WO2006062126A1 - Copper alloy and method for producing copper alloy - Google Patents

Copper alloy and method for producing copper alloy Download PDF

Info

Publication number
WO2006062126A1
WO2006062126A1 PCT/JP2005/022452 JP2005022452W WO2006062126A1 WO 2006062126 A1 WO2006062126 A1 WO 2006062126A1 JP 2005022452 W JP2005022452 W JP 2005022452W WO 2006062126 A1 WO2006062126 A1 WO 2006062126A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper alloy
phase
producing
electrical conductivity
strength
Prior art date
Application number
PCT/JP2005/022452
Other languages
French (fr)
Japanese (ja)
Inventor
Junichi Koike
Original Assignee
National University Corporation Tohoku University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University Corporation Tohoku University filed Critical National University Corporation Tohoku University
Publication of WO2006062126A1 publication Critical patent/WO2006062126A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper

Definitions

  • the present invention relates to a copper alloy having high panel strength and high electrical conductivity, which has a high tensile strength used for lead wires, pins, connectors, etc. of semiconductor devices and does not deform even after repeated use. It relates to a manufacturing method.
  • a copper alloy material has been widely used as a material for a lead portion in a semiconductor element and an electronic device using these.
  • Such lead wires and pin counts for IC packages are required to have good electrical conductivity and tensile strength and panelability for repeated use in order to receive stress in the package manufacturing process.
  • A1 alloy is light and low in electrical resistance, but has problems such as migration.
  • further integration of semiconductor elements and semiconductors / cages has progressed, and there has been a demand for fine wires for lead wires, and Cu alloys with lower electrical resistance than A1 alloys have been used for thinning. Yes.
  • Typical examples of copper alloys so far include the following.
  • Patent Document 1 a molten Cu alloy containing Cr: 0.5 to 2.0% and the balance being Cu and unavoidable impurity power is produced at a cooling rate of 100 ° CZ seconds or more.
  • Patent Document 2 contains Nil. 0 to 4. Owt%, SiO. 1 to 1. Owt%, ZnO. 05 to 5. Owt%, Sn5. Owt% or less, and less than PO.
  • Patent Document 3 contains 0.5 to 3.0% Ti and 0.5 to 3.0% Ni in a weight percentage within a range of NiZTi weight ratio of 0.5 to 1.0.
  • a copper alloy for a high-strength, high-conductivity lead frame containing 1.5 to 3.0% Sn, with the balance being Cu and inevitable impurities is disclosed.
  • Patent Document 4 Be: 0.5 to 1.5 wt%, one or two selected from Ni and Co: 0.3 to 1.5 wt%, Si and A1
  • the balance is a beryllium copper alloy having a substantially Cu composition, the average grain size is 50 to 150 111,
  • the alloy contains NiBe or / and CoBe as an intermetallic compound in the range of 0.20 to 0.90 wt%, and at least 45% of them as fine particles having a particle size of 0.1 ⁇ m or less.
  • Patent Document 5 contains Fe: l.
  • Patent Document 6 contains 0 to 2.5 wt% Fe, 0.01 to 0.1 wt% P, 0.01 to: L wt% Zn, and 0.05 to 0.2 wt% Sn.
  • a high-strength, high-conductivity copper alloy characterized in that the balance is composed of Cu and inevitable impurities is disclosed.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 05-311364
  • Patent Document 2 Japanese Patent Laid-Open No. 06-017209
  • Patent Document 3 Japanese Patent Laid-Open No. 09-143597
  • Patent Document 4 Japanese Patent Application Laid-Open No. 09-263859
  • Patent Document 5 Japanese Patent Laid-Open No. 2001-279347
  • Patent Document 6 Japanese Unexamined Patent Application Publication No. 2002-241873
  • Patent Document 7 U.S. Patent 5,288,456
  • the present invention has been made in view of the above-mentioned problems, and the problem is that V, TE can be used as a material for semiconductor element lead wires and IC package pins during the manufacturing process and during repeated use.
  • the object is to provide a copper alloy having a tensile strength that does not deform and does not break, good panel properties, and a high V electrical conductivity corresponding to the fine wire of the lead wire.
  • Another object of the present invention is to provide a method for producing a copper alloy capable of forming a thin film in a semiconductor element by an electrodeposition method because there is a limit to thinning in the conventional forging and rolling method.
  • the copper alloy of the present invention is a copper alloy containing 5 to 20 at% Sn, the balance being Cu, and the structure in which the ⁇ phase (Cu Sn) is dispersed in the a phase (Cu). It is characterized by having.
  • the copper alloy of the present invention is further characterized by having an electric conductivity of 6 to 35% IACS and a tensile strength of 0.6 to 2.5 GPa.
  • the copper alloy of the present invention is further characterized by being heat-treated at 100 to 350 ° C. within a range of 10 minutes to 24 hours.
  • the method for producing a copper alloy of the present invention is a method for producing a copper alloy containing 5 to 20 at% Sn, with the balance containing Cu and inevitable impurities, the ⁇ phase ( It has a step of forming a structure in which ⁇ phase (Cu Sn) is dispersed in Cu).
  • the method for producing a copper alloy according to the present invention is further characterized in that the step is heat-treated at 100 to 350 ° C. within a range of 10 minutes to 24 hours. 6.
  • the copper alloy production method of the present invention is further characterized in that the copper alloy production method forms a Cu—Sn film by a plating method.
  • the copper alloy production method of the present invention is further characterized in that the copper alloy production method forms a Cu—Sn film by a vacuum deposition method.
  • the electrical conductivity of Cu Sn ( ⁇ phase) as a precipitate is about 10 ⁇ . ⁇
  • the electric conductivity can be kept high even if the calorific value increases.
  • This Cu-Sn-based copper alloy has long been known as bronze plating, and it is possible to easily produce thin films necessary for lead wires of semiconductor elements at low cost by electrodeposition.
  • the copper alloy of the present invention is a copper alloy containing 5 to 20% Sn with the balance containing Cu and inevitable impurities, and the ⁇ phase (Cu Sn) is contained in the a phase (Cu). It has a distributed organization.
  • bronze of so-called Cu-Sn alloys is an alloy containing Sn in a range of 2 to 35%, and has been used as a conventional porcelain material because of its high strength.
  • Figure 1 is a Cu-Sn binary system phase diagram. As shown in Fig. 1, this bronze formed a metal structure in which the ⁇ phase was precipitated in the ⁇ phase, but in this structure, the strength increases, the strength becomes brittle, and the panel property decreases. At times, it easily deforms and breaks. For this reason, bronze has been used as a machine part material by adding Zn and Pb to prevent acidification. This bronze is a forged material that is thinned by machining to form a thin film. It was difficult to get involved.
  • precipitation hardening type copper alloys are known as means for securing the conductivity and increasing the strength to obtain panel characteristics. These were designed to uniformly disperse fine precipitates in the a phase of the parent phase to increase the strength, and further to suppress the decrease in electrical resistance by finely and uniformly dispersing the precipitates. Examples include Cu-Ti, Cu-Be, Cu-Fe, Cu-Cr-Zr, and Cu-Ni-Si copper alloys.
  • Ti, Be, Fe, and Cr are dispersed in the ⁇ phase, the strength can be increased, but the conductivity is greatly reduced.
  • intermetallic compounds such as Cu Zr and Ni Si are deposited, the conductivity is high but the strength is greatly reduced.
  • the panel has a good strength in repeated use with a high strength, and a material with a high conductivity has been difficult.
  • the panel and electrical conductivity could be secured. This could be achieved by finely and uniformly dispersing the intermetallic compound phase to be precipitated and using the highly conductive intermetallic compound for the precipitated phase.
  • the phase adjacent to the Cu side is the ⁇ phase and is stable to room temperature. For this reason, when an attempt is made to disperse the ⁇ phase by making a Cu—Ge alloy, the parent phase becomes a ⁇ phase inferior in electrical resistance. On the other hand, in the case of Cu Sn, the adjacent phase is the ⁇ phase of Cu-Sn solid solution.
  • the ⁇ phase and ⁇ phase coexist.
  • both phases have high electrical conductivity, it is possible to increase the strength and electrical conductivity by appropriately dispersing the ⁇ phase in the a phase.
  • Sn is a conventionally known metal and is inexpensive. Furthermore, it is less harmful to the human body than Zn, P, Be, etc.
  • Sn is in the range of 5 to 20 at%. From the Cu-Sn phase diagram shown in Fig. 1, the ⁇ phase is at 25 &%. Therefore, to disperse in the a phase, the Sn concentration should be at least about 25 at% or less. However, if Sn is less than 5 at%, the ratio of the ⁇ phase is about 10% or less, and the tensile strength and panel property are lowered. When Sn exceeds 20at%, the ratio of ⁇ phase is about 75%. % Or more, resulting in a large decrease in conductivity.
  • the impurities contained unavoidably with respect to the basic composition of the copper alloy of the present invention also have an electrical conductivity and tensile strength of the copper alloy of the present invention. It is acceptable as long as it does not cause deterioration.
  • the copper alloy of the present invention has an electrical conductivity of 6 to 35% IACS and a tensile strength of 0.6 to 2.
  • the electrical conductivity will be less than 6% IACS, and the electrical conductivity of lead wires and pin materials will be low, making it difficult to make fine wires.
  • the copper alloy of the present invention has an electrical conductivity of 6 to 35% IACS and a tensile strength of 0.6 to 2.5 GPa, so that it can be deformed and not broken during repeated use and has a good panel. And electrical conductivity against thinning and thinning of the frame material can be satisfied.
  • the copper alloy of the present invention may be heat treated at 1S 100 to 350 ° C, which exhibits desired characteristics, even if it is used as produced by a plating method or the like. From the Cu-Sn phase diagram shown in Fig. 1, Sn is eutectoid at 350 ° C or lower within the range of 5 to 20at%, and heat treatment is performed at 350 ° C or lower. Can be deposited.
  • the copper alloy of the present invention is subjected to the above heat treatment within a range of 10 minutes to 24 hours.
  • Sn in Cu increases the number of ⁇ -phase nuclei that precipitates at lower temperatures, but the diffusion rate increases at higher temperatures. From this, the time can be selected within the range of 10 minutes to 24 hours depending on the Sn concentration in Cu and the heat treatment temperature. If the heat treatment time is less than 10 minutes, the ⁇ phase to be precipitated is small and the tensile strength and panel property cannot be increased. If the heat treatment time exceeds 24 hours, the production efficiency decreases.
  • the copper alloy of the present invention is preferably heat-treated at 100 to 200 ° C.
  • the Sn concentration in the ⁇ phase is lowered, and the electrical conductivity of the parent phase is increased.
  • the ⁇ phase that precipitates can be made fine, and the decrease in electrical conductivity can be suppressed.
  • the tensile strength of the copper alloy can be increased and the panel property can be improved.
  • the copper alloy of the present invention can be subjected to other heat treatments. For one thing, it can be done in two or more stages. Heat treatment at 200 to 350 ° C, heat treatment at 100 to 200 ° C. After solution treatment or after production, heat treatment is performed at 200 to 350 ° C. to form nuclei on which the ⁇ phase precipitates, and then diffused at a low temperature. As a result, the rapid growth of precipitates can be suppressed, and the size of the ⁇ phase can be eliminated to make it finer.
  • the force just below 350 ° C is continuously cooled as a heat treatment.
  • a fine and uniform ⁇ phase can be obtained by appropriately selecting the cooling rate according to the Sn concentration.
  • the method for producing a copper alloy according to the present invention is a method for producing a copper alloy containing 5 to 20% Sn, and the balance containing Cu and inevitable impurities, in the a phase (Cu) of the copper alloy.
  • the structure in which the ⁇ phase (Cu Sn) is dispersed is a method for producing a copper alloy containing 5 to 20% Sn, and the balance containing Cu and inevitable impurities, in the a phase (Cu) of the copper alloy.
  • this ⁇ -phase (Cu Sn) is precipitated with a Cu-Sn copper alloy.
  • the ⁇ phase (Cu Sn) is included in the ⁇ phase matrix.
  • heat treatment is performed at 100 to 350 ° C.
  • the eutectoid temperature of a phase (Cu) and ⁇ phase (Cu Sn) is 350 ° C in the range containing 5-20% Sn,
  • ⁇ phase (Cu Sn) is precipitated and dispersed in ⁇ phase (Cu).
  • Tissue can be formed. If the heat treatment temperature is less than 100 ° C, the production efficiency is low and it is not practical.
  • the copper alloy of the present invention is subjected to the above heat treatment within a range of 10 minutes to 24 hours. Sn in Cu is deposited at lower temperatures. The number of ⁇ -phase nuclei that precipitates increases. The higher the temperature, the higher the force diffusion rate. From this, the time can be selected within the range of 10 minutes to 24 hours depending on the Sn concentration in Cu and the heat treatment temperature.
  • heat treatment is performed at 100 to 200 ° C.
  • Low temperature from eutectoid temperature By treating with, the electrical conductivity of the parent phase can be increased by lowering the Sn concentration in the ⁇ phase. Furthermore, the ⁇ phase that precipitates can be made finer, and a decrease in electrical conductivity can be suppressed.
  • this process can perform other heat processing. For one thing, it can be done in two or more stages. In this process, heat treatment is performed at 200 to 350 ° C, and heat treatment is performed at 100 to 200 ° C. As a result, rapid growth of precipitates can be suppressed, and the ⁇ phase can be finely ground without unevenness in the size of the ⁇ phase.
  • the copper alloy production method of the present invention may employ a plating method such as an electric field plating method or a melting plating method, or a physical vapor deposition method such as a vacuum deposition method or a sputtering method. After the thin film formation or further solution treatment, the above heat treatment is performed, so that the ⁇ phase (Cu 2 S) is contained in the ⁇ phase (Cu).
  • a plating method such as an electric field plating method or a melting plating method
  • a physical vapor deposition method such as a vacuum deposition method or a sputtering method.
  • a 10 ⁇ 10 cm 2 glass substrate with a 0.15 ⁇ m thick Cu ⁇ notter film was prepared by sputtering.
  • a 15 at% Sn Cu—Sn thin film having a thickness of 15 ⁇ m was fabricated on this substrate in a plating bath under the following conditions.
  • this substrate was heat-treated at 200 ° C. for 1 hour in a vacuum.
  • the substrate was then subjected to electron beam diffraction using a transmission electron microscope (JEOL: JEM2000EX equipment), and a phase And whether it has a two-phase structure of ⁇ phase.
  • the electrical conductivity was measured by a DC four-terminal method, and the tensile strength was measured by a tensile tester.
  • FIG. 2 is a diffraction pattern showing the results of the electron diffraction method. As is clear from this pattern, the presence of the Cu Sn phase could be confirmed.
  • the electrical resistivity was 8.9 ⁇ 'cm, corresponding to an electrical conductivity of 19.0% ICAS, and the tensile strength was 950 MPa.
  • FIG. 1 is an equilibrium diagram of a Cu—Sn binary system.
  • FIG. 2 is a diffraction pattern showing the result of electron diffraction.

Abstract

A copper alloy which comprises 5 to 20 % of Sn and the balanced amount of Cu and inevitable impurities and has a structure in which an ϵ phase (Cu3Sn) is dispersed in an α phase (Cu); and a method for producing a copper alloy which comprises a step of forming a structure in which an ϵ phase (Cu3Sn) is dispersed in an α phase (Cu). The above copper alloy has a tensile strength sufficient to be free from the deformation or break in the course of the production thereof or in the repeated use thereof, exhibits good spring characteristics, and has high electroconductivity permitting the response to the requirement of a finer lead wire.

Description

明 細 書  Specification
銅合金及び銅合金の製造方法  Copper alloy and method for producing copper alloy
技術分野  Technical field
[0001] 本発明は、半導体機器のリード線、ピン、コネクタ等に使用される引張強度が高ぐ 繰り返し使用しても変形しないパネ性を有し、かつ、電気伝導性の高い銅合金及び その製造方法に関するものである。  [0001] The present invention relates to a copper alloy having high panel strength and high electrical conductivity, which has a high tensile strength used for lead wires, pins, connectors, etc. of semiconductor devices and does not deform even after repeated use. It relates to a manufacturing method.
背景技術  Background art
[0002] 従来、半導体素子、また、これらを用いる電子機器では、リード部分の材料として銅 合金材が広く用いられている。このような ICパッケージ向けのリード線、ピン数は、良 好な電気伝導度とパッケージの製造工程でストレスを受けるために引張強度と、繰り 返し使用に対するパネ性とが求められる。  Conventionally, a copper alloy material has been widely used as a material for a lead portion in a semiconductor element and an electronic device using these. Such lead wires and pin counts for IC packages are required to have good electrical conductivity and tensile strength and panelability for repeated use in order to receive stress in the package manufacturing process.
こうした用途には、アルミニウム (A1)合金、銅 (Cu)合金が使われている。しかし、 A1 合金は、軽ぐ電気抵抗が低いが、マイグレーション等の問題がある。近年、さらに、 半導体素子、ノ¾ /ケージの高集積ィ匕が進み、リード線に対して、さらに細線ィ匕に要求 があり、 A1合金より電気抵抗の低い Cu合金が細線化に利用されている。  For these applications, aluminum (A1) and copper (Cu) alloys are used. However, A1 alloy is light and low in electrical resistance, but has problems such as migration. In recent years, further integration of semiconductor elements and semiconductors / cages has progressed, and there has been a demand for fine wires for lead wires, and Cu alloys with lower electrical resistance than A1 alloys have been used for thinning. Yes.
[0003] これまでの、銅合金の代表的なものとしては、下記のものが挙げられる。例えば、特 許文献 1では、 Cr: 0. 5〜2. 0^%を含み、残部が Cuと不可避的不純物力 なる Cu 合金の溶湯を 100°CZ秒以上の冷却速度で铸造し、所定の加工熱処理を施された 高強度高導電性銅合金の製造方法が開示されている。また、特許文献 2では、 Nil. 0〜4. Owt%、 SiO. 1〜1. Owt%、 ZnO. 05〜5. Owt%、 Sn5. Owt%以下、 PO. lw t %未満を含有し、残部が Cu及び不可避不純物からなるコルソン系銅合金を連続铸 造法により铸塊となし、所定の加工熱処理を施された電気電子機器用銅合金の製造 方法が開示されている。また、特許文献 3では、重量百分率において 0. 5〜3. 0% の Tiと 0. 5〜3. 0%の Niを、 NiZTiの重量比が 0. 5〜1. 0の範囲内で含むと共に 、 1. 5〜3. 0%の Snを含み、残部が Cuおよび不可避的不純物から成る高強度高導 電性リードフレーム用銅合金が開示されている。また、特許文献 4では、 Be : 0. 5〜1 . 5wt%、 Niおよび Coのうち力 選んだ 1種または 2種: 0. 3〜1. 5wt%、 Siおよび A1 のうち力 選んだ 1種または 2種: 0. 5〜2. 5wt%を含み、残部は実質的に Cuの組成 になるベリリウム銅合金であって、平均結晶粒径が50〜150 111で、しかも該合金 中に金属間化合物として NiBeまたは/および CoBeを、 0. 20〜0. 90wt%の範囲 でかつ、少なくともその 45%以上が粒径 0. 1 μ m以下の微細粒子として含有するこ とを特徴とする、曲げ部の美観に優れる高強度ベリリウム銅合金が開示されている。 特許文献 5では、 Fe : l. 5〜2. 5% (質量%の意味、以下同じ)を含むと共に、少なく とも表面から板厚の 1Z4の領域における 80nm以上の Fe粒子の平均分布が 1 μ m2 の視野内において 1個以下であり、耐力が 480NZmm2以上で且つ電気伝導度が 5 0%IACS以上であることを特徴とする曲げ加工性および耐熱性に優れた高強度銅 合金が開示されている。また、特許文献 6では、 0〜2. 5wt%の Fe、 0. 01-0. lwt %の P、 0. 01〜: Lwt%の Znと、 0. 05〜0. 2wt%の Snを含有し、残部が Cuと不可 避不純物の組成から構成されることを特徴とする高強度'高導電性銅合金が開示さ れている。 [0003] Typical examples of copper alloys so far include the following. For example, in Patent Document 1, a molten Cu alloy containing Cr: 0.5 to 2.0% and the balance being Cu and unavoidable impurity power is produced at a cooling rate of 100 ° CZ seconds or more. A method for producing a high-strength, high-conductivity copper alloy that has been subjected to thermomechanical processing is disclosed. Patent Document 2 contains Nil. 0 to 4. Owt%, SiO. 1 to 1. Owt%, ZnO. 05 to 5. Owt%, Sn5. Owt% or less, and less than PO. There is disclosed a method for producing a copper alloy for electrical and electronic equipment in which a Corson copper alloy consisting of Cu and inevitable impurities as the remainder is formed into a lump by a continuous production method and subjected to a predetermined processing heat treatment. Patent Document 3 contains 0.5 to 3.0% Ti and 0.5 to 3.0% Ni in a weight percentage within a range of NiZTi weight ratio of 0.5 to 1.0. In addition, a copper alloy for a high-strength, high-conductivity lead frame containing 1.5 to 3.0% Sn, with the balance being Cu and inevitable impurities is disclosed. In Patent Document 4, Be: 0.5 to 1.5 wt%, one or two selected from Ni and Co: 0.3 to 1.5 wt%, Si and A1 One or two of the selected force: 0.5 to 2.5 wt% is contained, the balance is a beryllium copper alloy having a substantially Cu composition, the average grain size is 50 to 150 111, In addition, the alloy contains NiBe or / and CoBe as an intermetallic compound in the range of 0.20 to 0.90 wt%, and at least 45% of them as fine particles having a particle size of 0.1 μm or less. A high-strength beryllium copper alloy having an excellent aesthetic appearance of a bent portion is disclosed. Patent Document 5 contains Fe: l. 5 to 2.5% (meaning mass%, the same shall apply hereinafter), and the average distribution of Fe particles of 80 nm or more in the 1Z4 region at least from the surface to the plate thickness is 1 μm. Disclosed is a high-strength copper alloy excellent in bending workability and heat resistance, characterized in that it is 1 or less in the field of view of m 2 , has a yield strength of 480 NZmm 2 or more, and an electrical conductivity of 50% IACS or more. Has been. Patent Document 6 contains 0 to 2.5 wt% Fe, 0.01 to 0.1 wt% P, 0.01 to: L wt% Zn, and 0.05 to 0.2 wt% Sn. However, a high-strength, high-conductivity copper alloy characterized in that the balance is composed of Cu and inevitable impurities is disclosed.
また、室温で Cuに匹敵する電気伝導度を有する Cu Ge金属間化合物が開示され  Also disclosed is a Cu Ge intermetallic compound having electrical conductivity comparable to Cu at room temperature.
3  Three
ている。  ing.
[0004] 特許文献 1 :特開平 05— 311364号公報  [0004] Patent Document 1: Japanese Patent Application Laid-Open No. 05-311364
特許文献 2:特開平 06 - 017209号公報  Patent Document 2: Japanese Patent Laid-Open No. 06-017209
特許文献 3:特開平 09 - 143597号公報  Patent Document 3: Japanese Patent Laid-Open No. 09-143597
特許文献 4:特開平 09 - 263859号公報  Patent Document 4: Japanese Patent Application Laid-Open No. 09-263859
特許文献 5:特開 2001— 279347号公報  Patent Document 5: Japanese Patent Laid-Open No. 2001-279347
特許文献 6 :特開 2002— 241873号公報  Patent Document 6: Japanese Unexamined Patent Application Publication No. 2002-241873
特許文献 7 :アメリカ特許 5, 288, 456号  Patent Document 7: U.S. Patent 5,288,456
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] しかし、これらの合金は、いずれも、铸造 '圧延'高温熱処理のプロセスを経た後に 、添加元素又は金属間化合物を析出させて強度と電気伝導度の向上を図るもので ある。これらの合金の析出物は、強度には寄与するもののそれ自身は電気伝導度が 低 、ために、強度を高くするために析出物を多くすると電気伝導度が減少すると 、う 、相反する影響がある。析出物量と分散間隔を最適化することによって良好な特性が 得られるものの、電気伝導度と引張強度の双方の特性向上には限界がある。また、 従来の材料のうち Cu— Be系の銅合金は、高強度'高電気伝導度を示すが、人体に 有害な Beを含んでいるために、 Beを含まずに Cu— Be系の銅合金以上の特性を有 する合金の開発が待たれていた。さらに, Cu Ge金属間化合物の電気伝導度は、 C [0005] However, all of these alloys are intended to improve strength and electrical conductivity by precipitating additional elements or intermetallic compounds after undergoing a forging 'rolling' high-temperature heat treatment process. Although the precipitates of these alloys contribute to strength, they themselves have low electrical conductivity. Therefore, increasing the amount of precipitates to increase the strength decreases the electrical conductivity. Have conflicting effects. Although good properties can be obtained by optimizing the amount of precipitates and the dispersion interval, there are limits to improving the properties of both electrical conductivity and tensile strength. Of the conventional materials, Cu-Be-based copper alloys exhibit high strength and high electrical conductivity, but contain Be, which is harmful to the human body. The development of an alloy with characteristics superior to that of an alloy has been awaited. Furthermore, the electrical conductivity of the Cu Ge intermetallic compound is C
3  Three
Uに匹敵しても、硬くかつ脆いためにリード線、ピン等に適用することは困難である。  Even if it is comparable to U, it is difficult to apply to lead wires, pins, etc. because it is hard and brittle.
[0006] そこで、本発明は上記問題点に鑑みてなされたものであり、その課題は、半導体素 子のリード線、 ICパッケージのピンの材料として、製造工程中や繰り返し使用時にお V、て変形'破壊しない引張強度と良好なパネ性及びリード線の細線ィ匕に対応する高 Vヽ電気伝導度を有する銅合金を提供することである。  [0006] Therefore, the present invention has been made in view of the above-mentioned problems, and the problem is that V, TE can be used as a material for semiconductor element lead wires and IC package pins during the manufacturing process and during repeated use. The object is to provide a copper alloy having a tensile strength that does not deform and does not break, good panel properties, and a high V electrical conductivity corresponding to the fine wire of the lead wire.
さらに、素子の小型化、高集積化の要求から、リード線の薄肉化、細線化並びに多 ピンィ匕の要求が高まるため、従来の銅合金以上の引張強度と電気伝導度を併せ持 つ銅合金を提供することである。  In addition, the demand for thinner and thinner lead wires and the demand for higher pin count due to the demand for smaller and more integrated devices, a copper alloy that has both tensile strength and electrical conductivity higher than those of conventional copper alloys. Is to provide.
また、従来の铸造 '圧延法では薄肉化に限界があるために、半導体素子中に電析 法による薄肉形成が可能な銅合金の製造方法を提供することである。  Another object of the present invention is to provide a method for producing a copper alloy capable of forming a thin film in a semiconductor element by an electrodeposition method because there is a limit to thinning in the conventional forging and rolling method.
課題を解決するための手段  Means for solving the problem
[0007] 上記課題を解決する手段である本発明の特徴を以下に挙げる。 [0007] The features of the present invention which are means for solving the above-described problems are listed below.
1.本発明の銅合金は、 5〜20at%Snを含有し、残部が Cuからなる銅合金であって 、 a相(Cu)中に ε相(Cu Sn)が分散して 、る組織を有することを特徴とする。  1. The copper alloy of the present invention is a copper alloy containing 5 to 20 at% Sn, the balance being Cu, and the structure in which the ε phase (Cu Sn) is dispersed in the a phase (Cu). It is characterized by having.
3  Three
2.また、本発明の銅合金は、さらに、電気伝導度が 6〜35%IACS、引張強度が 0. 6〜2. 5GPaの範囲にあることを特徴とする。  2. Further, the copper alloy of the present invention is further characterized by having an electric conductivity of 6 to 35% IACS and a tensile strength of 0.6 to 2.5 GPa.
3.また、本発明の銅合金は、さらに、 100〜350°Cで、 10分〜 24時間の範囲内で 熱処理されることを特徴とする。  3. The copper alloy of the present invention is further characterized by being heat-treated at 100 to 350 ° C. within a range of 10 minutes to 24 hours.
[0008] 4.本発明の銅合金の製造方法は、 5〜20at%Snを含有し、残部が Cuと不可避的 不純物とを含有する銅合金の製造方法であって、銅合金の α相(Cu)中に ε相(Cu Sn)を分散させた組織を形成する工程を有することを特徴とする。  [0008] 4. The method for producing a copper alloy of the present invention is a method for producing a copper alloy containing 5 to 20 at% Sn, with the balance containing Cu and inevitable impurities, the α phase ( It has a step of forming a structure in which ε phase (Cu Sn) is dispersed in Cu).
3  Three
5.また、本発明の銅合金の製造方法は、さらに、前記工程は、 100〜350°Cで、 10 分〜 24時間の範囲内で熱処理することを特徴とする。 6.また、本発明の銅合金の製造方法は、さらに、前記銅合金の製造方法は、メツキ 法で Cu— Sn膜を形成することを特徴とする。 5. The method for producing a copper alloy according to the present invention is further characterized in that the step is heat-treated at 100 to 350 ° C. within a range of 10 minutes to 24 hours. 6. The copper alloy production method of the present invention is further characterized in that the copper alloy production method forms a Cu—Sn film by a plating method.
7.また、本発明の銅合金の製造方法は、さらに、前記銅合金の製造方法は、真空蒸 着法で Cu— Sn膜を形成することを特徴とする。  7. The copper alloy production method of the present invention is further characterized in that the copper alloy production method forms a Cu—Sn film by a vacuum deposition method.
発明の効果  The invention's effect
[0009] 本発明は、上記解決するための手段によって、金属間化合物の析出強化を利用す る力 従来の合金と異なり、析出物である Cu Sn ( ε相)の電気伝導度が約 10 Ω · [0009] In the present invention, by means for solving the above-mentioned problem, the force using precipitation strengthening of intermetallic compounds, unlike conventional alloys, the electrical conductivity of Cu Sn (ε phase) as a precipitate is about 10 Ω. ·
3 Three
cmと低いために、 Sn濃度を 5〜20at%の範囲として、 200°C以下の温度で熱処理 を行って、 Cu母相(ひ相)中に Cu Sn ( ε相)を析出した合金を用いることで、析出物  Because of its low centimeter, use an alloy with a Sn concentration in the range of 5 to 20 at% and heat treatment at a temperature of 200 ° C or lower to precipitate Cu Sn (ε phase) in the Cu matrix By the precipitate
3  Three
が増カロしても電気伝導度を高く保つことができる。  The electric conductivity can be kept high even if the calorific value increases.
また、この Cu—Sn系銅合金は古くから青銅メツキとして知られており、電析法によ つて低コストで半導体素子のリード線等に必要な薄膜を容易に作製することができる  This Cu-Sn-based copper alloy has long been known as bronze plating, and it is possible to easily produce thin films necessary for lead wires of semiconductor elements at low cost by electrodeposition.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
[0010] 以下に、本発明を実施するための最良の形態を図面に基づいて説明する。なお、 いわゆる当業者は特許請求の範囲内における本発明を変更 ·修正をして他の実施 形態をなすことは容易であり、これらの変更 ·修正はこの特許請求の範囲に含まれる ものであり、以下の説明はこの発明における最良の形態の例であって、この特許請求 の範囲を限定するものではな 、。  Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings. Note that it is easy for a person skilled in the art to change or modify the present invention within the scope of the claims to make other embodiments, and these changes and modifications are included in the scope of the claims. The following description is an example of the best mode of the present invention, and does not limit the scope of the claims.
[0011] 本発明の銅合金は、 5〜20%Snを含有し、残部が Cuと不可避的不純物とを含有 する銅合金であって、 a相(Cu)中に ε相(Cu Sn)が分散して 、る組織を有する。 [0011] The copper alloy of the present invention is a copper alloy containing 5 to 20% Sn with the balance containing Cu and inevitable impurities, and the ε phase (Cu Sn) is contained in the a phase (Cu). It has a distributed organization.
3  Three
一般に、いわゆる Cu— Sn系合金の青銅は、 2〜35%の範囲で Snを含む合金であ り、強度が高く従来铸物材料として使用されていた。図 1は、 Cu— Sn2元系状態図で ある。図 1に示すように、この青銅は、 α相中に δ相が析出した金属組織を形成させ ていたが、この組織では強度が高くなる力 もろくなりパネ性が低下することで、繰り 返し使用時において容易に変形'破壊が生ずる。このために、青銅では、 Zn、 Pbを 添加して酸ィ匕を防止して機械部品材料として使用されることが多力つた。また、この 青銅は、铸造材料で、薄膜を形成するには機械加工で薄くするが、脆いために薄膜 を系することは困難であった。 In general, bronze of so-called Cu-Sn alloys is an alloy containing Sn in a range of 2 to 35%, and has been used as a conventional porcelain material because of its high strength. Figure 1 is a Cu-Sn binary system phase diagram. As shown in Fig. 1, this bronze formed a metal structure in which the δ phase was precipitated in the α phase, but in this structure, the strength increases, the strength becomes brittle, and the panel property decreases. At times, it easily deforms and breaks. For this reason, bronze has been used as a machine part material by adding Zn and Pb to prevent acidification. This bronze is a forged material that is thinned by machining to form a thin film. It was difficult to get involved.
また、従来、この導電性を確保し、強度を高くしてパネ性を得る手段として、析出硬 化型の銅合金が知られている。これらは、母相の a相中に微細な析出物を均一に分 散させて強度を高め、さらに、析出物を微細かつ均一に分散させることで電気抵抗の 低下を抑えるものであった。例えば、 Cu— Ti系、 Cu— Be系、 Cu— Fe系、 Cu— Cr — Zr、 Cu— Ni— Si系系銅合金が挙げられる。し力し、 Ti、 Be、 Fe、 Crが α相中に 分散させることで、強度を高くすることができるが導電性を大きく低下した。さらに、 Cu Zr、 Ni Si等の金属間化合物を析出させても導電性は高いが強度の低下が大きか Conventionally, precipitation hardening type copper alloys are known as means for securing the conductivity and increasing the strength to obtain panel characteristics. These were designed to uniformly disperse fine precipitates in the a phase of the parent phase to increase the strength, and further to suppress the decrease in electrical resistance by finely and uniformly dispersing the precipitates. Examples include Cu-Ti, Cu-Be, Cu-Fe, Cu-Cr-Zr, and Cu-Ni-Si copper alloys. However, when Ti, Be, Fe, and Cr are dispersed in the α phase, the strength can be increased, but the conductivity is greatly reduced. In addition, even if intermetallic compounds such as Cu Zr and Ni Si are deposited, the conductivity is high but the strength is greatly reduced.
5 2 5 2
つた。このように、強度と導電性が相反する関係にあることで、強度が高ぐ繰り返し使 用におけるパネ性がよぐさらに、導電性の高い材料は困難であった。  I got it. As described above, since the strength and the conductivity are in a contradictory relationship, the panel has a good strength in repeated use with a high strength, and a material with a high conductivity has been difficult.
[0012] そこで、本発明では、上述のように、従来知られている組成範囲であっても、従来あ まり考えられていな力つた ε相(Cu Sn)の金属間化合物相を用いることで高い強度 [0012] Therefore, in the present invention, as described above, even in the conventionally known composition range, a strong ε-phase (Cu Sn) intermetallic compound phase, which has not been conventionally considered, is used. High strength
3  Three
、パネ性と導電性を確保することができた。これは、析出させる金属間化合物相を微 細、かつ、均一に分散させることと、この析出相を導電性の高い金属間化合物を用い ることで達成することができた。  The panel and electrical conductivity could be secured. This could be achieved by finely and uniformly dispersing the intermetallic compound phase to be precipitated and using the highly conductive intermetallic compound for the precipitated phase.
従来は、 Cu Geのように電気伝導性の高い金属間化合物は知られていた力 これ  In the past, intermetallic compounds with high electrical conductivity such as Cu Ge have been known.
3  Three
らを母相の Cu中に分散させることは考慮されていな力つた。しかし、 Cu Geの場合は  Dispersing them in the parent phase of Cu was a force not considered. But in the case of Cu Ge
3  Three
状態図において Cu側に隣り合う相が ζ相であり室温まで安定な相である。このため 、 Cu—Ge合金を作成して ε相を分散させようとすると、母相は電気抵抗に劣る ζ相 となってしまう。これに対して、 Cu Snの場合は、隣り合う相は Cu—Sn固溶体の α相  In the phase diagram, the phase adjacent to the Cu side is the ζ phase and is stable to room temperature. For this reason, when an attempt is made to disperse the ε phase by making a Cu—Ge alloy, the parent phase becomes a ζ phase inferior in electrical resistance. On the other hand, in the case of Cu Sn, the adjacent phase is the α phase of Cu-Sn solid solution.
3  Three
であり、 350°C以下においては α相と ε相の二相共存となる。この場合には、いずれ の相も電気伝導率が高いため、 a相中に ε相を適当に分散させることによって強度 を高めるとともに、電気伝導率を高めることが可能となる。 Snは従来周知の金属であ り、また、安価である。さらに、 Zn、 P、 Be等と比較しても、人体に対する害が少ない。  Below 350 ° C, the α phase and ε phase coexist. In this case, since both phases have high electrical conductivity, it is possible to increase the strength and electrical conductivity by appropriately dispersing the ε phase in the a phase. Sn is a conventionally known metal and is inexpensive. Furthermore, it is less harmful to the human body than Zn, P, Be, etc.
[0013] また、 Snは、 5〜20at%の範囲にある。図 1に示す Cu—Sn系状態図から、 ε相は 、 25&%のところにある。したがって、 a相中に分散させるには、 Snの濃度を少なくと も約 25at%以下にする。しかし、 Snが 5at%未満では、 ε相の比率が約 10%以下と なり、引張強度、パネ性が低くなる。また、 Snが 20at%を越えると ε相の比率が約 75 %以上となり、導電性の低下が大きくなる。 [0013] Sn is in the range of 5 to 20 at%. From the Cu-Sn phase diagram shown in Fig. 1, the ε phase is at 25 &%. Therefore, to disperse in the a phase, the Sn concentration should be at least about 25 at% or less. However, if Sn is less than 5 at%, the ratio of the ε phase is about 10% or less, and the tensile strength and panel property are lowered. When Sn exceeds 20at%, the ratio of ε phase is about 75%. % Or more, resulting in a large decrease in conductivity.
なお、本発明の銅合金の組成で、本発明の銅合金の基本的な組成に対して、不可 避的に含まれてくる不純物についても、本発明の銅合金の電気伝導度、引張強度の 劣化を招かないかぎり、許容される。  In addition, in the composition of the copper alloy of the present invention, the impurities contained unavoidably with respect to the basic composition of the copper alloy of the present invention also have an electrical conductivity and tensile strength of the copper alloy of the present invention. It is acceptable as long as it does not cause deterioration.
[0014] さらに、本発明の銅合金は、電気伝導度が 6〜35%IACS、引張強度が 0. 6〜2.  Furthermore, the copper alloy of the present invention has an electrical conductivity of 6 to 35% IACS and a tensile strength of 0.6 to 2.
5GPaの範囲にする。電気伝導度は高いほど好ましいが、上述したように、 α相中に ε相を均一に分散させたときに、電気伝導度が 6%IACS未満ではリード線、ピン材 として実用的には細線ィ匕が困難である。また、電気伝導度が 35%IACSを越えると、 電気導電性と引張強度は相反する関係にあり、引張強度が 0. 6GPa未満になり、リ ード線、ピン材として強度が不十分である。  Set to the range of 5GPa. Higher electrical conductivity is preferable, but as described above, when the ε phase is uniformly dispersed in the α phase, if the electrical conductivity is less than 6% IACS, it is practically a thin wire as a lead wire or pin material.匕 is difficult. Also, if the electrical conductivity exceeds 35% IACS, the electrical conductivity and tensile strength are in a contradictory relationship, the tensile strength is less than 0.6 GPa, and the strength is insufficient as a lead wire or pin material. .
また、引張強度が 2. 5GPaを越えると電気伝導度が 6%IACS未満になりリード線、 ピン材とし電気導電性が低く細線ィ匕が困難になる。  Also, if the tensile strength exceeds 2.5 GPa, the electrical conductivity will be less than 6% IACS, and the electrical conductivity of lead wires and pin materials will be low, making it difficult to make fine wires.
したがって、本発明の銅合金は、電気伝導度が 6〜35%IACS、引張強度が 0. 6 〜2. 5GPaの範囲にすることで、繰り返し使用時において変形'破壊しない強度と良 好なパネ性及びードフレーム材料の薄肉化、細線化に対する電気導電性を満足さ せることができる。  Therefore, the copper alloy of the present invention has an electrical conductivity of 6 to 35% IACS and a tensile strength of 0.6 to 2.5 GPa, so that it can be deformed and not broken during repeated use and has a good panel. And electrical conductivity against thinning and thinning of the frame material can be satisfied.
[0015] 本発明の銅合金は、メツキ法などで作製されたまま用いても所望の特性を発現する 1S 100〜350°Cで熱処理してもよい。図 1に示す Cu—Sn系状態図から、 Snが 5〜 20at%の範囲で、 350°C以下で共析型であり、 350°C以下で熱処理を施すことで、 α相中に ε相を析出させることができる。  [0015] The copper alloy of the present invention may be heat treated at 1S 100 to 350 ° C, which exhibits desired characteristics, even if it is used as produced by a plating method or the like. From the Cu-Sn phase diagram shown in Fig. 1, Sn is eutectoid at 350 ° C or lower within the range of 5 to 20at%, and heat treatment is performed at 350 ° C or lower. Can be deposited.
本発明の銅合金は、上述の熱処理が、 10分〜 24時間の範囲内で行われる。 Cu中 の Snは、温度を低くする方が析出する ε相の核が多くなるが、拡散速度は温度が高 いほど高くなる。このことから、 Cu中の Sn濃度と熱処理温度によって、 10分〜 24時 間の範囲内で時間を選択することができる。この熱処理時間が、 10分未満では、析 出する ε相が小さく引張強度、パネ性を大きくすることができない。熱処理時間が、 2 4時間を超えると製造上の効率が低下する。  The copper alloy of the present invention is subjected to the above heat treatment within a range of 10 minutes to 24 hours. Sn in Cu increases the number of ε-phase nuclei that precipitates at lower temperatures, but the diffusion rate increases at higher temperatures. From this, the time can be selected within the range of 10 minutes to 24 hours depending on the Sn concentration in Cu and the heat treatment temperature. If the heat treatment time is less than 10 minutes, the ε phase to be precipitated is small and the tensile strength and panel property cannot be increased. If the heat treatment time exceeds 24 hours, the production efficiency decreases.
[0016] さらに、本発明の銅合金は、 100〜200°Cで熱処理することが好ましい。共析温度 より低い温度で熱処理することで、 α相中の Sn濃度を低くして母相の電気電導度を 高くすることができる。さらに、析出する ε相を微細にすることができ、電気伝導度の 低下を抑えることができる。また、さらに、 α相より引張強度の高い ε相を微細かつ均 一に分散させることで、銅合金の引張強度を高くすることができ、パネ性も向上させる ことができる。 [0016] Furthermore, the copper alloy of the present invention is preferably heat-treated at 100 to 200 ° C. By performing heat treatment at a temperature lower than the eutectoid temperature, the Sn concentration in the α phase is lowered, and the electrical conductivity of the parent phase is increased. Can be high. Furthermore, the ε phase that precipitates can be made fine, and the decrease in electrical conductivity can be suppressed. Further, by finely and evenly dispersing the ε phase, which has a higher tensile strength than the α phase, the tensile strength of the copper alloy can be increased and the panel property can be improved.
さらに、本発明の銅合金は、他の熱処理を行うことができる。一つには、 2段以上で 行うことができる。 200〜350°Cで熱処理し、さら〖こ、 100〜200°Cで熱処理する。溶 体化処理された後又は製造後に、 200〜350°Cで熱処理して ε相が析出する核を 形成し、その後、低い温度で拡散させる。これによつて、析出物の急激な成長を抑え て、 ε相の大きさの不均一を無くして微細にすることができる。  Furthermore, the copper alloy of the present invention can be subjected to other heat treatments. For one thing, it can be done in two or more stages. Heat treatment at 200 to 350 ° C, heat treatment at 100 to 200 ° C. After solution treatment or after production, heat treatment is performed at 200 to 350 ° C. to form nuclei on which the ε phase precipitates, and then diffused at a low temperature. As a result, the rapid growth of precipitates can be suppressed, and the size of the ε phase can be eliminated to make it finer.
また、溶体化処理された後又は製造後に、熱処理として 350°C直下力も連続冷却 する。冷却速度を Sn濃度に応じて適宜選択することで、微細かつ均一な ε相を得る ことができる。  In addition, after the solution treatment or after production, the force just below 350 ° C is continuously cooled as a heat treatment. A fine and uniform ε phase can be obtained by appropriately selecting the cooling rate according to the Sn concentration.
[0017] また、さらに、本発明の銅合金の製造方法について説明する。本発明の銅合金の 製造方法は、 5〜20%Snを含有し、残部が Cuと不可避的不純物とを含有する銅合 金の製造方法であって、銅合金の a相(Cu)中に ε相(Cu Sn)を分散させた組織を  [0017] Further, a method for producing a copper alloy of the present invention will be described. The method for producing a copper alloy according to the present invention is a method for producing a copper alloy containing 5 to 20% Sn, and the balance containing Cu and inevitable impurities, in the a phase (Cu) of the copper alloy. The structure in which the ε phase (Cu Sn) is dispersed
3  Three
形成する工程を有する。従来は、 Cu— Sn系銅合金でこの ε相(Cu Sn)を析出させ  Forming. Conventionally, this ε-phase (Cu Sn) is precipitated with a Cu-Sn copper alloy.
3  Three
る銅合金は利用されていなかった。そこで、この α相の母相中に ε相(Cu Sn)  No copper alloy was used. Therefore, the ε phase (Cu Sn) is included in the α phase matrix.
3 を分 散'析出させた組織を形成する工程を設けることで、高引張強度'高電気伝導性の銅 合金を製造することができる。  By providing a step of forming a structure in which 3 is dispersed'precipitated, a copper alloy having high tensile strength and high electrical conductivity can be produced.
[0018] この工程は、 100〜350°Cで熱処理するものである。 Cu— Sn系銅合金では、 5〜2 0%Snを含有する範囲で、 a相(Cu)と ε相(Cu Sn)との共析温度は 350°Cであり、 [0018] In this step, heat treatment is performed at 100 to 350 ° C. In the Cu-Sn based copper alloy, the eutectoid temperature of a phase (Cu) and ε phase (Cu Sn) is 350 ° C in the range containing 5-20% Sn,
3  Three
この 350°C以下で熱処理することで α相(Cu)中に ε相(Cu Sn)を析出'分散させ  By heat-treating at 350 ° C or less, ε phase (Cu Sn) is precipitated and dispersed in α phase (Cu).
3  Three
た組織を形成することができる。この熱処理温度が 100°C未満では製造の効率が低 く実用的ではない。本発明の銅合金は、上述の熱処理が、 10分〜 24時間の範囲内 で行われる。 Cu中の Snは、温度を低くする方が析出する ε相の核が多くなる力 拡 散速度は温度が高いほど高くなる。このことから、 Cu中の Sn濃度と熱処理温度によ つて、 10分〜 24時間の範囲内で時間を選択することができる。  Tissue can be formed. If the heat treatment temperature is less than 100 ° C, the production efficiency is low and it is not practical. The copper alloy of the present invention is subjected to the above heat treatment within a range of 10 minutes to 24 hours. Sn in Cu is deposited at lower temperatures. The number of ε-phase nuclei that precipitates increases. The higher the temperature, the higher the force diffusion rate. From this, the time can be selected within the range of 10 minutes to 24 hours depending on the Sn concentration in Cu and the heat treatment temperature.
また、この工程は、 100〜200°Cで熱処理するものである。共析温度から低い温度 で処理することで α相中の Sn濃度を低くして母相の電気電導度を高くすることができ る。さらに、析出する ε相を微細にすることができ、電気伝導度の低下を抑えることが できる。また、この工程は、他の熱処理を行うことができる。一つには、 2段以上で行う ことができる。ここでの工程は、 200〜350°Cで熱処理し、さら〖こ、 100〜200°Cで熱 処理する。これによつて、析出物の急激な成長を抑えて、 ε相の大きさの不均一を無 くして微細〖こすることができる。 In this step, heat treatment is performed at 100 to 200 ° C. Low temperature from eutectoid temperature By treating with, the electrical conductivity of the parent phase can be increased by lowering the Sn concentration in the α phase. Furthermore, the ε phase that precipitates can be made finer, and a decrease in electrical conductivity can be suppressed. Moreover, this process can perform other heat processing. For one thing, it can be done in two or more stages. In this process, heat treatment is performed at 200 to 350 ° C, and heat treatment is performed at 100 to 200 ° C. As a result, rapid growth of precipitates can be suppressed, and the ε phase can be finely ground without unevenness in the size of the ε phase.
[0019] また、本発明の銅合金の製造方法は、電界メツキ法、溶融メツキ法等のメツキ法、真 空蒸着法、スパッタリング法等の物理蒸着法を用いることができる。この薄膜形成後 又はさらに溶体化処理後に、上述の熱処理をすることで、 α相(Cu)中に ε相(Cu S [0019] In addition, the copper alloy production method of the present invention may employ a plating method such as an electric field plating method or a melting plating method, or a physical vapor deposition method such as a vacuum deposition method or a sputtering method. After the thin film formation or further solution treatment, the above heat treatment is performed, so that the ε phase (Cu 2 S) is contained in the α phase (Cu).
3 n)を分散させた組織を形成した Cu—Sn系薄膜を得ることができる。  3 Cu-Sn thin film with a structure in which n) is dispersed can be obtained.
実施例  Example
[0020] 以下に、本発明の銅合金の製造方法及び得られた銅合金の具体的な実施例につ いて説明する。  [0020] Hereinafter, a method for producing a copper alloy of the present invention and specific examples of the obtained copper alloy will be described.
はじめに、 10 X 10cm2のガラス基板に、スパッタリング法で厚さ 0. 15 μ mの Cu^ ノッタ膜を設けた基板を作製した。次に、この基板を、以下の条件のメツキ浴で、厚さ 15 μ mで、 15at%Snの Cu— Sn薄膜を作製した。 First, a 10 × 10 cm 2 glass substrate with a 0.15 μm thick Cu ^ notter film was prepared by sputtering. Next, a 15 at% Sn Cu—Sn thin film having a thickness of 15 μm was fabricated on this substrate in a plating bath under the following conditions.
[0021] <メツキ条件 > [0021] <Mettle condition>
1)メツキ浴  1) Metsu bath
シアン化銅 (gZL) 40  Copper cyanide (gZL) 40
スズ酸ナトリウム (gZL) 20  Sodium stannate (gZL) 20
シアンィ匕ナトリウム (g/L) 65  Cyan sodium (g / L) 65
水酸ィ匕ナトリウム (gZL) 7. 5  Sodium hydroxide (gZL) 7.5
ロッセル塩(gZL) 1. 0  Roselle salt (gZL) 1.0
2)メツキ条件  2) Measure condition
浴温 (°C) 50  Bath temperature (° C) 50
電流密度 (AZcm2) 1 Current density (AZcm 2 ) 1
[0022] 次に、この基板を真空中で、 200°Cで 1時間の熱処理を行った。そのご、この基板 を透過電子顕微鏡 (日本電子製: JEM2000EX装置)による電子線回折法で、 a相 と ε相との二相組織になっているか測定した。さらに、直流 4端子法で電気伝導性を 、引張試験器で引張強度を測定した。 Next, this substrate was heat-treated at 200 ° C. for 1 hour in a vacuum. The substrate was then subjected to electron beam diffraction using a transmission electron microscope (JEOL: JEM2000EX equipment), and a phase And whether it has a two-phase structure of ε phase. Furthermore, the electrical conductivity was measured by a DC four-terminal method, and the tensile strength was measured by a tensile tester.
[0023] 図 2は、電子回折法の結果を示す回折パターンである。このパターンからも明らか なように、 Cu Sn相の存在を確認することができた。 FIG. 2 is a diffraction pattern showing the results of the electron diffraction method. As is clear from this pattern, the presence of the Cu Sn phase could be confirmed.
3  Three
また、電気抵抗率は、 8. 9 μ Ω ' cmで電気伝導度 19. 0%ICASに相当し、引張 強度は 950MPaであった。  The electrical resistivity was 8.9 μΩ 'cm, corresponding to an electrical conductivity of 19.0% ICAS, and the tensile strength was 950 MPa.
これから、本発明の銅合金の製造方法で、高引張強度で、高電気伝導性を有する 銅合金が得られた。  From this, a copper alloy having high tensile strength and high electrical conductivity was obtained by the method for producing a copper alloy of the present invention.
図面の簡単な説明  Brief Description of Drawings
[0024] [図 l]Cu—Sn系 2元系の平衡状態図である。 [0024] FIG. 1 is an equilibrium diagram of a Cu—Sn binary system.
[図 2]電子回折法の結果を示す回折パターンである。  FIG. 2 is a diffraction pattern showing the result of electron diffraction.

Claims

請求の範囲 The scope of the claims
[1] 5〜20at%Snを含有し、残部が Cuからなる銅合金であって、  [1] A copper alloy containing 5 to 20 at% Sn with the balance being Cu,
前記銅合金は、 a相(Cu)中に ε相(Cu Sn)が分散して 、る組織を有する  The copper alloy has a structure in which the ε phase (Cu Sn) is dispersed in the a phase (Cu).
3  Three
ことを特徴とする銅合金。  A copper alloy characterized by that.
[2] 請求項 1に記載の銅合金において、 [2] In the copper alloy according to claim 1,
前記銅合金は、電気伝導度が 6〜35%IACS、引張強度が 0. 6〜2. 5GPaの範 囲にある  The copper alloy has an electrical conductivity of 6 to 35% IACS and a tensile strength of 0.6 to 2.5 GPa.
ことを特徴とする銅合金。  A copper alloy characterized by that.
[3] 請求項 1又は 2に記載の銅合金において、 [3] In the copper alloy according to claim 1 or 2,
前記銅合金は、 100〜350°Cで、 10分〜 24時間の範囲内で熱処理する ことを特徴とする銅合金。  The copper alloy is heat-treated at 100 to 350 ° C. for 10 minutes to 24 hours.
[4] 5〜20at%Snを含有し、残部が Cuからなる銅合金の製造方法であって、 [4] A method for producing a copper alloy containing 5 to 20 at% Sn with the balance being Cu,
前記銅合金の製造方法は、銅合金の α相(Cu)中に ε相 (Cu Sn)を分散させた  In the copper alloy manufacturing method, the ε phase (Cu Sn) is dispersed in the α phase (Cu) of the copper alloy.
3  Three
組織を形成する熱処理工程を有する  Has a heat treatment process to form the structure
ことを特徴とする銅合金の製造方法。  A method for producing a copper alloy.
[5] 請求項 4に記載の銅合金の製造方法にお 、て、 [5] In the method for producing a copper alloy according to claim 4,
前記熱処理工程は、 100〜350°Cで、 10分〜 24時間の範囲内で行う ことを特徴とする銅合金の製造方法。  The heat treatment step is performed at 100 to 350 ° C. within a range of 10 minutes to 24 hours.
[6] 請求項 4又は 5に記載の銅合金の製造方法において、 [6] In the method for producing a copper alloy according to claim 4 or 5,
前記銅合金の製造方法は、メツキ法で Cu— Sn膜を形成する  The copper alloy manufacturing method is to form a Cu-Sn film by a plating method.
ことを特徴とする銅合金の製造方法。  A method for producing a copper alloy.
[7] 請求項 4又は 5に記載の銅合金の製造方法において、 [7] In the method for producing a copper alloy according to claim 4 or 5,
前記銅合金の製造方法は、物理蒸着法で Cu— Sn膜を形成する  The copper alloy is produced by forming a Cu-Sn film by physical vapor deposition.
ことを特徴とする銅合金の製造方法。  A method for producing a copper alloy.
PCT/JP2005/022452 2004-12-08 2005-12-07 Copper alloy and method for producing copper alloy WO2006062126A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-354848 2004-12-08
JP2004354848A JP2007162035A (en) 2004-12-08 2004-12-08 Copper alloy and method for producing copper alloy

Publications (1)

Publication Number Publication Date
WO2006062126A1 true WO2006062126A1 (en) 2006-06-15

Family

ID=36577953

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/022452 WO2006062126A1 (en) 2004-12-08 2005-12-07 Copper alloy and method for producing copper alloy

Country Status (2)

Country Link
JP (1) JP2007162035A (en)
WO (1) WO2006062126A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2105935A1 (en) * 2008-03-24 2009-09-30 Fujikura, Ltd. Plated flat conductor and flexible flat cable therewith
US8017876B2 (en) 2004-07-08 2011-09-13 Fujikura Ltd. Terminal portion of flexible print circuit board or flexible flat cable

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6119751A (en) * 1984-07-06 1986-01-28 Hitachi Ltd Spectral reflectance variable alloy and recording material
JPH03176212A (en) * 1989-12-05 1991-07-31 Sumitomo Rubber Ind Ltd Bead wire for tire, bead wire for rubber coating tire and tire utilizing it
WO2003060198A1 (en) * 2001-12-24 2003-07-24 Hunting Oilfield Services (Uk) Ltd A tubular member having an anti-galling coating

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6119751A (en) * 1984-07-06 1986-01-28 Hitachi Ltd Spectral reflectance variable alloy and recording material
JPH03176212A (en) * 1989-12-05 1991-07-31 Sumitomo Rubber Ind Ltd Bead wire for tire, bead wire for rubber coating tire and tire utilizing it
WO2003060198A1 (en) * 2001-12-24 2003-07-24 Hunting Oilfield Services (Uk) Ltd A tubular member having an anti-galling coating

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8017876B2 (en) 2004-07-08 2011-09-13 Fujikura Ltd. Terminal portion of flexible print circuit board or flexible flat cable
EP2105935A1 (en) * 2008-03-24 2009-09-30 Fujikura, Ltd. Plated flat conductor and flexible flat cable therewith
US7999187B2 (en) 2008-03-24 2011-08-16 Fujikura Ltd. Plated flat conductor and flexible flat cable therewith

Also Published As

Publication number Publication date
JP2007162035A (en) 2007-06-28

Similar Documents

Publication Publication Date Title
US7182823B2 (en) Copper alloy containing cobalt, nickel and silicon
KR101612559B1 (en) Copper alloy sheet and method for producing same
CN103328665B (en) The manufacture method of copper alloy and copper alloy
JP4937815B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
TWI400342B (en) Cu-Ni-Si-Co based copper alloy for electronic materials and its manufacturing method
JP5170881B2 (en) Copper alloy material for electrical and electronic equipment and method for producing the same
JP4596490B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP5506806B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JPH08503022A (en) Copper alloy having high strength and electrical conductivity and method for producing the same
TWI438286B (en) Cu-Si-Co alloy for electronic materials and its manufacturing method
TWI392753B (en) Ni-Si-Co-based copper alloy and a method for producing the same
US20060011275A1 (en) Copper-titanium alloys excellent in strength, conductivity and bendability, and method for producing same
JP3383615B2 (en) Copper alloy for electronic materials and manufacturing method thereof
TW201704490A (en) Copper alloy material and method for producing same
WO2014103409A1 (en) Copper alloy for electrical and electronic equipment, copper alloy thin sheet for electrical and electronic equipment, and conductive part and terminal for electrical and electronic equipment
EP2270242A1 (en) Copper alloy material for electric and electronic apparatuses, and electric and electronic components
JP6222885B2 (en) Cu-Ni-Si-Co based copper alloy for electronic materials
TW200533769A (en) Cu-Ni-Si-Mg based copper alloy strip
TWI422693B (en) Cu-Co-Si alloy sheet and method for producing the same
WO2006062126A1 (en) Copper alloy and method for producing copper alloy
TWI510654B (en) Cu-Zn-Sn-Ni-P alloy
JP2012229467A (en) Cu-Ni-Si BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
JP2015187308A (en) Method for manufacturing copper alloy sheet material
KR20130122654A (en) Cu-co-si-zr alloy material and method for producing same
JP7172090B2 (en) Copper alloys for electronic and electrical equipment, copper alloy sheets for electronic and electrical equipment, conductive parts and terminals for electronic and electrical equipment

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05814179

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP