WO2006062056A1 - Friction control device for railway vehicle - Google Patents

Friction control device for railway vehicle Download PDF

Info

Publication number
WO2006062056A1
WO2006062056A1 PCT/JP2005/022289 JP2005022289W WO2006062056A1 WO 2006062056 A1 WO2006062056 A1 WO 2006062056A1 JP 2005022289 W JP2005022289 W JP 2005022289W WO 2006062056 A1 WO2006062056 A1 WO 2006062056A1
Authority
WO
WIPO (PCT)
Prior art keywords
friction
wheel
control device
force
curved rail
Prior art date
Application number
PCT/JP2005/022289
Other languages
French (fr)
Japanese (ja)
Inventor
Takuji Nakai
Yoshi Sato
Yoshihiro Suda
Hisanao Komine
Kosuke Matsumoto
Tomohisa Ogino
Jun Kurihara
Yasunobu Endo
Original Assignee
Sumitomo Metal Industries, Ltd.
Tokyo Metro Co., Ltd.
The University Of Tokyo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries, Ltd., Tokyo Metro Co., Ltd., The University Of Tokyo filed Critical Sumitomo Metal Industries, Ltd.
Publication of WO2006062056A1 publication Critical patent/WO2006062056A1/en
Priority to HK07107459A priority Critical patent/HK1099892A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61CLOCOMOTIVES; MOTOR RAILCARS
    • B61C15/00Maintaining or augmenting the starting or braking power by auxiliary devices and measures; Preventing wheel slippage; Controlling distribution of tractive effort between driving wheels
    • B61C15/08Preventing wheel slippage
    • B61C15/10Preventing wheel slippage by depositing sand or like friction increasing materials
    • B61C15/107Preventing wheel slippage by depositing sand or like friction increasing materials with electrically or electromagnetically controlled sanding equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61KAUXILIARY EQUIPMENT SPECIALLY ADAPTED FOR RAILWAYS, NOT OTHERWISE PROVIDED FOR
    • B61K3/00Wetting or lubricating rails or wheel flanges
    • B61K3/02Apparatus therefor combined with vehicles

Definitions

  • the present invention relates to a friction control device for a railway vehicle. Specifically, the present invention relates to a railroad vehicle friction control device for controlling a friction state between a railcar and a curved rail.
  • the majority of modern railway vehicles have four wheels that are usually installed on two axles because of the ability to increase the size of the vehicle body and to ensure good riding comfort due to excellent trackability.
  • the two axle bogie consists of two bogies with a car body mounted on top. As a matter of course, this bogie vehicle runs on the steel wheels guided by the iron rails.
  • Patent Document 1 discloses that the friction coefficient between the wheel and the curved rail is appropriately maintained by applying a lubricant to the tread surface of the wheel, thereby reducing the running resistance when passing through the curved rail.
  • a reducing invention is disclosed.
  • Patent Document 2 a friction modifier is applied to the outer surface of the wheel flange, and the friction modifier is applied to the curved rail by applying the friction modifier to the shoulder of the curved rail by rotating the wheel.
  • An invention that reduces the running resistance when passing through a curved rail is disclosed.
  • Patent Document 1 Japanese Patent No. 3389031
  • Patent Document 2 JP 2001-151105 A
  • the inventions disclosed in Patent Documents 1 and 2 are both lubricants while the railway vehicle travels on a curved rail.
  • the application timing of the friction modifier is determined in advance based only on the condition of the curved rail such as the curved radius. Therefore, in these inventions, the friction modifier is applied without taking into consideration any actual friction state between the wheel traveling on the curved rail and the curved rail. The reason for not considering the frictional state is that it has been considered technically impossible to quantitatively and accurately measure the frictional state between the wheel and the curve rail in the railway vehicle during traveling. It is.
  • the magnitude of the frictional force generated between the wheel passing through the curved rail and the curved rail depends on factors such as the ambient temperature, humidity, and weather when the railway vehicle passes through the curved rail. fluctuate. For this reason, there is a case where the friction modifier should be injected in a larger amount than a predetermined injection amount. However, even in this case, in these inventions, the amount of the friction modifier applied cannot be changed according to the changing frictional force.
  • a wheel traveling on a curved rail has a vertical force P (referred to herein as “up / down force P”), the width direction of the carriage perpendicular to the traveling direction of the carriage, that is, the curved rail.
  • the force Q in the direction parallel to the sleeper that is perpendicular to the tangent of the rail (herein referred to as “lateral force Q”) and the direction of travel of the carriage, that is, the force T in the direction parallel to the tangent to the curved rail (in this specification, All three external forces (called “front / rear force T”) are applied.
  • the vertical force P and the longitudinal force T acting on the wheel located behind the carriage in the traveling direction are detected, and if these detected values are used, the wheel during running is detected.
  • the present invention was completed by discovering that the coefficient of friction between the rail and the curved rail can be determined quantitatively and accurately using (TZP).
  • a railway vehicle friction control device comprising an application control means for performing the above operation.
  • the present invention provides a vertical force detection means for detecting vertical force acting on a wheel located on the rear side of the traveling direction of the bogie for a rail vehicle during traveling, and front and rear acting on the wheel. Based on the longitudinal force detection means for detecting the force, the vertical force detected by the vertical force detection means, and the longitudinal force detected by the longitudinal force detection means, the wheel and the curved rail on which the wheel travels are detected. And a calculating means for calculating a friction coefficient, and an application control means for controlling a friction adjusting agent injection device for injecting the friction adjusting agent based on the friction coefficient calculated by the calculating means.
  • the friction coefficient is calculated as (detected longitudinal force) Z (detected vertical force). Is desired.
  • the application control means includes the friction adjusting agent when the calculated friction coefficient is equal to or greater than a preset critical value based on the curve information regarding the curve rail. It is desirable to output a command to inject the friction modifier to the injection device. In this case, it is more desirable that the critical value is 0.3.
  • the application control means outputs a command for the injection amount of the friction modifier to the friction modifier injection device.
  • the present invention acts on a vertical force detection means for detecting a vertical force acting on a wheel located on the rear side in the traveling direction of the bogie for a rail vehicle during traveling, and the wheel.
  • a longitudinal force detection means for detecting longitudinal force, a vertical force detected by the vertical force detection means, and a curved rail on which the wheel travels based on the longitudinal force detected by the longitudinal force detection means.
  • the injection amount of the friction adjusting agent is calculated and the friction adjusting agent injection device is calculated.
  • a railroad vehicle friction control device comprising: an application control unit that commands injection.
  • the longitudinal force detection means is the force acting on the axle box of the wheel shaft having the wheels, or the vehicle travels between the axle box and the carriage frame. It is exemplified that the longitudinal force is obtained based on the relative displacement amount in the direction. In this case, the force acting on the axle box is measured using a strain gauge (strain gauge, which detects a minute strain generated in the material as an electrical signal) attached to the axle box suspension. While it is desirable to measure the relative displacement in the direction of travel of the vehicle between the axle box and the carriage frame, it should be measured using a displacement meter installed in the axle box support device. Is desirable.
  • the vertical force detection means obtains the vertical force based on the measured value of the internal pressure of the air spring.
  • the longitudinal force detection means force is calculated by calculating the difference between the longitudinal forces acting on the two left and right wheels located on the rear side in the traveling direction ( 1Z2) U, which is desired to be calculated as a multiplied value.
  • the friction state between the wheels and the curved rail when the railway vehicle passes through the curved rail can be quantitatively and accurately grasped simultaneously with traveling. Can do. Therefore, according to the present invention, it is possible to apply the friction modifier according to the friction state grasped in this way, so that it is possible to prevent the friction modifier from being applied excessively, and a small curve. Even when passing through a curved rail with a radius, the friction state between the wheel and the curved rail can be maintained properly.
  • FIG. 1 is an explanatory diagram showing a configuration of a railroad vehicle friction control apparatus according to an embodiment.
  • FIG. 2 is an explanatory diagram showing an example of a control flow of a coating control unit of the embodiment.
  • FIG. 3 is an explanatory view showing another example of the control flow of the application control means of the embodiment.
  • FIG. 4 is an explanatory diagram schematically showing a situation where the friction control device of the embodiment is mounted on an actual knitted vehicle and the vehicle travels on a curved rail.
  • FIG. 5 A graph showing the longitudinal force T while running on a curved rail having a curved radius of 200 m.
  • Fig. 5 (a) shows the case where friction control between the wheel and the curved rail is performed, and
  • Fig. 5 ( b) shows the case where no action was taken.
  • FIG. 6 A graph showing the longitudinal force T while running on a curved rail having a curved radius of 130 m.
  • Fig. 6 (a) shows the case where the friction control between the wheel and the curved rail is performed, and Fig. 6 ( b) shows the case where no action was taken.
  • FIG. 7 is a graph showing the relationship between the ratio (QZP) between the wheel load Q of the front shaft located on the front side in the traveling direction and the lateral pressure P and the friction coefficient (T / P).
  • FIG. 8 is a graph showing the relationship between the ratio (QZP) or friction coefficient (TZP) and the distance traveled on a curved rail.
  • FIG. 9 is a graph showing the amount of friction modifier used according to the present invention in comparison with the amount of friction modifier used in the conventional method (control of constant injection amount).
  • the trolley is a so-called bolsterless truck, in which the bolster is omitted for the purpose of light weight and simplified maintenance. Take a case as an example.
  • FIG. 1 is an explanatory diagram for explaining a configuration of a railroad vehicle friction control apparatus 0 according to the present embodiment.
  • this railcar bogie 1 (hereinafter simply referred to as “trolley”) has two bogie frames (side frames) la provided in a direction substantially parallel to the running direction, and the running direction. And two bogie frames (horizontal beam; Transom not shown) that are arranged in a horizontal direction substantially orthogonal to the left and right to connect the two bogie frames la and the upper surface of the left and right two bogie frames la in the longitudinal center. And two left and right air springs 6 (Air spring; a secondary spring that is standardly equipped in recent vehicles to improve passenger comfort) and two bogie frames It is placed in the center between the horizontal beam (not shown) and the cart 1 is generated.
  • Air spring Air spring
  • a traction device (not shown) for transmitting the longitudinal force to the vehicle body 10 and two left and right bogie frames (side beams) la are arranged at both longitudinal ends of each wheel 2 through the bearings. It includes four axle boxes 4 for supporting, and four axle box support devices (links) 5 for supporting the four axle boxes 4 respectively.
  • This cart 1 is a so-called monolink bolsterless cart, which is an improved shaft beam type that supports the axle box 4 from the carriage frame la via the axle box support device (link) 5, and this axle box support
  • the device (link) 5 By arranging the device (link) 5 only inside the traveling direction of the bogie frame la, the length of the bogie frame la in the running direction is shortened, thereby achieving a significant light weight.
  • this monolink bolsterless bogie 1 the body 10 and the bogie frame la are directly coupled by the two left and right air springs 6, and the bogie frame la and the car body 10 generated due to steering and vibration are placed between the bogie frame la and the car body 10.
  • the relative displacement of each air spring 6 is absorbed by the deformation of each air spring 6 and prevents sliding between the axle box guard and the axle box, which is a disadvantage of the conventional axle box guard type (pedestal type) carriage. wear.
  • this bolsterless bogie 1 is a bogie used as a mainstream in recent years.
  • the friction control device 0 detects the vertical force P acting on the wheel 2 located behind the traveling direction of the railway vehicle carriage 1 (indicated by the arrow A in FIG. 1). 9 and the means 8 for detecting the longitudinal force T and the friction between the wheel 2 and the curved rail 3 based on the longitudinal force T and the vertical force P detected by the detecting means 8 and 9. And an arithmetic means 7a for calculating the coefficient ⁇ .
  • the means 9 for detecting the vertical force P and the means 8 for detecting the longitudinal force T act on the wheel 2 located on the rear side in the traveling direction of the carriage 1 when traveling on the curved rail 3.
  • the detection means is not limited to a specific detection means. In other words, the vertical force P and the longitudinal force T may be detected directly, or may be detected indirectly based on a certain detected value.
  • the longitudinal force T is obtained by attaching a strain gauge 8 to a shaft box support device 5 that supports a wheel box 4 that is located behind the carriage 1 in the traveling direction.
  • a strain gauge 8 may be obtained by measuring the force acting on the axle box 4 when passing 3 or, unlike this, a displacement meter is installed in the axle box support device 5, and the axle box 4 and the carriage frame la It may be obtained by measuring the relative displacement in the traveling direction of the vehicle between the two.
  • the longitudinal force T may be detected for one of the left and right wheels 2 and 2. However, it is desirable to use a value obtained by multiplying the difference in the longitudinal force T detected for both wheels 2 and 2 by (1Z2). While the curved rail 3 is passing, the longitudinal force T in different directions usually acts on the wheels 2 on both sides of the axle, so if the longitudinal force T on the wheels 2 on both sides of the axle is obtained, the difference is obtained. This is because, for example, the influence of the longitudinal force T detected when the brake is applied can be eliminated.
  • means 9 for detecting vertical force P for example, as shown in FIG. 1, the internal pressure of air spring 6 interposed between bogie frame (side beam) la of bogie 1 and vehicle body 10 is measured.
  • the sensor 9 is provided, and the measured force of the sensor 9 is obtained as the vertical force P.
  • the vertical force detection means 9 does not use the measured value of the internal pressure of the air spring 6, and the amount of displacement between the axle box 4 and the axle spring, or the air spring 6 and the axle in the bogie frame la. It is also possible to use a displacement amount at a position intermediate to box 4.
  • the calculation means 7a is based on the detection value of the longitudinal force T input from the detection means 8 and the detection value of the vertical force P input from the detection means 9, and Calculate the coefficient of friction between.
  • the friction control device 0 of the present embodiment includes application control means 7b.
  • An example of the control flow of the coating control means 7b in this embodiment is shown in FIGS. In the following, referring to Figs. 2 and 3, two examples of control flow will be described separately.
  • step (i) As shown in FIG. 2, in step (hereinafter referred to as “S”) 1, it is detected by appropriate means that the carriage 1 has entered the curved rail 3, and the process proceeds to S2.
  • the detection means 8 detects the longitudinal force T and the detection means 9 detects the vertical force P. Then, these detected values are input to the calculating means 7a, and the process proceeds to S3.
  • the coefficient of friction; z is calculated as (TZP) by the calculation means 7a and is input to the application control means 7b.
  • Curve information such as the radius, the turning direction, the length of the curved rail 3 and the limit passing speed is input to the application control means 7b.
  • the “curve information” may be appropriately acquired during traveling or may be stored in advance. And move to S4
  • the application control means 7b compares the input friction coefficient with a preset critical value based on the curve information, and determines whether or not it is necessary to perform friction control, that is, to inject the friction modifier. If it is determined that friction control is necessary, the process proceeds to S5. If it is determined that friction control is not necessary, the process proceeds to S6.
  • the application control means 7b determines that it should be injected into the friction modifier injection device (not shown!), And proceeds to S6.
  • step 1 As shown in FIG. 3, in step 1, it is detected by appropriate means that the carriage 1 has entered the curved rail 3, and the process proceeds to S2.
  • the detection means 8 detects the longitudinal force T, and the detection means 9 detects the vertical force P. Then, these detected values are input to the calculating means 7a, and the process proceeds to S3.
  • the friction coefficient; z is calculated as (TZP) by the calculation means 7a and the application control means 7b
  • the curve information such as the radius of the curved rail 3, the turning direction, the length of the curved rail, and the limit passing speed, which is stored in a storage device (not shown), is input to the application control means 7b. And it moves to S4.
  • the application control means 7b determines the injection amount of the friction modifier based on the input friction coefficient and curve information. And it moves to S5.
  • a command to inject the friction modifier with the determined injection amount is output to the friction modifier injection device. As a result, it passes through the curved rail 3 while injecting the amount of friction modifier specified by the friction modifier injection device.
  • FIG. 4 is an explanatory view schematically showing a situation in which the friction control device 0 of the present embodiment is mounted on an actual knitted vehicle and travels on the curved rail 3.
  • the application control means 7 mounted on the leading vehicle 11 compares the calculated friction coefficient; z with a threshold value set in advance based on the curve information! If it is too large, it is determined that it is necessary to spray a friction modifier. In this case, the difference between the friction coefficient and the critical value is appropriately ranked, and the injection amount of the friction modifier is determined according to a table value created in advance. On the other hand, if the calculated friction coefficient is smaller than the critical value, it is determined that the friction modifier need not be injected.
  • the necessity of injection of the friction modifier and, when it is injected, the control command B for the injection amount is, for example, the friction modifier injection device 13 of the leading vehicle 11 or the friction of the tail vehicle 12. It is output to the adjusting agent injection device 13. At that time, the friction control may be performed for the knitted vehicle, or the friction control may be performed for the next knitted vehicle. When the friction control is performed for the next knitting vehicle, the friction modifier may be applied using a friction modifier injection device 13 installed in the last vehicle 12 as shown in FIG.
  • Such friction control is performed until the last vehicle 12 passes through the curved rail 3.
  • the friction state between the wheel 2 and the curved rail 3 when the railway vehicle passes the curved rail 3 is at the same time, it is possible to grasp quantitatively and accurately, and it becomes possible to apply a friction modifier according to the magnitude of the calculated friction coefficient. For this reason, it is possible to prevent excessive application of the friction modifier, and always maintain the friction state between the wheel 2 and the curved rail 3 properly even when passing through the curved rail 3 having a small radius of curvature. Is possible.
  • a railway vehicle provided with a railway vehicle carriage 1 equipped with the friction control device 0 according to the present invention shown in FIG. 1 was run on a curved rail 3 having a radius of 200 m or 130 m, respectively. Then, when the friction control between the wheel 2 and the curve rail 3 is performed by injecting the friction modifier on the curve rail 3, and when the force is applied, the wheel positioned on the rear side in the traveling direction is used. The relationship between the longitudinal force T and vertical force P acting on 2 and the friction coefficient z was investigated.
  • the longitudinal force T is determined by attaching strain gauges 8 to the axle box support devices 5 and 5 of the left and right wheels 2 and 2 located on the rear side in the traveling direction of the carriage 1, and the left and right axle boxes 4
  • the longitudinal force T acting on 4 was obtained, and the difference (1Z2) was detected as the longitudinal force T.
  • the vertical force P was determined by measuring the internal pressure of the air spring 6 with the sensor 9 to obtain the load acting on the air spring 6 and detecting this as the vertical force P.
  • Table 1 summarizes the measurement results.
  • Table 1 shows the maximum value of the longitudinal force T (kN), the maximum value of the vertical force P (kN) of the wheel 2 located behind the traveling direction when traveling on the curved rail 3, and the respective values. The obtained friction coefficient is shown together.
  • the maximum value of the longitudinal force T and the maximum value of the vertical force P are the maximum values of the longitudinal force T and the vertical force P measured continuously while traveling on the curved rail 3.
  • Fig. 5 is a graph showing the longitudinal force T during running on the curved rail 3 having a curved radius of 200 m.
  • Fig. 5 (a) shows a case where the friction control between the wheel 2 and the curved rail 3 is performed.
  • Fig. 5 (b) shows the case where force is applied.
  • Fig. 6 is a graph showing the longitudinal force T while running on the curved rail 3 having a curved radius of 130 m
  • Fig. 6 (a) shows the case where the friction control between the wheel 2 and the curved rail 3 is performed.
  • Figure 6 (b) shows the case where no action was taken.
  • Fig. 7 shows the relationship between the ratio (QZP) between the wheel load Q of the front shaft located on the front side in the traveling direction and the lateral pressure ⁇ and the friction coefficient ( ⁇ ) defined in the present invention. It is a graph to show.
  • the ratio (QZP) is 0.52 (T / P) +0.18, and there is a clear correlation between the coefficient of friction (T ZP) and the ratio (QZP). It is done.
  • the friction control was performed by injecting a friction modifier onto the curved rail.
  • FIG. 8 is a graph showing the relationship between the ratio (QZP) or the coefficient of friction (TZP) and the travel distance on the curved rail.
  • the ratio (QZP) changes at a high value of approximately 0.4 or more.
  • the friction control is performed by setting the critical value of the friction coefficient (TZP) to 0.3 (feedback friction control in Fig. 8)
  • the friction coefficient stays substantially constant at the critical value 0.3.
  • the fluctuation range was also kept small.
  • the ratio (QZP) was always at a low value below 0.4, and it was maintained at a level that had no adverse effects on noise and vibration.
  • FIG. 9 is a graph showing the amount of friction modifier used according to the present invention in comparison with the amount of friction modifier used in the conventional method (control of injection amount constant). As shown in the figure, when the difference between the detected value of the friction coefficient (TZP) and the set critical value is large, the injection amount of the friction modifier is increased accordingly. It can be seen that the friction control can be performed more optimally than before while the amount of the adjusting agent used is substantially halved.
  • ZTP friction coefficient
  • the friction control device of the above-described embodiment injects a friction modifier onto the curved rail itself.
  • the target of spraying the friction modifier is not limited to a curved rail, For example, it may be sprayed onto a wheel flange or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Transportation (AREA)
  • Regulating Braking Force (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

Friction between wheels and curved rails when a railway vehicle runs on the curved rails is controlled quantitatively and accurately. A friction control device (0) has a means (9) for detecting vertical force (P) acting on a wheel (2) positioned behind, relative to a railway vehicle advance direction, a truck (1) of the railway vehicle; a means (8) for detecting forward-backward force (T) acting on the wheel (2); a calculation means (7a) for calculating a friction coefficient μ between the wheel (2) and a curved rail (3) from both the detected vertical force (P) and forward-backward force (T); and an application control means (7b) for comparing, based on curve information, the calculated friction coefficient μ with a preset critical value, determining whether emission of an friction adjustment agent is needed, and issuing a command to a device (13) for emitting friction adjustment agent. A state of friction between the wheel (2) and the curved rail (3) can be grasped in real time, which enables appropriate control on the friction state.

Description

明 細 書  Specification
鉄道車両の摩擦制御装置  Rail vehicle friction control device
技術分野  Technical field
[0001] 本発明は、鉄道車両の摩擦制御装置に関する。具体的には、本発明は、鉄道車両 と曲線レールとの間の摩擦状態を制御するための鉄道車両の摩擦制御装置に関す る。  [0001] The present invention relates to a friction control device for a railway vehicle. Specifically, the present invention relates to a railroad vehicle friction control device for controlling a friction state between a railcar and a curved rail.
背景技術  Background art
[0002] 現代の鉄道車両の大多数は、車体の大型化が可能であることやレールへの優れた 追従性による良好な乗り心地を確保できることから、通常 2つの輪軸に設けられた 4 つの車輪を有するボギー台車 (two axle bogie) 2台の上に車体を搭載したボギー 車両により構成される。このボギー車両も、当然のことながら、鉄製の車輪が鉄製のレ ールに案内されてその上を走行する。  [0002] The majority of modern railway vehicles have four wheels that are usually installed on two axles because of the ability to increase the size of the vehicle body and to ensure good riding comfort due to excellent trackability. The two axle bogie consists of two bogies with a car body mounted on top. As a matter of course, this bogie vehicle runs on the steel wheels guided by the iron rails.
[0003] ところで、特に大都市部等では、大きな曲線半径の曲線レールを敷設することが難 しいため、小さな曲線半径の曲線レールを敷設せざるを得ないことが多い。鉄道車両 がこの小さな曲線半径の曲線レールを走行すると、車輪と曲線レールとが強く接触し 、大きな摩擦力が不可避的に発生する。この摩擦力は、ボギー台車の走行抵抗とな り、騒音や振動の発生、さらには曲線レールの早期摩耗の原因になる。  [0003] By the way, particularly in large urban areas and the like, it is difficult to lay a curved rail having a large radius, so it is often necessary to lay a curved rail having a small radius. When a railway vehicle runs on a curved rail having a small curved radius, the wheels and the curved rail come into strong contact with each other, and a large frictional force is inevitably generated. This frictional force becomes the running resistance of the bogie, causing noise and vibration, and premature wear of the curved rail.
[0004] そこで、例えば特許文献 1には、車輪の踏面に潤滑剤を塗布することによって車輪 と曲線レールと間の摩擦係数を適切に保ち、これにより、曲線レールを通過する際の 走行抵抗を低減する発明が開示されている。  [0004] Thus, for example, Patent Document 1 discloses that the friction coefficient between the wheel and the curved rail is appropriately maintained by applying a lubricant to the tread surface of the wheel, thereby reducing the running resistance when passing through the curved rail. A reducing invention is disclosed.
[0005] また、特許文献 2には、車輪のフランジの外面に摩擦調整剤を塗布し、車輪の回転 により摩擦調整剤を曲線レールの肩部に塗布することによって曲線レールへ摩擦調 整剤を最適に塗布し、これ〖こより、曲線レールを通過する際の走行抵抗を低減する 発明が開示されている。  [0005] Further, in Patent Document 2, a friction modifier is applied to the outer surface of the wheel flange, and the friction modifier is applied to the curved rail by applying the friction modifier to the shoulder of the curved rail by rotating the wheel. An invention that reduces the running resistance when passing through a curved rail is disclosed.
特許文献 1 :特許第 3389031号公報  Patent Document 1: Japanese Patent No. 3389031
特許文献 2:特開 2001— 151105号公報  Patent Document 2: JP 2001-151105 A
発明の開示 発明が解決しょうとする課題 Disclosure of the invention Problems to be solved by the invention
[0006] しカゝしながら、特許文献 1、 2により開示された発明は、いずれも、鉄道車両が曲線 レールを走行する間に潤滑剤ある ヽは摩擦調整剤 (以下、本明細書では「摩擦調整 剤」と総称する)を塗布するものである。つまり、これらの発明では、例えば曲線半径と いった曲線レールの条件のみに基づいて摩擦調整剤の塗布タイミングを予め決定し ておくものである。したがって、これらの発明では、曲線レールを走行している車輪と 曲線レールとの間の実際の摩擦状態を一切考慮することなぐ摩擦調整剤を塗布す る。摩擦状態を一切考慮しない理由は、走行時の鉄道車両における車輪と曲線レー ルとの間の摩擦状態を定量的かつ正確に測定することは、技術的に不可能であると 考えられてきた力 である。  [0006] However, the inventions disclosed in Patent Documents 1 and 2 are both lubricants while the railway vehicle travels on a curved rail. (Collectively referred to as “friction modifier”). That is, in these inventions, for example, the application timing of the friction modifier is determined in advance based only on the condition of the curved rail such as the curved radius. Therefore, in these inventions, the friction modifier is applied without taking into consideration any actual friction state between the wheel traveling on the curved rail and the curved rail. The reason for not considering the frictional state is that it has been considered technically impossible to quantitatively and accurately measure the frictional state between the wheel and the curve rail in the railway vehicle during traveling. It is.
[0007] このため、曲線レールを走行している車輪と曲線レールとの間の摩擦状態が適切 であって摩擦調整剤を塗布する必要がな!ヽ場合にも、摩擦調整剤を塗布することと なる。したがって、摩擦調整剤を過剰に塗布する場合があった。  [0007] For this reason, it is not necessary to apply a friction modifier, because the frictional state between the wheel running on the curved rail and the curved rail is appropriate, and it is not necessary to apply a friction modifier. It becomes. Therefore, the friction modifier may be applied excessively.
[0008] 一方、曲線レールを通過する車輪と曲線レールとの間に発生する摩擦力の大きさ は、鉄道車両が曲線レールを通過する際の雰囲気温度、湿度さらには天候等の要 因により、変動する。このため、摩擦調整剤を予め定めた噴射量よりも多量に噴射す べき場合も発生する。しかし、この場合にも、これらの発明では、変動する摩擦力に 応じて摩擦調整剤の塗布量を変更することはできな力つた。  [0008] On the other hand, the magnitude of the frictional force generated between the wheel passing through the curved rail and the curved rail depends on factors such as the ambient temperature, humidity, and weather when the railway vehicle passes through the curved rail. fluctuate. For this reason, there is a case where the friction modifier should be injected in a larger amount than a predetermined injection amount. However, even in this case, in these inventions, the amount of the friction modifier applied cannot be changed according to the changing frictional force.
課題を解決するための手段  Means for solving the problem
[0009] 上述したように、走行時の車輪と曲線レールとの間の摩擦状態を定量的かつ正確 に測定することは技術的に困難であると考えられてきた。しかし、車輪と曲線レールと の間の摩擦状態を定量的かつ正確に把握することが可能になれば、定量的かつ正 確に把握した摩擦状態に基づいて摩擦調整剤を適切に塗布することが期待される。  [0009] As described above, it has been considered technically difficult to quantitatively and accurately measure the friction state between a wheel and a curved rail during traveling. However, if it becomes possible to quantitatively and accurately grasp the friction state between the wheel and the curved rail, it is possible to appropriately apply the friction modifier based on the frictional state grasped quantitatively and accurately. Be expected.
[0010] 一般に、曲線レールを走行している車輪には、上下方向の力 P (本明細書では「上 下力 P」という)、台車の進行方向と直交する台車の幅方向、すなわち曲線レールの 接線と直行する枕木と平行な方向の力 Q (本明細書では「左右力 Q」という)、及び台 車の進行方向、すなわち曲線レールの接線と平行な方向の力 T (本明細書では「前 後力 T」という)という 3つの外力が全て作用する。 [0011] 本発明者らは上記課題を解決するために鋭意検討した結果、 [0010] Generally, a wheel traveling on a curved rail has a vertical force P (referred to herein as "up / down force P"), the width direction of the carriage perpendicular to the traveling direction of the carriage, that is, the curved rail. The force Q in the direction parallel to the sleeper that is perpendicular to the tangent of the rail (herein referred to as “lateral force Q”) and the direction of travel of the carriage, that is, the force T in the direction parallel to the tangent to the curved rail (in this specification, All three external forces (called “front / rear force T”) are applied. [0011] As a result of intensive studies to solve the above problems, the present inventors have
(a)走行時の台車に左右力 Qが作用しない場合では、車輪と曲線レールとの間の摩 擦係数 は (TZP)として簡易に求めることができること、及び  (a) When the lateral force Q does not act on the vehicle during traveling, the friction coefficient between the wheel and the curved rail can be easily obtained as (TZP), and
(b)文献「営業車の曲線通過特性調査」(社団法人日本鉄道技術協会、 2003年、 V OL. 46、 No. 5の図 1参照)〖こも記載されるように、鉄道車両の進行方向の後ろ側に 位置する輪軸には左右力 Qが殆ど作用しないこと  (b) Literature “Investigation of Curve Passing Characteristics of Commercial Vehicles” (Japan Railway Technical Association, 2003, V OL. 46, No. 5, Fig. 1) The left and right force Q should not be applied to the wheel axle located behind
の二点に着目し、さらに検討した結果、台車の進行方向の後ろ側に位置する車輪に 作用する上下力 P及び前後力 Tを検出し、これらの検出値を用いれば、走行時の車 輪と曲線レールとの間の摩擦係数 を (TZP)として、定量的かつ正確に求めること が可能となることを知見し、本発明を完成した。  As a result of further investigation, the vertical force P and the longitudinal force T acting on the wheel located behind the carriage in the traveling direction are detected, and if these detected values are used, the wheel during running is detected. The present invention was completed by discovering that the coefficient of friction between the rail and the curved rail can be determined quantitatively and accurately using (TZP).
[0012] 本発明は、広義には、走行時の鉄道車両用ボギー台車の進行方向の後ろ側に位 置する車輪に作用する上下力 Pの検出値と、この車輪に作用する前後力 Tの検出値 とに基づいて算出された、この車輪とこの車輪が走行する曲線レールとの間の摩擦 係数 = (T/P)に基づいて、摩擦調整剤噴射装置による摩擦調整剤の噴射を制 御するための塗布制御手段を備えることを特徴とする鉄道車両の摩擦制御装置であ る。この本発明にかかる鉄道車両の摩擦制御装置によれば、摩擦係数 = (T/P) を用いるため、この車輪とこの車輪が走行する曲線レールとの間の摩擦状態を、定量 的かつ正確に把握することができる。  [0012] In a broad sense, the present invention broadly refers to the detected value of the vertical force P acting on the wheel positioned on the rear side in the traveling direction of the bogie for a railway vehicle during traveling, and the longitudinal force T acting on the wheel. Based on the friction coefficient between this wheel and the curved rail on which this wheel travels calculated based on the detected value = (T / P), the friction modifier injection is controlled by the friction modifier injection device. A railway vehicle friction control device comprising an application control means for performing the above operation. According to the friction control apparatus for a railway vehicle according to the present invention, since the friction coefficient = (T / P) is used, the friction state between the wheel and the curved rail on which the wheel travels is quantitatively and accurately determined. I can grasp it.
[0013] また、本発明は、走行時の鉄道車両用ボギー台車の進行方向の後ろ側に位置す る車輪に作用する上下力を検出するための上下力検出手段と、この車輪に作用する 前後力を検出するための前後力検出手段と、上下力検出手段により検出された上下 力、及び前後力検出手段により検出された前後力に基づいて車輪とこの車輪が走行 する曲線レールとの間の摩擦係数を算出するための演算手段と、この演算手段によ り算出された摩擦係数に基づいて、摩擦調整剤を噴射する摩擦調整剤噴射装置を 制御する塗布制御手段とを備えることを特徴とする鉄道車両の摩擦制御装置である 具体的には、この本発明にかかる鉄道車両の摩擦制御装置では、摩擦係数が、 ( 検出された前後力) Z (検出された上下力)として求められることが望ま 、。 これらの本発明にかかる鉄道車両の摩擦制御装置では、塗布制御手段は、算出さ れた摩擦係数が、曲線レールに関する曲線情報に基づいて予め設定された臨界値 以上である場合に、摩擦調整剤噴射装置に摩擦調整剤を噴射する指令を出力する ことが望ましい。この場合に、臨界値が 0. 3であることがさらに望ましい。 [0013] Further, the present invention provides a vertical force detection means for detecting vertical force acting on a wheel located on the rear side of the traveling direction of the bogie for a rail vehicle during traveling, and front and rear acting on the wheel. Based on the longitudinal force detection means for detecting the force, the vertical force detected by the vertical force detection means, and the longitudinal force detected by the longitudinal force detection means, the wheel and the curved rail on which the wheel travels are detected. And a calculating means for calculating a friction coefficient, and an application control means for controlling a friction adjusting agent injection device for injecting the friction adjusting agent based on the friction coefficient calculated by the calculating means. Specifically, in the railcar friction control device according to the present invention, the friction coefficient is calculated as (detected longitudinal force) Z (detected vertical force). Is desired. In these friction control apparatuses for railway vehicles according to the present invention, the application control means includes the friction adjusting agent when the calculated friction coefficient is equal to or greater than a preset critical value based on the curve information regarding the curve rail. It is desirable to output a command to inject the friction modifier to the injection device. In this case, it is more desirable that the critical value is 0.3.
[0015] これらの本発明に力かる鉄道車両の摩擦制御装置では、塗布制御手段が、摩擦調 整剤噴射装置に摩擦調整剤の噴射量の指令を出力することが望ましい。 [0015] In the railroad vehicle friction control apparatus according to the present invention, it is desirable that the application control means outputs a command for the injection amount of the friction modifier to the friction modifier injection device.
別の観点力 は、本発明は、走行時の鉄道車両用ボギー台車の進行方向の後ろ 側に位置する車輪に作用する上下力を検出するための上下力検出手段と、この車 輪に作用する前後力を検出するための前後力検出手段と、上下力検出手段により検 出された上下力、及び前後力検出手段により検出された前後力に基づいて車輪とこ の車輪が走行する曲線レールとの間の摩擦係数を算出するための演算手段と、この 演算手段により算出された摩擦係数と曲線レールの曲線情報とに基づいて、摩擦調 整剤の噴射量を算出し、摩擦調整剤噴射装置に噴射を指令する塗布制御手段とを 備えることを特徴とする鉄道車両の摩擦制御装置である。  Another aspect of the present invention is that the present invention acts on a vertical force detection means for detecting a vertical force acting on a wheel located on the rear side in the traveling direction of the bogie for a rail vehicle during traveling, and the wheel. A longitudinal force detection means for detecting longitudinal force, a vertical force detected by the vertical force detection means, and a curved rail on which the wheel travels based on the longitudinal force detected by the longitudinal force detection means. Based on the calculation means for calculating the friction coefficient between them and the friction coefficient calculated by this calculation means and the curve information of the curve rail, the injection amount of the friction adjusting agent is calculated and the friction adjusting agent injection device is calculated. A railroad vehicle friction control device comprising: an application control unit that commands injection.
[0016] これらの本発明にかかる鉄道車両の摩擦制御装置では、前後力検出手段が、車輪 を有する輪軸の軸箱に作用する力、又はこの軸箱と台車枠との間における車両の進 行方向への相対的な変位量に基づいて、前後力を求めることが例示される。この場 合に、軸箱に作用する力は、軸箱支持装置 (Axle box suspension)に貼り付けら れた歪ゲージ (strain gauge;材料に生じる微小な歪みを電気信号として検出する もの)を用いて測定されることが望ましぐ一方、軸箱と台車枠との間における車両の 進行方向への相対的な変位量は、軸箱支持装置に設置された変位計を用いて測定 されることが望ましい。 [0016] In these railcar friction control devices according to the present invention, the longitudinal force detection means is the force acting on the axle box of the wheel shaft having the wheels, or the vehicle travels between the axle box and the carriage frame. It is exemplified that the longitudinal force is obtained based on the relative displacement amount in the direction. In this case, the force acting on the axle box is measured using a strain gauge (strain gauge, which detects a minute strain generated in the material as an electrical signal) attached to the axle box suspension. While it is desirable to measure the relative displacement in the direction of travel of the vehicle between the axle box and the carriage frame, it should be measured using a displacement meter installed in the axle box support device. Is desirable.
[0017] また、これらの本発明にかかる鉄道車両の摩擦制御装置では、上下力検出手段が 、空気ばねの内圧の測定値に基づ 、て上下力を求めることが望ま 、。  [0017] Further, in these railcar friction control apparatuses according to the present invention, it is desirable that the vertical force detection means obtains the vertical force based on the measured value of the internal pressure of the air spring.
さらに、これらの本発明にかかる鉄道車両の摩擦制御装置では、前後力検出手段 力 前後力を、進行方向の後ろ側に位置する左右二つの車輪に作用する前後力そ れぞれの差を(1Z2)倍した値として、求めることが望ま U、。  Furthermore, in these railcar friction control devices according to the present invention, the longitudinal force detection means force is calculated by calculating the difference between the longitudinal forces acting on the two left and right wheels located on the rear side in the traveling direction ( 1Z2) U, which is desired to be calculated as a multiplied value.
発明の効果 [0018] 本発明にかかる鉄道車両の摩擦制御装置により、鉄道車両が曲線レールを通過す る際における車輪と曲線レールとの間の摩擦状態を、走行時に同時に、定量的かつ 正確に把握することができる。このため、本発明によれば、このように把握した摩擦状 態に応じて摩擦調整剤を塗布することができるので、摩擦調整剤を過剰に塗布する ことを防止できるようになるとともに、小さな曲線半径の曲線レールを通過する場合に おいても車輪と曲線レールとの間の摩擦状態を適正に維持し続けることができるよう になる。 The invention's effect [0018] With the friction control device for a railway vehicle according to the present invention, the friction state between the wheels and the curved rail when the railway vehicle passes through the curved rail can be quantitatively and accurately grasped simultaneously with traveling. Can do. Therefore, according to the present invention, it is possible to apply the friction modifier according to the friction state grasped in this way, so that it is possible to prevent the friction modifier from being applied excessively, and a small curve. Even when passing through a curved rail with a radius, the friction state between the wheel and the curved rail can be maintained properly.
図面の簡単な説明  Brief Description of Drawings
[0019] [図 1]実施の形態における鉄道車両の摩擦制御装置の構成を示す説明図である。  FIG. 1 is an explanatory diagram showing a configuration of a railroad vehicle friction control apparatus according to an embodiment.
[図 2]実施の形態の塗布制御手段の制御フローの一例を示す説明図である。  FIG. 2 is an explanatory diagram showing an example of a control flow of a coating control unit of the embodiment.
[図 3]実施の形態の塗布制御手段の制御フローの他の一例を示す説明図である。  FIG. 3 is an explanatory view showing another example of the control flow of the application control means of the embodiment.
[図 4]実際の編成車両に実施の形態の摩擦制御装置を搭載して、曲線レールを走行 する状況を模式的に示す説明図である。  FIG. 4 is an explanatory diagram schematically showing a situation where the friction control device of the embodiment is mounted on an actual knitted vehicle and the vehicle travels on a curved rail.
[図 5]曲線半径が 200mの曲線レールを走行中の前後力 Tを示すグラフであり、図 5 ( a)は車輪と曲線レールとの間の摩擦制御を行った場合を示し、図 5 (b)は行わなかつ た場合を示す。  [Fig. 5] A graph showing the longitudinal force T while running on a curved rail having a curved radius of 200 m. Fig. 5 (a) shows the case where friction control between the wheel and the curved rail is performed, and Fig. 5 ( b) shows the case where no action was taken.
[図 6]曲線半径が 130mの曲線レールを走行中の前後力 Tを示すグラフであり、図 6 ( a)は車輪と曲線レールとの間の摩擦制御を行った場合を示し、図 6 (b)は行わなかつ た場合を示す。  [Fig. 6] A graph showing the longitudinal force T while running on a curved rail having a curved radius of 130 m. Fig. 6 (a) shows the case where the friction control between the wheel and the curved rail is performed, and Fig. 6 ( b) shows the case where no action was taken.
[図 7]進行方向の前側に位置する前軸の輪重 Qと横圧 Pとの比 (QZP)と、摩擦係数 (T/P)との関係を示すグラフである。  FIG. 7 is a graph showing the relationship between the ratio (QZP) between the wheel load Q of the front shaft located on the front side in the traveling direction and the lateral pressure P and the friction coefficient (T / P).
[図 8]比 (QZP)又は摩擦係数 (TZP)と、曲線レールにおける走行距離との関係を 示すグラフである。  FIG. 8 is a graph showing the relationship between the ratio (QZP) or friction coefficient (TZP) and the distance traveled on a curved rail.
[図 9]本発明による摩擦調整剤の使用量と、従来法 (噴射量一定制御)の摩擦調整剤 の使用量とを対比して示すグラフである。  FIG. 9 is a graph showing the amount of friction modifier used according to the present invention in comparison with the amount of friction modifier used in the conventional method (control of constant injection amount).
符号の説明  Explanation of symbols
[0020] 0 摩擦制御装置 [0020] 0 Friction control device
1 台車 2 車輪 1 dolly 2 wheels
3 曲線レール  3 Curved rail
4 軸箱  4-axis box
5 軸箱支持装置  5 axle box support device
6 空気ばね  6 Air spring
7a 演算手段  7a Calculation means
7b 塗布制御手段  7b Application control means
8 歪ゲージ  8 Strain gauge
9 センサー  9 Sensor
10 車体  10 body
11 先頭車両  11 Lead vehicle
11a 先頭台車  11a First truck
12 最後尾車両  12 Last car
13 摩擦調整剤噴射装置  13 Friction modifier injection device
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0021] 以下、本発明にかかる鉄道車両の摩擦制御装置を実施するための最良の形態を、 添付図面を参照しながら説明する。なお、以降の実施の形態の説明では、台車が、 軽量ィ匕と保守の簡略ィ匕とを目的として、枕はり(ボルスター; bolster)を省略した、い わゆるボルスターレス台車 (bolsterless truck)である場合を例にとる。  Hereinafter, the best mode for carrying out a railcar friction control apparatus according to the present invention will be described with reference to the accompanying drawings. In the description of the embodiments below, the trolley is a so-called bolsterless truck, in which the bolster is omitted for the purpose of light weight and simplified maintenance. Take a case as an example.
[0022] 図 1は、本実施の形態における鉄道車両の摩擦制御装置 0の構成を説明するため の説明図である。  FIG. 1 is an explanatory diagram for explaining a configuration of a railroad vehicle friction control apparatus 0 according to the present embodiment.
同図に示すように、この鉄道車両用台車 1 (以下単に「台車」という。)は、走行方向 と略平行な方向に設けられる 2つの台車枠 (側はり; Side frame) laと、走行方向と 略直交する水平方向に配置されて左右 2つの台車枠 laを接続する二つの台車枠 ( 横はり; Transom 図示しない)と、左右 2つの台車枠 laの長手方向の略中央の上 面に配置されて、車体 10の底面に固定される左右 2つの空気ばね 6 (Air spring ; 乗客の乗り心地向上のために近年の車両では標準的に装備されている 2次ばね)と 、二つの台車枠 (横はり、図示しない)の間の中央部に配置されて台車 1が発生する 前後方向への力を車体 10に伝達するための牽引装置(図示しない)と、左右 2つの 台車枠 (側はり) laそれぞれの長手方向の両端部に配置されて車輪 2を軸受けを介 して支持する 4つの軸箱 4と、 4つの軸箱 4をそれぞれ支持する 4つの軸箱支持装置( リンク) 5とを備える。 As shown in the figure, this railcar bogie 1 (hereinafter simply referred to as “trolley”) has two bogie frames (side frames) la provided in a direction substantially parallel to the running direction, and the running direction. And two bogie frames (horizontal beam; Transom not shown) that are arranged in a horizontal direction substantially orthogonal to the left and right to connect the two bogie frames la and the upper surface of the left and right two bogie frames la in the longitudinal center. And two left and right air springs 6 (Air spring; a secondary spring that is standardly equipped in recent vehicles to improve passenger comfort) and two bogie frames It is placed in the center between the horizontal beam (not shown) and the cart 1 is generated. A traction device (not shown) for transmitting the longitudinal force to the vehicle body 10 and two left and right bogie frames (side beams) la are arranged at both longitudinal ends of each wheel 2 through the bearings. It includes four axle boxes 4 for supporting, and four axle box support devices (links) 5 for supporting the four axle boxes 4 respectively.
[0023] この台車 1は、軸箱 4を台車枠 laから軸箱支持装置(リンク) 5を介して支持する軸 梁式を改良した、いわゆるモノリンク式ボルスターレス台車であり、この軸箱支持装置 (リンク) 5を台車枠 laの走行方向の内側のみに配置することにより台車枠 laの走行 方向への長さを短縮し、これにより大幅な軽量ィ匕を図ったものである。  [0023] This cart 1 is a so-called monolink bolsterless cart, which is an improved shaft beam type that supports the axle box 4 from the carriage frame la via the axle box support device (link) 5, and this axle box support By arranging the device (link) 5 only inside the traveling direction of the bogie frame la, the length of the bogie frame la in the running direction is shortened, thereby achieving a significant light weight.
[0024] このモノリンク式ボルスターレス台車 1は、車体 10と台車枠 laとが左右二つの空気 ばね 6で直接結合され、操舵や振動のために生じる台車枠 laと車体 10との間におけ る相対変位を、各空気ばね 6それぞれの変形によって吸収するものであり、従来の軸 箱守り式 (ペデスタル式)台車の欠点である、軸箱守りと軸箱との摺動を防ぐことがで きる。このため、このボルスターレス台車 1は、近年主流として用いられる台車である。  [0024] In this monolink bolsterless bogie 1, the body 10 and the bogie frame la are directly coupled by the two left and right air springs 6, and the bogie frame la and the car body 10 generated due to steering and vibration are placed between the bogie frame la and the car body 10. The relative displacement of each air spring 6 is absorbed by the deformation of each air spring 6 and prevents sliding between the axle box guard and the axle box, which is a disadvantage of the conventional axle box guard type (pedestal type) carriage. wear. For this reason, this bolsterless bogie 1 is a bogie used as a mainstream in recent years.
[0025] 台車 1のこれらの構成要素は、周知かつ慣用の鉄道車両用ボルスターレス台車と 同じであって当業者にとっては自明な事項であるので、台車 1の各構成要素に関す るこれ以上の説明は省略する。  [0025] Since these components of the bogie 1 are the same as the well-known and conventional railcar bolsterless bogies and are obvious to those skilled in the art, further components relating to the bogie 1 are further described. Description is omitted.
[0026] 本実施の形態の摩擦制御装置 0は、鉄道車両用台車 1の進行方向(図 1における 矢印 Aの指示方向)の後ろ側に位置する車輪 2に作用する上下力 Pを検出するため の手段 9及び前後力 Tを検出するための手段 8と、これらの検出手段 8、 9によって検 出された前後力 T及び上下力 Pに基づいて、車輪 2と曲線レール 3との間の摩擦係数 μを演算するための演算手段 7aとを備える。  [0026] The friction control device 0 according to the present embodiment detects the vertical force P acting on the wheel 2 located behind the traveling direction of the railway vehicle carriage 1 (indicated by the arrow A in FIG. 1). 9 and the means 8 for detecting the longitudinal force T and the friction between the wheel 2 and the curved rail 3 based on the longitudinal force T and the vertical force P detected by the detecting means 8 and 9. And an arithmetic means 7a for calculating the coefficient μ.
[0027] 上下力 Pを検出するための手段 9及び前後力 Tを検出するための手段 8は、曲線レ ール 3を走行時の台車 1の進行方向の後ろ側に位置する車輪 2に作用する上下力 P 及び前後力 Tを検出できるものであればよぐ特定の検出手段には限定されない。つ まり、上下力 P及び前後力 Tを直接的に検出できるものでもよいし、あるいは、ある検 出値に基づ 、て間接的に検出できるものでもよ 、。  [0027] The means 9 for detecting the vertical force P and the means 8 for detecting the longitudinal force T act on the wheel 2 located on the rear side in the traveling direction of the carriage 1 when traveling on the curved rail 3. As long as the vertical force P and the longitudinal force T can be detected, the detection means is not limited to a specific detection means. In other words, the vertical force P and the longitudinal force T may be detected directly, or may be detected indirectly based on a certain detected value.
[0028] 前後力 Tは、例えば図 1に例示するように、台車 1の進行方向の後ろ側に位置する 輪軸の軸箱 4を支持する軸箱支持装置 5に歪ゲージ 8を貼り付けておき、曲線レール 3の通過時における軸箱 4に作用する力を測定することにより求めてもよいし、これと は異なり、軸箱支持装置 5に変位計を設置しておき、軸箱 4と台車枠 laとの間におけ る車両の進行方向への相対的な変位量を測定することにより求めてもよい。 [0028] For example, as illustrated in FIG. 1, the longitudinal force T is obtained by attaching a strain gauge 8 to a shaft box support device 5 that supports a wheel box 4 that is located behind the carriage 1 in the traveling direction. , Curved rail Alternatively, it may be obtained by measuring the force acting on the axle box 4 when passing 3 or, unlike this, a displacement meter is installed in the axle box support device 5, and the axle box 4 and the carriage frame la It may be obtained by measuring the relative displacement in the traveling direction of the vehicle between the two.
[0029] この前後力 Tは、左右の車輪 2、 2のどちらか一方について検出するようにしてもよ い。しかし、両方の車輪 2、 2について検出した前後力 Tの差を(1Z2)倍したものを 用いることが望ましい。曲線レール 3の通過中は、通常、車軸の両側の車輪 2には異 なる向きの前後力 Tが作用するため、車軸の両側の車輪 2についての前後力 Tを求 めてその差を求めれば、例えばブレーキをかけた際に検出される前後力 Tの影響を 解消できるからである。 [0029] The longitudinal force T may be detected for one of the left and right wheels 2 and 2. However, it is desirable to use a value obtained by multiplying the difference in the longitudinal force T detected for both wheels 2 and 2 by (1Z2). While the curved rail 3 is passing, the longitudinal force T in different directions usually acts on the wheels 2 on both sides of the axle, so if the longitudinal force T on the wheels 2 on both sides of the axle is obtained, the difference is obtained. This is because, for example, the influence of the longitudinal force T detected when the brake is applied can be eliminated.
[0030] 一方、上下力 Pを検出する手段 9としては、例えば図 1に示すように、台車 1の台車 枠 (側はり) laと車体 10との間に介在する空気ばね 6の内圧を測定するセンサー 9を 設けておき、センサー 9の測定値力も上下力 Pを求めることが例示される。  On the other hand, as means 9 for detecting vertical force P, for example, as shown in FIG. 1, the internal pressure of air spring 6 interposed between bogie frame (side beam) la of bogie 1 and vehicle body 10 is measured. For example, the sensor 9 is provided, and the measured force of the sensor 9 is obtained as the vertical force P.
[0031] なお、上下力の検出手段 9として、空気ばね 6の内圧の測定値を用いずに、軸箱 4 と軸ばねと間の変位量や、また、台車枠 laにおける空気ばね 6と軸箱 4との中間の位 置における変位量等を用いることも可能である。  [0031] It should be noted that the vertical force detection means 9 does not use the measured value of the internal pressure of the air spring 6, and the amount of displacement between the axle box 4 and the axle spring, or the air spring 6 and the axle in the bogie frame la. It is also possible to use a displacement amount at a position intermediate to box 4.
[0032] 演算手段 7aは、検出手段 8から入力される前後力 Tの検出値と、検出手段 9から入 力される上下力 Pの検出値とに基づいて、車輪 2と曲線レール 3との間の摩擦係数 を算出する。ここで、算出される摩擦係数 は、上述したように左右力 Qが作用しな い車輪 2についての摩擦係数であるので、簡易的に = (TZP)として算出される。  [0032] The calculation means 7a is based on the detection value of the longitudinal force T input from the detection means 8 and the detection value of the vertical force P input from the detection means 9, and Calculate the coefficient of friction between. Here, since the calculated friction coefficient is the friction coefficient for the wheel 2 to which the lateral force Q does not act as described above, it is simply calculated as = (TZP).
[0033] さらに、本実施の形態の摩擦制御装置 0は塗布制御手段 7bを有する。本実施の形 態の塗布制御手段 7bの制御フローの例を、図 2、 3に示す。以下、図 2、 3を参照しな がら、制御フローの例二つを以下に分けて説明する。  [0033] Furthermore, the friction control device 0 of the present embodiment includes application control means 7b. An example of the control flow of the coating control means 7b in this embodiment is shown in FIGS. In the following, referring to Figs. 2 and 3, two examples of control flow will be described separately.
(i)図 2に示すように、ステップ(以下「S」と記載する) 1にお 、て台車 1が曲線レール 3 に進入したことを適宜手段により検知して S2へ移行する。  (i) As shown in FIG. 2, in step (hereinafter referred to as “S”) 1, it is detected by appropriate means that the carriage 1 has entered the curved rail 3, and the process proceeds to S2.
[0034] S2では、検出手段 8により前後力 Tを検出するとともに、検出手段 9により上下力 P を検出する。そして、これらの検出値を演算手段 7aに入力して、 S3へ移行する。 In S2, the detection means 8 detects the longitudinal force T and the detection means 9 detects the vertical force P. Then, these detected values are input to the calculating means 7a, and the process proceeds to S3.
S3では、演算手段 7aにより摩擦係数; zを (TZP)として算出して塗布制御手段 7b に入力されるとともに、図示しない記憶装置により記憶された、例えば曲線レール 3の 半径、旋回方向、曲線レール 3の長ささらには制限通過速度等といった曲線情報が、 塗布制御手段 7bに入力される。なお、この「曲線情報」は、走行中に適宜取り込んだ ものでもよいし、あるいは予め記憶させておいたものでもよい。そして、 S4へ移行する In S3, the coefficient of friction; z is calculated as (TZP) by the calculation means 7a and is input to the application control means 7b. Curve information such as the radius, the turning direction, the length of the curved rail 3 and the limit passing speed is input to the application control means 7b. The “curve information” may be appropriately acquired during traveling or may be stored in advance. And move to S4
[0035] S4では、塗布制御手段 7bにより、入力された摩擦係数 を、曲線情報に基づいて 予め設定された臨界値と比較し、摩擦制御、すなわち摩擦調整剤を噴射する要否を 判断する。摩擦制御を必要と判断した場合には S5へ移行し、不要と判断した場合に は S6へ移行する。 In S4, the application control means 7b compares the input friction coefficient with a preset critical value based on the curve information, and determines whether or not it is necessary to perform friction control, that is, to inject the friction modifier. If it is determined that friction control is necessary, the process proceeds to S5. If it is determined that friction control is not necessary, the process proceeds to S6.
[0036] S5では、塗布制御手段 7bが、摩擦調整剤噴射装置(図示しな!ヽ)に噴射すべき旨 を決定し、 S6へ移行する。  In S5, the application control means 7b determines that it should be injected into the friction modifier injection device (not shown!), And proceeds to S6.
S6では、摩擦制御を行わな 、場合には摩擦調整剤の噴射の制御を行わずに S7 へ移行し、曲線レール 3を通過する。一方、摩擦制御を行う場合には、さらに摩擦係 数 と臨界値との差を適宜ランク分けして予め作成してあるテーブル値に応じて、摩 擦調整剤の噴射量を決定し、決定された噴射量で摩擦調整剤を噴射する指令を、 摩擦調整剤噴射装置へ出力する。すなわち、算出した摩擦係数 が臨界値以下で ある場合には摩擦調整剤を噴射せず、臨界値を超える場合には摩擦調整剤を噴射 する。  In S6, if friction control is not performed, the control proceeds to S7 without controlling the injection of the friction modifier, and passes through the curved rail 3. On the other hand, when the friction control is performed, the difference between the friction coefficient and the critical value is appropriately ranked, and the injection amount of the friction adjusting agent is determined according to the table value created in advance. The command to inject the friction modifier with the injection amount is output to the friction modifier injection device. That is, when the calculated friction coefficient is less than the critical value, the friction modifier is not injected, and when it exceeds the critical value, the friction modifier is injected.
[0037] 後者の場合、摩擦係数と臨界値との差が小さいときには摩擦調整剤の噴射量を少 さく設定し、一方差が大きいときには摩擦調整剤の噴射量を多く設定する。なお、摩 擦係数 と摩擦調整剤の適用の可否、適用量の具体的な関係は、例えば曲線半径 や通過速度等といった具体的な曲線情報を考慮して適宜設定すればよい。これによ り、摩擦調整剤噴射装置から指示された量の摩擦調整剤を噴射しながら、曲線レー ル 3を通過することができるので、摩擦調整剤の使用量を必要最小限に抑制できる。 (ii)図 3に示すように、ステップ 1において台車 1が曲線レール 3に進入したことを適宜 手段により検知して S2へ移行する。  [0037] In the latter case, when the difference between the friction coefficient and the critical value is small, the injection amount of the friction modifier is set small, and when the difference is large, the injection amount of the friction modifier is set large. The specific relationship between the friction coefficient, the applicability of the friction modifier, and the application amount may be set as appropriate in consideration of specific curve information such as the curve radius and passage speed. As a result, it is possible to pass through the curve rail 3 while injecting the amount of friction modifier instructed from the friction modifier injection device, so that the amount of friction modifier used can be minimized. (ii) As shown in FIG. 3, in step 1, it is detected by appropriate means that the carriage 1 has entered the curved rail 3, and the process proceeds to S2.
[0038] S2では、検出手段 8により前後力 Tを検出するとともに、検出手段 9により上下力 P を検出する。そして、これらの検出値を演算手段 7aに入力して、 S3へ移行する。  [0038] In S2, the detection means 8 detects the longitudinal force T, and the detection means 9 detects the vertical force P. Then, these detected values are input to the calculating means 7a, and the process proceeds to S3.
S3では、演算手段 7aにより摩擦係数; zを (TZP)として算出して塗布制御手段 7b に入力するとともに、図示しない記憶装置により記憶された、例えば曲線レール 3の 半径、旋回方向、曲線レールの長ささらには制限通過速度等といった曲線情報が、 塗布制御手段 7bに入力される。そして、 S4へ移行する。 In S3, the friction coefficient; z is calculated as (TZP) by the calculation means 7a and the application control means 7b In addition, the curve information such as the radius of the curved rail 3, the turning direction, the length of the curved rail, and the limit passing speed, which is stored in a storage device (not shown), is input to the application control means 7b. And it moves to S4.
[0039] S4では、塗布制御手段 7bにより、入力された摩擦係数 及び曲線情報に基づい て、摩擦調整剤の噴射量を決定する。そして、 S5へ移行する。  [0039] In S4, the application control means 7b determines the injection amount of the friction modifier based on the input friction coefficient and curve information. And it moves to S5.
S5では、決定された噴射量で摩擦調整剤を噴射すべき指令を摩擦調整剤噴射装 置に出力する。これにより、摩擦調整剤噴射装置から指示された量の摩擦調整剤を 噴射しながら、曲線レール 3を通過する。  In S5, a command to inject the friction modifier with the determined injection amount is output to the friction modifier injection device. As a result, it passes through the curved rail 3 while injecting the amount of friction modifier specified by the friction modifier injection device.
[0040] この本実施の形態の制御を、実際の編成車両に適用する場合を簡単に説明する。  [0040] A case where the control of the present embodiment is applied to an actual knitted vehicle will be briefly described.
図 4は、実際の編成車両に本実施の形態の摩擦制御装置 0を搭載して、曲線レール 3を走行する状況を模式的に示す説明図である。  FIG. 4 is an explanatory view schematically showing a situation in which the friction control device 0 of the present embodiment is mounted on an actual knitted vehicle and travels on the curved rail 3.
[0041] 同図に示すように、先頭車両 11が曲線レール 3に進入した場合には、先頭車両 11 の先頭台車 11aの進行方向の後ろ側に位置する車輪 2に作用する上下力 P及び前 後力 Tを検出する。そして、このようにして検出した上下力 P及び前後力 Tに基づいて 摩擦係数 を算出する。  [0041] As shown in the figure, when the leading vehicle 11 enters the curved rail 3, the vertical force P and the front force acting on the wheel 2 located behind the leading carriage 11a in the traveling direction of the leading vehicle 11 Detects rear force T. Then, the friction coefficient is calculated based on the vertical force P and the longitudinal force T detected in this way.
[0042] 先頭車両 11に搭載された塗布制御手段 7では、算出した摩擦係数; zを、曲線情報 に基づ!/、て予め設定された臨界値と比較し、予め設定された臨界値よりも大き 、場 合には、摩擦調整剤を噴射する必要が有ると判断する。この場合、摩擦係数 と臨 界値との差を適宜ランク分けして予め作成したテーブル値に応じて、摩擦調整剤の 噴射量を決定する。一方、算出した摩擦係数 が臨界値よりも小さい場合には、摩 擦調整剤の噴射の必要が無 、と判断する。  [0042] The application control means 7 mounted on the leading vehicle 11 compares the calculated friction coefficient; z with a threshold value set in advance based on the curve information! If it is too large, it is determined that it is necessary to spray a friction modifier. In this case, the difference between the friction coefficient and the critical value is appropriately ranked, and the injection amount of the friction modifier is determined according to a table value created in advance. On the other hand, if the calculated friction coefficient is smaller than the critical value, it is determined that the friction modifier need not be injected.
[0043] そして、摩擦調整剤の噴射の要否、及び、噴射する場合にはその噴射量の制御指 令 Bは、例えば先頭車両 11の摩擦調整剤噴射装置 13あるいは最後尾車両 12の摩 擦調整剤噴射装置 13へ出力される。その際、この編成車両のために摩擦制御を行う ようにしてもよぐあるいは、次の編成車両のために摩擦制御を行うようにしてもよい。 次の編成車両のために摩擦制御を行う場合には、摩擦調整剤は、図 6に示すように 、最後尾車両 12に設置された摩擦調整剤噴射装置 13を用いて、塗布すればよい。  [0043] The necessity of injection of the friction modifier and, when it is injected, the control command B for the injection amount is, for example, the friction modifier injection device 13 of the leading vehicle 11 or the friction of the tail vehicle 12. It is output to the adjusting agent injection device 13. At that time, the friction control may be performed for the knitted vehicle, or the friction control may be performed for the next knitted vehicle. When the friction control is performed for the next knitting vehicle, the friction modifier may be applied using a friction modifier injection device 13 installed in the last vehicle 12 as shown in FIG.
[0044] このような摩擦制御を、最後尾車両 12が曲線レール 3を通過するまでの間、行う。 このように、本実施の形態によれば、算出した摩擦係数; zを用いて、鉄道車両が曲 線レール 3を通過する際における車輪 2と曲線レール 3との間の摩擦状態を、走行時 に同時に定量的かつ正確に把握でき、算出した摩擦係数の値の大小に応じて摩擦 調整剤を塗布できるようになる。このため、摩擦調整剤を過剰に塗布することを防止 できるとともに、小さな曲線半径の曲線レール 3を通過する場合においても車輪 2と曲 線レール 3との間の摩擦状態を常に適正に維持することが可能になる。 Such friction control is performed until the last vehicle 12 passes through the curved rail 3. Thus, according to the present embodiment, using the calculated friction coefficient z, the friction state between the wheel 2 and the curved rail 3 when the railway vehicle passes the curved rail 3 is At the same time, it is possible to grasp quantitatively and accurately, and it becomes possible to apply a friction modifier according to the magnitude of the calculated friction coefficient. For this reason, it is possible to prevent excessive application of the friction modifier, and always maintain the friction state between the wheel 2 and the curved rail 3 properly even when passing through the curved rail 3 having a small radius of curvature. Is possible.
実施例 1  Example 1
[0045] さらに、本発明を実施例を参照しながらより具体的に説明する。  Furthermore, the present invention will be described more specifically with reference to examples.
図 1に示す本発明にかかる摩擦制御装置 0を搭載した鉄道車両用台車 1を備える 鉄道車両を、半径 200m又は 130mの曲線レール 3をそれぞれ走行させた。そして、 曲線レール 3に摩擦調整剤を噴射することにより車輪 2と曲線レール 3との間の摩擦 制御を行った場合、及び行わな力つた場合のそれぞれについて、進行方向の後ろ側 に位置する車輪 2に作用する前後力 T及び上下力 Pと摩擦係数; zとの関係を調べた  A railway vehicle provided with a railway vehicle carriage 1 equipped with the friction control device 0 according to the present invention shown in FIG. 1 was run on a curved rail 3 having a radius of 200 m or 130 m, respectively. Then, when the friction control between the wheel 2 and the curve rail 3 is performed by injecting the friction modifier on the curve rail 3, and when the force is applied, the wheel positioned on the rear side in the traveling direction is used. The relationship between the longitudinal force T and vertical force P acting on 2 and the friction coefficient z was investigated.
[0046] なお、前後力 Tは、台車 1の進行方向の後ろ側に位置する左右の車輪 2、 2の軸箱 支持装置 5、 5に歪ゲージ 8を貼り付けておき、左右の軸箱 4、 4に作用する前後力 T を求め、その差の(1Z2)を前後力 Tとして検出した。一方、上下力 Pは、空気ばね 6 の内圧をセンサー 9により測定して空気ばね 6に作用する荷重を求め、これを上下力 Pとして検出した。 [0046] It should be noted that the longitudinal force T is determined by attaching strain gauges 8 to the axle box support devices 5 and 5 of the left and right wheels 2 and 2 located on the rear side in the traveling direction of the carriage 1, and the left and right axle boxes 4 Thus, the longitudinal force T acting on 4 was obtained, and the difference (1Z2) was detected as the longitudinal force T. On the other hand, the vertical force P was determined by measuring the internal pressure of the air spring 6 with the sensor 9 to obtain the load acting on the air spring 6 and detecting this as the vertical force P.
[0047] 測定結果を表 1にまとめて示す。表 1には、曲線レール 3を走行時における進行方 向の後ろ側に位置する車輪 2の前後力 T(kN)の最大値、上下力 P (kN)の最大値、 及び、それぞれの値から求めた摩擦係数 をまとめて示す。なお、前後力 Tの最大 値及び上下力 Pの最大値とは、曲線レール 3を走行中に連続して測定した前後力 T 及び上下力 Pそれぞれの値の最大値である。  [0047] Table 1 summarizes the measurement results. Table 1 shows the maximum value of the longitudinal force T (kN), the maximum value of the vertical force P (kN) of the wheel 2 located behind the traveling direction when traveling on the curved rail 3, and the respective values. The obtained friction coefficient is shown together. The maximum value of the longitudinal force T and the maximum value of the vertical force P are the maximum values of the longitudinal force T and the vertical force P measured continuously while traveling on the curved rail 3.
[0048] [表 1] 曲線半径 200m 曲線半径 1 30m 摩擦制御の状態 [0048] [Table 1] Curve radius 200m Curve radius 1 30m Friction control status
前後力 T 上下力 P 摩擦係数// 前後力 T 上下力 P摩擦係数 摩擦制御有り 3.04 k N 24.3 kN 0.1 3 4.2 k N 24.3 k N 0.1 7 摩擦制御無し 5.64 k N 24.3 k N 0.23 1 0.6 k N 24.3 k N 0.44  Longitudinal force T Vertical force P Friction coefficient // Longitudinal force T Vertical force P Friction coefficient With friction control 3.04 k N 24.3 kN 0.1 3 4.2 k N 24.3 k N 0.1 7 Without friction control 5.64 k N 24.3 k N 0.23 1 0.6 k N 24.3 k N 0.44
[0049] 図 5は、曲線半径が 200mの曲線レール 3を走行中の前後力 Tを示すグラフであり 、図 5 (a)は車輪 2と曲線レール 3との間の摩擦制御を行った場合を示し、図 5 (b)は 行わな力つた場合を示す。一方、図 6は、曲線半径が 130mの曲線レール 3を走行中 の前後力 Tを示すグラフであり、図 6 (a)は車輪 2と曲線レール 3との間の摩擦制御を 行った場合を示し、図 6 (b)は行わなカゝつた場合を示す。 [0049] Fig. 5 is a graph showing the longitudinal force T during running on the curved rail 3 having a curved radius of 200 m. Fig. 5 (a) shows a case where the friction control between the wheel 2 and the curved rail 3 is performed. Fig. 5 (b) shows the case where force is applied. On the other hand, Fig. 6 is a graph showing the longitudinal force T while running on the curved rail 3 having a curved radius of 130 m, and Fig. 6 (a) shows the case where the friction control between the wheel 2 and the curved rail 3 is performed. Figure 6 (b) shows the case where no action was taken.
[0050] 表 1、図 5、 6に示すように、本発明に基づいて車輪 2と曲線レール 3との間の摩擦 制御を行うことにより、摩擦係数 を顕著に小さくすることができ、特に曲線レール 3 の曲線半径が小さくなるほど、摩擦係数 を顕著に抑制できることがわかる。また、本 発明に基づいて車輪 2と曲線レール 3との間の摩擦制御を行うことにより、曲線レール 3を通過して 、る際の摩擦係数の変動幅も小さく抑制でき、車両の安定走行の点でも 有禾 IJ〖こなることがわ力る。  [0050] As shown in Table 1 and FIGS. 5 and 6, by performing the friction control between the wheel 2 and the curved rail 3 based on the present invention, the friction coefficient can be remarkably reduced. It can be seen that the smaller the curve radius of rail 3, the more the friction coefficient can be suppressed. Further, by performing the friction control between the wheel 2 and the curved rail 3 according to the present invention, the fluctuation range of the friction coefficient when passing through the curved rail 3 can be suppressed to be small, and the stable running of the vehicle can be suppressed. In terms of points, Ari IJ is also powerful.
実施例 2  Example 2
[0051] 一般的に、車輪と曲線レールとの間の摩擦係数が高くなると、騒音や振動さらには 曲線レールの摩耗等が増大することが知られている。これまで、車輪と曲線レールと の間の摩擦状態の評価は、通常、進行方向の前側に位置する前軸の輪重 Qと横圧 Pとの比(QZP)により、評価してきた。すなわち、比(QZP)が 0. 4を超えると、騒音 、振動及び摩耗がいずれも過大となることが知られているため、本発明で制御因子と して用いる上述した摩擦係数 μと比 (QZP)との関係を調べた。  [0051] In general, it is known that when the friction coefficient between a wheel and a curved rail increases, noise, vibration, wear of the curved rail, and the like increase. Up to now, the evaluation of the frictional state between the wheel and the curved rail has usually been evaluated by the ratio (QZP) of the wheel load Q and the lateral pressure P of the front axle located on the front side in the traveling direction. That is, it is known that when the ratio (QZP) exceeds 0.4, noise, vibration, and wear are all excessive, so the above-described friction coefficient μ and the ratio ( QZP) was investigated.
[0052] 図 7は、進行方向の前側に位置する前軸の輪重 Qと横圧 Ρとの比(QZP)と、本発 明にお ヽて規定する摩擦係数 (ΤΖΡ)との関係を示すグラフである。  [0052] Fig. 7 shows the relationship between the ratio (QZP) between the wheel load Q of the front shaft located on the front side in the traveling direction and the lateral pressure Ρ and the friction coefficient (ΤΖΡ) defined in the present invention. It is a graph to show.
同図に示すように、比(QZP) =0. 52 (T/P) +0. 18の関係にあり、摩擦係数 (T ZP)と比 (QZP)との間には明確な相関が見られる。特に、摩擦係数 (TZP) =0. 4 2が比(QZP) =0. 4に相当する。そこで、測定データのばらつきも考慮して摩擦係 数 (TZP)の臨界値を 0. 3 ( (Q/P) =0. 34)に設定し、曲線レールの通過時に検 出される摩擦係数 (TZP)が 0. 30を超過した場合に、本発明の摩擦制御を行うフィ ードバック制御を行い、このフィードバック制御を行わない場合と比較した。なお、摩 擦制御は、摩擦調整剤を曲線レールに噴射することにより行なった。 As shown in the figure, the ratio (QZP) is 0.52 (T / P) +0.18, and there is a clear correlation between the coefficient of friction (T ZP) and the ratio (QZP). It is done. In particular, the coefficient of friction (TZP) = 0.42 corresponds to the ratio (QZP) = 0.4. Therefore, considering the variation in measurement data, friction When the critical value of the number (TZP) is set to 0.3 ((Q / P) = 0.34) and the coefficient of friction (TZP) detected when passing the curved rail exceeds 0.30, this The feedback control with the friction control of the invention was performed and compared with the case without this feedback control. The friction control was performed by injecting a friction modifier onto the curved rail.
[0053] 図 8は、比(QZP)又は摩擦係数 (TZP)と、曲線レールにおける走行距離との関 係を示すグラフである。 FIG. 8 is a graph showing the relationship between the ratio (QZP) or the coefficient of friction (TZP) and the travel distance on the curved rail.
同図に示すように、摩擦制御を行わない場合(図 8における摩擦制御無し)では、比 (QZP)がおおよそ 0. 4以上の高い値で推移する。これに対し、摩擦係数 (TZP)の 臨界値を 0. 3に設定して摩擦制御を行うと(図 8におけるフィードバック摩擦制御)、 摩擦係数が臨界値の 0. 3で略一定に推移するとともに、その変動幅も小さく抑制さ れた。さらに、比 (QZP)も常に 0. 4を下回る低い値で推移しており、騒音や振動に 悪影響が出な 、レベルに保たれて 、た。  As shown in the figure, when friction control is not performed (without friction control in FIG. 8), the ratio (QZP) changes at a high value of approximately 0.4 or more. On the other hand, when the friction control is performed by setting the critical value of the friction coefficient (TZP) to 0.3 (feedback friction control in Fig. 8), the friction coefficient stays substantially constant at the critical value 0.3. The fluctuation range was also kept small. In addition, the ratio (QZP) was always at a low value below 0.4, and it was maintained at a level that had no adverse effects on noise and vibration.
[0054] 図 9は、本発明による摩擦調整剤の使用量と、従来法 (噴射量一定制御)の摩擦調 整剤の使用量とを対比して示すグラフである。同図に示すように、摩擦係数 (TZP) の検出値と定めた臨界値との差が大きい場合には、摩擦調整剤の噴射量をそれに 応じて増加することになるが、本発明により摩擦調整剤の使用量を略半減させながら 、従来よりも最適に摩擦制御を行うことができることがわかる。  FIG. 9 is a graph showing the amount of friction modifier used according to the present invention in comparison with the amount of friction modifier used in the conventional method (control of injection amount constant). As shown in the figure, when the difference between the detected value of the friction coefficient (TZP) and the set critical value is large, the injection amount of the friction modifier is increased accordingly. It can be seen that the friction control can be performed more optimally than before while the amount of the adjusting agent used is substantially halved.
[0055] なお、上述の実施例の摩擦制御装置は、摩擦調整剤を曲線レール自体に噴射す るものである。しかし、本発明は、リアルタイムで常時把握する走行時の摩擦係数に 基づ 、て摩擦制御を行なう摩擦制御装置に関するものであるので、摩擦調整剤の噴 射対象は曲線レールには限定されず、例えば車輪のフランジ等に噴射するものであ つてもよい。  [0055] Note that the friction control device of the above-described embodiment injects a friction modifier onto the curved rail itself. However, since the present invention relates to a friction control device that performs friction control based on a friction coefficient during traveling that is constantly grasped in real time, the target of spraying the friction modifier is not limited to a curved rail, For example, it may be sprayed onto a wheel flange or the like.

Claims

請求の範囲 The scope of the claims
[1] 走行時の鉄道車両用ボギー台車の進行方向の後ろ側に位置する車輪に作用する 上下力の検出値と、前記車輪に作用する前後力の検出値とに基づいて算出された、 前記車輪と曲線レールとの間の摩擦係数に基づいて、摩擦調整剤噴射装置による 摩擦調整剤の噴射を制御するための塗布制御手段を備えることを特徴とする鉄道車 両の摩擦制御装置。  [1] Calculated based on the detected value of the vertical force acting on the wheel located on the rear side in the traveling direction of the bogie for the railway vehicle during traveling, and the detected value of the longitudinal force acting on the wheel, A friction control device for a railway vehicle, comprising application control means for controlling injection of the friction modifier by the friction modifier injection device based on a friction coefficient between the wheel and the curved rail.
[2] 走行時の鉄道車両用ボギー台車の進行方向の後ろ側に位置する車輪に作用する 上下力を検出するための上下力検出手段と、  [2] a vertical force detection means for detecting a vertical force acting on a wheel located on the rear side in the traveling direction of the bogie for a rail vehicle during traveling;
前記車輪に作用する前後力を検出するための前後力検出手段と、  Longitudinal force detection means for detecting longitudinal force acting on the wheel;
前記上下力検出手段により検出された上下力、及び前記前後力検出手段により検 出された前後力に基づいて前記車輪と曲線レールとの間の摩擦係数を算出するた めの演算手段と、  Computing means for calculating a friction coefficient between the wheel and the curved rail based on the vertical force detected by the vertical force detecting means and the longitudinal force detected by the longitudinal force detecting means;
該演算手段により算出された摩擦係数に基づいて、摩擦調整剤を噴射する摩擦調 整剤噴射装置を制御する塗布制御手段と  Application control means for controlling a friction modifier injection device for injecting a friction modifier based on the friction coefficient calculated by the arithmetic means;
を備えることを特徴とする鉄道車両の摩擦制御装置。  A friction control device for a railway vehicle, comprising:
[3] 前記摩擦係数は、 { (検出された前後力) Z (検出された上下力 Mとして求められる請 求項 1又は請求項 2に記載された鉄道車両の摩擦制御装置。 [3] The railroad vehicle friction control device according to claim 1 or 2, wherein the friction coefficient is {(detected longitudinal force) Z (detected vertical force M).
[4] 前記塗布制御手段は、前記摩擦係数が、前記曲線レールに関する曲線情報に基づ いて予め設定された臨界値を超える場合に、前記摩擦調整剤噴射装置に前記摩擦 調整剤を噴射する指令を出力する請求項 1から請求項 3までのいずれ力 1項に記載 された鉄道車両の摩擦制御装置。 [4] The application control means is configured to instruct the friction adjusting agent injection device to inject the friction adjusting agent when the friction coefficient exceeds a preset critical value based on curve information regarding the curved rail. The railcar friction control device according to any one of claims 1 to 3, wherein the force is output.
[5] 前記臨界値は 0. 3である請求項 1から請求項 4までのいずれか 1項に記載された鉄 道車両の摩擦制御装置。 [5] The friction control device for a railway vehicle according to any one of claims 1 to 4, wherein the critical value is 0.3.
[6] 前記塗布制御手段は、前記摩擦調整剤噴射装置に前記摩擦調整剤の噴射量の指 令を出力する請求項 1から請求項 5までのいずれか 1項に記載された鉄道車両の摩 擦制御装置。 [6] The railroad vehicle friction gear according to any one of claims 1 to 5, wherein the application control means outputs an instruction of the injection amount of the friction modifier to the friction modifier injection device. Rub control device.
[7] 走行時の鉄道車両用ボギー台車の進行方向の後ろ側に位置する車輪に作用する 上下力を検出するための上下力検出手段と、 前記車輪に作用する前後力を検出するための前後力検出手段と、 前記上下力検出手段により検出された上下力、及び前記前後力検出手段により検 出された前後力に基づいて前記車輪と曲線レールとの間の摩擦係数を算出するた めの演算手段と、 [7] A vertical force detecting means for detecting a vertical force acting on a wheel located on the rear side of the traveling direction of the bogie for a rail vehicle during traveling, A longitudinal force detection means for detecting a longitudinal force acting on the wheel, a vertical force detected by the vertical force detection means, and the wheel and curve based on the longitudinal force detected by the longitudinal force detection means. Computing means for calculating the coefficient of friction with the rail,
該演算手段により算出された摩擦係数と前記曲線レールの曲線情報とに基づいて 、摩擦調整剤の噴射量を算出し、前記摩擦調整剤噴射装置に噴射を指令する塗布 制御手段と  An application control means for calculating an injection amount of the friction adjusting agent based on the friction coefficient calculated by the calculating means and the curve information of the curved rail, and instructing the friction adjusting agent injection device to inject;
を備えることを特徴とする鉄道車両の摩擦制御装置。  A friction control device for a railway vehicle, comprising:
[8] 前記前後力検出手段は、前記車輪を有する輪軸の軸箱に作用する力、又は該軸箱 と台車枠との間における車両の進行方向への相対的な変位量に基づいて、前記前 後力を求める請求項 1から請求項 7までのいずれか 1項に記載された鉄道車両の摩 擦制御装置。  [8] The longitudinal force detection means is based on the force acting on the axle box of the wheel shaft having the wheel or the relative displacement amount in the traveling direction of the vehicle between the axle box and the carriage frame. The friction control device for a railway vehicle according to any one of claims 1 to 7, wherein the front / rear force is obtained.
[9] 前記軸箱に作用する力は、軸箱支持装置に貼り付けられた歪ゲージを用いて測定さ れる請求項 8に記載された鉄道車両の摩擦制御装置。  9. The railcar friction control device according to claim 8, wherein the force acting on the axle box is measured by using a strain gauge attached to the axle box support device.
[10] 前記軸箱と台車枠との間における車両の進行方向への相対的な変位量は、軸箱支 持装置に設置された変位計を用いて測定される請求項 8に記載された鉄道車両の 摩擦制御装置。 [10] The relative displacement amount in the traveling direction of the vehicle between the axle box and the carriage frame is measured by using a displacement meter installed in the axle box support device. Friction control device for railway vehicles.
[11] 前記上下力検出手段は、鉄道車両用ボギー台車の台車枠と車体との間に介在する 空気ばねの内圧の測定値に基づいて前記上下力を求める請求項 1から請求項 10ま でのいずれか 1項に記載された鉄道車両の摩擦制御装置。  11. The vertical force detecting means obtains the vertical force based on a measured value of an internal pressure of an air spring interposed between a bogie frame of a bogie bogie for a railway vehicle and a vehicle body. The friction control device for a railway vehicle according to any one of the above.
[12] 前記前後力検出手段は、前記前後力を、前記進行方向の後側に位置する二つの車 輪に作用する前後力それぞれの差を (1Z2)倍した値として、求めることを特徴とする 請求項 1から請求項 11までの 、ずれか 1項に記載された鉄道車両の摩擦制御装置  [12] The longitudinal force detection means obtains the longitudinal force as a value obtained by multiplying the difference between the longitudinal forces acting on the two wheels positioned on the rear side in the traveling direction by (1Z2). The friction control device for a railway vehicle according to any one of claims 1 to 11, wherein
PCT/JP2005/022289 2004-12-06 2005-12-05 Friction control device for railway vehicle WO2006062056A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
HK07107459A HK1099892A1 (en) 2004-12-06 2007-07-12 Friction control device to railway vehicle

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-353131 2004-12-06
JP2004353131 2004-12-06
JP2005335834A JP4763432B2 (en) 2004-12-06 2005-11-21 Rail vehicle friction control device
JP2005-335834 2005-11-21

Publications (1)

Publication Number Publication Date
WO2006062056A1 true WO2006062056A1 (en) 2006-06-15

Family

ID=36577883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/022289 WO2006062056A1 (en) 2004-12-06 2005-12-05 Friction control device for railway vehicle

Country Status (3)

Country Link
JP (1) JP4763432B2 (en)
HK (1) HK1099892A1 (en)
WO (1) WO2006062056A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013034717A1 (en) * 2011-09-09 2013-03-14 Knorr-Bremse Systeme für Schienenfahrzeuge GmbH Method for determining an effective amount of an adhesion-increasing medium
WO2013101448A1 (en) * 2011-12-28 2013-07-04 General Electric Company System and method for rail vehicle control
CN103507827A (en) * 2013-09-30 2014-01-15 中国铁道科学研究院金属及化学研究所 Friction regulation and control nozzle
US9308921B2 (en) 2010-08-09 2016-04-12 General Electric Company Tractive effort system and method
JP2016060261A (en) * 2014-09-12 2016-04-25 公益財団法人鉄道総合技術研究所 Brake force evaluation method for railway vehicle
CN106379332A (en) * 2016-11-11 2017-02-08 中车株洲电力机车有限公司 Rail vehicle and sand sprinkling system thereof
US9650059B2 (en) 2012-05-23 2017-05-16 General Electric Company System and method for inspecting a route during movement of a vehicle system over the route
US9718480B2 (en) 2013-08-15 2017-08-01 General Electric Company Adhesion control system and method
US9956974B2 (en) 2004-07-23 2018-05-01 General Electric Company Vehicle consist configuration control
US10106177B2 (en) 2013-08-15 2018-10-23 General Electric Company Systems and method for a traction system
CN112740010A (en) * 2018-07-31 2021-04-30 日本制铁株式会社 Inspection system, inspection method, and program
CN115179977A (en) * 2022-07-08 2022-10-14 广州地铁集团有限公司 Method for regulating and controlling train power performance in large-gradient turnout area

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4814121B2 (en) * 2007-02-22 2011-11-16 三菱重工業株式会社 Measuring method of wheel load or lateral pressure
JP6458220B2 (en) * 2014-12-15 2019-01-30 新日鐵住金株式会社 Track lubrication management method
JP6444201B2 (en) * 2015-02-10 2018-12-26 公益財団法人鉄道総合技術研究所 Railway vehicle distortion measurement system and distortion measurement apparatus
JP6924440B2 (en) * 2017-12-07 2021-08-25 日本製鉄株式会社 Railway vehicle friction coefficient calculation method, running safety evaluation method, and track lubrication state management method
DE102018209920B3 (en) * 2018-06-19 2019-07-11 Knorr-Bremse Systeme für Schienenfahrzeuge GmbH A method of predicting an adhesion value in a contact point between a wheel of a rail vehicle and the rail, a method of improving the adhesion value in a contact point between a wheel of a rail vehicle and the rail and apparatus for performing the method
WO2021014854A1 (en) * 2019-07-25 2021-01-28 日本製鉄株式会社 Inspection system, inspection method, and program
JP7248980B2 (en) * 2019-10-02 2023-03-30 公益財団法人鉄道総合技術研究所 Injection control device and injection control method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5477941A (en) * 1994-03-15 1995-12-26 Tranergy Corporation On-board lubrication system for direct application to curved and tangent railroad track
JP2001151104A (en) * 1999-11-29 2001-06-05 Teito Rapid Transit Authority Method for improving travelling performance and device thereof
JP2001151105A (en) * 1999-11-29 2001-06-05 Teito Rapid Transit Authority Method for applying friction controlling reagent and device thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3389031B2 (en) * 1996-12-25 2003-03-24 独立行政法人交通安全環境研究所 Tread lubrication device for railway vehicle wheels

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5477941A (en) * 1994-03-15 1995-12-26 Tranergy Corporation On-board lubrication system for direct application to curved and tangent railroad track
JP2001151104A (en) * 1999-11-29 2001-06-05 Teito Rapid Transit Authority Method for improving travelling performance and device thereof
JP2001151105A (en) * 1999-11-29 2001-06-05 Teito Rapid Transit Authority Method for applying friction controlling reagent and device thereof

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9956974B2 (en) 2004-07-23 2018-05-01 General Electric Company Vehicle consist configuration control
US9308921B2 (en) 2010-08-09 2016-04-12 General Electric Company Tractive effort system and method
WO2013034717A1 (en) * 2011-09-09 2013-03-14 Knorr-Bremse Systeme für Schienenfahrzeuge GmbH Method for determining an effective amount of an adhesion-increasing medium
WO2013101448A1 (en) * 2011-12-28 2013-07-04 General Electric Company System and method for rail vehicle control
US9650059B2 (en) 2012-05-23 2017-05-16 General Electric Company System and method for inspecting a route during movement of a vehicle system over the route
US10106177B2 (en) 2013-08-15 2018-10-23 General Electric Company Systems and method for a traction system
US9718480B2 (en) 2013-08-15 2017-08-01 General Electric Company Adhesion control system and method
CN103507827A (en) * 2013-09-30 2014-01-15 中国铁道科学研究院金属及化学研究所 Friction regulation and control nozzle
CN103507827B (en) * 2013-09-30 2016-08-17 中国铁道科学研究院金属及化学研究所 Friction regulation and control shower nozzle
JP2016060261A (en) * 2014-09-12 2016-04-25 公益財団法人鉄道総合技術研究所 Brake force evaluation method for railway vehicle
WO2018086187A1 (en) * 2016-11-11 2018-05-17 中车株洲电力机车有限公司 Rail vehicle and sand spraying system thereof
CN106379332A (en) * 2016-11-11 2017-02-08 中车株洲电力机车有限公司 Rail vehicle and sand sprinkling system thereof
CN112740010A (en) * 2018-07-31 2021-04-30 日本制铁株式会社 Inspection system, inspection method, and program
EP3832284A4 (en) * 2018-07-31 2022-03-16 Nippon Steel Corporation Inspection system, inspecting method, and program
CN112740010B (en) * 2018-07-31 2023-10-27 日本制铁株式会社 Inspection system, inspection method, and storage medium
CN115179977A (en) * 2022-07-08 2022-10-14 广州地铁集团有限公司 Method for regulating and controlling train power performance in large-gradient turnout area
CN115179977B (en) * 2022-07-08 2023-10-13 广州地铁集团有限公司 Method for regulating and controlling dynamic performance of train in heavy-gradient turnout area

Also Published As

Publication number Publication date
JP4763432B2 (en) 2011-08-31
HK1099892A1 (en) 2007-08-24
JP2006188208A (en) 2006-07-20

Similar Documents

Publication Publication Date Title
WO2006062056A1 (en) Friction control device for railway vehicle
KR910006828B1 (en) Vibration control apparatus for vehicles
US20150314796A1 (en) Vehicle and track transportation system
KR20110073866A (en) Active steering control apparatus for railway vehicles and the method of the same
KR101256901B1 (en) Prediction methods for derailment of the wheels using the external force acted on the wheelset
JPH09226576A (en) Axle steering device for rolling stock truck
JP6436214B2 (en) Lateral pressure reduction method for railway vehicles
US11203353B2 (en) Steering control system, steering system, car, steering control method and recording medium
KR101231838B1 (en) Lubrication system and methods for the railway vehicles through the radius of curvature sensing of the curved section
JP4935469B2 (en) Railway vehicle running abnormality detection method and apparatus
CN100434320C (en) Friction control device for railway vehicle
JPH0826110A (en) Device and method for controlling neutral position of vehicle body of railway rolling stock
JP2012153328A (en) Inter-vehicle damper device
JP6079881B2 (en) Railcar bogie
JP4271605B2 (en) Railway vehicle control method
SUZUKI et al. Evaluation of performance of bogie to control decrement in wheel load in operating speed range
JP2004161115A (en) Rolling stock having truck frame turning device
JP5675212B2 (en) Railway vehicle vibration control system, railway vehicle
JP2785837B2 (en) Railway vehicle with wheelset yaw angle controller
JP2019156387A (en) Steering control system, steering system, vehicle, steering control method, and program
JP2001241946A (en) Track characteristics inspection car
JPH09109886A (en) Supporting method of axle of train, rolling stock, and steerable truck using it
JP2020185876A (en) Railway vehicle track state evaluation method and railway vehicle truck
JP2001088694A (en) Monorail vehicle
JP2022093955A (en) Lubrication state monitoring system and method for railway vehicle

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200580001056.8

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05811592

Country of ref document: EP

Kind code of ref document: A1