温で、しかも 133Pa以下の 高真空下で長時間反応させなければならない上に、し力もシート用などの高分子量 体は製造困難であった。
[0048] し力しながら、本発明の重合器では内部攪拌を伴う効率的な表面更新が行われて いるので、比較的低温で重合反応を進行させることができる。したがって、好ましい反 応温度 ίま、 100〜290°Cであり、さら【こ好まし ヽの ίま、 150〜270°Cである。従来の 機械的攪拌式重合器の場合よりも低温で十分に重合を進めることができるのが、本 発明の重合器の特徴であり、このことも、着色や物性低下のない高品質の芳香族ポリ カーボネートを製造することができるひとつの原因となっている。さらにこれまでの重 合器では、高真空下での撹拌機のシール部からの空気等の漏れこみ、異物混入な どが起こる欠点があつたが、本発明の重合器は機械的攪拌がなぐ攪拌機のシール 部もな!/、ので空気等の漏れこみや異物混入は非常に少な!、ため、高純度 ·高性能の 芳香族ポリカーボネートを製造することができる原因となっている。このような優れた 効果は、他の縮合系ポリマー、特にポリエステル、ポリアミドに対しても同様に発揮さ れる。ポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフ タレート、ナイロン 6、ナイロン 66を製造する場合にこれらの優れた効果が顕著である
[0049] 例えば、これまでのポリエチレンテレフタレートの重縮合反応は、通常 265〜290°C で行われている力 重合度が上昇するに従って最終的には 280°C以上の高温を維 持して実施されており、ポリブチレンテレフタレートの重縮合反応は、通常 240〜270 °Cで行われている力 重合度が上昇するに従って最終的には 260°C以上の高温を 維持して実施されている。重合温度が高くなればなるほど色相やポリマー物性が損 なわれることはよく知られている。また、ポリエチレンテレフタレート、ポリトリメチレンテ レフタレート、ポリブチレンテレフタレート等のポリエステルの重合の場合、ァセトアル デヒド、ァクロレイン等のアルデヒド類ゃァリルアルコール等の不飽和アルコール類や 環状 2量体、環状 3量体等の環状オリゴマーの副生量は、重合温度が高くなればなる ほど増大することも知られて 、る。
[0050] し力しながら、本発明の蒸発装置を縮合重合器として用いることによって、ポリエス テル類の重合温度は、通常 10°C以上、好ましくは 20°C以上も低くすることが可能で あり、し力も効率的な表面更新が行われ、平衡反応によって生成した低沸点副生物 の除去が効率的に行えるので、高い重合速度でポリエステルを製造できる。従って、 本発明の蒸発装置を重合器として用い、例えばポリエチレンテレフタレートの重合を 行えば、 240〜265°Cでも速い反応速度で重合でき、ァセトアルデヒド含有量が半減 した、オリゴマーの少ない、色相のよい、高純度、高性能のポリマーを高生産性で製 造することができる。
[0051] また、例えばこれまでのナイロン 66の重縮合反応は、通常 230〜290°Cで行われ ているが、重合度が上昇するに従って最終的には 270°C〜290°Cの高温を維持して 実施されており、ナイロン 6の重縮合反応は、通常 250〜270°Cで行われているが、 重合度が上昇するに従って最終的には 270°C付近の高温を維持して実施されてい る。そして、これまでのナイロン類の重縮合では、重合器での平均滞留時間は、通常 10〜20時間のオーダーであり、高温での長期滞留が必須であるため、ポリマーが熱 変性し易ぐ着色や物性低下が起こりやすかつた。特にナイロン 66の場合、熱による 変性や着色ゃゲルイ匕が非常に起こり易いこともよく知られている。また、ナイロン 6の 場合、これまでの重合器を用いた場合、モノマー(10%前後)及びオリゴマー(2〜3 %)が大量にポリマー中に残存して ヽることもよく知られて!/、る。ナイロン類の平衡定 数は温度が高いほど小さくなる(例えば、 222°C及び 254°Cでの平衡定数は、ナイ口 ン 6の場合、それぞれ 480及び 254であり、ナイロン 66の場合、それぞれ 365及び 3 00)ので、低温で重合できれば残モノマーを低下させることが可能である力 これま での重合器では不可能であった。
[0052] し力しながら、本発明の蒸発装置を縮合重合器として用いることによって、ナイロン 類の重縮合温度は、通常 10°C以上、好ましくは 20°C以上も低くすることが可能であ り、し力も効率的な表面更新が行われ、平衡反応によって生成した低沸点副生物の 除去が効率的に行えるので、高い重合速度でナイロン類を製造できる。従って、本発 明の蒸発装置を重合器として用い、例えばナイロン 66の重合を行えば、 210〜270 °Cで、最終的に 250〜270°Cの温度でも速い反応速度で重合でき、熱変性による着 色やゲルの生成のない色相のよい、高純度、高性能のポリマーを高生産性で製造す ることができる。さらに、これまでの重合器を用いて溶融重合で製造された縮合系ポリ マーは、通常の用途 (例えば衣料用繊維用途)にはポリマーとしての十分な性能を有 するが、さらに重合度をあげて高機能化用途 (例えばタイヤコード用途、ボトル用途、 エンジニアリング榭脂用途等)に使用するためには、通常これらのポリマーをさらに固 相重合させる必要があつたが、本発明の蒸発器を用いれば、固相重合で製造される のと同等の重合度を有するポリマーが容易に得られることも、本発明の蒸発器の特徴 である。
[0053] なお、本発明の工業的蒸発装置を用いて、縮合系ポリマーを製造する場合、重合 反応の進行にともなって、平衡反応によって副生する低沸点物質を反応系外へ除去 する事によって反応速度が高められる。従って、窒素、アルゴン、ヘリウム、二酸化炭 素や低級炭化水素ガスなど反応に悪影響を及ぼさない不活性なガスを重合器に導 入して、これらの低沸点物質をこれらのガスに同伴させて除去する方法や、減圧下に 反応を行う方法などが好ましく用いられる。あるいはこれらを併用した方法も好ましく 用いられる力 これらの場合も重合器に大量の不活性ガスを導入する必要はなぐ内 部を不活性ガス雰囲気に保持する程度でもよ ヽ。
[0054] また、本発明の工業的蒸発装置を用いて、縮合系ポリマーを製造する場合の反応 圧力は、副生する低沸点物質の種類や製造するポリマーの種類や分子量、重合温 度等によっても異なる力 例えばビスフエノール Aとジフエ-ルカーボネートからの溶 融プレポリマーから芳香族ポリカーボネートを製造する場合、数平均分子量が 5, 00 0以下の範囲では、 400〜3, OOOPa範囲が好ましぐ数平均分子量が 5, 000〜10 , 000の場合は、 50〜500Paの範囲が好ましい。数平均分子量が 10, 000以上の 場合は、 300Pa以下が好ましぐ特に 20〜250Paの範囲が好ましく用いられる。
[0055] 本発明の工業的蒸発装置を重合器として用いて、縮合系ポリマーを製造する場合 、この蒸発装置 1基だけで、目的とする重合度を有するポリマーを製造することも可能 であるが、原料とする溶融モノマーや溶融プレボリマーの重合度や、ポリマーの生産 量などに応じて、 2基以上の蒸発装置を連結して、順に重合度をあげていく方式も好 ましい。この場合、それぞれの蒸発装置において、製造すべきプレボリマーまたはポ リマーの重合度に適したガイドや反応条件を別々に採用することができるので、好ま しい方式である。例えば、ガイド接触流下式第 1重合器、ガイド接触流下式第 2重合 器、ガイド接触流下式第 3重合器、ガイド接触流下式第 4重合器' · · ·を用い、この順 に重合度を上げて 、く方式の場合、それぞれの重合器がもつガイド全体の外部総表 面積を Sl、 S2、 S3、 S4 '—とすれば、、 S1≥S2≥S3≥S4≥- - - - とすることがで きる。
[0056] また、重合温度も、それぞれの重合器にぉ 、て同じ温度でもよ 、し、順に上げて ヽ くことも可能である。重合圧力も、それぞれの重合器で、順に下げていくことも可能で ある。このような意味において、例えば、ガイド接触流下式第 1重合器、ガイド接触流 下式第 2重合器の 2基の重合器を用いてこの順に重合度を上げていく場合、該第 1 重合器のガイド全体の外部総表面積 SI (m2)と該第 2重合器のガイド全体の外部総 表面積 S2 (m2)とが式(15)を満足するようなガイドを用いることが好ま ヽ:
1 ≤ S1/S2 ≤ 20 式(15)。
S1ZS2が 1よりも小さいと、分子量のバラツキが大きくなり長期間安定製造が困難 になる、所定の生産量が得にくい、などの不都合が起こり、 S1ZS2が 20よりも大きい と、第 2重合器でのガイドを流下する溶融プレボリマーの流量が多くなり、その結果、 溶融プレボリマーの滞留時間が少なくなり必要とする分子量のポリマーが得られにく くなる、などの不都合が生じてくる。このような意味でさらに好ましい範囲は、 1. 5≤ S1/S2 ≤ 15 である。 [0057] 本発明の工業的蒸発装置または重合設備においては、 1時間当り 1トン以上の濃 縮液体またはポリマーを容易に製造することができるが、縮合系ポリマーを溶融モノ マーまたは溶融プレボリマー力も製造する場合、通常重合反応によって副生した低 沸点物質を系外に排出しながら重合させるので、 1時間当り 1トンよりも多量の原料の 溶融モノマーまたは溶融プレボリマーが、重合器または重合設備に供給される必要 がある。従って、蒸発装置に供給される液体である溶融モノマーまたは溶融プレポリ マーの量は、その重合度および製造すべきポリマーの重合度によって変化するが、 通常、ポリマーの生産量 1トン/ hr当り、 10〜500kgZhr多い、 1. 01〜: L 5トン Zh rの範囲である。また、低沸点物質を含む液体や熱可塑性ポリマーからの蒸発濃縮 や蒸発精製の場合、低沸点物質の含有量及び必要とする濃縮率や精製率にもよる 力 供給される液体は通常、 1. 001〜100トン Zhrの範囲、好ましくは 1. 005-50 トン Zhr、より好ましくは 1. 01〜20トン Zhrである。
[0058] 本発明の工業的蒸発装置は、請求項に記載の条件を満たし、且つそれに相応した 機械的強度を有するものであれば、どのようなものでもよいし、連続運転に必要な他 のいかなる機能を有する装置'設備を付加したものであってもよい。また、本発明の 工業的蒸発装置は、本発明の工業的蒸発装置を複数結合したものであってもよいし 、蒸発以外の他のいかなる機能を有する装置'設備を付加したものであってもよい。 実施例
[0059] 次に、実施例及び参考例により本件発明を説明する。
[0060] [実施例 1]
図 2および図 3に示すような厚さ約 2cmの円盤状の流路制御部品 20およびガイド 4 を有する工業的蒸発装置。円盤状の流路制御部品 20は液体供給ゾーン 3の上部内 壁 23からの間隔が約 8cmとなるように上部力も懸垂固定されている。また、液体供給 ゾーン 3の内部側壁面 22と流路制御部品 20との間隔は約 9cmで、多孔板 2と流路 制御部品 20との間隔は約 8cmである。なお、この円盤状の流路制御部品 20の周縁 部は垂直断面が半径約 lcmの半円となるように細工されており、周縁部に液体が滞 留しないように工夫されている。また、液体供給ゾーンの内部側壁面 23と多孔板 2と の接続部の断面は図 6に示すような内側が凹状に細工されており、その立ち上がり部 の角度 Eは約 170度である。この蒸発装置の材質は、全てステンレススチールである 。排出ポンプ 8は、濃縮液体が高粘度の場合、ギアポンプが好ましぐそれほど粘度 が高くない場合は通常の送液ポンプである。この工業的蒸発装置は円筒形の側面ケ 一シング 10とコーン形の底部ケーシング 11を有するものであって、 L= l, 000cm, h= 900cm、 D= 500cm、 d=40cm、 C = 155度 、 S = 250m2 、であり、 A= 19 . 625m2 、AZB= 156. 25, D/d= 12. 5, L/D = 2, r=0. 3cm である。該 液体受給口 1 (受給口と液体供給ゾーンの上部内壁との接合部)から多孔板 2の上面 までの該液体供給ゾーン 3にお 、て該液体が存在することのできる空間容積 V (約 3 . 17m3)と、孔の上部面積を含む多孔板の上部面積 T (約 19. 63m2)との比、 VZT の値は、約 0. 161 (m)である。蒸発ゾーンの空間容積 Yは約 222. 8m3であり、 Ύ/ Vの値は、約 70である。これらは式(1)から式(14)を全て満足している。供給ゾーン 3においては、供給口 1から供給された低沸点物質を含む液体は、流路制御部品 20 の上面と供給ゾーン 3の上部内壁面 23の間、および供給ゾーン 3の内部側壁面 22と 流路制御部品 20との間を経由して、主として多孔板 2の周辺部から中央部の方向に 流れながら、多孔板 2の孔(21等)から各ガイド 4に均一に分配されるように配慮され ている。蒸発装置下部には不活性ガス供給口 9が備えられており、上部には低沸点 物質の蒸発物抜出し口 6 (通常はガス凝縮器及び減圧装置に接続して ヽる)が備え られている。蒸発装置の外側はジャケット、または熱媒用加熱管が設置されており、 熱媒で所定の温度に保持できるようにしてある。
[参考例 1]
実施例 1の工業的蒸発装置を縮合系ポリマーの重合器として用い、芳香族ポリカー ボネートが製造された。ビスフエノール Aとジフエ-ルカーボネート(対ビスフエノール Aモル比 1. 05)とから製造された 260°Cに保たれた芳香族ポリカーボネートの溶融 プレボリマー (数平均分子量 Mnは 4, 000)が、供給ポンプによって供給口 1より供給 ゾーン 3に連続的に供給された。該溶融プレボリマーは多孔板 2の周辺部から中央 部に向力つて流れながら多孔板の孔から、蒸発ゾーン 5 (重合反応ゾーン)に連続的 に供給された、溶融プレボリマーは、ガイド 4に沿って流下しながら重合反応が進めら れた。重合反応ゾーンは蒸発物抜出し口 6を通して 80Paに保持されている。ガイド 4 の下部力 重合器の底部 11に入ってきた生成芳香族ポリカーボネートは、該底部で の量が一定となるように排出ポンプ 8によって排出口 7から 5. 5トン Zhrの流量で連 続的に抜き出された。
運転を開始してから 50時間後に抜き出し口 12から抜き出された芳香族ポリカーボ ネートの数平均分子量 Mnは 10, 500であり、良好なカラー(3. 2mm厚さの試験片 を CIELAB法で測定した b*値 3. 2)であった。また、引張伸度は 98%であった。運 転開始から、 60時間後、 100時間後、 500時間後、 1, 000時間後、 2, 000時間後、 3, 000時間後、 4, 000時間後、 5, 000時間後に抜き出し口 12から抜き出された芳 香族ポリカーボネートの Mnは、それぞれ、 10, 500、 10, 550、 10, 500、 10, 550 、 10, 500、 10, 500、 10, 550、 10, 500であり、安定であり、カラー(3. 2mm厚さ の試験片を CIELAB法で測定した b*値)も全く同じ 3. 2であった。長期滞留に基づ く着色物や異物などの不純物の混入は全く検出されな力つた。
このようにして製造された芳香族ポリカーボネートは、触媒として用いられたアルカリ 金属および Zまたはアルカリ土類金属化合物の含有量はこれらの金属元素に換算し て、 0. 04〜0. 05ppmであった。
[実施例 2]
図 2および図 3に示すような流路制御部品 20およびガイドを有する工業的蒸発装 置 2基を直列に配置した縮重合系ポリマーの重合設備。この重合設備 (第 1重合器 および第 2重合器)を用いて芳香族ポリカーボネートの製造をおこなった。これらの蒸 発装置の材質は、すべてステンレススチールである。それぞれの蒸発装置の排出ポ ンプ 8はギアポンプである。ガイド接触流下式第 1重合器は円筒形の側面ケーシング 10とコーン形の底部ケーシング 11を有するものであって、 L = 950cm、 h=850cm 、 D=400cm、 d= 20cm、 C= 150度 、 S = 750m2 、A= 12. 56m2 、 A,B= 400、 DZd= 20、 L/D = 2. 375、 r=0. 3cm である。なお、流路制御部品 20は 横断面の直径は少し小さいが実施例 1に記載のものと同様の形状をしており、液体 供給ゾーンの壁面(23及び 22)との間隔および多孔板 2との間隔は実施例 1に記載 のものと同様である。また、液体供給ゾーンの内部側壁面 23と多孔板 2との接続部の 断面は実施例 1と同様に図 6に示すような内側が凹状に細工されており、その立ち上 力^部の角度 Eは約 170度である。該液体受給口 1の下部(受給口と液体供給ゾーン の上部内壁との接合部)力 多孔板 2の上面までの該液体供給ゾーン 3にお 、て該 液体が存在することのできる空間容積 V (約 2. 03m3)と、孔の上部面積を含む多孔 板の上部面積 T (約 12. 56m2)との比、 VZTの値は、約 0. 162 (m)である。蒸発ゾ ーンの空間容積 Yは約 135m3であり、 YZVの値は、約 67である。これらの値は式(1 )から式(14)を全て満足している。なお、第 2重合器は実施例 1と同じものである。
[参考例 2]
ビスフエノール Aとジフエ-ルカーボネート(対ビスフエノール Aモル比 1. 06)とから 製造され、 265°Cに保たれた芳香族ポリカーボネートの溶融プレボリマー (数平均分 子量 Mnは 2, 500)が、供給ポンプによって第 1重合器の供給口 1より供給ゾーン 3 に連続的に供給された。第 1重合器内の多孔板 2を通して重合反応ゾーンに連続的 に供給された、該溶融プレボリマーは、ガイド 4に沿って流下しながら重合反応が進 められた。第 1重合器の重合反応ゾーンは真空ベント口 6を通して 800Paの圧力に 保持されて 、る。ガイド 4の下部カゝら重合器の底部 11に入ってきた重合度の高めら れた芳香族ポリカーボネートの溶融プレボリマー(数平均分子量 Mnは 5, 500)は、 該底部での量が一定となるように排出ポンプ 8によって排出口 7から一定の流量で連 続的に抜き出された。この溶融プレボリマーが、供給ポンプによって第 2重合器の供 給口 1より供給ゾーン 3に連続的に供給された。第 2重合器内の多孔板 2を通して重 合反応ゾーンに連続的に供給された、該溶融プレボリマーは、ガイド 4に沿って流下 しながら重合反応が進められた。第 2重合器の重合反応ゾーンは真空ベント口 6を通 して 50Paの圧力に保持されて 、る。ガイド 4の下部力ゝら第 2重合器の底部 11に入つ てきた生成芳香族ポリカーボネートは、該底部での量が一定となるように排出ポンプ 8によって排出口 7から 6トン Zhrの流量で連続的に抜き出された。
運転を開始してから 50時間後に第 2重合器の抜き出し口 12から抜き出された芳香 族ポリカーボネートの数平均分子量 Mnは 11, 500であり、良好なカラー(3. 2mm 厚さの試験片を CIELAB法で測定した b*値 3. 2)であった。また、引張伸度は 99% であった。運転開始から、 60時間後、 100時間後、 500時間後、 1, 000時間後、 2, 000時間後、 3, 000時間後、 4, 000時間後、 5, 000時間後に抜き出し口 12力も抜 き出された芳香族ポリカーボネートの Mnは、それぞれ、 11, 500、 11, 550、 11, 5 00、 11, 550、 11, 500、 11, 500、 11, 550、 11, 500であり、安定であり、カラー( 3. 2mm厚さの試験片を CIELAB法で測定した b*値)も全く同じ 3. 2であった。長期 滞留に基づく着色物や異物などの不純物の混入は全く検出されな力つた。
このようにして製造された芳香族ポリカーボネートは、触媒として用いられたアルカリ 金属および Zまたはアルカリ土類金属化合物の含有量はこれらの金属元素に換算し て、 0. 03力も 0. 05ppmであった。
産業上の利用可能性
[0064] 本発明の蒸発装置は、液体中に該液体より低沸点の物質を有する液体を、着色や 異物混入や物性低下などの欠点を伴わずに、効率的に大量の液体を濃縮するのに 適した工業的蒸発装置として利用することが好ましい。該液体が比較的粘度が高い 場合の蒸発装置として利用するのが特に好ましい。本発明の工業的蒸発装置の特 に好ましい用途は、縮合系ポリマー用重合装置、熱可塑性ポリマー溶融液の精製装 置、熱可塑性ポリマー溶液力もの該ポリマーの分離回収 ·精製装置である。
図面の簡単な説明
[0065] [図 1]本発明の工業的蒸発装置の概略を表す断面図。
[図 2]本発明の円筒形工業的蒸発装置の概略を表す断面図。
[図 3]本発明の工業的蒸発装置の上部を模式的に表す断面図。
[図 4]本発明の工業的蒸発装置の上部を模式的に表す断面図。
[図 5]液体供給ゾーンの内部壁面と、多孔板および流路制御部品との間の「デッドス ペース」をなくす工夫を模式的に示す断面図。
[図 6]液体供給ゾーンの内部壁面と、多孔板および流路制御部品との間の「デッドス ペース」をなくす工夫を模式的に示す断面図。 1 :液体受給口、 2 :多孔板、 3 :液体供 給ゾーン、 4 :ガイド、 5 :蒸発ゾーン、 6 :蒸発物抜出し口、 7 :液体排出口、 8 :液体排 出ポンプ、 9 :所望により使用される不活性ガス供給口、 10 :蒸発ゾーンの側面ケー シング、 11 :蒸発ゾーンの底部ケーシング、 12 :液体抜き出し口、 20 :流路制御部品 、 21 :多孔板の孔の例示、 22 :液体供給ゾーンの内部側壁面、 23 :液体供給ゾーン の上部内部壁面。

Claims

請求の範囲 液体中に該液体より低沸点の物質を含有する液体を、それ自身加熱源のな!ヽガイ ドの外部表面に沿って流下させ、その間に該低沸点物質を蒸発させる装置であって 、該蒸発装置が、
(1) 該液体受給口、多孔板を通して蒸発ゾーンの該ガイドに該液体を供給するた めの液体供給ゾーン、該多孔板と側面ケーシングと底部ケーシングとに囲まれた空 間に該多孔板から下方に延びる複数の該ガイドが設けられた蒸発ゾーン、該蒸発ゾ ーンに設けられた蒸発物抜出し口、底部ケーシングの最下部に設けられた液体排出 口を有するものであって、
(2) 該液体供給ゾーンにお!、て、該液体受給口から多孔板に供給される液体の流 れが主として多孔板の周辺部から中央部の方向に流す機能を有する流路制御部品 が該液体供給ゾーンに設置されており、
(3) 該蒸発ゾーンの側面ケーシングの水平面における内部断面積 A (m2)が、式(1 )を満足するものであって、
0. 7 ≤ A ≤ 300 式(1)
(4) 該 A(m2)と、液体排出口の水平面における内部断面積 B (m2)との比力 式(2 )を満足するものであって、
20 ≤ A/B ≤ 1000 式(2)
(5) 該蒸発ゾーンの底部を構成する底部ケーシングが、上部の側面ケーシングに 対してその内部において、角度 C度で接続されており、該角度 C度が式(3)を満足す るものであって、
110 ≤ C ≤ 165 式(3)
(6) 該ガイドの長さ h (cm)が、式 (4)を満足するものであって、
150 ≤ h ≤ 5000 式(4)
(7) 複数の該ガイド全体の外部総表面積 S (m2)が式 (5)を満足するものであって、
2 ≤ S ≤ 50000 式(5)
(8) 該液体受給口力 多孔板の上面までの該液体供給ゾーンにぉ 、て該液体が 存在することのできる空間容積 V(m3)と、孔の上部面積を含む多孔板の上部面積 T (m2)が式 (6)を満足するものであって、
0. 02 (m) ≤ V/T ≤ 0. 5 (m) 式(6)
(9) 該空間容積 V(m3)と、蒸発ゾーンの空間容積 Y(m3)が式 (7)を満足する:
10 ≤ Y/V ≤ 500 式(7)
ことを特徴とする工業的蒸発装置。
[2] 蒸発処理された液体が 1時間あたり 1トン以上であることを特徴とする請求項 1に記 載の工業的蒸発装置。
[3] 該液体供給ゾーンの内部側壁面と該多孔板とのなす角度 E度が式 (8)を満足する
100 ≤ E < 180 式(8)
ことを特徴とする請求項 1または 2に記載の工業的蒸発装置。
[4] 該蒸発ゾーンの該側面ケーシングが内径 D (cm)、長さ L (cm)の円筒形であって、 その下部に接続された底部ケーシングがコーン形であり、該コーン形ケーシングの最 下部の液体排出口が内径 d (cm)の円筒形であって、 D、L、d が式(9)、 (10)、 (11 )および(12)を満足する:
100 ≤ D ≤ 1800 式(9)
5 ≤ D/d ≤ 50 式(10)
0. 5 ≤ L/D ≤ 30 式(11) h- 20 ≤ L ≤ h+ 300 式(12) ことを特徴とする請求項 1ないし 3のうち何れか一項に記載の工業的蒸発装置。
[5] hが式(13)を満足する:
400 < h ≤ 2500 式(13)
ことを特徴とする請求項 1ないし 4のうち何れか一項に記載の工業的蒸発装置。
[6] 1つの該ガイドが外径 r (cm)の円柱状または内側に液体及び Zまたはガス状物 質が入らないようにしたパイプ状のものであって、 r が式(14)を満足する:
0. 1 ≤ r ≤ 1 式(14)
ことを特徴とする請求項 1ないし 5のうち何れか一項に記載の工業的蒸発装置。
[7] 該複数のガイドが、請求項 6記載のガイド複数力 なり、それら個々のガイドが横方 向の支持材で結合されたものであることを特徴とする請求項 1ないし 5のうち何れか一 項に記載の工業的蒸発装置。
[8] 該複数のガイドが、請求項 6記載のガイド複数力 なり、それら個々のガイドが横方 向の支持材で固定された格子状または網状ガイド、複数の格子状または網状のガイ ドを前後に配置しそれらが横方向の支持材で固定された立体的なガイド、および複 数の個々のガイドが前後左右の横方向を支持材で固定されたジャングルジム状の立 体的なガイド、の 、ずれかであることを特徴とする請求項 1な 、し 5のうち何れか一項 に記載の工業的蒸発装置。
[9] 該液体が縮合系ポリマーを製造するためのモノマー及び 2種以上のモノマー混合 物、及び Zまたは該縮合系ポリマーのプレボリマー、及び Zまたは該縮合系ポリマー の溶融液であって、該低沸点物質が重縮合反応で生成する副生物質及び Zまたは オリゴマーであり、該溶融液から該低沸点物質を蒸発除去することによって、該縮合 系ポリマーのプレボリマー及び Zまたは該ポリマーの重合度を向上させるための縮合 系ポリマー用重合装置であることを特徴とする請求項 1ないし 8のうち何れか一項に 記載の工業的蒸発装置。
[10] 該縮合系ポリマーがポリエステル類、ポリアミド類、ポリカーボネート類であることを 特徴とする請求項 9記載の工業的蒸発装置。
[11] 該液体が熱可塑性ポリマー Aの溶融液であって、該低沸点物質が該ポリマー中に 含有するモノマー、オリゴマー、副生物であり、該溶融液から該低沸点物質を蒸発除 去することによって、該熱可塑性ポリマー Aの純度を向上させるための精製装置であ ることを特徴とする請求項 1ないし 8のうち何れか一項に記載の工業的蒸発装置。
[12] 該熱可塑性ポリマー Aがポリスチレン系ポリマー、ポリ塩化ビュル系ポリマー、ポリ塩 化ビニリデン系ポリマー、ポリアクリロニトリル系ポリマー、ポリアクリル酸エステル系ポ リマー、ポリメタクリル酸エステル系ポリマー、熱可塑性エラストマ一であることを特徴 とする請求項 11記載の工業的蒸発装置。
[13] 該液体が熱可塑性ポリマー Bの溶液であって、該低沸点物質が該熱可塑性ポリマ 一を溶解させて 、る溶媒及び Zまたは該ポリマー溶液中に含有して 、るモノマー、ォ リゴマー、副生物であり、該溶液から該低沸点物質を蒸発除去することによって、該 溶液力 該熱可塑性ポリマーを分離回収するとともに該熱可塑性ポリマーの純度を 向上させるための分離回収 ·精製装置であることを特徴とする請求項 1ないし 8のうち 何れか一項に記載の工業的蒸発装置。
PCT/JP2005/022065 2004-12-17 2005-12-01 工業的蒸発装置 WO2006064667A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EA200701301A EA010115B1 (ru) 2004-12-17 2005-12-01 Промышленный выпарной аппарат
EP05811314A EP1829911A1 (en) 2004-12-17 2005-12-01 Industrial evaporation apparatus
BRPI0519059-2A BRPI0519059A2 (pt) 2004-12-17 2005-12-01 aparelho de evaporaÇço industrial
CN2005800429196A CN101080437B (zh) 2004-12-17 2005-12-01 工业蒸发装置
US11/667,490 US20070283904A1 (en) 2004-12-17 2005-12-01 Industrial Evaporation Apparatus
JP2006548756A JP4143671B2 (ja) 2004-12-17 2005-12-01 工業的蒸発装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-365627 2004-12-17
JP2004365627 2004-12-17

Publications (1)

Publication Number Publication Date
WO2006064667A1 true WO2006064667A1 (ja) 2006-06-22

Family

ID=36587725

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/022065 WO2006064667A1 (ja) 2004-12-17 2005-12-01 工業的蒸発装置

Country Status (8)

Country Link
US (1) US20070283904A1 (ja)
EP (1) EP1829911A1 (ja)
JP (1) JP4143671B2 (ja)
KR (1) KR100870848B1 (ja)
CN (1) CN101080437B (ja)
BR (1) BRPI0519059A2 (ja)
EA (1) EA010115B1 (ja)
WO (1) WO2006064667A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100396711C (zh) * 2006-06-28 2008-06-25 常熟市长江化纤有限公司 用作制备聚乳酸的聚合装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9321884B2 (en) 2010-10-29 2016-04-26 Asahi Kasei Chemicals Corporation Process for producing polycondensation polymer, and polymerizer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02175703A (ja) * 1988-07-26 1990-07-09 Montedipe Spa ポリマー溶液の揮発分除去法およびその装置
JPH10298279A (ja) * 1997-04-22 1998-11-10 Asahi Chem Ind Co Ltd 芳香族ポリカーボネートの製造方法
WO2000007684A1 (de) * 1998-08-07 2000-02-17 Bayer Aktiengesellschaft Verfahren zum eindampfen von polymerlösungen thermoplastischer polymere
WO2002051606A1 (de) * 2000-12-27 2002-07-04 Bayer Aktiengesellschaft Vorrichtung zur durchführung von stoffaustauschprozessen

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL96710C (ja) * 1957-09-28
US3110547A (en) * 1961-07-26 1963-11-12 Du Pont Polymerization process
US4934433A (en) * 1988-11-15 1990-06-19 Polysar Financial Services S.A. Devolatilization
US5453158A (en) * 1994-03-10 1995-09-26 The Dow Chemical Company Polymer devolatilizer
KR100298855B1 (ko) * 1996-08-07 2001-11-14 다나카 쇼소 기-액분산장치및기-액접촉장치및폐수처리장치
AU1890499A (en) * 1998-01-14 1999-08-02 Asahi Kasei Kogyo Kabushiki Kaisha Process and polymerizer for producing aromatic polycarbonate
JP2003033601A (ja) * 2001-07-23 2003-02-04 Nippon Shokubai Co Ltd 無堰多孔板塔
DE10230219A1 (de) * 2002-07-04 2004-01-22 Basf Ag Verfahren der rektifikativen Auftrennung von (Meth)acrylmonomere enthaltende Fluiden
WO2005007609A1 (de) * 2003-07-11 2005-01-27 Basf Aktiengesellschaft Thermisches trennverfahren zur abtrennung wenigstens eines (meth)acrylmonomere angereichert enthaltenden stoffstroms
US7041780B2 (en) * 2003-08-26 2006-05-09 General Electric Methods of preparing a polymeric material composite

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02175703A (ja) * 1988-07-26 1990-07-09 Montedipe Spa ポリマー溶液の揮発分除去法およびその装置
JPH10298279A (ja) * 1997-04-22 1998-11-10 Asahi Chem Ind Co Ltd 芳香族ポリカーボネートの製造方法
WO2000007684A1 (de) * 1998-08-07 2000-02-17 Bayer Aktiengesellschaft Verfahren zum eindampfen von polymerlösungen thermoplastischer polymere
WO2002051606A1 (de) * 2000-12-27 2002-07-04 Bayer Aktiengesellschaft Vorrichtung zur durchführung von stoffaustauschprozessen

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100396711C (zh) * 2006-06-28 2008-06-25 常熟市长江化纤有限公司 用作制备聚乳酸的聚合装置

Also Published As

Publication number Publication date
BRPI0519059A2 (pt) 2008-12-23
JP4143671B2 (ja) 2008-09-03
KR20070086298A (ko) 2007-08-27
CN101080437B (zh) 2010-08-11
JPWO2006064667A1 (ja) 2008-06-12
US20070283904A1 (en) 2007-12-13
EA200701301A1 (ru) 2007-10-26
EA010115B1 (ru) 2008-06-30
CN101080437A (zh) 2007-11-28
KR100870848B1 (ko) 2008-11-27
EP1829911A1 (en) 2007-09-05

Similar Documents

Publication Publication Date Title
JP4143670B2 (ja) 工業的蒸発装置
JP4255087B2 (ja) 工業的な蒸発装置
JP4143672B2 (ja) 工業的な蒸発装置
JP4143673B2 (ja) 工業的連続蒸発装置
WO2006064667A1 (ja) 工業的蒸発装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005811314

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1621/KOLNP/2007

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 11667490

Country of ref document: US

Ref document number: 2006548756

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200580042919.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020077013612

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 200701301

Country of ref document: EA

WWP Wipo information: published in national office

Ref document number: 2005811314

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11667490

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0519059

Country of ref document: BR