WO2006062300A1 - Diode electroluminescente a base de silicium - Google Patents

Diode electroluminescente a base de silicium Download PDF

Info

Publication number
WO2006062300A1
WO2006062300A1 PCT/KR2005/003847 KR2005003847W WO2006062300A1 WO 2006062300 A1 WO2006062300 A1 WO 2006062300A1 KR 2005003847 W KR2005003847 W KR 2005003847W WO 2006062300 A1 WO2006062300 A1 WO 2006062300A1
Authority
WO
WIPO (PCT)
Prior art keywords
led
layer
type
reflective
silicon
Prior art date
Application number
PCT/KR2005/003847
Other languages
English (en)
Inventor
Tae-Youb Kim
Nae-Man Park
Kyung-Hyun Kim
Gun-Yong Sung
Original Assignee
Electronics And Telecommunications Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020050037623A external-priority patent/KR100590775B1/ko
Application filed by Electronics And Telecommunications Research Institute filed Critical Electronics And Telecommunications Research Institute
Priority to JP2007545359A priority Critical patent/JP4612053B2/ja
Priority to EP05820850A priority patent/EP1820222A1/fr
Priority to US11/720,987 priority patent/US7671377B2/en
Publication of WO2006062300A1 publication Critical patent/WO2006062300A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/34Materials of the light emitting region containing only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • H01L33/46Reflective coating, e.g. dielectric Bragg reflector

Definitions

  • the present invention relates to a method of manufacturing a semiconductor device, and more particularly, to a silicon-based light emitting diode (LED) including a distributed Bragg reflector (DBR).
  • LED silicon-based light emitting diode
  • DBR distributed Bragg reflector
  • a DBR with a high reflectance is used in various photoelectronic devices designed for light-emission, photo detection, light modulation, and other functions.
  • a DBR is a multi-layer mirror composed of alternating layers of two materials having different refractive indices, and reflects light using the difference between the refractive indices of the layers. Disclosure of Invention
  • the present invention provides a silicon-based LED designed to achieve high emission efficiency and narrow emission spectrum using an n-type doping layer and a distributed Bragg reflector (DBR) without the need to inject a doping material directly into the DBR.
  • DBR distributed Bragg reflector
  • LED including a substrate having a p-type mesa substrate structure.
  • An active layer is formed on the substrate and has a first surface and a second surface opposite the first surface.
  • a first reflective layer faces the first surface of the active layer while a second reflective layer faces the second surface of the active layer.
  • the second reflective layer is located on either side of the p-type substrate structure.
  • An n-type doping layer is sandwiched between the active layer and the first reflective layer.
  • a first electrode is electrically connected to the n-type doping layer while a second electrode is electrically connected to the p-type substrate structure.
  • the p-type substrate structure penetrates the second reflective layer and contacts the second surface of the active layer.
  • the first electrode may surround the first reflective layer, and the p-type substrate structure may be located below the portion of the first reflective layer surrounded by the first electrode.
  • the first electrode may have a top of ring shape or polygonal shape. A light-emitting region is confined within the portion of the first reflective layer surrounded by the first electrode.
  • the first and second reflective layers may each include a Distributed Bragg
  • DBR Downlink Reflector
  • the silicon-based LED uses only the n-type doping layer to form a reflective layer on both surfaces of the active layer, thereby offering high emission efficiency, narrow emission spectrum, and improved electroluminescence characteristics.
  • FIG. 1 is a cross-sectional view of a main portion of a silicon-based light emitting diode (LED) according to a preferred embodiment of the present invention
  • FIG. 2 is a plan view of a portion of FIG. 1;
  • FIG. 3 is a plan view of a main portion of a silicon-based LED according to another preferred embodiment of the present invention.
  • a silicon-based light emitting diode includes a substrate 100, for example, p-type silicon substrate, and an active layer 104 that is formed on the substrate 100 and has a first surface 104a and a second surface 104b opposite the first surface 104a.
  • the substrate 100 has a p-type mesa structure 108.
  • the active layer 104 is formed of crystalline or amorphous silicon nano-size dots, and may have a thickness of 10 nm to 100 ⁇ m.
  • a first reflective layer 110 faces the first surface 104a of the active layer 104, while a second reflective layer 120 faces the second surface 104b.
  • the second reflective layer 120 is located on either side of the p-type substrate structure 108.
  • the p-type substrate structure 108 penetrates the second reflective layer 120 and has a top surface contacting the second surface 104b of the active layer 104.
  • a first electrode 122 is shaped to completely surround the first reflective layer 110. While FIG. 2 shows that the first electrode 122 has a top of circular shape, it may have a ring shape of circular or elliptical, or have a polygonal shape. FIG. 3 shows a rectangular first electrode 122'. Like reference numerals in FIGS. 2 and 3 denote like elements, and thus their description will be omitted to avoid redundancy. Unless otherwise described, the description of the elements shown in FIG. 2 will apply to elements shown in FIG. 3.
  • the p-type substrate structure 108 is located below a portion of the first reflective layer 110 surrounded by the first electrode 122.
  • the p-type substrate structure 108 may have a width W of 0.01 to 10 mm.
  • the portion of the first reflective layer 110 surrounded by the first electrode 122 corresponds to a light-emitting region 200.
  • a portion of the light-emitting region 200 in proximity to the first electrode 122 may be a highly efficient light-emitting region 210.
  • the highly efficient light-emitting region 210 may have a width of 10 nm to 1 ⁇ m.
  • An n-type doping layer 106 sandwiched between the active layer 104 and the first reflective layer 110 is made of an n-type compound semiconductor such as ZnO, InSnO, NiO, SiC, or SnO .
  • a reference numeral 130 in FIG. 1 denotes an insulating layer.
  • the first electrode 122 is electrically connected to the n-type doping layer 106, while a second electrode 124 is electrically connected to the p-type substrate structure 108.
  • the first and second electrodes 122 and 124 may be made of metal and have a thickness of 100 ⁇ m to 5 mm.
  • the first and second reflective layers 110 and 120 each consist of a distributed Bragg reflector (DBR) composed of a sequence of alternating silicon-containing insulating layers having different compositions.
  • the refractive index difference between the alternating insulating layers may be 0.1 to 0.5.
  • the DBR is formed from a repeated stack of alternating layers of SiO and SiN.
  • the DBR may include 2 to 20 pairs of alternating layers of SiO and SiN.
  • the first electrode 122 surrounding the first reflective layer 110 acts to transport electrons into the n-type doping layer 106. Furthermore, holes injected through the second electrode 124 are moved into the p-type substrate structure 108 through the p- type substrate 100.
  • electrons injected through the first electrode 122 pass through the first reflective layer 110 to reach the n-type doping layer 106, and are stably injected into the first surface 104a of the active layer 104 through the n-type doping layer 106.
  • Holes injected through the second electrode 124 reach the p-type substrate 100 and the p-type substrate structure 108, and are then injected into the second surface 104b of the active layer 104.
  • the active layer 104 then emits light using silicon nano-size dots.
  • the light confined between the first and second reflective layers 110 and 120 oscillates so as to selectively amplify and emit a narrow spectrum.
  • the light-emitting region 200 of the silicon-based LED according to the present invention may be limited to the portion of the first reflective layer 110 enclosed by the first electrode 122 or 122'.
  • the light-emitting region 200 is the entire region of the first reflective layer 110 surrounded by the first electrode 122 or 122' and the highly efficient light-emitting region 210 is located around the outer edge portion of the light-emitting region 200 in proximity to the first electrode 122 or 122'.
  • a silicon-based LED with silicon nano-size dots used as an active layer according to the present invention uses an n-type doping layer and a reflective layer including a DBR that are easy to manufacture, to achieve improved performance.
  • the silicon- based LED offers high emission efficiency, narrow emission spectrum, stable operation characteristics, and improved electroluminescence properties.
  • the silicon-based LED can be widely used in various optical devices for light- emission, photodetection, light modulation, and other functions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

L'invention concerne une diode électroluminescente (LED) à base de silicium, à haut rendement, comprenant un réflecteur Bragg réparti (DBR), une couche de dopage de type n, et une structure de substrat de type p. Le LED à base de silicium comprend : un substrat ayant une mesa structure de substrat de type p ; une couche active formée sur le substrat et présentant une première surface et une seconde surface, opposée à la première surface ; une première couche réflectrice dirigée vers la première surface de la couche active ; une seconde couche réflectrice disposée sur un côté de la structure de substrat de type p et orientée du côté de la seconde surface de la couche active ; une couche de dopage de type n, prise en sandwich entre la couche active et la première couche réflectrice ; une première électrode connectée électriquement à la couche de dopage de type n ; et une seconde électrode connectée électriquement à la structure de substrat de type p.
PCT/KR2005/003847 2004-12-08 2005-11-14 Diode electroluminescente a base de silicium WO2006062300A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007545359A JP4612053B2 (ja) 2004-12-08 2005-11-14 シリコンベースの発光ダイオード
EP05820850A EP1820222A1 (fr) 2004-12-08 2005-11-14 Diode electroluminescente a base de silicium
US11/720,987 US7671377B2 (en) 2004-12-08 2005-11-14 Silicon based light emitting diode

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20040102956 2004-12-08
KR10-2004-0102956 2004-12-08
KR1020050037623A KR100590775B1 (ko) 2004-12-08 2005-05-04 실리콘 발광 소자
KR10-2005-0037623 2005-05-04

Publications (1)

Publication Number Publication Date
WO2006062300A1 true WO2006062300A1 (fr) 2006-06-15

Family

ID=36578094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2005/003847 WO2006062300A1 (fr) 2004-12-08 2005-11-14 Diode electroluminescente a base de silicium

Country Status (2)

Country Link
EP (1) EP1820222A1 (fr)
WO (1) WO2006062300A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008135013A2 (fr) * 2007-05-04 2008-11-13 Osram Opto Semiconductors Gmbh Puce semi-conductrice et procédé de fabrication d'une puce semi-conductrice
CN101981715A (zh) * 2008-07-21 2011-02-23 Lg伊诺特有限公司 发光二极管及其制造方法和发光器件及其制造方法
EP2372791A3 (fr) * 2010-03-10 2012-07-18 LG Innotek Co., Ltd. Diode électroluminescente
EP2498304A2 (fr) * 2009-11-06 2012-09-12 Semileds Optoelectronics Co., Ltd. Diode électroluminescente verticale munie d'une électrode réinstallée vers l'extérieur

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5533031A (en) * 1978-08-30 1980-03-08 Hitachi Ltd Light-detecting semiconductor device
US5491350A (en) * 1993-06-30 1996-02-13 Hitachi Cable Ltd. Light emitting diode and process for fabricating the same
JPH11261157A (ja) * 1998-03-16 1999-09-24 Furukawa Electric Co Ltd:The 面発光型半導体レーザ素子及びその作製方法
JP2000031589A (ja) * 1998-07-08 2000-01-28 Oki Electric Ind Co Ltd 半導体発光装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5533031A (en) * 1978-08-30 1980-03-08 Hitachi Ltd Light-detecting semiconductor device
US5491350A (en) * 1993-06-30 1996-02-13 Hitachi Cable Ltd. Light emitting diode and process for fabricating the same
JPH11261157A (ja) * 1998-03-16 1999-09-24 Furukawa Electric Co Ltd:The 面発光型半導体レーザ素子及びその作製方法
JP2000031589A (ja) * 1998-07-08 2000-01-28 Oki Electric Ind Co Ltd 半導体発光装置

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008135013A2 (fr) * 2007-05-04 2008-11-13 Osram Opto Semiconductors Gmbh Puce semi-conductrice et procédé de fabrication d'une puce semi-conductrice
WO2008135013A3 (fr) * 2007-05-04 2009-02-19 Osram Opto Semiconductors Gmbh Puce semi-conductrice et procédé de fabrication d'une puce semi-conductrice
US8526476B2 (en) 2007-05-04 2013-09-03 Osram Opto Semiconductors Gmbh Semiconductor chip and method for manufacturing a semiconductor chip
CN101981715A (zh) * 2008-07-21 2011-02-23 Lg伊诺特有限公司 发光二极管及其制造方法和发光器件及其制造方法
US8823028B2 (en) 2008-07-21 2014-09-02 Lg Innotek Co., Ltd. Light emitting diode and method of manufacturing the same, and light emitting device and method of manufacturing the light emitting device
US9680064B2 (en) 2008-07-21 2017-06-13 Lg Innotek Co., Ltd. Light emitting diode and method of manufacturing the same, and light emitting device and method of manufacturing the light emitting device
EP2498304A2 (fr) * 2009-11-06 2012-09-12 Semileds Optoelectronics Co., Ltd. Diode électroluminescente verticale munie d'une électrode réinstallée vers l'extérieur
EP2498304A4 (fr) * 2009-11-06 2014-03-05 Semileds Optoelectronics Co Diode électroluminescente verticale munie d'une électrode réinstallée vers l'extérieur
EP2372791A3 (fr) * 2010-03-10 2012-07-18 LG Innotek Co., Ltd. Diode électroluminescente
US8653547B2 (en) 2010-03-10 2014-02-18 Lg Innotek Co., Ltd Light emitting device and light emitting device package
US9455377B2 (en) 2010-03-10 2016-09-27 Lg Innotek Co., Ltd. Light emitting device
US9899567B2 (en) 2010-03-10 2018-02-20 Lg Innotek Co., Ltd. Light emitting device

Also Published As

Publication number Publication date
EP1820222A1 (fr) 2007-08-22

Similar Documents

Publication Publication Date Title
US7671377B2 (en) Silicon based light emitting diode
JP6722221B2 (ja) 発光ダイオード
US8076686B2 (en) Light emitting diode and manufacturing method thereof
JP4765916B2 (ja) 半導体発光素子
US9825203B2 (en) Light emitting diode chip and fabrication method
KR20090043057A (ko) 발광다이오드
JPWO2008155960A1 (ja) 半導体発光素子
JP2014041886A (ja) 半導体発光素子
KR100576718B1 (ko) 실리콘 발광 소자
KR101115570B1 (ko) 발광 소자 및 그것을 제조하는 방법
US20180198029A1 (en) Semiconductor light emitting device including reflective element and method of making same
WO2006062300A1 (fr) Diode electroluminescente a base de silicium
KR101165253B1 (ko) 발광다이오드
CN112670386B (zh) 一种发光二极管及其制造方法
KR100832070B1 (ko) 질화갈륨계 발광 다이오드 소자
KR100699056B1 (ko) 복수의 발광셀을 갖는 발광다이오드 및 그 제조방법
KR20120029284A (ko) 발광소자
CN101834252B (zh) 发光器件、制造发光器件的方法以及发光装置
JP2005347493A (ja) 半導体発光素子
KR100654079B1 (ko) 전기적 특성 및 접착력이 개선된 p형 전극패드를 구비한발광 다이오드
US20140097457A1 (en) Semiconductor device
KR101165255B1 (ko) 고효율 발광 다이오드 및 그것을 제조하는 방법
JP2014041999A (ja) 半導体発光素子
JP2013125816A (ja) 半導体発光素子
KR20180004457A (ko) 콘택층들을 갖는 발광 다이오드 및 그것을 제조하는 방법

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005820850

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11720987

Country of ref document: US

Ref document number: 2007545359

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005820850

Country of ref document: EP