WO2006064643A1 - 油脂の製造方法 - Google Patents

油脂の製造方法 Download PDF

Info

Publication number
WO2006064643A1
WO2006064643A1 PCT/JP2005/021551 JP2005021551W WO2006064643A1 WO 2006064643 A1 WO2006064643 A1 WO 2006064643A1 JP 2005021551 W JP2005021551 W JP 2005021551W WO 2006064643 A1 WO2006064643 A1 WO 2006064643A1
Authority
WO
WIPO (PCT)
Prior art keywords
oils
fats
oil
alcohol
raw
Prior art date
Application number
PCT/JP2005/021551
Other languages
English (en)
French (fr)
Inventor
Yoshiro Tanaka
Jiro Izumi
Original Assignee
Lion Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lion Corporation filed Critical Lion Corporation
Priority to JP2006548738A priority Critical patent/JPWO2006064643A1/ja
Publication of WO2006064643A1 publication Critical patent/WO2006064643A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B3/00Refining fats or fatty oils
    • C11B3/02Refining fats or fatty oils by chemical reaction
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B1/00Production of fats or fatty oils from raw materials
    • C11B1/02Pretreatment
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B1/00Production of fats or fatty oils from raw materials
    • C11B1/02Pretreatment
    • C11B1/04Pretreatment of vegetable raw material
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/003Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fatty acids with alcohols
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/04Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fats or fatty oils
    • C11C3/08Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fats or fatty oils with fatty acids

Definitions

  • the present invention relates to a method for producing fats and oils.
  • Fats and oils such as palm oil contain free fatty acids due to hydrolysis of triglycerides by lipase.
  • methods such as neutralization with an alkaline aqueous solution, removal with an adsorbent, and preesterification with an acid catalyst have been taken.
  • Patent Document 4 a method using an acid-type solid cation exchange resin.
  • This method is a method of reducing the content of free fatty acids in fats and oils by treating the fats and oils with a lower monohydric alcohol in the presence of an acidic esterification catalyst. Is used. According to this method, the content of free fatty acids can be reduced and metal ions can be removed, the loss of useful components such as carotene is small, and the implementation scale is not increased more than necessary. However, even with this method, the esterification efficiency of free fatty acids is not sufficient.
  • Patent Document 1 Japanese Patent Laid-Open No. 4-370195
  • Patent Document 2 JP-A 63-97696
  • Patent Document 3 Japanese Patent Laid-Open No. 61-140544
  • Patent Document 4 Japanese Patent Laid-Open No. 61-168696
  • an object of the present invention is to provide a method for producing fats and oils that can further improve the efficiency of esterification of free fatty acids in the fats and oils.
  • the production method of the present invention is a method for producing fats and oils having a step of esterifying a free fatty acid in raw material fats and oils with alcohol, wherein the esterification step comprises the raw material fats and oils.
  • This is a method for producing fats and oils, which is a step of adding alcohol to the acid gel cation exchange resin.
  • the method for producing fats and oils of the present invention is characterized in that acidic gel type cation exchanged rosin is used as a catalyst for esterification of free fatty acids in the fats and oils.
  • the production method of the present invention can improve the esterification efficiency of free fatty acids as compared with the conventional method using acid-type solid cation exchange resin.
  • the resin contained in the acidic gel cation exchange resin is contained in the acidic gel cation exchange resin preferably having a styrenic base material.
  • the cross-linking agent dibutenebenzene is preferable.
  • the degree of crosslinking of the acidic gel type thione exchange resin is not particularly limited, but is preferably in the range of 3 to LO weight%. That is, if it is 3% by weight or more, it is more preferable in terms of rosin strength, and if it is 10% by weight or less, the esterification efficiency of free fatty acids can be further improved.
  • the crosslinking degree of the acidic gel type cation exchange resin is more preferably in the range of 3 to 9% by weight, and still more preferably in the range of 4 to 8% by weight.
  • the free fatty acid has the highest esterification efficiency and the raw material fats and oils contain useful components such as strength tentoe and tocotrienol, these alterations and loss are sufficiently suppressed, and Particularly preferred are those having a degree of cross-linking of 4% by weight, which is sufficiently excellent in mechanical strength.
  • the “gel-type cation exchange resin” in the present invention generally means a cation exchange resin whose particles are composed of a uniform crosslinked polymer.
  • the esterification step is preferably a step of passing the raw material fat added with the alcohol through a column filled with the acidic gel type cation exchange resin.
  • the column temperature is, for example, 40 to
  • the column residence time of the raw oil and fat is, for example, in the range of 60 to 480 minutes, preferably in the range of 100 to 360 minutes, and more preferably in the range of 100 to 240 minutes.
  • the amount of the alcohol added is appropriately determined depending on the fatty acid distribution of the raw oil and fat, etc., for example, 5 to 30 parts by weight per 100 parts by weight of the raw oil and fat Preferably, it is 10 to 28 folds per 100 parts by weight of the raw material fats and oils. More preferably, it is in the range of 15 to 26 parts by weight with respect to 100 parts by weight of the raw oil and fat.
  • the lower the moisture content in the alcohol for example, is 1500 ppm or less, preferably 1 OOOppm or less, and more preferably 600 ppm or less.
  • the lower limit of the amount of water in the alcohol is not particularly limited. For example, it is about the detection limit (Oppm), preferably about lOOppm.
  • lower monohydric alcohol As the alcohol, it is preferable to use, for example, lower monohydric alcohol as the alcohol.
  • the lower monohydric alcohol include those having 1 to 4 carbon atoms, such as methanol, ethanol, propanol, butanol and the like. These may be used alone or in combination of two or more. Of these, methanol is preferably used.
  • the raw material fat when the raw material fat contains metal ions, it is preferably removed in the esterification step.
  • metal ions contained in the raw oil and fat include copper ions, iron ions, sodium ions, potassium ions, calcium ions, and magnesium ions.
  • the production method of the present invention preferably further includes an alcoholysis step in which an alcohol is added to the fats and oils in which free fatty acids are esterified by the esterification step.
  • the raw oil and fat used in the production method of the present invention is not particularly limited, and examples thereof include beef tallow, coconut oil, palm oil, palm kernel oil, rapeseed oil, soybean oil, sunflower oil, corn oil and the like. It is done. These may be used alone or in combination of two or more. Moreover, it is preferable to use what contains useful components, such as a carotene, a tocopherol, tocotrienol, as said raw material fats and oils. Among them, it is particularly preferable to use palm oil containing a large amount of carotene and tocotrienol.
  • fats and oils before being subjected to the esterification process are referred to as “raw oils and fats”, and fats and oils after being subjected to the esterification process are referred to as “refined fats and oils”.
  • an alcohol is added to a raw oil and fat, and this is converted into an acid.
  • the free fatty acid in the raw oil / fat is esterified by an esterification process in which it is brought into contact with the conductive gel type cation exchange resin.
  • the degumming treatment for example, warm water is added to the raw oil and fat to hydrate phospholipids, or aggregation is performed by inorganic acid or heat treatment, and then sedimentation or centrifugation is performed to remove gum. Can be done.
  • the amount of alcohol added and the amount of water in the alcohol are as described above. As described above, it is preferable to use methanol as the alcohol.
  • Examples of the acidic gel-type cation exchange resin include a sulfonated product of a styrene di-vinylbenzene copolymer.
  • Examples of the commercially available acidic gel-type cation exchange resin include, for example, trade names DIAION SK104, SK106, SK1B and SK110 manufactured by Mitsubishi Kagaku Co., Ltd. The brand name Amberlite manufactured by And'Norse can be mentioned. The degree of crosslinking of the acidic gel type cation exchange resin is as described above. In addition, it is preferable to wash
  • the cleaning alcohol it is preferable to use the same alcohol as that added to the raw material fat.
  • the washing is preferably performed until the amount of water in the washing alcohol does not change before and after washing.
  • the water in the acidic gel-type cation exchange resin is replaced with the washing alcohol, and free fatty acid esterification can be performed more efficiently.
  • the acidic gel-type cation exchange resin is washed with 2 to 5 times the volume of the washing alcohol.
  • the production method of the present invention is preferably a step of passing the raw oil / fat to which the alcohol is added through the column through the column filled with the acidic gel-type cation exchange resin. .
  • the column temperature and the column residence time of the raw oil and fat are as described above.
  • the deoxidation rate is not particularly limited, but is, for example, 70% or more, preferably 80% or more, more preferably 90% or more.
  • the deoxidation rate means the ratio (% by weight) of the esterified free fatty acid to the total free fatty acid in the raw oil and fat, and can be measured, for example, by the method described in the examples below.
  • the refined fats and oils when the raw material fats and oils contain metal ions, it is preferable that the refined fats and oils have a metal ion concentration below the detection limit.
  • the metal ion concentration can be measured, for example, by the method described in Examples described later.
  • the refined fat / fat preferably has a carotene disappearance rate and a tocotrienol alteration rate of 10% by weight or less. More preferably, both are 6% by weight or less, and more preferably, both are 4% by weight or less.
  • the carotene disappearance rate and the tocotrienol alteration rate can be measured, for example, by the method described in Examples described later.
  • the production method of the present invention may further include an alcoholysis step in which alcohol is added to the refined fat and oil to cause alcoholysis.
  • a dehydration process may be needed prior to that. That is, the refined fat / oil contains water generated by esterification of free fatty acids. This amount of water depends on the amount of free fatty acids in the raw oil and fat and the esterification rate. When the raw fat / oil is not deteriorated so much, the free fatty acid concentration in the raw fat / oil is, for example, 5% by weight or less, and the amount of water generated by esterification is, for example, 5000 ppm or less.
  • a sufficient reaction rate can be achieved by increasing the amount of alkali catalyst in the later described alcoholysis step.
  • the dehydration method include thin-film distillation under vacuum, evaporation at 150 ° C under atmospheric pressure, and excess methanol added to and mixed with purified oil and stationary, and the upper methanol layer (this layer is For example, a method such as removing high water content) may be used.
  • the alcohol for alcoholysis is preferably a lower alcohol such as methanol.
  • the amount of alcohol added for the alcoholysis is, for example, in the range of 5 to 50 parts by weight and preferably in the range of 10 to 40 parts by weight with respect to 100 parts by weight of the refined fat.
  • the temperature of the alcoholysis is, for example, in the range of 50 to 100 ° C., preferably in the range of 60 to 80 ° C., and the reaction time of the alcoholysis is, for example, in the range of 15 to 90 minutes, preferably in the range of 40 to The range is 70 minutes.
  • the alcoholysis is preferably performed in the presence of a catalyst.
  • a catalyst an alkali catalyst is preferable.
  • sodium hydroxide, potassium hydroxide, sodium methylate and the like can be used.
  • the amount of the catalyst added is, for example, in the range of 0.1 to 0.5 parts by weight, preferably in the range of 0.2 to 0.3 parts by weight, with respect to 100 parts by weight of the refined fat.
  • the ester yield will improve and the alkyl ester excellent in acidity stability can be obtained. Moreover, when recovering useful components such as carotene and tocotrienols, most of them are not altered or lost, so the recovery rate is improved.
  • the ester exchange reaction can be further performed, and the obtained ester is mixed with, for example, light oil.
  • the ester can be further subjected to addition of ethylene oxide, hydrogenation, higher alcohol or sulfonation to synthesize a surfactant, which can be used as a cleaning agent, for example.
  • each sample is pretreated by passing it through a filter paper filled with anhydrous sodium sulfate. Weigh accurately 5 to 10 g (Wtl) of each sample after the pretreatment and place in a 200 mL Erlenmeyer flask. There, inside Add about 50 mL of Japanese alcohol to dissolve the sample. After adding several drops of phenolphthalein as an indicator, titrate with 1Z10 normal KOH solution. From this titration constant (mL), the acid value is calculated by the following formula (1).
  • the sample is pretreated in the same manner as the deoxidation rate measuring method. Weigh accurately 0.1 lg (Wt2) of each sample after the pretreatment, put it in a volumetric flask, measure up to 50 mL with cyclohexane, and use it as the sample solution. This sample solution is put into a measuring cell of a spectrophotometer, and absorbance Ab at a wavelength of 448 nm is measured. From this measured value, the carotene concentration is calculated by the following formula (3).
  • Carotene concentration (ppm) DX200ZE ⁇ ⁇ ⁇ ⁇ (3)
  • Carotene disappearance rate (%) ⁇ (F1— F2) ZF1 ⁇ X100 ⁇ ⁇ ⁇ ⁇ (4)
  • the sample is pretreated in the same manner as the deoxidation rate measuring method. Accurately measure 0.5 g of each sample after the pretreatment, put it in a measuring flask, make up to 50 mL with methanol, A sample solution is used. On the other hand, a standard solution is prepared so that each of the standard tocopherols ( ⁇ , ⁇ , ⁇ , ⁇ ) has a predetermined concentration. The standard solution is subjected to HPLC analysis under the following conditions, and a calibration curve for each tocopherol is prepared in advance. Each tocotrienol sensitivity (j8, ⁇ , ⁇ ) was the same as each tocopherol sensitivity. Next, the sample solution is analyzed in the same manner, each concentration is calculated from the calibration curve, and totaled to obtain a total tocotrienol concentration (ppm).
  • ppm total tocotrienol concentration
  • Tocotrienol alteration rate (%) [(Tl -T2) / Tl] X 100
  • T1 Total tocotrienol concentration (ppm) of raw oil
  • T2 Total tocotrienol concentration (ppm) in refined fats and oils
  • the metal ion concentration of the sample was measured by an atomic absorption method after ashing.
  • Raw material fats and oils (palm oil: crushed palm oil from Malaysia; acid value 6-10, iodine value 50) 100 parts by weight 99.5% by volume methanol 20 parts by weight Heat to 60 ° C with a heater and fill with acidic gel cation exchange resin (Made by Mitsubishi Chemical Co., Ltd., trade name: Diamond SK104, degree of crosslinking (divinylbenzene) 4 wt%; 1.5 L)
  • the purified oil (fat) was passed through a column (diameter 8 cm, length 30 cm). The column temperature was 60 ° C., and the column residence time of the raw oil (2 kg) was 120 minutes.
  • the acidic gel type cation exchange bottle The fat was previously washed with 4 volumes (volume) of methanol.
  • a refined oil and fat was obtained in the same manner as in Example 1 except that an acidic gel type cation exchange resin having a crosslinking degree of 6% by weight (trade name: Diaion SK106, manufactured by Mitsubishi Chemical Corporation) was used. It was.
  • Raw oil and fat (palm oil; same as Example 1) Add 100 parts by weight of 99.5% by volume of methanol and 20 parts by weight of sulfuric acid (addition of 1.0% by weight of oil and fat) as a catalyst at 60 ° C. While stirring for 120 minutes, the free fatty acid in the raw material fat was esterified to obtain a refined fat.
  • an acid type solid cation exchange resin (manufactured by Mitsubishi Chemical Co., Ltd., trade name: Diaion PK212, degree of crosslinking: 6% by weight) was used in the same manner as in Example 1. A refined oil was obtained.
  • an acid type solid cation exchange resin (manufactured by Mitsubishi Chemical Co., Ltd., trade name: Diaion 216, degree of crosslinking: 8% by weight) was used in the same manner as in Example 1. A refined oil was obtained.
  • Methanol-added soot parts by weight
  • Moisture content (%) 57-67 57-67 57-67 47-57 43-50 35-45 Deoxidation rate (%) 95 70 96 80 70 20 Carotene disappearance rate (%) 3 3 3 2 2 1 Engineering Knoll Alteration Rate (%) 5 5 5 4 3 2
  • free fatty acids in raw fats and oils can be efficiently esterified, and if the raw fats and oils contain metal ions, they can also be removed. Furthermore, when the raw material fats and oils contain useful components such as carotene and tocotrienol, their alteration and disappearance can be prevented. Therefore, if the production method of the present invention is applied to, for example, palm oil or the like, it has excellent oxidation stability and is useful such as carotene and tocotrienol. Oils and fats rich in ingredients can be obtained.
  • the fats and oils obtained by the production method of the present invention can be further subjected to a transesterification reaction, and the obtained esters can be used as biodiesel fuel, for example, by mixing with light oil. Further, the ester can be further subjected to ethylene oxide addition, hydrogenation, higher alcohol or sulfone to synthesize a surfactant, and can be used, for example, as a cleaning agent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Fats And Perfumes (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

 原料油脂にアルコールを添加し、これを酸性ゲル型カチオン交換樹脂に接触させることにより、前記原料油脂中の遊離脂肪酸をエステル化する。これにより、従来の酸型固形陽イオン交換樹脂を用いた方法に比べて、遊離脂肪酸のエステル化効率を向上させることができる。また、前記原料油脂に金属イオンが含まれている場合は、前記酸性ゲル型カチオン交換樹脂により除去することが可能である。そして、本発明の製造方法では、前記原料油脂にカロテンやトコトリエノール等の有用成分が含まれていても、これらの変質および消失を防止できる。                                                                                 

Description

明 細 書
油脂の製造方法
技術分野
[0001] 本発明は、油脂の製造方法に関する。
背景技術
[0002] パーム油等の油脂には、リパーゼによるトリグリセリドの加水分解により、遊離脂肪 酸が存在する。従来、油脂中の遊離脂肪酸の含量を低減する方法として、アルカリ 水溶液による中和、吸着剤による除去、酸触媒によるプレエステルイ匕等の手法がとら れていた。
[0003] 例えば、ゼニス法による油脂中の遊離脂肪酸のアルカリ脱酸方法 (特許文献 1参照 )やハイドロキシアパタイトを用いて遊離脂肪酸を吸着除去する方法 (特許文献 2参 照)が提案されている。しかしながら、これらの方法には、油脂自体の損失が多ぐま た、工業的な設備等の規模が大きくなるという問題があった。
[0004] また、脂肪族および芳香族スルホン酸の少なくとも一方を触媒として使用する、油 脂中の遊離脂肪酸のプレエステルイ匕法が提案されて ヽる (特許文献 3参照)。しかし ながら、この方法には、油脂に含有される金属イオンを除去できないという問題があ つた。また、この問題にカ卩え、この方法では、有用成分であるカロテンやトコトリエノー ル等が油脂に含まれている場合に、それらを分解 (消失)、変質させてしまうという問 題があった。
[0005] そして、これらの問題を解決するために、酸型固形陽イオン交換榭脂を用いる方法 が提案されている (特許文献 4参照)。この方法は、酸性エステル化触媒の存在下、 低級 1価アルコールで油脂を処理することにより、油脂中の遊離脂肪酸の含量を低 減する方法であり、前記触媒として酸型固形陽イオン交換榭脂を使用する。この方法 によれば、遊離脂肪酸の含量を低減すると共に金属イオンの除去もでき、カロテン等 の有用成分の喪失が少なぐかつ必要以上に実施規模が大きくなることもない。しか しながら、この方法であっても、遊離脂肪酸のエステル化効率は十分ではない。 特許文献 1 :特開平 4— 370195号公報 特許文献 2:特開昭 63 - 97696号公報
特許文献 3:特開昭 61— 140544号公報
特許文献 4:特開昭 61— 168696号公報
発明の開示
発明が解決しょうとする課題
[0006] そこで、本発明は、油脂中の遊離脂肪酸のエステルイ匕効率をさらに向上することが 可能な油脂の製造方法の提供を目的とする。
課題を解決するための手段
[0007] 前記目的を達成するために、本発明の製造方法は、原料油脂中の遊離脂肪酸を アルコールでエステルイ匕する工程を有する油脂の製造方法であって、前記エステル 化工程が、前記原料油脂にアルコールを添加し、これを酸性ゲル型カチオン交換榭 脂に接触させる工程である油脂の製造方法である。
発明の効果
[0008] このように、本発明の油脂の製造方法は、油脂中の遊離脂肪酸のエステル化に用 いる触媒として、酸性ゲル型カチオン交換榭脂を使用することを特徴とする。これによ り、本発明の製造方法は、従来の酸型固形陽イオン交換榭脂を用いた方法に比べ て、遊離脂肪酸のエステルイ匕効率を向上することができる。
発明を実施するための最良の形態
[0009] 本発明の製造方法が、従来の酸型固形陽イオン交換榭脂を用いた方法に比べて 、遊離脂肪酸のエステルイ匕効率を向上できる理由は明らかではないが、そのメカニズ ムは次のように推察される。すなわち、酸型固形陽イオン交換榭脂を用いる従来法で は、遊離脂肪酸のエステル化で発生した水分が、前記交換樹脂に付着若しくは吸着 し、この結果、前記交換樹脂の触媒能が低下すると考えられる。これに対し、本発明 の製造方法では、酸性ゲル型カチオン交換榭脂を使用するため、遊離脂肪酸のェ ステル化で発生した水分が、前記酸性ゲル型カチオン交換樹脂に水和水として取り 込まれ、触媒能の低下を防止すると考えられる。なお、このメカニズムは、あくまでも 推察であって、本発明を制限するものではない。 [0010] また、本発明の油脂の製造方法によれば、例えば、前記原料油脂に金属イオンが 含まれている場合は、前記酸性ゲル型カチオン交換榭脂により除去することが可能 である。そして、本発明の製造方法では、前記原料油脂にカロテンやトコトリェノール 等の有用成分が含まれて 、る場合、これらの変質および消失を防止できる。
[0011] 本発明の製造方法において、前記酸性ゲル型カチオン交換樹脂に含まれる榭脂と しては、母剤がスチレン系であることが好ましぐ前記酸性ゲル型カチオン交換榭脂 に含まれる架橋剤としては、ジビュルベンゼンが好ましい。また、前記酸性ゲル型力 チオン交換樹脂の架橋度 (架橋剤の含有割合)は、特に制限するものではないが、 3 〜: LO重量%の範囲であることが好ましい。すなわち、 3重量%以上であれば、榭脂強 度の点でより好ましぐまた、 10重量%以下であれば、遊離脂肪酸のエステル化効率 をさらに向上させることが可能となる。なお、前記酸性ゲル型カチオン交換樹脂の架 橋度は、より好ましくは、 3〜9重量%の範囲であり、さらに好ましくは、 4〜8重量%の 範囲である。中でも、遊離脂肪酸のエステル化効率が最も高ぐ且つ、原料油脂に力 口テンやトコトリェノール等の有用成分が含まれている場合に、これらの変質および消 失を十分に抑制し、榭脂の機械的強度が十分に優れる架橋度 4重量%のものが特 に好ましい。なお、本発明における「ゲル型カチオン交換榭脂」とは、一般に、粒子内 部が均一な架橋高分子で構成されているカチオン交換榭脂を意味する。
[0012] 本発明の製造方法において、前記エステル化工程は、前記アルコールを添加した 前記原料油脂を、前記酸性ゲル型カチオン交換榭脂を充填したカラムに通過させる 工程であることが好ましい。前記原料油脂の前記カラムの通過において、遊離脂肪 酸のエステルイ匕効率をさらに向上させる見地から、前記カラム温度は、例えば、 40〜
70°Cの範囲であり、好ましくは、 50〜65°Cの範囲であり、より好ましくは、 60〜65°C の範囲である。また、前記原料油脂の前記カラム滞留時間は、例えば、 60〜480分 の範囲であり、好ましくは、 100〜360分の範囲であり、より好ましくは、 100〜240分 の範囲である。
[0013] 本発明の製造方法において、前記アルコールの添加量は、前記原料油脂の脂肪 酸分布等により適宜決定されるが、例えば、前記原料油脂 100重量部に対して、 5〜 30重量部の範囲であり、好ましくは、前記原料油脂 100重量部に対して、 10〜28重 量部の範囲であり、より好ましくは、前記原料油脂 100重量部に対して、 15〜26重 量部の範囲である。
[0014] 本発明の製造方法において、前記アルコール中の水分量は、低いほど好ましぐ例 えば、 1500ppm以下であり、好ましくは、 lOOOppm以下であり、より好ましくは、 600 ppm以下である。また、前記アルコール中の水分量の下限は、特には制限されない 力 例えば、検出限界程度 (Oppm)であり、好ましくは lOOppm程度である。
[0015] 本発明の製造方法において、前記アルコールとしては、例えば、低級 1価アルコー ルを使用することが好ましい。前記低級 1価アルコールとしては、炭素数が 1〜4のも のが好ましぐ例えば、メタノール、エタノール、プロパノール、ブタノール等が挙げら れる。これらは、単独で使用してもよぐ若しくは二種類以上を併用してもよい。この中 でも、メタノールを使用することが好ましい。
[0016] 本発明の製造方法では、さらに、前記原料油脂に金属イオンが含まれている場合、 前記エステルイ匕工程において除去することが好ましい。前記原料油脂に含有される 金属イオンとしては、例えば、銅イオン、鉄イオン、ナトリウムイオン、カリウムイオン、 カルシウムイオン、マグネシウムイオン等がある。
[0017] 本発明の製造方法において、さらに、前記エステルイ匕工程により遊離脂肪酸がエス テル化された油脂に対しアルコールを加えてアルコリシスするアルコリシス工程を有 することが好ましい。
[0018] 本発明の製造方法に使用する前記原料油脂としては、特に制限されず、例えば、 牛脂、ヤシ油、パーム油、パーム核油、ナタネ油、大豆油、ひまわり油、コーン油等が 挙げられる。これらは、単独で使用してもよぐ若しくは二種類以上を併用してもよい。 また、前記原料油脂として、カロテン、トコフエロール、トコトリェノール等の有用成分 を含んでいるものを使用することが好ましい。中でも、カロテン、トコトリェノールを多く 含んでいるパーム油を使用することが、特に好ましい。なお、本発明においては、ェ ステルイ匕工程に供する前の油脂を「原料油脂」とし、エステル化工程に供した後の油 脂を「精製油脂」とする。
[0019] つぎに、本発明の製造方法について、例を挙げて説明する。
[0020] 前述のとおり、本発明の製造方法では、原料油脂にアルコールを添加し、これを酸 性ゲル型カチオン交換樹脂に接触させるエステルイ匕工程により、前記原料油脂中の 遊離脂肪酸をエステル化する。なお、本発明の製造方法の適用前に、前記原料油 脂に脱ガム処理を施してもよい。前記脱ガム処理は、例えば、前記原料油脂に温水 を加えてリン脂質を水和させたり、無機酸や加熱処理による凝集を行ってから沈降分 離若しくは遠心分離を行って、ガム質を除去することで行うことができる。
[0021] 前記原料油脂は、前述のとおりである。
[0022] 前記アルコールの添カ卩量および前記アルコール中の水分量は、前述のとおりであ る。なお、前述のとおり、前記アルコールとして、メタノールを使用することが好ましい
[0023] 前記酸性ゲル型カチオン交換榭脂としては、例えば、スチレン ジビ-ノレベンゼン コポリマーのスルホンィ匕物等が挙げられる。市販の前記酸性ゲル型カチオン交換榭 脂としては、例えば、三菱ィ匕学社製の商品名ダイヤイオン SK104、同 SK106、同 S K 1Bおよび同 SK110、ダウケミカル社製の商品名ダウエックス、ローム 'アンド'ノヽ ース社製の商品名アンバーライト等を挙げることができる。前記酸性ゲル型カチオン 交換樹脂の架橋度は、前述のとおりである。なお、前処理として、前記酸性ゲル型力 チオン交換榭脂を、洗浄用アルコールで洗浄しておくことが好ましい。前記洗浄用ァ ルコールとしては、前述の原料油脂に添加するアルコールと同様のものを使用するこ とが好ましい。前記洗浄は、洗浄の前後で前記洗浄用アルコール中の水分量が変化 しなくなるまで行うことが好ましい。これにより、前記酸性ゲル型カチオン交換榭脂中 の水分が、前記洗浄用アルコールで置換され、遊離脂肪酸のエステルイ匕をさらに効 率よく行うことができるようになる。具体的には、例えば、前記酸性ゲル型カチオン交 換榭脂を、その容量の 2〜5倍量の前記洗浄用アルコールで洗浄すればょ 、。
[0024] つぎに、前記原料油脂に前記アルコールを添加し、前記酸性ゲル型カチオン交換 榭脂に接触させることにより、前記原料油脂中の遊離脂肪酸をエステル化することが できる。前述のとおり、本発明の製造方法では、このエステルイ匕工程力 前記アルコ ールを添加した前記原料油脂を、前記酸性ゲル型カチオン交換榭脂を充填したカラ ムに通過させる工程であることが好ましい。この場合における前記カラム温度および 前記原料油脂の前記カラム滞留時間は、前述のとおりである。 [0025] 前記エステルイ匕工程により得られる油脂(以下、「精製油脂」と言う)にお 、て、その 脱酸率は、特に制限するものではないが、例えば、 70%以上であり、好ましくは、 80 %以上であり、より好ましくは、 90%以上である。なお、前記脱酸率は、原料油脂中 の全遊離脂肪酸に対するエステル化された遊離脂肪酸の割合 (重量%)を意味し、 例えば、後述の実施例に記載の方法で測定できる。
[0026] また、前記原料油脂に金属イオンが含まれている場合には、前記精製油脂におい て、その金属イオン濃度が検出限界以下となっていることが好ましい。なお、前記金 属イオン濃度は、例えば、後述の実施例に記載の方法で測定できる。
[0027] そして、前記原料油脂にカロテン、トコトリェノールが含まれている場合には、前記 精製油脂において、そのカロテン消失率およびトコトリェノール変質率は、ともに 10 重量%以下であることが好ましぐより好ましくは、ともに 6重量%以下であり、さらに好 ましくは、ともに 4重量%以下である。なお、前記カロテン消失率およびトコトリエノー ル変質率は、例えば、後述の実施例に記載の方法で測定できる。
[0028] 前述のとおり、本発明の製造方法は、さらに、前記精製油脂に対しアルコールをカロ えてアルコリシスするアルコリシス工程を有してもよい。なお、前記アルコリシス工程を 行う場合においては、それに先立って、脱水工程が必要となる場合がある。すなわち 、前記精製油脂には、遊離脂肪酸のエステル化で発生した水分が含まれている。こ の水分量は、原料油脂中の遊離脂肪酸量およびエステル化率に依存する。原料油 脂があまり劣化していない場合、原料油脂中の遊離脂肪酸濃度は、例えば、 5重量 %以下であり、エステル化で発生する水分量は、例えば、 5000ppm以下となる。こ の程度の水分量であれば、後述のアルコリシス工程においてアルカリ触媒を増量す ることで、十分な反応率を達成できる。しかし、これ以上水分が増加すると、十分な反 応率の達成が困難となるおそれがある。この場合には、先に前記精製油脂中の水分 を脱水する脱水工程を実施することが好ましい。前記脱水の方法としては、例えば、 真空下での薄膜蒸留、大気圧下 150°Cでの蒸発および過剰メタノールを精製油脂 に添加混合して静置分離し、上層のメタノール層(この層は、水分を多く含有する)を 除く等の方法が挙げられる。
[0029] 前記精製油脂に対しアルコールを加えてアルコリシスすると、前記精製油脂中のト リグリセリドが分解し、脂肪酸低級アルキルエステルを主成分とする油相と、グリセリン を主成分とする相に分離する。この分離の際、前記精製油脂にカロテンやトコトリエノ ール等の有用成分が含まれている場合には、前記油相に移行する。前記アルコリシ ス用のアルコールとしては、メタノール等の低級アルコールが好ましい。前記アルコリ シス用のアルコールの添カ卩量は、前記精製油脂 100重量部に対して、例えば、 5〜5 0重量部の範囲であり、好ましくは、 10〜40重量部の範囲である。前記アルコリシス の温度は、例えば、 50〜100°Cの範囲、好ましくは、 60〜80°Cの範囲であり、前記 アルコリシスの反応時間は、例えば、 15〜90分の範囲、好ましくは、 40〜70分の範 囲である。また、前記アルコリシスは、触媒存在下で行うことが好ましい。前記触媒とし ては、アルカリ触媒が好ましぐ例えば、水酸化ナトリウム、水酸ィ匕カリウム、ナトリウム メチラート等が使用できる。前記触媒の添加量は、前記精製油脂 100重量部に対し て、例えば、 0. 1〜0. 5重量部の範囲であり、好ましくは、 0. 2〜0. 3重量部の範囲 である。前記精製油脂に対し前記アルコリシスを行えば、エステル歩留りが向上し、 酸ィ匕安定性に優れたアルキルエステルを得ることができる。また、カロテンやトコトリエ ノール等の有用成分を回収する場合には、そのほとんどが変質、消失していないた め、回収率が向上する。
[0030] 本発明の製造方法によって製造される油脂の用途は、何ら制限されないが、例え ば、さらに、エステル交換反応を行うことができ、得られたエステルは、例えば、軽油と 混合することでバイオジーゼル燃料として使用できる。また、前記エステルを、さらに 、エチレンォキシド付加、水素付加、高級アルコールィ匕またはスルホン化等を行うこと で、界面活性剤を合成し、例えば、洗浄剤として用いることができる。
[0031] つぎに、本発明の実施例について、比較例と併せて説明する。ただし、本発明は、 下記の実施例および比較例によって制限されるものではない。なお、下記実施例お よび比較例における各特性の測定方法は、以下に示すとおりである。
[0032] (1)脱酸率
試料 (油脂、以下同じ)中に含まれる水分やメタノールをエバポレータで除去した後 、無水硫酸ナトリウムをひいたろ紙を通過させて各試料を前処理する。前記前処理後 の各試料 5〜10g (Wtl)を正確にはかり、 200mL三角フラスコに入れる。そこに、中 和アルコールを約 50mL加えて試料を溶解する。指示薬としてフエノールフタレイン を数滴カ卩えた後、 1Z10規定 KOH溶液で滴定する。この滴定数 (mL)から、下記式 (1)により、酸価を算出する。
[0033] 酸価
Figure imgf000009_0001
·'·(1)
A: ΙΖΙΟ規定 KOHの滴定数 X滴定液のファクター
:試料重量 ^^ )
[0034] この測定を、精製油脂と原料油脂について行い、下記式 (2)により、脱酸率を算出 する。
[0035] 脱酸率(%) = {(C1— C2)ZC1}X100 · · · (2)
CI:原料油脂の酸価 (mgKOH/g)
C2:精製油脂の酸価 (mgKOH/g)
[0036] (2)カロテン消失率
前記脱酸率測定方法と同様にして、試料を前処理する。前記前処理後の各試料 0 . lg(Wt2)を正確に測量し、これをメスフラスコに入れ、シクロへキサンで 50mLにメ スアップし、試料溶液とする。この試料溶液を分光光度計の測定セルに入れ、波長 4 48nmの吸光度 Abを測定する。この測定値から、下記式(3)により、カロテン濃度を 算出する。
[0037] カロテン濃度(ppm)=DX200ZE · · · (3)
D:吸光度 Ab
E:試料重量 (Wt2)
[0038] この測定を、精製油脂と原料油脂について行い、下記式 (4)により、カロテン消失 率を算出する。
[0039] カロテン消失率(%) = {(F1— F2)ZF1}X100 · · · (4)
F1:原料油脂のカロテン濃度 (ppm)
F2:精製油脂のカロテン濃度 (ppm)
[0040] (3)トコトリェノール変質率
前記脱酸率測定方法と同様にして、試料を前処理する。前記前処理後の各試料 0 .5gを正確に測量し、これをメスフラスコに入れ、メタノールで 50mLにメスアップし、 試料溶液とする。一方、標準品トコフエロール(α、 β、 γ、 δ )の各々について、所 定の濃度となるように標準溶液を作製する。前記標準溶液を、下記条件で HPLC分 祈し、各トコフエロールの検量線を予め作成する。なお、各トコトリェノール感度 、 j8、 Ύ、 δ )は、各トコフエロール感度と同じとした。つぎに、前記試料溶液を同様にし て分析し、前記検量線から各濃度を算出し、合計して、総トコトリェノール濃度 (ppm) を得る。
[0041] HPLCカラム条件
カラム :デュポン社製、商品名 Zorbax ODS
4. 6 X 250mm,粒子径 5 μ m
溶離液 :メタノール Z水 = 98Z2(vZv)
流速 :0. 65mLZ分
検出器 : UV284nm
サンプル量: 20 L
[0042] この測定を、精製油脂と原料油脂について行い、下記式(5)により、トコトリェノール 変質率を算出する。
[0043] トコトリェノール変質率(%) = [ (Tl -T2) /Tl] X 100
•••(5)
T1:原料油脂の総トコトリェノール濃度 (ppm)
T2:精製油脂の総トコトリェノール濃度 (ppm)
[0044] (4)金属イオン濃度
試料の金属イオン濃度を、灰化処理後に原子吸光法により測定した。
実施例 1
[0045] 原料油脂(パーム油:マレーシア産の粗パーム油を脱ガム処理したもの;酸価 6〜1 0、ヨウ素価 50) 100重量部に 99. 5体積%メタノール 20重量部を添カ卩し、加熱器に て 60°Cに加熱し、酸性ゲル型カチオン交換榭脂(三菱ィ匕学社製、商品名ダイヤィォ ン SK104、架橋度 (ジビニルベンゼン) 4重量%; 1. 5L)を充填したカラム(直径 8cm 、長さ 30cm)を通し、精製油脂を得た。前記カラム温度は、 60°C、前記原料油脂(2 kg)の前記カラム滞留時間は、 120分とした。なお、前記酸性ゲル型カチオン交換榭 脂は、予め 4倍量 (体積)のメタノールで洗浄した。
実施例 2
[0046] メタノールの添加量を、原料油脂 100重量部に対して 10重量部としたこと以外は、 実施例 1と同様にして、精製油脂を得た。
実施例 3
[0047] メタノールの添加量を、原料油脂 100重量部に対して 30重量部としたこと以外は、 実施例 1と同様にして、精製油脂を得た。
実施例 4
[0048] 酸性ゲル型カチオン交換榭脂として、架橋度 6重量%のもの (三菱化学社製、商品 名ダイヤイオン SK106)を使用したこと以外は、実施例 1と同様にして、精製油脂を 得た。
実施例 5
[0049] 酸性ゲル型カチオン交換榭脂として、架橋度 8重量%のもの (三菱化学社製、商品 名ダイヤイオン SK 1B)を用いたこと以外は、実施例 1と同様にして、精製油脂を得 た。
実施例 6
[0050] 酸性ゲル型カチオン交換榭脂として、架橋度 10重量%のもの(三菱化学社製、商 品名ダイヤイオン SK110)を用いたこと以外は、実施例 1と同様にして、精製油脂を 得た。
[0051] (比較例 1)
原料油脂 (パーム油;実施例 1と同様) 100重量部に 99. 5体積%メタノール 20重 量部を添加し、硫酸 (油脂に対し重量 1. 0%添加)を触媒として、 60°Cで 120分間攪 拌しながら、前記原料油脂中の遊離脂肪酸をエステル化して、精製油脂を得た。
[0052] (比較例 2)
酸性ゲル型カチオン交換樹脂に代えて、酸型固形陽イオン交換榭脂 (三菱化学社 製、商品名ダイヤイオン PK208、架橋度 4重量%)を使用したこと以外は、実施例 1と 同様にして、精製油脂を得た。 [0053] (比較例 3)
酸性ゲル型カチオン交換樹脂に代えて、酸型固形陽イオン交換榭脂 (三菱化学社 製、商品名ダイヤイオン PK212、架橋度 6重量%)を使用したこと以外は、実施例 1と 同様にして、精製油脂を得た。
[0054] (比較例 4)
酸性ゲル型カチオン交換樹脂に代えて、酸型固形陽イオン交換榭脂 (三菱化学社 製、商品名ダイヤイオン ΡΚ216、架橋度 8重量%)を使用したこと以外は、実施例 1と 同様にして、精製油脂を得た。
[0055] 前記実施例 1〜6および比較例 1〜4で得られた精製油脂の脱酸率、カロテン消失 率およびトコトリェノール消失率を、前述の方法により測定した。その測定結果を、下 記表 1および表 2に示す。なお、下記表 1は、実施例 1〜6についての前記測定結果 であり、下記表 2は、比較例 1〜4についての前記測定結果である。また、実施例 1に ついては、金属イオン濃度も測定した。その測定結果を、下記表 3に示す。下記表 1 および 2における水分含有量は、メタノール洗浄による処理前のカチオン交換榭脂中 の水分量を示している。
[0056] [表 1] 実施例
1 2 3 4 5 6
メタノール添加鼋 (重量部) 20 10 30 20 20 20 カチオン交換樹脂 ケ' ノレ ケ' ル ケ- ノレ ケ" ル ケ-、 ノレ ケ' ノレ 架橋度 (重量。/。) 4 4 4 6 8 10
水分含有量 (%) 57〜67 57〜67 57〜67 47〜57 43~50 35~45 脱酸率 (%) 95 70 96 80 70 20 カロテン消失率 (%) 3 3 3 2 2 1 トコ トリ工ノール変質率 (%) 5 5 5 4 3 2
[0057] [表 2] 比較例
1 2 3 4
メタノール添加量 (重量部) 20 20 20 20
力チ才ン交換樹脂 (硫酸) 固形 固形 固形
架橋度 (重量%) ― 4 6 8
水分含有量 ( % ) —— 一 一
脱酸率 (%) 40 10 10 10
カロテン消失率 (%) 90 1 1 1
トコ トリエノール変質率 (%) 50 2 2 2
[0058] [表 3」 金属イオン 原料油脂 ( D m ) 精製油脂
銅イオン 0 1 検出限界以下
鉄イオン 3 0 検出限界以下
ナト リ ウムイオン 3 3 検出限界以下
カリ ウムイオン 2 3 検出限界以下
カノレシゥムイオン 2 5 検出限界以下
オン 2 5 検出限界以下
[0059] 上記表 1および表 2より、実施例 1〜6で得られた精製油脂は、比較例 1で得られた 精製油脂と比べて、カロテン消失率およびトコトリェノール変質率が低いことがわ力 た。また、実施例 1〜6で得られた精製油脂は、比較例 2〜4で得られた精製油脂と 比べて、脱酸率が高いことがわ力つた。
[0060] また、上記表 3からわかるように、本発明の製造方法によって、金属イオン濃度は、 検出限界以下となった。
産業上の利用可能性
[0061] 本発明の製造方法によれば、原料油脂中の遊離脂肪酸を効率的にエステルイ匕で き、原料油脂に金属イオンが含まれている場合は、それも除去することが可能であり 、さらに、原料油脂にカロテンやトコトリェノール等の有用成分が含まれている場合は 、その変質および消失を防止できる。よって、本発明の製造方法を、例えば、パーム 油等に適用すれば、酸化安定性に優れ、且つ、カロテンやトコトリェノール等の有用 成分に富んだ油脂を得ることができる。
本発明の製造方法によって得られた油脂は、さらにエステル交換反応を行うことが でき、得られたエステルは、例えば、軽油と混合することでバイオジーゼル燃料として 使用できる。また、前記エステルを、さらに、エチレンォキシド付加、水素付加、高級 アルコールィ匕またはスルホンィ匕等に供することで、界面活性剤を合成し、例えば、洗 浄剤として用いることができる。

Claims

請求の範囲
[I] 原料油脂中の遊離脂肪酸をアルコールでエステルィヒする工程を有する油脂の製 造方法であって、前記エステルイ匕工程が、前記原料油脂にアルコールを添加し、こ れを酸性ゲル型カチオン交換樹脂に接触させる工程である油脂の製造方法。
[2] 前記酸性ゲル型カチオン交換樹脂の架橋度が、 3〜10重量%の範囲である請求 項 1記載の油脂の製造方法。
[3] 前記エステルイ匕工程が、前記アルコールを添加した前記原料油脂を、前記酸性ゲ ル型カチオン交換榭脂を充填したカラムに通過させる工程である請求項 1記載の油 脂の製造方法。
[4] 前記原料油脂の前記カラムの通過において、前記カラム温度が 40〜70°Cの範囲 である請求項 3記載の油脂の製造方法。
[5] 前記原料油脂の前記カラムの通過において、前記原料油脂の前記カラム滞留時 間が 100〜480分の範囲である請求項 3記載の油脂の製造方法。
[6] 前記アルコールの添加量が、前記原料油脂 100重量部に対して、 5〜30重量部の 範囲である請求項 1記載の油脂の製造方法。
[7] 前記アルコール中の水分量力 1500ppm以下である請求項 1記載の油脂の製造 方法。
[8] 前記アルコールが、メタノールを含む請求項 1記載の油脂の製造方法。
[9] 前記エステルイ匕工程において、さらに、前記油脂に含有される金属イオンを除去す る請求項 1記載の油脂の製造方法。
[10] さらに、前記エステル化工程により遊離脂肪酸がエステル化された油脂に対し、ァ ルコールをカ卩えてアルコリシスするアルコリシス工程を有する請求項 1記載の油脂の 製造方法。
[II] 前記原料油脂として、牛脂、ヤシ油、パーム油、パーム核油、ナタネ油、大豆油、ひ まわり油およびコーン油からなる群力 選択される少なくとも一つを使用する請求項 1 記載の油脂の製造方法。
PCT/JP2005/021551 2004-12-17 2005-11-24 油脂の製造方法 WO2006064643A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006548738A JPWO2006064643A1 (ja) 2004-12-17 2005-11-24 油脂の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004365290 2004-12-17
JP2004-365290 2004-12-17

Publications (1)

Publication Number Publication Date
WO2006064643A1 true WO2006064643A1 (ja) 2006-06-22

Family

ID=36587704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/021551 WO2006064643A1 (ja) 2004-12-17 2005-11-24 油脂の製造方法

Country Status (3)

Country Link
JP (1) JPWO2006064643A1 (ja)
KR (1) KR20070084059A (ja)
WO (1) WO2006064643A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1921131A1 (en) 2006-11-13 2008-05-14 Rohm and Haas Company Method for esterification of free fatty acids in triglycerides
WO2008078769A1 (ja) * 2006-12-27 2008-07-03 Lion Corporation 脂肪酸低級アルキルエステルの製造方法
JP2009185215A (ja) * 2008-02-07 2009-08-20 Rohm & Haas Co トリグリセリド中の遊離脂肪酸をエステル化する方法
JP2010502775A (ja) * 2006-08-28 2010-01-28 ユニバーシティー プトラ マレーシア アシルグリセロールエステル類の製造
JP2010065219A (ja) * 2008-09-15 2010-03-25 Rohm & Haas Co トリグリセリド中の遊離脂肪酸の選択的エステル化方法
JP2010150421A (ja) * 2008-12-25 2010-07-08 Lion Corp 濃縮ホルボールエステルの製造方法
EP2174554A3 (en) * 2008-10-09 2011-01-12 Infineum International Limited Improving the oxidation stability of oils of vegetable or animal origin

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51147532A (en) * 1975-06-13 1976-12-17 Lion Corp Process for manufacturing carotene condensates

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51147532A (en) * 1975-06-13 1976-12-17 Lion Corp Process for manufacturing carotene condensates

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JERABEK K ET AL: "POLYMER MATRIX INFLUENCE ON ION EXCHANGE RESIN-CATALYZED REACTIONS.", J MOL CATAL., vol. 39, no. 2, 1987, pages 161 - 167, XP002995749 *
STANCHER B ET AL: "Metilazione in fiala di miscele di acidi grassi C6-C22 con metanolo e resina a scambio cationico. Applicazione agli acidi grassi liberi dei formaggi.", RIVISTA ITALIANA DELLE SOSTANZE GRASSE., vol. 59, no. 12, 1982, pages 619 - 622, XP002995748 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010502775A (ja) * 2006-08-28 2010-01-28 ユニバーシティー プトラ マレーシア アシルグリセロールエステル類の製造
EP1921131A1 (en) 2006-11-13 2008-05-14 Rohm and Haas Company Method for esterification of free fatty acids in triglycerides
US7550614B2 (en) 2006-11-13 2009-06-23 Rohm And Haas Company Method for esterification of free fatty acids in triglycerides
CN101182293B (zh) * 2006-11-13 2011-08-10 罗门哈斯公司 用于甘油三酯中游离脂肪酸的酯化反应的方法
WO2008078769A1 (ja) * 2006-12-27 2008-07-03 Lion Corporation 脂肪酸低級アルキルエステルの製造方法
JP2009185215A (ja) * 2008-02-07 2009-08-20 Rohm & Haas Co トリグリセリド中の遊離脂肪酸をエステル化する方法
JP2010065219A (ja) * 2008-09-15 2010-03-25 Rohm & Haas Co トリグリセリド中の遊離脂肪酸の選択的エステル化方法
EP2174554A3 (en) * 2008-10-09 2011-01-12 Infineum International Limited Improving the oxidation stability of oils of vegetable or animal origin
JP2010150421A (ja) * 2008-12-25 2010-07-08 Lion Corp 濃縮ホルボールエステルの製造方法

Also Published As

Publication number Publication date
KR20070084059A (ko) 2007-08-24
JPWO2006064643A1 (ja) 2008-06-12

Similar Documents

Publication Publication Date Title
Abdul Raman et al. Two-step purification of glycerol as a value added by product from the biodiesel production process
WO2006064643A1 (ja) 油脂の製造方法
CA2563301C (en) Method of preparing fatty acid alkyl esters from waste or recycled fatty acid stock
EP1889899B1 (en) Production of biodiesel and glycerin from high free fatty acid feedstocks
AU2009210660B2 (en) Biodiesel purification by a continuous regenerable adsorbent process
JP5808479B2 (ja) 脂肪酸の自己触媒エステル化のための方法
BRPI0415072B1 (pt) método de purificação de um combustível biodiesel com materiais adsorventes
US7905931B2 (en) Biodiesel production method and apparatus
WO2012066860A1 (ja) 再生白土の製造方法、再生白土、及び精製油脂の製造方法
MX2012006335A (es) Reduccion de ester de glicidilo en aceite.
WO2011055732A1 (ja) グリセリド油脂中のクロロプロパノール類及びその形成物質を低減する方法
Mendow et al. Biodiesel production by two-stage transesterification with ethanol by washing with neutral water and water saturated with carbon dioxide
CN101139328B (zh) 环氧脂肪酸甲酯合成工艺
SG187349A1 (en) Alkali metal and alkaline earth metal glycerates for the deacidification and drying of fatty acid esters
KR20100118691A (ko) 동식물성 폐식용유에 함유된 유리지방산의 제거 방법
US8440847B2 (en) Method of converting free fatty acid (FFA) from oil to methyl ester
US20080110082A1 (en) Biodiesel production with enhanced alkanol recovery
JP5145588B2 (ja) 脂肪酸低級アルキルエステルの製造方法
JP2009242777A (ja) 脂肪酸低級アルキルエステルの製造方法
WO2006016492A1 (ja) バイオディーゼル燃料用組成物の製造方法およびバイオディーゼル燃料製造装置
JP4943001B2 (ja) トコトリエノール類含有組成物の製造方法
JP5272073B2 (ja) トコトリエノール組成物の製造方法
JP2011026394A (ja) バイオディーゼル燃料の製造方法、およびバイオディーゼル燃料の製造装置
Sinichi et al. Production of Isopropyl and Methyl Esters from Yellow Mustard Oil/IPA Miscellas
WO2007074592A1 (ja) 脂肪酸低級アルキルエステルの製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006548738

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020077010426

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05809342

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5809342

Country of ref document: EP