JP2022093955A - Lubrication state monitoring system and method for railway vehicle - Google Patents

Lubrication state monitoring system and method for railway vehicle Download PDF

Info

Publication number
JP2022093955A
JP2022093955A JP2020206699A JP2020206699A JP2022093955A JP 2022093955 A JP2022093955 A JP 2022093955A JP 2020206699 A JP2020206699 A JP 2020206699A JP 2020206699 A JP2020206699 A JP 2020206699A JP 2022093955 A JP2022093955 A JP 2022093955A
Authority
JP
Japan
Prior art keywords
wheel
lateral pressure
rail side
tail
lubrication
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020206699A
Other languages
Japanese (ja)
Inventor
大輔 品川
Daisuke Shinagawa
益久 谷本
Masuhisa Tanimoto
卓也 松田
Takuya Matsuda
知樹 福島
Tomoki Fukushima
陽 松本
Akira Matsumoto
安弘 佐藤
Yasuhiro Sato
寛之 大野
Hiroyuki Ono
正剛 緒方
Masatake Ogata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon University
Nippon Steel Corp
Tokyo Metro Co Ltd
National Agency For Automobile and Land Transport Technology NALTEC
Original Assignee
Nihon University
Nippon Steel Corp
Tokyo Metro Co Ltd
National Agency For Automobile and Land Transport Technology NALTEC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon University, Nippon Steel Corp, Tokyo Metro Co Ltd, National Agency For Automobile and Land Transport Technology NALTEC filed Critical Nihon University
Priority to JP2020206699A priority Critical patent/JP2022093955A/en
Publication of JP2022093955A publication Critical patent/JP2022093955A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

To provide a lubrication state monitoring system for a railway vehicle which can further inexpensively monitor a lubrication state between a wheel and a curved rail.SOLUTION: A monitoring system comprises detection units (4a, 5a) each installed in a rail (31o) on one side, detection units (4b, 5b) each installed in a rail (31i) on the other side, a lateral pressure measurement unit (6) which acquires detection values from each of the detection units (4a, 4b) and calculates a front end outer-orbital side lateral pressure (Q1o), a front end inner-orbital side lateral pressure (Q1i), a rear outer-orbital side lateral pressure (Q2o) and a rear inner-orbital side lateral pressure (Q2i), a wheel weight measurement unit (7) which acquires detection values from each of the detection units (5a, 5b) and calculates a front end outer-orbital side wheel weight (P1o), a front end inner-orbital side wheel weight (P1i), a rear outer-orbital side wheel weight (P2o) and a rear inner-orbital side wheel weight (P2i) and a lubrication state estimation unit (8) which estimates lubrication states between wheels (11o, 11i, 12o, 12i) and the rail based on each lateral pressure and each wheel weight.SELECTED DRAWING: Figure 7

Description

本開示は、鉄道車両用の潤滑状態監視システム及び潤滑状態監視方法に関する。 The present disclosure relates to a lubrication condition monitoring system and a lubrication condition monitoring method for railway vehicles.

鉄道車両は、台車と、台車上に支持された車体と、を備える。台車は輪軸を備え、輪軸の両端部のそれぞれに車輪が設けられている。車両はレール上を走行する。 The railroad vehicle includes a bogie and a vehicle body supported on the bogie. The bogie is equipped with a wheel set, and wheels are provided at both ends of the wheel set. The vehicle runs on the rails.

例えば都市部では、レールを敷設する場所が制限されるため、曲線路が多い。車両が曲線路を走行するとき、車輪とレールとの間に摩擦が生じる。車輪とレールとの間の摩擦係数が極端に大きいと、騒音や振動が発生したり、レールや車輪が摩耗したりする。一方、車輪とレールとの間の摩擦係数が極端に小さいと、制動のときに車両が止まらない。このため、曲線路において、適度な摩擦が生じるように、車輪とレールとの間の潤滑を管理することが望ましい。特に、台車の先頭輪軸の外軌側車輪はレールと激しく接触するため、先頭輪軸の外軌側車輪とレールとの間の潤滑の管理が必要となる。 For example, in urban areas, there are many curved roads because the places where rails are laid are limited. When the vehicle travels on curved roads, friction occurs between the wheels and the rails. If the coefficient of friction between the wheels and the rails is extremely large, noise and vibration will occur, and the rails and wheels will wear. On the other hand, if the coefficient of friction between the wheels and the rails is extremely small, the vehicle will not stop during braking. For this reason, it is desirable to manage the lubrication between the wheels and the rails so that moderate friction occurs on curved roads. In particular, since the outer rail side wheel of the front wheel axle of the bogie comes into strong contact with the rail, it is necessary to manage the lubrication between the outer rail side wheel of the front wheel axle and the rail.

車輪と曲線レールとの間の潤滑を管理するために、車輪やレールに潤滑剤(例:グリス、摩擦調整剤)が供給される。潤滑剤の供給は、例えば、地上に設置された供給装置や台車に搭載された供給装置によって行われる。 Lubricants (eg grease, friction modifiers) are supplied to the wheels and rails to control the lubrication between the wheels and the curved rails. The lubricant is supplied, for example, by a supply device installed on the ground or a supply device mounted on a trolley.

旧来、車輪と曲線レールとの間の潤滑状態を測定する技術がなかったことから、潤滑状態の把握は極めて難しかった。このため、潤滑剤の過剰な供給によって必要以上に潤滑剤が消費されても、その事態を認識できなかった。また、潤滑剤供給の過小な設定や供給装置の故障によって潤滑剤の供給が不足しても、その事態を認識できなかった。 In the past, it was extremely difficult to grasp the lubrication state because there was no technique for measuring the lubrication state between the wheel and the curved rail. Therefore, even if the lubricant is consumed more than necessary due to the excessive supply of the lubricant, the situation cannot be recognized. In addition, even if the lubricant supply was insufficient due to an insufficient setting of the lubricant supply or a failure of the supply device, the situation could not be recognized.

このような不都合に対し、特開2006-188208号公報(特許文献1)には、車輪と曲線レールとの間の潤滑状態を監視する技術が示唆されている。特許文献1に開示される従来技術では、曲線路を走行する車両において、後尾輪軸の車輪に作用する上下力(輪重)の検出値と、その車輪に作用する前後力(接線力)の検出値と、に基づいて、車輪とレールとの間の摩擦係数を算出する。この摩擦係数により、車輪とレールとの間の潤滑状態を監視する。 To deal with such inconvenience, Japanese Patent Application Laid-Open No. 2006-188208 (Patent Document 1) suggests a technique for monitoring the lubrication state between a wheel and a curved rail. In the prior art disclosed in Patent Document 1, in a vehicle traveling on a curved road, a detection value of a vertical force (wheel weight) acting on a wheel of a tail wheel axle and a detection of a front-rear force (tangential force) acting on the wheel are detected. Based on the value, the coefficient of friction between the wheel and the rail is calculated. This coefficient of friction monitors the lubrication between the wheels and the rails.

特開2006-188208号公報Japanese Unexamined Patent Publication No. 2006-188208

特許文献1に開示される従来技術では、各検出値は、台車に設けられた検出部から得られる。この場合、運行する車両の全てに特殊な台車が必要となる。これはコストの面で困難であり、従来技術は一部の車両への導入にとどまっている。 In the prior art disclosed in Patent Document 1, each detection value is obtained from a detection unit provided on the carriage. In this case, a special dolly is required for all the operating vehicles. This is difficult in terms of cost, and the conventional technique has been introduced only to some vehicles.

本開示の目的は、車輪と曲線レールとの間の潤滑状態をより安価に監視することができる、鉄道車両用の潤滑状態監視システム及び潤滑状態監視方法を提供することである。 An object of the present disclosure is to provide a lubrication condition monitoring system and a lubrication condition monitoring method for railway vehicles, which can monitor the lubrication condition between a wheel and a curved rail at a lower cost.

本開示に係る鉄道車両用の潤滑状態監視システムは、鉄道車両の車輪と曲線路のレールとの間の潤滑状態を監視する。当該潤滑状態監視システムは、各々が曲線路の一方のレールに設置された第1横圧測定用検出部及び第1輪重測定用検出部と、各々が曲線路の他方のレールに設置された第2横圧測定用検出部及び第2輪重測定用検出部と、横圧測定部と、輪重測定部と、潤滑状態推定部と、を備える。 The lubrication condition monitoring system for a railway vehicle according to the present disclosure monitors the lubrication condition between the wheels of a railway vehicle and the rail of a curved road. The lubrication condition monitoring system was installed on one rail of the curved road, a first lateral pressure measuring detector and a first wheel weight measuring detector, each of which was installed on one rail of the curved road, and each of them was installed on the other rail of the curved road. It includes a second lateral pressure measuring detection unit, a second wheel weight measuring detecting unit, a lateral pressure measuring unit, a wheel load measuring unit, and a lubrication state estimation unit.

横圧測定部は、車両が曲線路を走行するときに、第1横圧測定用検出部及び第2横圧測定用検出部のそれぞれから検出値を取得し、取得した検出値に基づいて、先頭外軌側横圧、先頭内軌側横圧、後尾外軌側横圧、及び後尾内軌側横圧を算出する。先頭外軌側横圧は、車両が備える台車の先頭輪軸の外軌側車輪に作用するものである。先頭内軌側横圧は、先頭輪軸の内軌側車輪に作用するものである。後尾外軌側横圧は、台車の後尾輪軸の外軌側車輪に作用するものである。後尾内軌側横圧は、後尾輪軸の内軌側車輪に作用するものである。 The lateral pressure measuring unit acquires detection values from each of the first lateral pressure measuring detection unit and the second lateral pressure measuring detecting unit when the vehicle travels on a curved road, and based on the acquired detected values, the lateral pressure measuring unit obtains detection values. The lateral pressure on the front outer rail side, the lateral pressure on the front inner rail side, the lateral pressure on the tail outer rail side, and the lateral pressure on the tail inner rail side are calculated. The lateral pressure on the front outer rail side acts on the outer rail side wheels of the front wheel axle of the bogie provided by the vehicle. The head internal rail side lateral pressure acts on the inner rail side wheels of the front wheel axle. The lateral pressure on the tail outer rail side acts on the wheels on the outer rail side of the rear tail wheel axle of the bogie. The lateral pressure on the tail tail wheel side acts on the wheel on the tail wheel side of the tail wheel axle.

輪重測定部は、車両が曲線路を走行するときに、第1輪重測定用検出部及び第2輪重測定用検出部のそれぞれから検出値を取得し、取得した検出値に基づいて、先頭外軌側輪重、先頭内軌側輪重、後尾外軌側輪重、及び後尾内軌側輪重を算出する。先頭外軌側輪重は、先頭輪軸の外軌側車輪に作用するものである。先頭内軌側輪重は、先頭輪軸の内軌側車輪に作用するものである。後尾外軌側輪重は、後尾輪軸の外軌側車輪に作用するものである。後尾内軌側輪重は、後尾輪軸の内軌側車輪に作用するものである。 The wheel load measuring unit acquires detection values from each of the first wheel weight measuring detection unit and the second wheel weight measuring detection unit when the vehicle travels on a curved road, and based on the acquired detection values, the wheel load measuring unit obtains detection values. The front outer track side wheel weight, the front inner track side wheel weight, the tail outer track side wheel weight, and the tail inner track side wheel weight are calculated. The front outer rail side wheel weight acts on the outer rail side wheel of the front wheel axle. The head inner rail side wheel weight acts on the inner rail side wheel of the front wheel axle. The tail outer rail side wheel weight acts on the outer rail side wheel of the rear tail wheel axle. The tail inner rail side wheel weight acts on the inner rail side wheel of the rear tail wheel axle.

潤滑状態推定部は、横圧測定部で算出された先頭外軌側横圧、先頭内軌側横圧、後尾外軌側横圧、及び後尾内軌側横圧、並びに輪重測定部で算出された先頭外軌側輪重、先頭内軌側輪重、後尾外軌側輪重、及び後尾内軌側輪重に基づいて、車輪とレールとの間の潤滑状態を推定する。 The lubrication state estimation unit calculates the lateral pressure on the front outer rail side, the lateral pressure on the front inner rail side, the lateral pressure on the tail outer rail side, and the lateral pressure on the tail inner rail side calculated by the lateral pressure measuring unit, and the wheel load measuring unit. The lubrication state between the wheel and the rail is estimated based on the front outer track side wheel load, the front inner track side wheel load, the tail outer track side wheel load, and the tail inner track side wheel load.

本開示に係る鉄道車両用の潤滑状態監視方法は、鉄道車両の車輪と曲線路のレールとの間の潤滑状態を監視する。曲線路の一方のレールに第1横圧測定用検出部及び第1輪重測定用検出部が設置され、曲線路の他方のレールに第2横圧測定用検出部及び第2輪重測定用検出部が設置されている。当該潤滑状態監視方法は、横圧測定ステップと、輪重測定ステップと、潤滑状態推定ステップと、を備える。 The lubrication state monitoring method for a railroad vehicle according to the present disclosure monitors the lubrication state between the wheels of a railroad vehicle and the rail of a curved road. A first lateral pressure measurement detection unit and a first wheel weight measurement detection unit are installed on one rail of the curved road, and a second lateral pressure measurement detection unit and a second wheel weight measurement unit are installed on the other rail of the curved road. A detector is installed. The lubrication state monitoring method includes a lateral pressure measurement step, a wheel load measurement step, and a lubrication state estimation step.

横圧測定ステップは、車両が曲線路を走行するときに、第1横圧測定用検出部及び第2横圧測定用検出部のそれぞれから検出値を取得し、取得した検出値に基づいて、先頭外軌側横圧、先頭内軌側横圧、後尾外軌側横圧、及び後尾内軌側横圧を算出する。先頭外軌側横圧は、車両が備える台車の先頭輪軸の外軌側車輪に作用するものである。先頭内軌側横圧は、先頭輪軸の内軌側車輪に作用するものである。後尾外軌側横圧は、台車の後尾輪軸の外軌側車輪に作用するものである。後尾内軌側横圧は、後尾輪軸の内軌側車輪に作用するものである。 In the lateral pressure measurement step, when the vehicle travels on a curved road, detection values are acquired from each of the first lateral pressure measurement detection unit and the second lateral pressure measurement detection unit, and based on the acquired detection values, the lateral pressure measurement step is performed. The lateral pressure on the front outer rail side, the lateral pressure on the front inner rail side, the lateral pressure on the tail outer rail side, and the lateral pressure on the tail inner rail side are calculated. The lateral pressure on the front outer rail side acts on the outer rail side wheels of the front wheel axle of the bogie provided by the vehicle. The head internal rail side lateral pressure acts on the inner rail side wheels of the front wheel axle. The lateral pressure on the tail outer rail side acts on the wheels on the outer rail side of the rear tail wheel axle of the bogie. The lateral pressure on the tail tail wheel side acts on the wheel on the tail wheel side of the tail wheel axle.

輪重測定ステップは、車両が曲線路を走行するときに、第1輪重測定用検出部及び第2輪重測定用検出部のそれぞれから検出値を取得し、取得した検出値に基づいて、先頭外軌側輪重、先頭内軌側輪重、後尾外軌側輪重、及び後尾内軌側輪重を算出する。先頭外軌側輪重は、先頭輪軸の外軌側車輪に作用するものである。先頭内軌側輪重は、先頭輪軸の内軌側車輪に作用するものである。後尾外軌側輪重は、後尾輪軸の外軌側車輪に作用するものである。後尾内軌側輪重は、後尾輪軸の内軌側車輪に作用するものである。 In the wheel weight measurement step, when the vehicle travels on a curved road, detection values are acquired from each of the first wheel weight measurement detection unit and the second wheel weight measurement detection unit, and based on the acquired detection values, The front outer track side wheel weight, the front inner track side wheel weight, the tail outer track side wheel weight, and the tail inner track side wheel weight are calculated. The front outer rail side wheel weight acts on the outer rail side wheel of the front wheel axle. The head inner rail side wheel weight acts on the inner rail side wheel of the front wheel axle. The tail outer rail side wheel weight acts on the outer rail side wheel of the rear tail wheel axle. The tail inner rail side wheel weight acts on the inner rail side wheel of the rear tail wheel axle.

潤滑状態推定ステップは、横圧測定ステップで算出された先頭外軌側横圧、先頭内軌側横圧、後尾外軌側横圧、及び後尾内軌側横圧、並びに輪重測定ステップで算出された先頭外軌側輪重、先頭内軌側輪重、後尾外軌側輪重、及び後尾内軌側輪重に基づいて、車輪とレールとの間の潤滑状態を推定する。 The lubrication state estimation step is calculated by the head outer rail side lateral pressure, the front inner rail side lateral pressure, the tail outer rail side lateral pressure, and the tail inner rail side lateral pressure calculated in the lateral pressure measurement step, and the wheel load measurement step. The lubrication state between the wheel and the rail is estimated based on the front outer track side wheel load, the front inner track side wheel load, the tail outer track side wheel load, and the tail inner track side wheel load.

本開示に係る鉄道車両用の潤滑状態監視システム及び潤滑状態監視方法によれば、車輪と曲線レールとの間の潤滑状態をより安価に監視することができる。 According to the lubrication condition monitoring system and the lubrication condition monitoring method for railway vehicles according to the present disclosure, the lubrication condition between the wheel and the curved rail can be monitored at a lower cost.

図1は、曲線路を走行する車両の車輪に作用する各力を示す模式図である。FIG. 1 is a schematic diagram showing each force acting on the wheels of a vehicle traveling on a curved road. 図2は、旋回指標Yがゼロ付近の場合に、曲線路を走行する車両の車輪に作用する接線力を示す模式図である。FIG. 2 is a schematic diagram showing a tangential force acting on the wheels of a vehicle traveling on a curved road when the turning index Y is near zero. 図3は、旋回指標Yが大きい場合に、曲線路を走行する車両の車輪に作用する接線力を示す模式図である。FIG. 3 is a schematic diagram showing a tangential force acting on the wheels of a vehicle traveling on a curved road when the turning index Y is large. 図4は、旋回指標Yが小さい場合に、曲線路を走行する車両の車輪に作用する接線力を示す模式図である。FIG. 4 is a schematic diagram showing a tangential force acting on the wheels of a vehicle traveling on a curved road when the turning index Y is small. 図5は、台上試験による結果をまとめた図である。FIG. 5 is a diagram summarizing the results of the bench test. 図6は、車両の実走行による実績をまとめた図である。FIG. 6 is a diagram summarizing the actual results of actual running of the vehicle. 図7は、潤滑状態監視システムの全体構成を示す模式図である。FIG. 7 is a schematic diagram showing the overall configuration of the lubrication condition monitoring system.

上記の課題を解決するために本発明者らは鋭意検討を重ね、その結果下記の知見を得た。 In order to solve the above problems, the present inventors have made extensive studies, and as a result, the following findings have been obtained.

[基本検討]
車輪と曲線レールとの間の潤滑状態は、両者の間の摩擦係数によって監視できる。摩擦係数は、車輪に作用する接線力及び輪重から算出できる。そうすると、潤滑状態を監視するには、車輪に作用する接線力及び輪重を測定できればよいと言える。ここで、接線力を直接測定するには、検出部を台車に設けなければならない。そのため、従来技術では、車輪と曲線レールとの間の潤滑状態を監視するのに、検出部を台車に設け、この検出部の検出値から得られる接線力を用いている。この場合、上記の課題が生じる。
[Basic examination]
The lubrication between the wheels and the curved rails can be monitored by the coefficient of friction between them. The coefficient of friction can be calculated from the tangential force acting on the wheel and the wheel load. Then, in order to monitor the lubrication state, it is only necessary to be able to measure the tangential force and the wheel load acting on the wheels. Here, in order to directly measure the tangential force, the detection unit must be provided on the carriage. Therefore, in the prior art, in order to monitor the lubrication state between the wheel and the curved rail, a detection unit is provided on the bogie, and the tangential force obtained from the detection value of the detection unit is used. In this case, the above-mentioned problem arises.

そこで、本発明者らは、検出部を地上のレールに設け、この検出部の検出値を用いて車輪と曲線レールとの間の潤滑状態を監視することができないかを検討した。つまり、本発明者らは、車輪と曲線レールとの間の潤滑状態を監視するのに、接線力を直接測定するのではなく、接線力に代わる他の指標の導入を検討した。 Therefore, the present inventors have provided a detection unit on a rail on the ground, and examined whether it is possible to monitor the lubrication state between the wheel and the curved rail by using the detection value of this detection unit. That is, the present inventors considered the introduction of other indicators to replace the tangential force in order to monitor the lubrication state between the wheel and the curved rail, instead of directly measuring the tangential force.

本明細書において、車両が曲線路を走行するときに車輪に作用する各力(接線力、横圧及び輪重)の意味は、以下の通りである。接線力は、レールが車輪を前後方向に押す力を意味する。接線力は、レールが車輪から受ける前後方向の力とも言える。横圧は、レールが車輪を左右方向に押す力を意味する。横圧は、レールが車輪から受ける左右方向の力とも言える。輪重は、レールが車輪を上下方向に押す力を意味する。輪重は、レールが車輪から受ける上下方向の力とも言える。ここで、前後方向は、車両が走行する方向であり、レールの延びる方向である。左右方向は、レールの延びる方向に垂直な水平方向であり、レールの幅方向に相当する。上下方向は、レールの延びる方向に垂直な鉛直方向であり、レールの高さ方向に相当する。 In the present specification, the meanings of each force (tangential force, lateral pressure and wheel load) acting on the wheels when the vehicle travels on a curved road are as follows. The tangential force means the force with which the rail pushes the wheel in the front-rear direction. The tangential force can be said to be the force in the front-rear direction that the rail receives from the wheels. Lateral pressure means the force with which the rail pushes the wheel left and right. Lateral pressure can be said to be the lateral force that the rail receives from the wheels. Wheel load means the force with which the rail pushes the wheel up and down. The wheel load can also be said to be the vertical force that the rail receives from the wheels. Here, the front-rear direction is the direction in which the vehicle travels and the direction in which the rail extends. The left-right direction is a horizontal direction perpendicular to the extending direction of the rail, and corresponds to the width direction of the rail. The vertical direction is a vertical direction perpendicular to the extending direction of the rail, and corresponds to the height direction of the rail.

図1は、曲線路を走行する車両の車輪11o、11i、12o及び12iに作用する各力を示す模式図である。図1には、外軌側レール31o及び内軌側レール31iからなる曲線路を車両が走行するときの台車1の上面図が示される。図1中の白抜き矢印は、車両が進む方向を意味する。 FIG. 1 is a schematic diagram showing each force acting on the wheels 11o, 11i, 12o and 12i of a vehicle traveling on a curved road. FIG. 1 shows a top view of the bogie 1 when the vehicle travels on a curved road including the outer rail side rail 31o and the inner rail side rail 31i. The white arrow in FIG. 1 means the direction in which the vehicle travels.

図1を参照して、台車1は、車両が進む方向の前側に配置される先頭輪軸11と、車両が進む方向の後側に配置される後尾輪軸12と、を備える。先頭輪軸11は、外軌側レール31oに対応する外軌側車輪11oと、内軌側レール31iに対応する内軌側車輪11iと、を備える。これらの外軌側車輪11o及び内軌側車輪11iは、先頭輪軸11の両端部に設けられ、先頭輪軸11と一体で軸回転する。後尾輪軸12は、外軌側レール31oに対応する外軌側車輪12oと、内軌側レール31iに対応する内軌側車輪12iと、を備える。これらの外軌側車輪12o及び内軌側車輪12iは、後尾輪軸12の両端部に設けられ、後尾輪軸12と一体で軸回転する。 With reference to FIG. 1, the bogie 1 includes a front wheel axle 11 arranged on the front side in the direction in which the vehicle travels, and a rear wheel axle 12 arranged on the rear side in the direction in which the vehicle travels. The lead wheel axle 11 includes an outer rail side wheel 11o corresponding to the outer rail side rail 31o and an inner rail side wheel 11i corresponding to the inner rail side rail 31i. These outer track side wheels 11o and inner track side wheels 11i are provided at both ends of the front wheel axle 11 and rotate integrally with the front wheel axle 11. The rear wheel axle 12 includes an outer rail side wheel 12o corresponding to the outer rail side rail 31o and an inner rail side wheel 12i corresponding to the inner rail side rail 31i. These outer track side wheels 12o and inner track side wheels 12i are provided at both ends of the tail wheel axle 12 and rotate integrally with the tail wheel axle 12.

車両が曲線路を走行するとき、先頭輪軸11及び後尾輪軸12の各車輪11o、11i、12o及び12iには、下記の力が作用する。先頭輪軸11の外軌側車輪11oには、接線力T1o、横圧Q1o、及び輪重P1o(図示省略)が作用する。先頭輪軸11の内軌側車輪11iには、接線力T1i、横圧Q1i、及び輪重P1i(図示省略)が作用する。後尾輪軸12の外軌側車輪12oには、接線力T2o、横圧Q2o、及び輪重P2o(図示省略)が作用する。後尾輪軸12の内軌側車輪12iには、接線力T2i、横圧Q2i、及び輪重P2i(図示省略)が作用する。 When the vehicle travels on a curved road, the following forces act on the wheels 11o, 11i, 12o and 12i of the front wheel axle 11 and the rear wheel axle 12. A tangential force T1o, a lateral pressure Q1o, and a wheel load P1o (not shown) act on the outer rail side wheel 11o of the leading wheel axle 11. A tangential force T1i, a lateral pressure Q1i, and a wheel load P1i (not shown) act on the inner rail side wheel 11i of the leading wheel axle 11. A tangential force T2o, a lateral pressure Q2o, and a wheel load P2o (not shown) act on the outer rail side wheel 12o of the rear wheel axle 12. A tangential force T2i, a lateral pressure Q2i, and a wheel weight P2i (not shown) act on the inner rail side wheel 12i of the rear wheel axle 12.

ここで、先頭輪軸11において、外軌側車輪11oに作用する接線力T1oと内軌側車輪11iに作用する接線力T1iは、互いに先頭輪軸11の長手方向の中心11c回りに先頭輪軸11をねじる力となるため、点対称に発生する。このため、先頭外軌側接線力T1oの大きさは、先頭内軌側接線力T1iの大きさと等しい。これらの接線力T1o及びT1iを総称して先頭側接線力T1とも言う。これと同様に、後尾輪軸12において、外軌側車輪12oに作用する接線力T2oと内軌側車輪12iに作用する接線力T2iは、互いに後尾輪軸12の長手方向の中心12c回りに後尾輪軸12をねじる力となるため、点対称に発生する。このため、後尾外軌側接線力T2oの大きさは、後尾内軌側接線力T2iの大きさと等しい。これらの接線力T2o及びT2iを総称して後尾側接線力T2とも言う。 Here, in the front wheel axle 11, the tangential force T1o acting on the outer rail side wheel 11o and the tangential force T1i acting on the inner rail side wheel 11i twist the front wheel axle 11 around the center 11c in the longitudinal direction of the leading wheel shaft 11 with each other. Since it is a force, it occurs point-symmetrically. Therefore, the magnitude of the leading outer rail side tangential force T1o is equal to the magnitude of the leading inner rail side tangential force T1i. These tangential forces T1o and T1i are collectively referred to as the leading tangential force T1. Similarly, in the rear tail wheel axle 12, the tangential force T2o acting on the outer track side wheel 12o and the tangential force T2i acting on the inner track side wheel 12i mutually rotate the rear tail wheel axle 12 around the center 12c in the longitudinal direction of the rear tail wheel shaft 12. It is a force that twists the wheel, so it occurs point-symmetrically. Therefore, the magnitude of the tangential force T2o on the tail outer rail side is equal to the magnitude of the tangential force T2i on the tail inner rail side. These tangential forces T2o and T2i are also collectively referred to as the tail side tangential force T2.

図1に示す各力により、台車1には、台車1の中心1c回りに下記の式(i)で表される操舵モーメントMaが発生する。操舵モーメントMaは、台車1が曲線路に沿うように、台車1を曲線路の内側に旋回させるモーメントである。また、台車1には、台車1の中心1c回りに下記の式(ii)で表される反操舵モーメントMbが発生する。反操舵モーメントMbは、操舵モーメントMaと逆向きのモーメントである。つまり、反操舵モーメントMbは、台車1が曲線路から離れるように、台車1を曲線路の外側に旋回させるモーメントである。 By each force shown in FIG. 1, a steering moment Ma represented by the following equation (i) is generated in the bogie 1 around the center 1c of the bogie 1. The steering moment Ma is a moment that causes the bogie 1 to turn inward of the curved road so that the bogie 1 follows the curved road. Further, in the carriage 1, an anti-steering moment Mb represented by the following equation (ii) is generated around the center 1c of the carriage 1. The anti-steering moment Mb is a moment opposite to the steering moment Ma. That is, the anti-steering moment Mb is a moment for turning the bogie 1 to the outside of the curved road so that the bogie 1 is separated from the curved road.

Ma=2×b×(T1+T2)+a×(Q1o+Q2i) (i)
Mb=a×(Q1i+Q2o) (ii)
Ma = 2 × b × (T1 + T2) + a × (Q1o + Q2i) (i)
Mb = a × (Q1i + Q2o) (ii)

上記式(i)及び式(ii)において、aは、先頭輪軸11と後尾輪軸12との間隔の半分の距離を意味し、bは、先頭輪軸11及び後尾輪軸12のそれぞれにおける外軌側車輪11o及び12oと内軌側車輪11i及び12iとの間隔の半分の距離を意味する。つまり、aは、台車1の中心1cから先頭輪軸11までの前後方向の距離、又は台車1の中心1cから後尾輪軸12までの前後方向の距離を意味する。bは、先頭輪軸11の中心11cから外軌側車輪11oまでの左右方向の距離、先頭輪軸11の中心11cから内軌側車輪11iまでの左右方向の距離、後尾輪軸12の中心12cから外軌側車輪12oまでの左右方向の距離、又は後尾輪軸12の中心12cから内軌側車輪12iまでの左右方向の距離を意味する。a及びbの意味は、本明細書における他の式でもこれと同様である。 In the above equations (i) and (ii), a means a distance of half the distance between the front wheel axle 11 and the tail wheel axle 12, and b is the outer rail side wheel in each of the front wheel axle 11 and the tail wheel axle 12. It means a distance of half the distance between the 11o and 12o and the inner rail side wheels 11i and 12i. That is, a means the distance in the front-rear direction from the center 1c of the bogie 1 to the front wheel axle 11 or the distance in the front-rear direction from the center 1c of the bogie 1 to the tail wheel axle 12. b is the left-right distance from the center 11c of the front wheel axle 11 to the outer rail side wheel 11o, the left-right distance from the center 11c of the front wheel axle 11 to the inner rail side wheel 11i, and the outer rail from the center 12c of the rear tail wheel shaft 12. It means the distance in the left-right direction to the side wheel 12o, or the distance in the left-right direction from the center 12c of the rear wheel axle 12 to the inner rail side wheel 12i. The meanings of a and b are the same in other equations herein.

各車輪11o、11i、12o及び12iが外軌側レール31o及び内軌側レール31iに束縛されながら、車両は曲線路を走行するため、操舵モーメントMaと反操舵モーメントMbは釣り合う。つまり、操舵モーメントMaは反操舵モーメントMbと等しい。したがって、下記の式(iii)の関係が成り立つ。 Since the vehicle travels on a curved road while the wheels 11o, 11i, 12o and 12i are constrained by the outer rail side rail 31o and the inner rail side rail 31i, the steering moment Ma and the anti-steering moment Mb are balanced. That is, the steering moment Ma is equal to the anti-steering moment Mb. Therefore, the relationship of the following equation (iii) holds.

-(Q1o-Q1i)+(Q2o-Q2i)=c×(T1+T2) (iii) -(Q1o-Q1i) + (Q2o-Q2i) = c × (T1 + T2) (iii)

上記式(iii)において、cは「2×b/a」である。つまり、cは、台車1のサイズから決まる係数である。 In the above formula (iii), c is "2 × b / a". That is, c is a coefficient determined from the size of the dolly 1.

ただし、実際に車両が曲線路を走行するとき、車体から台車1に、台車1を曲線路の外側に旋回させる力が働く。このため、上記式(iii)は下記の式(iv)に書き換えられる。 However, when the vehicle actually travels on a curved road, a force is applied from the vehicle body to the bogie 1 to turn the bogie 1 to the outside of the curved road. Therefore, the above equation (iii) is rewritten into the following equation (iv).

-(Q1o-Q1i)+(Q2o-Q2i)=c×(T1+T2)-k (iv) -(Q1o-Q1i) + (Q2o-Q2i) = c × (T1 + T2) -k (iv)

上記式(iv)において、kは、車体が台車1に及ぼす力から決まる定数である。例えば、台車1がボルスタレス台車である場合、台車枠上に空気ばねが設置され、この空気ばねによって車体は支持される。この場合、定数kは、空気ばねの水平方向の抵抗力から決まる。台車1がボルスタ台車である場合、台車枠上に枕ばりが回動可能に設置され、この枕ばり上に設置された空気ばねによって車体は支持される。この場合、定数kは、枕ばりが回動するときの水平方向の抵抗力から決まる。 In the above equation (iv), k is a constant determined by the force exerted by the vehicle body on the bogie 1. For example, when the bogie 1 is a bolsterless bogie, an air spring is installed on the bogie frame, and the vehicle body is supported by the air spring. In this case, the constant k is determined by the horizontal resistance of the air spring. When the bogie 1 is a bolster bogie, a pillow beam is rotatably installed on the bogie frame, and the vehicle body is supported by an air spring installed on the pillow beam. In this case, the constant k is determined by the horizontal resistance force when the pillow beam rotates.

ここで、各接線力T1及びT2、並びに各横圧Q1o、Q1i、Q2o及びQ2iは乗車率(車輪が支える上下方向の重量)の影響を受ける。同様に、上記式(iv)中のkは乗車率の影響を受ける。そこで、乗車率の影響をなくすために、上記式(iv)の左辺及び右辺を平均輪重Pで割って無次元化する。これにより、上記式(iv)は下記の式(v)に書き換えられる。 Here, the tangential forces T1 and T2, and the lateral pressures Q1o, Q1i, Q2o and Q2i are affected by the occupancy rate (weight in the vertical direction supported by the wheels). Similarly, k in the above equation (iv) is affected by the occupancy rate. Therefore, in order to eliminate the influence of the occupancy rate, the left side and the right side of the above equation (iv) are divided by the average wheel weight P to make them dimensionless. As a result, the above equation (iv) is rewritten into the following equation (v).

{-(Q1o-Q1i)+(Q2o-Q2i)}/P={c×(T1+T2)-k}/P (v) {-(Q1o-Q1i) + (Q2o-Q2i)} / P = {c × (T1 + T2) -k} / P (v)

上記式(v)において、平均輪重Pは、4つの車輪11o、11i、12o及び12iに作用する平均の輪重であり、“(P1o+P1i+P2o+P2i)/4”を意味する。 In the above formula (v), the average wheel weight P is the average wheel weight acting on the four wheels 11o, 11i, 12o and 12i, and means "(P1o + P1i + P2o + P2i) / 4".

上記式(v)の関係より、左辺に示される横圧Q1o、Q1i、Q2o及びQ2iは、右辺に示される接線力T1及びT2と相関することがわかる。このため、横圧Q1o、Q1i、Q2o及びQ2iから接線力T1及びT2を推定できる。そうすると、各横圧Q1o、Q1i、Q2o及びQ2i、並びに各輪重P1o、P1i、P2o及びP2iを測定すれば、接線力T1及びT2を測定するのと同様に、車輪と曲線レールとの間の潤滑状態を監視することができると言える。 From the relationship of the above equation (v), it can be seen that the lateral pressures Q1o, Q1i, Q2o and Q2i shown on the left side correlate with the tangential forces T1 and T2 shown on the right side. Therefore, the tangential forces T1 and T2 can be estimated from the lateral pressures Q1o, Q1i, Q2o and Q2i. Then, if the lateral pressures Q1o, Q1i, Q2o and Q2i, and the wheel weights P1o, P1i, P2o and P2i are measured, the tangential force T1 and T2 are measured between the wheel and the curved rail. It can be said that the lubrication state can be monitored.

各横圧Q1o、Q1i、Q2o及びQ2i、並びに各輪重P1o、P1i、P2o及びP2iは、地上のレールに設けた検出部からの検出値によって算出できる。 The lateral pressures Q1o, Q1i, Q2o and Q2i, and the wheel weights P1o, P1i, P2o and P2i can be calculated from the detected values from the detection unit provided on the rail on the ground.

例えば、各横圧Q1o、Q1i、Q2o及びQ2iを測定するための検出部として、ひずみゲージを適用することができる。このひずみゲージは、外軌側レール31o及び内軌側レール31iそれぞれの底部に取り付けられる。各車輪11o、11i、12o及び12iがひずみゲージの位置を通過したとき、ひずみゲージは、検出値として各レール31o及び31iの左右方向のひずみを検出する。検出値より、各横圧Q1o、Q1i、Q2o及びQ2iを算出することができる。 For example, a strain gauge can be applied as a detection unit for measuring each lateral pressure Q1o, Q1i, Q2o and Q2i. This strain gauge is attached to the bottom of each of the outer rail side rail 31o and the inner rail side rail 31i. When the wheels 11o, 11i, 12o and 12i pass the position of the strain gauge, the strain gauge detects the strain of each rail 31o and 31i in the left-right direction as a detection value. From the detected values, the lateral pressures Q1o, Q1i, Q2o and Q2i can be calculated.

また、各輪重P1o、P1i、P2o及びP2iを測定するための検出部として、ひずみゲージを適用することができる。このひずみゲージは、外軌側レール31o及び内軌側レール31iそれぞれの腹部に取り付けられる。各車輪11o、11i、12o及び12iがひずみゲージの位置を通過したとき、ひずみゲージは、検出値として各レール31o及び31iの上下方向のひずみを検出する。検出値より、各輪重P1o、P1i、P2o及びP2iを算出することができる。 Further, a strain gauge can be applied as a detection unit for measuring each wheel load P1o, P1i, P2o and P2i. This strain gauge is attached to the abdomen of each of the outer rail side rail 31o and the inner rail side rail 31i. When the wheels 11o, 11i, 12o and 12i pass the position of the strain gauge, the strain gauge detects the vertical strain of the rails 31o and 31i as a detection value. From the detected values, the respective wheel weights P1o, P1i, P2o and P2i can be calculated.

上記式(v)の左辺及び右辺はいずれも、車両が曲線路を走行するときに台車1を旋回させる力の度合いを示す。本明細書において、上記式(v)の左辺を旋回指標Yと称する。上記(v)式の右辺を旋回指標Yと称することもできる。上記式(v)より、旋回指標Yは、下記の式(vi)で表される。 Both the left side and the right side of the above equation (v) indicate the degree of force for turning the bogie 1 when the vehicle travels on a curved road. In the present specification, the left side of the above equation (v) is referred to as a turning index Y. The right side of the above equation (v) can also be referred to as a turning index Y. From the above equation (v), the turning index Y is expressed by the following equation (vi).

Y={-(Q1o-Q1i)+(Q2o-Q2i)}/{(P1o+P1i+P2o+P2i)/4}={c×(T1+T2)-k}/{(P1o+P1i+P2o+P2i)/4} (vi) Y = {-(Q1o-Q1i) + (Q2o-Q2i)} / {(P1o + P1i + P2o + P2i) / 4} = {c × (T1 + T2) -k} / {(P1o + P1i + P2o + P2i) / 4} (vi)

上記式(vi)より、旋回指標Yは、先頭側接線力T1と後尾側接線力T2の和が主な項である。一般に、先頭側接線力T1は正の値を取り、後尾側接線力T2は負の値を取る。これは以下の理由による。 From the above equation (vi), the main term of the turning index Y is the sum of the front side tangential force T1 and the tail side tangential force T2. Generally, the leading tangential force T1 takes a positive value and the trailing tangential force T2 takes a negative value. This is due to the following reasons.

車両が曲線路を走行するとき、先頭輪軸11は曲線路の左右方向の外側に変位する。この場合、先頭輪軸11において、外軌側車輪11oは直径の大きい部分で外軌側レール31oと接触し、内軌側車輪11iは直径の小さい部分で内軌側レール31iと接触する。このため、外軌側レール31oに対する外軌側車輪11oの周長は、内軌側レール31iに対する内軌側車輪11iの周長よりも大きい。つまり、外軌側車輪11oの周長と内軌側車輪11iの周長との間に差が生じる。これにより、台車1が曲線路に沿うように、先頭輪軸11には、台車1を曲線路の内側に旋回させるモーメントが作用する。その結果、先頭側接線力T1は正の値となり、先頭外軌側接線力T1oの向きが車両の進む方向となる。 When the vehicle travels on a curved road, the leading wheel axle 11 is displaced outward in the left-right direction of the curved road. In this case, in the front wheel axle 11, the outer rail side wheel 11o comes into contact with the outer rail side rail 31o at a portion having a large diameter, and the inner rail side wheel 11i comes into contact with the inner rail side rail 31i at a portion having a smaller diameter. Therefore, the peripheral length of the outer rail side wheel 11o with respect to the outer rail side rail 31o is larger than the peripheral length of the inner rail side wheel 11i with respect to the inner rail side rail 31i. That is, there is a difference between the peripheral length of the outer track side wheel 11o and the peripheral length of the inner track side wheel 11i. As a result, a moment that causes the bogie 1 to turn inward of the curved road acts on the leading wheel axle 11 so that the bogie 1 follows the curved road. As a result, the leading side tangential force T1 becomes a positive value, and the direction of the leading outer rail side tangential force T1o becomes the direction in which the vehicle travels.

これに対し、後尾輪軸12は曲線路の左右方向にほとんど変位しない。この場合、後尾輪軸12において、外軌側レール31oに対する外軌側車輪12oの周長は、内軌側レール31iに対する内軌側車輪12iの周長とほぼ等しい。これにより、台車1が直進するように、後尾輪軸12には、台車1を曲線路の外側に旋回させるモーメントが作用する。その結果、後尾側接線力T2は負の値となり、後尾外軌側接線力T2oの向きが車両の進む方向とは反対方向となる。 On the other hand, the rear wheel axle 12 hardly displaces in the left-right direction of the curved road. In this case, in the rear wheel axle 12, the peripheral length of the outer rail side wheel 12o with respect to the outer rail side rail 31o is substantially equal to the peripheral length of the inner rail side wheel 12i with respect to the inner rail side rail 31i. As a result, a moment for turning the bogie 1 to the outside of the curved road acts on the tail wheel axle 12 so that the bogie 1 travels straight. As a result, the tangential force T2 on the tail side becomes a negative value, and the direction of the tangential force T2o on the tail outer rail side is opposite to the direction in which the vehicle travels.

したがって、各車輪11o、11i、12o及び12iと曲線レール(外軌側レール31o及び内軌側レール31i)との間の摩擦係数が相互にほぼ同じである場合、先頭側接線力T1と後尾側接線力T2は打ち消し合う。この場合、旋回指標Yはゼロ付近の値を取る。上記式(vi)において、先頭側接線力T1及び後尾側接線力T2の項がほぼゼロであっても、定数kの項が存在するからである。ただし、定数kは、先頭側接線力T1及び後尾側接線力T2よりも遥かに小さい。このため、定数kの項は無視できるほど小さい。 Therefore, when the friction coefficients between the wheels 11o, 11i, 12o and 12i and the curved rails (outer rail side rail 31o and inner rail side rail 31i) are almost the same as each other, the front side tangential force T1 and the tail side The tangential forces T2 cancel each other out. In this case, the turning index Y takes a value near zero. This is because, in the above equation (vi), even if the terms of the head side tangential force T1 and the tail side tangential force T2 are almost zero, the term of the constant k exists. However, the constant k is much smaller than the leading tangential force T1 and the trailing tangential force T2. Therefore, the term of the constant k is so small that it can be ignored.

ここで、先頭輪軸11の各車輪11o及び11iと曲線レール(外軌側レール31o及び内軌側レール31i)との間の摩擦係数が、後尾輪軸12の各車輪12o及び12iと曲線レール(外軌側レール31o及び内軌側レール31i)との間の摩擦係数と異なる場合について、摩擦係数が旋回指標Yに与える影響を以下に検討する。 Here, the coefficient of friction between the wheels 11o and 11i of the front wheelset 11 and the curved rails (outer rail side rails 31o and inner rail side rails 31i) is the coefficient of friction between the wheels 12o and 12i of the tail wheelset 12 and the curved rails (outside). The influence of the friction coefficient on the turning index Y will be examined below when the friction coefficient is different from that between the rail side rail 31o and the inner rail side rail 31i).

先頭輪軸11において、各車輪11o及び11iと曲線レール(外軌側レール31o及び内軌側レール31i)との間の潤滑状態が向上して、両者の間の摩擦係数が低下した場合、外軌側車輪11oの周長と内軌側車輪11iの周長との間に差が生じても、各車輪11o及び11iが曲線レールに対して滑る。この場合、先頭側接線力T1が小さくなる。このため、旋回指標Yが小さくなる。 When the lubrication state between each wheel 11o and 11i and the curved rail (outer rail side rail 31o and inner rail side rail 31i) is improved and the friction coefficient between the two wheels is lowered in the leading wheel shaft 11, the outer rail is used. Even if there is a difference between the circumference of the side wheels 11o and the circumference of the inner rail side wheels 11i, the wheels 11o and 11i slide with respect to the curved rail. In this case, the leading tangential force T1 becomes smaller. Therefore, the turning index Y becomes small.

一方、後尾輪軸12において、各車輪12o及び12iと曲線レール(外軌側レール31o及び内軌側レール31i)との間の潤滑状態が向上して、両者の間の摩擦係数が低下した場合、各車輪12o及び12iが曲線レールに対して滑ることから、台車1が直進しようとする作用は弱まる。この場合、負の値の後尾側接線力T2はゼロに近づく。このため、旋回指標Yが大きくなる。 On the other hand, in the rear wheel shaft 12, when the lubrication state between the wheels 12o and 12i and the curved rails (outer rail side rail 31o and inner rail side rail 31i) is improved and the friction coefficient between the two is lowered. Since the wheels 12o and 12i slide on the curved rail, the action of the trolley 1 to go straight is weakened. In this case, the negative value of the trailing tangential force T2 approaches zero. Therefore, the turning index Y becomes large.

したがって、旋回指標Yに応じて、各車輪11o、11i、12o及び12iに関する摩擦係数をある程度推定することができる。要するに、各横圧Q1o、Q1i、Q2o及びQ2i、並びに各輪重P1o、P1i、P2o及びP2iを測定すれば、上記式(vi)で表される旋回指標Yを算出でき、この旋回指標Yに応じて、各車輪11o、11i、12o及び12iと曲線レール(外軌側レール31o及び内軌側レール31i)との間の潤滑状態を推定することができる。 Therefore, the coefficient of friction for each of the wheels 11o, 11i, 12o and 12i can be estimated to some extent according to the turning index Y. In short, if the lateral pressures Q1o, Q1i, Q2o and Q2i, and the wheel weights P1o, P1i, P2o and P2i are measured, the turning index Y represented by the above equation (vi) can be calculated, and the turning index Y can be used as the turning index Y. Accordingly, the lubrication state between the wheels 11o, 11i, 12o and 12i and the curved rails (outer rail side rail 31o and inner rail side rail 31i) can be estimated.

[潤滑状態の具体例]
以下に、図2~図4を参照して、旋回指標Yに応じた潤滑状態の具体例を説明する。
[Specific example of lubrication state]
Hereinafter, a specific example of the lubrication state according to the turning index Y will be described with reference to FIGS. 2 to 4.

図2は、旋回指標Yがゼロ付近の場合に、曲線路を走行する車両の車輪11o、11i、12o及び12iに作用する先頭側接線力T1及び後尾側接線力T2を示す模式図である。本明細書において、図2の場合の潤滑状態を潤滑状態(A)とも言う。 FIG. 2 is a schematic diagram showing a front side tangential force T1 and a tail side tangential force T2 acting on the wheels 11o, 11i, 12o and 12i of a vehicle traveling on a curved road when the turning index Y is near zero. In the present specification, the lubrication state in the case of FIG. 2 is also referred to as a lubrication state (A).

図2を参照して、先頭側接線力T1が後尾側接線力T2の絶対値とほぼ等しい場合、先頭輪軸11の各車輪11o及び11iに関する摩擦係数は、後尾輪軸12の各車輪12o及び12iに関する摩擦係数とほぼ等しい。このため、各車輪11o、11i、12o及び12iと曲線レール(外軌側レール31o及び内軌側レール31i)との間の潤滑状態は、いずれもドライか、又はいずれもウェットと推定できる。 With reference to FIG. 2, when the leading tangent force T1 is approximately equal to the absolute value of the tail tangent force T2, the coefficient of friction for the wheels 11o and 11i of the leading wheel axle 11 relates to the wheels 12o and 12i of the tail wheel axle 12. It is almost equal to the coefficient of friction. Therefore, it can be estimated that the lubrication state between the wheels 11o, 11i, 12o and 12i and the curved rails (outer rail side rail 31o and inner rail side rail 31i) is either dry or wet.

潤滑状態(A)において、先頭輪軸11の各車輪11o及び11iに関する潤滑状態がドライであれば、先頭側接線力T1が大きい。さらに、後尾輪軸12の各車輪12o及び12iに関する潤滑状態もドライであれば、後尾側接線力T2の絶対値が大きい。この場合、旋回指標Yがゼロ付近になる。これに対して、先頭輪軸11の各車輪11o及び11iに関する潤滑状態がウェットであれば、先頭側接線力T1が小さい。さらに、後尾輪軸12の各車輪12o及び12iに関する潤滑状態もウェットであれば、後尾側接線力T2の絶対値が小さい。この場合も、旋回指標Yがゼロ付近になる。 In the lubrication state (A), if the lubrication state of each of the wheels 11o and 11i of the head wheel axle 11 is dry, the head side tangential force T1 is large. Further, if the lubrication state of each wheel 12o and 12i of the tail wheel axle 12 is also dry, the absolute value of the tail side tangential force T2 is large. In this case, the turning index Y becomes near zero. On the other hand, if the lubrication state of each wheel 11o and 11i of the leading wheel axle 11 is wet, the leading side tangential force T1 is small. Further, if the lubrication state of each wheel 12o and 12i of the tail wheel axle 12 is also wet, the absolute value of the tail side tangential force T2 is small. In this case as well, the turning index Y is near zero.

図3は、旋回指標Yが大きい場合に、曲線路を走行する車両の車輪11o、11i、12o及び12iに作用する先頭側接線力T1及び後尾側接線力T2を示す模式図である。本明細書において、図3の場合の潤滑状態を潤滑状態(B)とも言う。 FIG. 3 is a schematic diagram showing a front side tangential force T1 and a tail side tangential force T2 acting on the wheels 11o, 11i, 12o and 12i of a vehicle traveling on a curved road when the turning index Y is large. In the present specification, the lubrication state in the case of FIG. 3 is also referred to as a lubrication state (B).

図3を参照して、後尾側接線力T2の絶対値が低下した場合、後尾輪軸12について外軌側車輪12o及び内軌側車輪12iの少なくとも一方に関する摩擦係数が低下している。先頭輪軸11の各車輪11o及び11iに関する摩擦係数は高い。このため、後尾輪軸12において、外軌側車輪12o及び内軌側車輪12iの少なくとも一方と曲線レール(外軌側レール31o及び内軌側レール31i)との間の潤滑状態はウェットと推定できる。先頭輪軸11の各車輪11o及び11iと曲線レール(外軌側レール31o及び内軌側レール31i)との間の潤滑状態はドライと推定できる。 With reference to FIG. 3, when the absolute value of the tail side tangential force T2 decreases, the coefficient of friction of the tail wheel axle 12 with respect to at least one of the outer track side wheel 12o and the inner track side wheel 12i decreases. The coefficient of friction for each of the wheels 11o and 11i of the leading wheel axle 11 is high. Therefore, in the rear wheel axle 12, it can be estimated that the lubrication state between at least one of the outer rail side wheel 12o and the inner rail side wheel 12i and the curved rail (outer rail side rail 31o and inner rail side rail 31i) is wet. It can be estimated that the lubrication state between the wheels 11o and 11i of the leading wheelset 11 and the curved rails (outer rail side rail 31o and inner rail side rail 31i) is dry.

潤滑状態(B)では、後尾輪軸12における外軌側車輪12o及び内軌側車輪12iの少なくとも一方に関する潤滑状態がウェットであるため、後尾側接線力T2の絶対値が小さい。先頭輪軸11の各車輪11o及び11iに関する潤滑状態がドライであるため、先頭側接線力T1が大きい。この場合、旋回指標Yが大きくなる。 In the lubrication state (B), the absolute value of the tail side tangential force T2 is small because the lubrication state of at least one of the outer track side wheel 12o and the inner track side wheel 12i on the tail wheel axle 12 is wet. Since the lubrication state of each wheel 11o and 11i of the leading wheel axle 11 is dry, the leading side tangential force T1 is large. In this case, the turning index Y becomes large.

図4は、旋回指標Yが小さい場合に、曲線路を走行する車両の車輪11o、11i、12o及び12iに作用する先頭側接線力T1及び後尾側接線力T2を示す模式図である。本明細書において、図4の場合の潤滑状態を潤滑状態(C)とも言う。 FIG. 4 is a schematic diagram showing a front side tangential force T1 and a tail side tangential force T2 acting on the wheels 11o, 11i, 12o and 12i of a vehicle traveling on a curved road when the turning index Y is small. In the present specification, the lubrication state in the case of FIG. 4 is also referred to as a lubrication state (C).

図4を参照して、先頭側接線力T1が低下した場合、先頭輪軸11について外軌側車輪11o及び内軌側車輪11iの少なくとも一方に関する摩擦係数が低下している。後尾輪軸12の各車輪12o及び12iに関する摩擦係数は高い。このため、先頭輪軸11において、外軌側車輪11o及び内軌側車輪11iの少なくとも一方と曲線レール(外軌側レール31o及び内軌側レール31i)との間の潤滑状態はウェットと推定できる。後尾輪軸12の各車輪12o及び12iと曲線レール(外軌側レール31o及び内軌側レール31i)との間の潤滑状態はドライと推定できる。 With reference to FIG. 4, when the front side tangential force T1 decreases, the friction coefficient of the front wheel axle 11 with respect to at least one of the outer track side wheel 11o and the inner track side wheel 11i decreases. The coefficient of friction for each of the wheels 12o and 12i of the tail wheel axle 12 is high. Therefore, in the front wheel axle 11, it can be estimated that the lubrication state between at least one of the outer rail side wheel 11o and the inner rail side wheel 11i and the curved rail (outer rail side rail 31o and inner rail side rail 31i) is wet. It can be estimated that the lubrication state between the wheels 12o and 12i of the tail wheel set 12 and the curved rails (outer rail side rail 31o and inner rail side rail 31i) is dry.

潤滑状態(C)では、先頭輪軸11における外軌側車輪11o及び内軌側車輪11iの少なくとも一方に関する潤滑状態がウェットであるため、先頭側接線力T1が小さい。後尾輪軸12の各車輪12o及び12iに関する潤滑状態がドライであるため、後尾側接線力T2の絶対値が大きい。この場合、旋回指標Yが小さくなる。 In the lubrication state (C), since the lubrication state of at least one of the outer track side wheel 11o and the inner track side wheel 11i on the front wheel axle 11 is wet, the front side tangential force T1 is small. Since the lubrication state of each wheel 12o and 12i of the tail wheel axle 12 is dry, the absolute value of the tangential force T2 on the tail side is large. In this case, the turning index Y becomes smaller.

潤滑状態(A)~(C)のいずれの場合も、先頭輪軸11の内軌側車輪11iに関する摩擦係数は、先頭輪軸11の内軌側車輪11iにおける横圧・輪重比κと等しいことが知られている。横圧・輪重比κは、先頭内軌側横圧Q1iと先頭内軌側輪重P1iとの比であり、下記の式(vii)で表される。 In any of the lubrication states (A) to (C), the coefficient of friction with respect to the inner rail side wheel 11i of the leading wheel axle 11 is equal to the lateral pressure / wheel weight ratio κ of the inner rail side wheel 11i of the leading wheel axle 11. Are known. The lateral pressure / wheel weight ratio κ is the ratio between the front internal rail side lateral pressure Q1i and the front internal rail side wheel weight P1i, and is expressed by the following equation (vii).

κ=Q1i/P1i (vii) κ = Q1i / P1i (vii)

横圧・輪重比κが小さければ、先頭輪軸11の内軌側車輪11iに関する摩擦係数が小さい。この場合、先頭側接線力T1が小さく、先頭輪軸11の内軌側車輪11iと内軌側レール31iとの間の潤滑状態はウェットと推定できる。一方、横圧・輪重比κが大きければ、先頭輪軸11の内軌側車輪11iに関する摩擦係数が大きい。この場合、先頭輪軸11の内軌側車輪11iと内軌側レール31iとの間の潤滑状態はドライと推定できる。要するに、横圧・輪重比κに応じて、先頭輪軸11の内軌側車輪11iと内軌側レール31iとの間の潤滑状態を推定できる。 If the lateral pressure / wheel set ratio κ is small, the friction coefficient with respect to the inner rail side wheel 11i of the leading wheel axle 11 is small. In this case, the front side tangential force T1 is small, and the lubrication state between the inner rail side wheel 11i and the inner rail side rail 31i of the front wheel axle 11 can be estimated to be wet. On the other hand, if the lateral pressure / wheel set ratio κ is large, the friction coefficient with respect to the inner rail side wheel 11i of the leading wheel axle 11 is large. In this case, it can be estimated that the lubrication state between the inner rail side wheel 11i and the inner rail side rail 31i of the leading wheel axle 11 is dry. In short, the lubrication state between the inner rail side wheel 11i and the inner rail side rail 31i of the leading wheel axle 11 can be estimated according to the lateral pressure / wheel set ratio κ.

[潤滑状態の実態]
以下に、図5及び図6を参照して、車輪と曲線レールとの間の潤滑状態の実態を説明する。
[Actual condition of lubrication]
Hereinafter, the actual state of lubrication between the wheel and the curved rail will be described with reference to FIGS. 5 and 6.

上記の推測を検証するため、台上試験を実施した。台上試験では、試験用の台車を試験装置に取り付け、曲線路を走行する車両を模擬した。試験において、各車輪に関する潤滑状態を種々変更し、各車輪に作用する横圧及び輪重を測定した。潤滑状態は下記の6条件とした。各条件において、ウェットの潤滑状態は、該当する車輪にグリスを塗布することにより実現した。ドライの潤滑状態では、該当する車輪にグリスを塗布しなかった。 A bench test was conducted to verify the above assumptions. In the bench test, a test trolley was attached to the test device to simulate a vehicle traveling on a curved road. In the test, the lubrication state of each wheel was variously changed, and the lateral pressure and wheel load acting on each wheel were measured. The lubrication state was set to the following 6 conditions. Under each condition, the wet lubrication condition was achieved by applying grease to the relevant wheels. In the dry lubrication state, no grease was applied to the corresponding wheels.

・条件1:4つの車輪の全てについて潤滑状態をドライとした。
・条件2:先頭輪軸の外軌側車輪について潤滑状態をウェットとした。その他の車輪について潤滑状態をドライとした。
・条件3:先頭輪軸の内軌側車輪及び外軌側車輪、並びに後尾輪軸の内軌側車輪について潤滑状態をウェットとした。その他の車輪について潤滑状態をドライとした。
・条件4:先頭輪軸の内軌側車輪及び後尾輪軸の内軌側車輪について潤滑状態をウェットとした。その他の車輪について潤滑状態をドライとした。
・条件5:先頭輪軸の内軌側車輪について潤滑状態をウェットとした。その他の車輪について潤滑状態をドライとした。
・条件6:後尾輪軸の内軌側車輪について潤滑状態をウェットとした。その他の車輪について潤滑状態をドライとした。
-Condition 1: The lubrication state was set to dry for all four wheels.
-Condition 2: The lubrication state of the outer rail side wheel of the leading wheel axle was set to wet. The lubrication of the other wheels was set to dry.
-Condition 3: The lubrication state of the inner rail side wheel and the outer rail side wheel of the front wheel axle and the inner rail side wheel of the rear wheel axle was set to wet. The lubrication of the other wheels was set to dry.
-Condition 4: The lubrication state of the inner rail side wheel of the front wheel axle and the inner rail side wheel of the rear wheel axle was set to wet. The lubrication of the other wheels was set to dry.
-Condition 5: The lubrication state of the inner rail side wheel of the leading wheel axle was set to wet. The lubrication of the other wheels was set to dry.
-Condition 6: The lubrication state of the inner rail side wheel of the rear tail wheel axle was set to wet. The lubrication of the other wheels was set to dry.

図5は、台上試験による結果をまとめた図である。図5において、横軸は、先頭輪軸の内軌側車輪の横圧・輪重比κを示し、縦軸は、旋回指標Yを示す。横圧・輪重比κ及び旋回指標Yは、試験装置で測定した横圧及び輪重より算出した。 FIG. 5 is a diagram summarizing the results of the bench test. In FIG. 5, the horizontal axis represents the lateral pressure / wheel weight ratio κ of the wheel on the inner rail side of the leading wheel axle, and the vertical axis represents the turning index Y. The lateral pressure / wheel load ratio κ and the turning index Y were calculated from the lateral pressure and wheel load measured by the test device.

図5を参照して、条件3、4及び5の場合、横圧・輪重比κが小さい。具体的には、横圧・輪重比κが0.4よりも小さい。これは、先頭輪軸の内軌側車輪に関する潤滑状態がウェットであることによる。これらの条件のいずれの場合でも、旋回指標Yがゼロ付近となっている。一方、先頭輪軸の内軌側車輪に関する潤滑状態がウェットであるため、当該車輪に関する摩擦係数が小さく、先頭側接線力T1が小さい。したがって、横圧・輪重比κが0.4よりも小さければ、先頭輪軸の各車輪の潤滑状態は問題視されない。 With reference to FIG. 5, in the case of conditions 3, 4 and 5, the lateral pressure / wheel weight ratio κ is small. Specifically, the lateral pressure / wheel weight ratio κ is smaller than 0.4. This is because the lubrication state of the inner rail side wheel of the leading wheel axle is wet. In any of these conditions, the turning index Y is near zero. On the other hand, since the lubrication state of the inner rail side wheel of the leading wheel axle is wet, the friction coefficient with respect to the wheel is small and the leading side tangential force T1 is small. Therefore, if the lateral pressure / wheel set ratio κ is smaller than 0.4, the lubrication state of each wheel of the leading wheel set is not regarded as a problem.

条件1、2及び6の場合、横圧・輪重比κが大きい。具体的には、横圧・輪重比κが0.4以上である。これは、先頭輪軸の内軌側車輪に関する潤滑状態がドライであることによる。 In the case of conditions 1, 2 and 6, the lateral pressure / wheel weight ratio κ is large. Specifically, the lateral pressure / wheel weight ratio κ is 0.4 or more. This is because the lubrication state of the inner rail side wheel of the leading wheel axle is dry.

ここで、条件1の場合、旋回指標Yがゼロ付近となっている。具体的には、旋回指標Yが-0.2よりも大きくて0.3よりも小さい。また、条件1の場合、先頭輪軸の各車輪に関する潤滑状態がドライである。さらに、条件1の場合、後尾輪軸の各車輪に関する潤滑状態もドライである。したがって、この条件1の潤滑状態は、上記した潤滑状態(A)に相当する。したがって、横圧・輪重比κが0.4以上であり、且つ旋回指標Yが-0.2よりも大きくて0.3よりも小さい場合、先頭輪軸及び後尾輪軸の両方の車輪について潤滑不足の可能性がある。 Here, in the case of condition 1, the turning index Y is near zero. Specifically, the turning index Y is larger than −0.2 and smaller than 0.3. Further, in the case of condition 1, the lubrication state of each wheel of the leading wheel axle is dry. Further, in the case of condition 1, the lubrication state of each wheel of the tail wheel axle is also dry. Therefore, the lubrication state of this condition 1 corresponds to the above-mentioned lubrication state (A). Therefore, when the lateral pressure / wheel set ratio κ is 0.4 or more and the turning index Y is larger than -0.2 and smaller than 0.3, lubrication is insufficient for both the front wheel axle and the rear wheel axle. There is a possibility of.

条件6の場合、旋回指標Yが大きい。具体的には、旋回指標Yが0.3以上である。また、条件6の場合、後尾輪軸の内軌側車輪に関する潤滑状態がウェットである。さらに、条件6の場合、先頭輪軸の外軌側車輪及び後尾輪軸の外軌側車輪に関する潤滑状態はドライである。したがって、この条件6の潤滑状態は、上記した潤滑状態(B)に相当する。したがって、横圧・輪重比κが0.4以上であり、且つ旋回指標Yが0.3以上である場合、先頭輪軸の車輪について潤滑不足で、後尾輪軸の車輪について潤滑良好の可能性がある。 In the case of condition 6, the turning index Y is large. Specifically, the turning index Y is 0.3 or more. Further, in the case of condition 6, the lubrication state of the inner rail side wheel of the rear tail wheel axle is wet. Further, in the case of condition 6, the lubrication state of the outer rail side wheel of the front wheel axle and the outer rail side wheel of the rear wheel axle is dry. Therefore, the lubrication state of this condition 6 corresponds to the above-mentioned lubrication state (B). Therefore, when the lateral pressure / wheel set ratio κ is 0.4 or more and the turning index Y is 0.3 or more, there is a possibility that the wheels on the front wheel set are insufficiently lubricated and the wheels on the rear wheel set are well lubricated. be.

条件2の場合、旋回指標Yが小さい。具体的には、旋回指標Yが-0.2以下である。また、条件2の場合、先頭輪軸の外軌側車輪に関する潤滑状態がウェットである。さらに、条件2の場合、後尾輪軸の各車輪に関する潤滑状態はドライである。したがって、この条件2の潤滑状態は、上記した潤滑状態(C)に相当する。したがって、横圧・輪重比κが0.4以上であり、且つ旋回指標Yが-0.2以下である場合、先頭輪軸の車輪について潤滑良好で、後尾輪軸の車輪について潤滑不足の可能性がある。 In the case of condition 2, the turning index Y is small. Specifically, the turning index Y is −0.2 or less. Further, in the case of condition 2, the lubrication state of the outer rail side wheel of the leading wheel axle is wet. Further, in the case of the condition 2, the lubrication state for each wheel of the tail wheel axle is dry. Therefore, the lubrication state of this condition 2 corresponds to the above-mentioned lubrication state (C). Therefore, when the lateral pressure / wheel set ratio κ is 0.4 or more and the turning index Y is -0.2 or less, there is a possibility that the wheels on the front wheel set have good lubrication and the wheels on the rear wheel set have insufficient lubrication. There is.

続いて、実走行の状況を調査した。実際に曲線路のレールにひずみゲージを取り付け、車両を実走行させた。その際、ひずみゲージからの検出値を取得し、各車輪に作用する横圧及び輪重を測定した。 Then, the situation of actual driving was investigated. A strain gauge was actually attached to the rail of the curved road, and the vehicle was actually run. At that time, the detected values from the strain gauges were acquired, and the lateral pressure and wheel load acting on each wheel were measured.

図6は、車両の実走行による実績をまとめた図である。図6において、横軸は、先頭輪軸の内軌側車輪の横圧・輪重比κを示し、縦軸は、旋回指標Yを示す。横圧・輪重比κ及び旋回指標Yは、車両の実走行中に測定した横圧及び輪重より算出した。 FIG. 6 is a diagram summarizing the actual results of actual running of the vehicle. In FIG. 6, the horizontal axis represents the lateral pressure / wheel weight ratio κ of the wheel on the inner rail side of the leading wheel axle, and the vertical axis represents the turning index Y. The lateral pressure / wheel load ratio κ and the turning index Y were calculated from the lateral pressure and wheel load measured during the actual running of the vehicle.

図6を参照して、横圧・輪重比κが広範に分散していることがわかる。さらに、旋回指標Yは-0.2から0.3までの範囲内に分散し、ゼロ付近となっていることがわかる。このことから、調査した実績では、車両と曲線レールとの間には潤滑状態(A)が生じていることがわかる。 With reference to FIG. 6, it can be seen that the lateral pressure / wheel weight ratio κ is widely dispersed. Further, it can be seen that the turning index Y is dispersed in the range of −0.2 to 0.3 and is near zero. From this, it can be seen from the results of the investigation that a lubrication state (A) has occurred between the vehicle and the curved rail.

本実施形態に係る鉄道車両用の潤滑状態監視システム及び潤滑状態監視方法は、上記の知見に基づいて完成されたものである。 The lubrication condition monitoring system and the lubrication condition monitoring method for railway vehicles according to the present embodiment have been completed based on the above findings.

本実施形態に係る鉄道車両用の潤滑状態監視システムは、鉄道車両の車輪と曲線路のレールとの間の潤滑状態を監視する。当該潤滑状態監視システムは、各々が曲線路の一方のレールに設置された第1横圧測定用検出部及び第1輪重測定用検出部と、各々が曲線路の他方のレールに設置された第2横圧測定用検出部及び第2輪重測定用検出部と、横圧測定部と、輪重測定部と、潤滑状態推定部と、を備える。 The lubrication state monitoring system for a railroad vehicle according to the present embodiment monitors the lubrication state between the wheels of the railroad vehicle and the rail of the curved road. The lubrication condition monitoring system was installed on one rail of the curved road, a first lateral pressure measuring detector and a first wheel weight measuring detector, each of which was installed on one rail of the curved road, and each of them was installed on the other rail of the curved road. It includes a second lateral pressure measuring detection unit, a second wheel weight measuring detecting unit, a lateral pressure measuring unit, a wheel load measuring unit, and a lubrication state estimation unit.

横圧測定部は、車両が曲線路を走行するときに、第1横圧測定用検出部及び第2横圧測定用検出部のそれぞれから検出値を取得し、取得した検出値に基づいて、先頭外軌側横圧、先頭内軌側横圧、後尾外軌側横圧、及び後尾内軌側横圧を算出する。先頭外軌側横圧は、車両が備える台車の先頭輪軸の外軌側車輪に作用するものである。先頭内軌側横圧は、先頭輪軸の内軌側車輪に作用するものである。後尾外軌側横圧は、台車の後尾輪軸の外軌側車輪に作用するものである。後尾内軌側横圧は、後尾輪軸の内軌側車輪に作用するものである。 The lateral pressure measuring unit acquires detection values from each of the first lateral pressure measuring detection unit and the second lateral pressure measuring detecting unit when the vehicle travels on a curved road, and based on the acquired detected values, the lateral pressure measuring unit obtains detection values. The lateral pressure on the front outer rail side, the lateral pressure on the front inner rail side, the lateral pressure on the tail outer rail side, and the lateral pressure on the tail inner rail side are calculated. The lateral pressure on the front outer rail side acts on the outer rail side wheels of the front wheel axle of the bogie provided by the vehicle. The head internal rail side lateral pressure acts on the inner rail side wheels of the front wheel axle. The lateral pressure on the tail outer rail side acts on the wheels on the outer rail side of the rear tail wheel axle of the bogie. The lateral pressure on the tail tail wheel side acts on the wheel on the tail wheel side of the tail wheel axle.

輪重測定部は、車両が曲線路を走行するときに、第1輪重測定用検出部及び第2輪重測定用検出部のそれぞれから検出値を取得し、取得した検出値に基づいて、先頭外軌側輪重、先頭内軌側輪重、後尾外軌側輪重、及び後尾内軌側輪重を算出する。先頭外軌側輪重は、先頭輪軸の外軌側車輪に作用するものである。先頭内軌側輪重は、先頭輪軸の内軌側車輪に作用するものである。後尾外軌側輪重は、後尾輪軸の外軌側車輪に作用するものである。後尾内軌側輪重は、後尾輪軸の内軌側車輪に作用するものである。 The wheel load measuring unit acquires detection values from each of the first wheel weight measuring detection unit and the second wheel weight measuring detection unit when the vehicle travels on a curved road, and based on the acquired detection values, the wheel load measuring unit obtains detection values. The front outer track side wheel weight, the front inner track side wheel weight, the tail outer track side wheel weight, and the tail inner track side wheel weight are calculated. The front outer rail side wheel weight acts on the outer rail side wheel of the front wheel axle. The head inner rail side wheel weight acts on the inner rail side wheel of the front wheel axle. The tail outer rail side wheel weight acts on the outer rail side wheel of the rear tail wheel axle. The tail inner rail side wheel weight acts on the inner rail side wheel of the rear tail wheel axle.

潤滑状態推定部は、横圧測定部で算出された先頭外軌側横圧、先頭内軌側横圧、後尾外軌側横圧、及び後尾内軌側横圧、並びに輪重測定部で算出された先頭外軌側輪重、先頭内軌側輪重、後尾外軌側輪重、及び後尾内軌側輪重に基づいて、車輪とレールとの間の潤滑状態を推定する。 The lubrication state estimation unit calculates the lateral pressure on the front outer rail side, the lateral pressure on the front inner rail side, the lateral pressure on the tail outer rail side, and the lateral pressure on the tail inner rail side calculated by the lateral pressure measuring unit, and the wheel load measuring unit. The lubrication state between the wheel and the rail is estimated based on the front outer track side wheel load, the front inner track side wheel load, the tail outer track side wheel load, and the tail inner track side wheel load.

本実施形態の監視システムでは、車輪と曲線レールとの間の潤滑状態を監視するのに、検出部(第1横圧測定用検出部、第1輪重測定用検出部、第2横圧測定用検出部及び第2輪重測定用検出部)を地上のレールに設け、この検出部の検出値から得られる横圧(先頭外軌側横圧、先頭内軌側横圧、後尾外軌側横圧、及び後尾内軌側横圧)及び輪重(先頭外軌側輪重、先頭内軌側輪重、後尾外軌側輪重、及び後尾内軌側輪重)を用いる。そして、各横圧及び各輪重に基づいて、車輪と曲線レールとの間の潤滑状態を推定する。この場合、従来技術のような特殊な台車は不要である。したがって、本実施形態の監視システムによれば、車輪と曲線レールとの間の潤滑状態をより安価に監視することができる。 In the monitoring system of the present embodiment, the detection unit (first lateral pressure measurement detection unit, first wheel weight measurement detection unit, second lateral pressure measurement) is used to monitor the lubrication state between the wheel and the curved rail. A detection unit for measuring the weight of the second wheel and a detection unit for measuring the weight of the second wheel) are provided on the rail on the ground, and the lateral pressure (lateral pressure on the front outer rail side, lateral pressure on the front inner rail side, and tail outer rail side) obtained from the detection value of this detection unit is provided. Lateral pressure and tail inner rail side lateral pressure) and wheel weight (front outer rail side wheel weight, front inner rail side wheel weight, tail outer rail side wheel weight, and tail inner rail side wheel weight) are used. Then, the lubrication state between the wheel and the curved rail is estimated based on each lateral pressure and each wheel weight. In this case, a special dolly as in the conventional technique is unnecessary. Therefore, according to the monitoring system of the present embodiment, the lubrication state between the wheel and the curved rail can be monitored at a lower cost.

典型的な例では、第1横圧測定用検出部及び第2横圧測定用検出部のそれぞれは、対応するレールの底部に取り付けられたひずみゲージである。第1輪重測定用検出部及び第2輪重測定用検出部のそれぞれは、対応するレールの腹部に取り付けられたひずみゲージである。この場合、各検出部の設置に必要なコストを低減できる。検出部としての各ひずみゲージは安価だからである。 In a typical example, each of the first lateral pressure measuring detector and the second lateral pressure measuring detector is a strain gauge attached to the bottom of the corresponding rail. Each of the first wheel weight measurement detection unit and the second wheel weight measurement detection unit is a strain gauge attached to the abdomen of the corresponding rail. In this case, the cost required for installing each detection unit can be reduced. This is because each strain gauge as a detection unit is inexpensive.

本実施形態の監視システムは、好ましくは、下記の構成を備える。潤滑状態推定部は、下記の式(1)で表される旋回指標Y、及び下記の式(2)で表される横圧・輪重比κに基づいて、車輪とレールとの間の潤滑状態を推定する。
Y={-(Q1o-Q1i)+(Q2o-Q2i)}/{(P1o+P1i+P2o+P2i)/4} (1)
κ=Q1i/P1i (2)
上記式(1)及び式(2)における各記号の意味は以下の通りである;
Q1o:先頭外軌側横圧、
Q1i:先頭内軌側横圧、
Q2o:後尾外軌側横圧、
Q2i:後尾内軌側横圧、
P1o:先頭外軌側輪重、
P1i:先頭内軌側輪重、
P2o:後尾外軌側輪重、及び
P2i:後尾内軌側輪重。
The monitoring system of the present embodiment preferably has the following configuration. The lubrication state estimation unit lubricates between the wheel and the rail based on the turning index Y represented by the following formula (1) and the lateral pressure / wheel load ratio κ represented by the following formula (2). Estimate the state.
Y = {-(Q1o-Q1i) + (Q2o-Q2i)} / {(P1o + P1i + P2o + P2i) / 4} (1)
κ = Q1i / P1i (2)
The meanings of the symbols in the above equations (1) and (2) are as follows;
Q1o: Lateral pressure on the outer rail side of the head,
Q1i: Lateral pressure on the inner rail side of the head,
Q2o: Lateral pressure on the tail outer rail side,
Q2i: Lateral pressure on the tail tail side,
P1o: Leading outer track side wheel weight,
P1i: Lead inner rail side wheel weight,
P2o: tail outer rail side wheel weight, and P2i: tail inner rail side wheel weight.

上記式(1)は上記式(vi)に対応する。上記式(2)は上記式(vii)に対応する。この場合、上記した通り、旋回指標Y及び横圧・輪重比κに応じて、車輪と曲線レールとの間の潤滑状態を監視することができる。 The above equation (1) corresponds to the above equation (vi). The above equation (2) corresponds to the above equation (vii). In this case, as described above, the lubrication state between the wheel and the curved rail can be monitored according to the turning index Y and the lateral pressure / wheel weight ratio κ.

この監視システムは、好ましくは、下記の構成を備える。潤滑状態推定部は、横圧・輪重比κが0.4以上の場合、旋回指標Yに応じて、車輪とレールとの間の潤滑状態を以下の潤滑状態(a)~(c)と判定する。
(a)旋回指標Yが-0.2よりも大きくて0.3よりも小さい場合:先頭輪軸及び後尾輪軸の両方の車輪について潤滑不足の可能性がある、
(b)旋回指標Yが0.3以上である場合:先頭輪軸の車輪について潤滑不足で、後尾輪軸の車輪について潤滑良好の可能性がある、及び
(c)旋回指標Yが-0.2以下である場合:先頭輪軸の車輪について潤滑良好で、後尾輪軸の車輪について潤滑不足の可能性がある。
This monitoring system preferably has the following configurations. When the lateral pressure / wheel load ratio κ is 0.4 or more, the lubrication state estimation unit sets the lubrication state between the wheel and the rail as the following lubrication states (a) to (c) according to the turning index Y. judge.
(A) When the turning index Y is larger than -0.2 and smaller than 0.3: There is a possibility of insufficient lubrication for both the front wheel axle and the rear wheel axle.
(B) When the turning index Y is 0.3 or more: There is a possibility that the wheels on the front wheel axle are insufficiently lubricated and the wheels on the rear wheel axle are well lubricated, and (c) the turning index Y is -0.2 or less. If: There is a possibility that the wheels on the front wheel set have good lubrication and the wheels on the rear wheel set have insufficient lubrication.

この場合、旋回指標Y及び横圧・輪重比κに応じて、車輪と曲線レールとの間の潤滑状態を潤滑状態(a)~(c)に分類し、適切な処置を施すことができる。潤滑状態(a)~(c)は、上記した潤滑状態(A)~(C)に相当する。 In this case, the lubrication state between the wheel and the curved rail can be classified into the lubrication states (a) to (c) according to the turning index Y and the lateral pressure / wheel load ratio κ, and appropriate measures can be taken. .. The lubrication states (a) to (c) correspond to the above-mentioned lubrication states (A) to (C).

本開示に係る鉄道車両用の潤滑状態監視方法は、鉄道車両の車輪と曲線路のレールとの間の潤滑状態を監視する。曲線路の一方のレールに第1横圧測定用検出部及び第1輪重測定用検出部が設置され、曲線路の他方のレールに第2横圧測定用検出部及び第2輪重測定用検出部が設置されている。当該潤滑状態監視方法は、横圧測定ステップと、輪重測定ステップと、潤滑状態推定ステップと、を備える。 The lubrication state monitoring method for a railroad vehicle according to the present disclosure monitors the lubrication state between the wheels of a railroad vehicle and the rail of a curved road. A first lateral pressure measurement detection unit and a first wheel weight measurement detection unit are installed on one rail of the curved road, and a second lateral pressure measurement detection unit and a second wheel weight measurement unit are installed on the other rail of the curved road. A detector is installed. The lubrication state monitoring method includes a lateral pressure measurement step, a wheel load measurement step, and a lubrication state estimation step.

横圧測定ステップは、車両が曲線路を走行するときに、第1横圧測定用検出部及び第2横圧測定用検出部のそれぞれから検出値を取得し、取得した検出値に基づいて、先頭外軌側横圧、先頭内軌側横圧、後尾外軌側横圧、及び後尾内軌側横圧を算出する。先頭外軌側横圧は、車両が備える台車の先頭輪軸の外軌側車輪に作用するものである。先頭内軌側横圧は、先頭輪軸の内軌側車輪に作用するものである。後尾外軌側横圧は、台車の後尾輪軸の外軌側車輪に作用するものである。後尾内軌側横圧は、後尾輪軸の内軌側車輪に作用するものである。 In the lateral pressure measurement step, when the vehicle travels on a curved road, detection values are acquired from each of the first lateral pressure measurement detection unit and the second lateral pressure measurement detection unit, and based on the acquired detection values, the lateral pressure measurement step is performed. The lateral pressure on the front outer rail side, the lateral pressure on the front inner rail side, the lateral pressure on the tail outer rail side, and the lateral pressure on the tail inner rail side are calculated. The lateral pressure on the front outer rail side acts on the outer rail side wheels of the front wheel axle of the bogie provided by the vehicle. The head internal rail side lateral pressure acts on the inner rail side wheels of the front wheel axle. The lateral pressure on the tail outer rail side acts on the wheels on the outer rail side of the rear tail wheel axle of the bogie. The lateral pressure on the tail tail wheel side acts on the wheel on the tail wheel side of the tail wheel axle.

輪重測定ステップは、車両が曲線路を走行するときに、第1輪重測定用検出部及び第2輪重測定用検出部のそれぞれから検出値を取得し、取得した検出値に基づいて、先頭外軌側輪重、先頭内軌側輪重、後尾外軌側輪重、及び後尾内軌側輪重を算出する。先頭外軌側輪重は、先頭輪軸の外軌側車輪に作用するものである。先頭内軌側輪重は、先頭輪軸の内軌側車輪に作用するものである。後尾外軌側輪重は、後尾輪軸の外軌側車輪に作用するものである。後尾内軌側輪重は、後尾輪軸の内軌側車輪に作用するものである。 In the wheel weight measurement step, when the vehicle travels on a curved road, detection values are acquired from each of the first wheel weight measurement detection unit and the second wheel weight measurement detection unit, and based on the acquired detection values, The front outer track side wheel weight, the front inner track side wheel weight, the tail outer track side wheel weight, and the tail inner track side wheel weight are calculated. The front outer rail side wheel weight acts on the outer rail side wheel of the front wheel axle. The head inner rail side wheel weight acts on the inner rail side wheel of the front wheel axle. The tail outer rail side wheel weight acts on the outer rail side wheel of the rear tail wheel axle. The tail inner rail side wheel weight acts on the inner rail side wheel of the rear tail wheel axle.

潤滑状態推定ステップは、横圧測定ステップで算出された先頭外軌側横圧、先頭内軌側横圧、後尾外軌側横圧、及び後尾内軌側横圧、並びに輪重測定ステップで算出された先頭外軌側輪重、先頭内軌側輪重、後尾外軌側輪重、及び後尾内軌側輪重に基づいて、車輪とレールとの間の潤滑状態を推定する。 The lubrication state estimation step is calculated by the head outer rail side lateral pressure, the front inner rail side lateral pressure, the tail outer rail side lateral pressure, and the tail inner rail side lateral pressure calculated in the lateral pressure measurement step, and the wheel load measurement step. The lubrication state between the wheel and the rail is estimated based on the front outer track side wheel load, the front inner track side wheel load, the tail outer track side wheel load, and the tail inner track side wheel load.

本実施形態の監視方法では、車輪と曲線レールとの間の潤滑状態を監視するのに、検出部(第1横圧測定用検出部、第1輪重測定用検出部、第2横圧測定用検出部及び第2輪重測定用検出部)を地上のレールに設け、この検出部の検出値から得られる横圧(先頭外軌側横圧、先頭内軌側横圧、後尾外軌側横圧、及び後尾内軌側横圧)及び輪重(先頭外軌側輪重、先頭内軌側輪重、後尾外軌側輪重、及び後尾内軌側輪重)を用いる。そして、各横圧及び各輪重に基づいて、車輪と曲線レールとの間の潤滑状態を推定する。この場合、従来技術のような特殊な台車は不要である。したがって、本実施形態の監視方法によれば、車輪と曲線レールとの間の潤滑状態をより安価に監視することができる。 In the monitoring method of the present embodiment, the detection unit (first lateral pressure measurement detection unit, first wheel weight measurement detection unit, second lateral pressure measurement) is used to monitor the lubrication state between the wheel and the curved rail. A detection unit for measuring the weight of the second wheel and a detection unit for measuring the weight of the second wheel) are provided on the rail on the ground, and the lateral pressure (lateral pressure on the front outer rail side, lateral pressure on the front inner rail side, and tail outer rail side) obtained from the detection value of this detection unit is provided. Lateral pressure and tail inner rail side lateral pressure) and wheel weight (front outer rail side wheel weight, front inner rail side wheel weight, tail outer rail side wheel weight, and tail inner rail side wheel weight) are used. Then, the lubrication state between the wheel and the curved rail is estimated based on each lateral pressure and each wheel weight. In this case, a special dolly as in the conventional technique is unnecessary. Therefore, according to the monitoring method of the present embodiment, the lubrication state between the wheel and the curved rail can be monitored at a lower cost.

典型的な例では、第1横圧測定用検出部及び第2横圧測定用検出部はひずみゲージである。横圧測定用検出部としての各ひずみゲージは、対応するレールの底部に取り付けられている。第1輪重測定用検出部及び第2輪重測定用検出部はひずみゲージである。輪重測定用検出部としての各ひずみゲージは、対応するレールの腹部に取り付けられている。この場合、各検出部の設置に必要なコストを低減できる。検出部としての各ひずみゲージは安価だからである。 In a typical example, the first lateral pressure measuring detector and the second lateral pressure measuring detector are strain gauges. Each strain gauge as a detector for lateral pressure measurement is attached to the bottom of the corresponding rail. The first wheel weight measurement detection unit and the second wheel weight measurement detection unit are strain gauges. Each strain gauge as a detector for measuring wheel load is attached to the abdomen of the corresponding rail. In this case, the cost required for installing each detection unit can be reduced. This is because each strain gauge as a detection unit is inexpensive.

本実施形態の監視方法は、好ましくは、下記の構成を備える。潤滑状態推定ステップは、上記の式(1)で表される旋回指標Y、及び上記の式(2)で表される横圧・輪重比κに基づいて、車輪とレールとの間の潤滑状態を推定する。この場合、上記した通り、旋回指標Y及び横圧・輪重比κに応じて、車輪と曲線レールとの間の潤滑状態を監視することができる。 The monitoring method of the present embodiment preferably has the following configuration. The lubrication state estimation step is the lubrication between the wheel and the rail based on the turning index Y represented by the above equation (1) and the lateral pressure / wheel weight ratio κ represented by the above equation (2). Estimate the state. In this case, as described above, the lubrication state between the wheel and the curved rail can be monitored according to the turning index Y and the lateral pressure / wheel weight ratio κ.

この監視方法は、好ましくは、下記の構成を備える。潤滑状態推定ステップは、横圧・輪重比κが0.4以上の場合、旋回指標Yに応じて、車輪とレールとの間の潤滑状態を上記の潤滑状態(a)~(c)と判定する。この場合、旋回指標Y及び横圧・輪重比κに応じて、車輪と曲線レールとの間の潤滑状態を潤滑状態(a)~(c)に分類し、適切な処置を施すことができる。 This monitoring method preferably has the following configuration. In the lubrication state estimation step, when the lateral pressure / wheel load ratio κ is 0.4 or more, the lubrication state between the wheel and the rail is set to the above lubrication state (a) to (c) according to the turning index Y. judge. In this case, the lubrication state between the wheel and the curved rail can be classified into the lubrication states (a) to (c) according to the turning index Y and the lateral pressure / wheel load ratio κ, and appropriate measures can be taken. ..

[本実施形態に係る監視システム及び監視方法の具体例]
以下に、図面を参照しながら、本実施形態に係る潤滑状態監視システム及び潤滑状態監視方法の具体例を説明する。
[Specific example of monitoring system and monitoring method according to this embodiment]
Hereinafter, specific examples of the lubrication condition monitoring system and the lubrication condition monitoring method according to the present embodiment will be described with reference to the drawings.

図7は、潤滑状態監視システムの全体構成を示す模式図である。図7を参照して、本実施形態の監視システムは、車両が走行する線路3のうちの曲線路31に、第1横圧測定用検出部4a、第1輪重測定用検出部5a、第2横圧測定用検出部4b及び第2輪重測定用検出部5bを備える。第1横圧測定用検出部4a及び第1輪重測定用検出部5aは、それぞれ曲線路31の一方のレール、例えば外軌側レール31oに設置される。第2横圧測定用検出部4b及び第2輪重測定用検出部5bは、それぞれ曲線路31の他方のレール、例えば内軌側レール31iに設置される。 FIG. 7 is a schematic diagram showing the overall configuration of the lubrication condition monitoring system. With reference to FIG. 7, in the monitoring system of the present embodiment, the first lateral pressure measurement detection unit 4a, the first wheel weight measurement detection unit 5a, and the first wheel weight measurement detection unit 5a are provided on the curved road 31 of the track 3 on which the vehicle travels. 2 The lateral pressure measurement detection unit 4b and the second wheel weight measurement detection unit 5b are provided. The first lateral pressure measuring detection unit 4a and the first wheel weight measuring detection unit 5a are respectively installed on one rail of the curved road 31, for example, the outer rail side rail 31o. The second lateral pressure measuring detection unit 4b and the second wheel weight measuring detecting unit 5b are respectively installed on the other rail of the curved road 31, for example, the inner rail side rail 31i.

各検出部4a、5a、4b及び5bはひずみゲージである。第1横圧測定用検出部4aとしてのひずみゲージは、外軌側レール31oの底部32oに取り付けられる。第1輪重測定用検出部5aとしてのひずみゲージは、外軌側レール31oの腹部33oに取り付けられる。第2横圧測定用検出部4bとしてのひずみゲージは、内軌側レール31iの底部32iに取り付けられる。第2輪重測定用検出部5bとしてのひずみゲージは、内軌側レール31iの腹部33iに取り付けられる。これらの検出部4a、5a、4b及び5bは、互いに曲線路31の長手方向の同じ位置に配置される。これらの検出部4a、5a、4b及び5bが一組である。 Each of the detection units 4a, 5a, 4b and 5b is a strain gauge. The strain gauge as the first lateral pressure measuring detection unit 4a is attached to the bottom portion 32o of the outer rail side rail 31o. The strain gauge as the first wheel weight measuring detection unit 5a is attached to the abdomen 33o of the outer rail side rail 31o. The strain gauge as the second lateral pressure measuring detection unit 4b is attached to the bottom portion 32i of the inner rail side rail 31i. The strain gauge as the second wheel weight measuring detection unit 5b is attached to the abdomen 33i of the inner rail side rail 31i. These detection units 4a, 5a, 4b and 5b are arranged at the same position in the longitudinal direction of the curved road 31 with each other. These detection units 4a, 5a, 4b and 5b are a set.

さらに、本実施形態の監視システムは、横圧測定部6と、輪重測定部7と、潤滑状態推定部8と、を備える。横圧測定部6、輪重測定部7及び潤滑状態推定部8は、鉄道の運行を司る管理室9のコンピュータに搭載される。第1横圧測定用検出部4a及び第2横圧測定用検出部4bは、横圧測定部6に接続される。第1輪重測定用検出部5a及び第2輪重測定用検出部5bは、輪重測定部7に接続される。これらの接続は、有線であってもよいし、無線であってもよい。横圧測定部6及び輪重測定部7は潤滑状態推定部8に接続される。 Further, the monitoring system of the present embodiment includes a lateral pressure measuring unit 6, a wheel load measuring unit 7, and a lubrication state estimation unit 8. The lateral pressure measuring unit 6, the wheel load measuring unit 7, and the lubrication state estimation unit 8 are mounted on the computer of the control room 9 that controls the operation of the railway. The first lateral pressure measuring detection unit 4a and the second lateral pressure measuring detecting unit 4b are connected to the lateral pressure measuring unit 6. The first wheel weight measuring detection unit 5a and the second wheel weight measuring detection unit 5b are connected to the wheel weight measuring unit 7. These connections may be wired or wireless. The lateral pressure measuring unit 6 and the wheel load measuring unit 7 are connected to the lubrication state estimation unit 8.

横圧測定部6は、車両が曲線路31を走行するときに、第1横圧測定用検出部4a及び第2横圧測定用検出部4bのそれぞれから検出値を取得する。これと同時に、輪重測定部7は、第1輪重測定用検出部5a及び第2輪重測定用検出部5bのそれぞれから検出値を取得する。 The lateral pressure measuring unit 6 acquires detection values from each of the first lateral pressure measuring detection unit 4a and the second lateral pressure measuring detecting unit 4b when the vehicle travels on the curved road 31. At the same time, the wheel load measuring unit 7 acquires the detected values from each of the first wheel weight measuring detection unit 5a and the second wheel weight measuring detection unit 5b.

具体的には、まず、先頭輪軸の各車輪11o及び11iが検出部4a、5a、4b及び5bの位置を通過する。このとき、検出部4a及び4bは、各レール31o及び31iの左右方向のひずみを検出し、横圧測定部6は検出部4a及び4bから検出値を取得する。これと同時に、検出部5a及び5bは、各レール31o及び31iの上下方向のひずみを検出し、輪重測定部7は検出部5a及び5bから検出値を取得する。 Specifically, first, the wheels 11o and 11i of the leading wheel axle pass through the positions of the detection units 4a, 5a, 4b and 5b. At this time, the detection units 4a and 4b detect the strain in the left-right direction of the rails 31o and 31i, and the lateral pressure measuring unit 6 acquires the detected values from the detection units 4a and 4b. At the same time, the detection units 5a and 5b detect the strain in the vertical direction of the rails 31o and 31i, and the wheel load measuring unit 7 acquires the detected values from the detection units 5a and 5b.

続いて、後尾輪軸の各車輪12o、12iが検出部4a、5a、4b及び5bの位置を通過する。このとき、上記と同様に、横圧測定部6は検出部4a及び4bから検出値を取得する。これと同時に、上記と同様に、輪重測定部7は検出部5a及び5bから検出値を取得する。 Subsequently, the wheels 12o and 12i of the tail wheel axle pass through the positions of the detection units 4a, 5a, 4b and 5b. At this time, similarly to the above, the lateral pressure measuring unit 6 acquires the detected value from the detection units 4a and 4b. At the same time, similarly to the above, the wheel load measuring unit 7 acquires the detected values from the detection units 5a and 5b.

横圧測定部6は、取得した検出値に基づいて、先頭輪軸の外軌側車輪11oに作用する横圧Q1o、先頭輪軸の内軌側車輪11iに作用する横圧Q1i、後尾輪軸の外軌側車輪12oに作用する横圧Q2o、及び後尾輪軸の内軌側車輪12iに作用する横圧Q2iを算出する。各横圧Q1o、Q1i、Q2o及びQ2iの算出は、横圧測定部6内のプログラムによって実行される。 Based on the acquired detection value, the lateral pressure measuring unit 6 has a lateral pressure Q1o acting on the outer rail side wheel 11o of the leading wheel axle, a lateral pressure Q1i acting on the inner rail side wheel 11i of the leading wheel axle, and an outer rail of the rear tail wheel axle. The lateral pressure Q2o acting on the side wheel 12o and the lateral pressure Q2i acting on the inner rail side wheel 12i of the rear wheel axle are calculated. The calculation of each lateral pressure Q1o, Q1i, Q2o and Q2i is executed by the program in the lateral pressure measuring unit 6.

輪重測定部7は、取得した検出値に基づいて、先頭輪軸の外軌側車輪11oに作用する輪重P1o、先頭輪軸の内軌側車輪11iに作用する輪重P1i、後尾輪軸の外軌側車輪12oに作用する輪重P2o、及び後尾輪軸の内軌側車輪12iに作用する輪重P2iを算出する。各輪重P1o、P1i、P2o及びP2iの算出は、輪重測定部7内のプログラムによって実行される。 Based on the acquired detection value, the wheel set measuring unit 7 has a wheel set P1o acting on the outer rail side wheel 11o of the front wheel set, a wheel load P1i acting on the inner track side wheel 11i of the front wheel set, and an outer track of the rear wheel set. The wheel weight P2o acting on the side wheel 12o and the wheel weight P2i acting on the inner rail side wheel 12i of the rear wheel axle are calculated. The calculation of each wheel load P1o, P1i, P2o and P2i is executed by the program in the wheel load measuring unit 7.

なお、横圧測定部6による検出値の取得タイミングによって、先頭輪軸の各車輪11o及び11iに作用する横圧Q1o及びQ1iを、後尾輪軸の各車輪12o及び12iに作用する横圧Q2o及びQ2iと識別できる。同様に、輪重測定部7による検出値の取得タイミングによって、先頭輪軸の各車輪11o及び11iに作用する輪重P1o及びP1iを、後尾輪軸の各車輪12o及び12iに作用する輪重P2o及びP2iと識別することができる。 Depending on the acquisition timing of the detected value by the lateral pressure measuring unit 6, the lateral pressures Q1o and Q1i acting on the wheels 11o and 11i of the front wheel axle are combined with the lateral pressures Q2o and Q2i acting on the wheels 12o and 12i of the rear wheel axle. Can be identified. Similarly, depending on the acquisition timing of the detected value by the wheel set measuring unit 7, the wheel sets P1o and P1i acting on the wheels 11o and 11i of the front wheel set are combined with the wheel sets P2o and P2i acting on the wheels 12o and 12i of the tail wheel set. Can be identified as.

ただし、先頭輪軸の各車輪11o及び11iに作用する横圧Q1o及びQ1i、並びに後尾輪軸の各車輪12o及び12iに作用する横圧Q2o及びQ2iを同時に測定することも可能である。先頭輪軸の各車輪11o及び11iに作用する輪重P1o及びP1i、並びに後尾輪軸の各車輪12o及び12iに作用する輪重P2o及びP2iを同時に測定することも可能である。このような測定を実現するには、二組の検出部4a、5a、4b及び5bを、互いに先頭輪軸と後尾輪軸との間隔分の距離をあけて配置すればよい。この場合、各横圧Q1o、Q1i、Q2o及びQ2i、及び各輪重P1o、P1i、P2o及びP2iを同時に検出して測定することできる。検出に時間差がないことから、精度の高い測定が行える。 However, it is also possible to simultaneously measure the lateral pressures Q1o and Q1i acting on the wheels 11o and 11i of the front wheel axle and the lateral pressures Q2o and Q2i acting on the wheels 12o and 12i of the tail wheel axle. It is also possible to simultaneously measure the wheel sets P1o and P1i acting on the wheels 11o and 11i of the front wheel set, and the wheel sets P2o and P2i acting on the wheels 12o and 12i of the rear wheel set. In order to realize such a measurement, the two sets of detection units 4a, 5a, 4b and 5b may be arranged at a distance corresponding to the distance between the front wheel axle and the rear wheel axle. In this case, the lateral pressures Q1o, Q1i, Q2o and Q2i, and the wheel weights P1o, P1i, P2o and P2i can be simultaneously detected and measured. Since there is no time difference in detection, highly accurate measurement can be performed.

潤滑状態推定部8は、横圧測定部6で算出された各横圧Q1o、Q1i、Q2o及びQ2i、並びに輪重測定部7で算出された各輪重P1o、P1i、P2o及びP2iに基づいて、各車輪11o、11i、12o及び12iと曲線レール(外軌側レール31o及び内軌側レール31i)との間の潤滑状態を推定する。潤滑状態の推定は、潤滑状態推定部8内のプログラムによって実行される。 The lubrication state estimation unit 8 is based on the lateral pressures Q1o, Q1i, Q2o and Q2i calculated by the lateral pressure measuring unit 6 and the wheel weights P1o, P1i, P2o and P2i calculated by the wheel load measuring unit 7. , The lubrication state between each wheel 11o, 11i, 12o and 12i and the curved rail (outer rail side rail 31o and inner rail side rail 31i) is estimated. The estimation of the lubrication state is executed by the program in the lubrication state estimation unit 8.

本実施形態の監視方法は、本実施形態の監視システムを用いる。監視方法は、横圧測定ステップと、輪重測定ステップと、潤滑状態推定ステップと、を備える。横圧測定ステップは、上記した横圧測定部6による動作を行う。輪重測定ステップは、上記した輪重測定部7による動作を行う。潤滑状態推定ステップは、上記した潤滑状態推定部8による動作を行う。 The monitoring method of this embodiment uses the monitoring system of this embodiment. The monitoring method includes a lateral pressure measuring step, a wheel load measuring step, and a lubrication state estimation step. The lateral pressure measuring step is performed by the lateral pressure measuring unit 6 described above. The wheel load measuring step is operated by the wheel load measuring unit 7 described above. The lubrication state estimation step is performed by the lubrication state estimation unit 8 described above.

本実施形態の監視システム及び監視方法では、各車輪11o、11i、12o及び12iと曲線レール(外軌側レール31o及び内軌側レール31i)との間の潤滑状態を監視するのに、検出部4a、5a、4b及び5bを地上のレールに設け、この検出部4a、5a、4b及び5bの検出値から得られる横圧Q1o、Q1i、Q2o及びQ2i並びに輪重P1o、P1i、P2o及びP2iを用いる。そして、各横圧Q1o、Q1i、Q2o及びQ2i及び各輪重P1o、P1i、P2o及びP2iに基づいて、各車輪11o、11i、12o及び12iと曲線レールとの間の潤滑状態を推定する。この場合、従来技術のような特殊な台車は不要である。つまり、運行する車両の全てに検出部を設ける必要はなく、対象とする曲線路31に検出部4a、5a、4b及び5bを設ければ足りる。したがって、本実施形態の監視システム及び監視方法によれば、各車輪11o、11i、12o及び12iと曲線レールとの間の潤滑状態をより安価に監視することができる。 In the monitoring system and monitoring method of the present embodiment, the detection unit is used to monitor the lubrication state between the wheels 11o, 11i, 12o and 12i and the curved rails (outer rail side rail 31o and inner rail side rail 31i). 4a, 5a, 4b and 5b are provided on the rail on the ground, and the lateral pressures Q1o, Q1i, Q2o and Q2i and the wheel weights P1o, P1i, P2o and P2i obtained from the detection values of the detection units 4a, 5a, 4b and 5b are applied. Use. Then, based on the lateral pressures Q1o, Q1i, Q2o and Q2i and the wheel weights P1o, P1i, P2o and P2i, the lubrication state between the wheels 11o, 11i, 12o and 12i and the curved rail is estimated. In this case, a special dolly as in the conventional technique is unnecessary. That is, it is not necessary to provide the detection units on all the operating vehicles, and it is sufficient to provide the detection units 4a, 5a, 4b and 5b on the target curved road 31. Therefore, according to the monitoring system and the monitoring method of the present embodiment, the lubrication state between each wheel 11o, 11i, 12o and 12i and the curved rail can be monitored at a lower cost.

本実施形態では、潤滑状態推定部8は、上記式(1)で表される旋回指標Y、及び上記式(2)で表される横圧・輪重比κに基づいて、各車輪11o、11i、12o及び12iと曲線レールとの間の潤滑状態を推定する。旋回指標Y及び横圧・輪重比κは、横圧Q1o、Q1i、Q2o及びQ2i並びに輪重P1o、P1i、P2o及びP2iから算出される。この場合、上記した通り、旋回指標Y及び横圧・輪重比κに応じて、各車輪11o、11i、12o及び12iと曲線レールとの間の潤滑状態を監視することができる。 In the present embodiment, the lubrication state estimation unit 8 has each wheel 11o, based on the turning index Y represented by the above formula (1) and the lateral pressure / wheel load ratio κ represented by the above formula (2). The lubrication state between 11i, 12o and 12i and the curved rail is estimated. The turning index Y and the lateral pressure / wheel weight ratio κ are calculated from the lateral pressures Q1o, Q1i, Q2o and Q2i and the wheel weights P1o, P1i, P2o and P2i. In this case, as described above, the lubrication state between each wheel 11o, 11i, 12o and 12i and the curved rail can be monitored according to the turning index Y and the lateral pressure / wheel load ratio κ.

さらに、潤滑状態推定部8は、横圧・輪重比κが0.4以上の場合、旋回指標Yに応じて、各車輪11o、11i、12o及び12iと曲線レールとの間の潤滑状態を上記した潤滑状態(a)~(c)と判定する。この場合、旋回指標Y及び横圧・輪重比κに応じて、各車輪11o、11i、12o及び12iと曲線レールとの間の潤滑状態を潤滑状態(a)~(c)に分類し、適切な処置を施すことができる。 Further, when the lateral pressure / wheel load ratio κ is 0.4 or more, the lubrication state estimation unit 8 determines the lubrication state between each wheel 11o, 11i, 12o and 12i and the curved rail according to the turning index Y. It is determined that the lubrication states (a) to (c) are as described above. In this case, the lubrication states between the wheels 11o, 11i, 12o and 12i and the curved rail are classified into lubrication states (a) to (c) according to the turning index Y and the lateral pressure / wheel load ratio κ. Appropriate measures can be taken.

潤滑状態(a)では、旋回指標Yが-0.2よりも大きくて0.3よりも小さい。これにより、先頭輪軸及び後尾輪軸の両方の車輪について潤滑不足の可能性がある。この場合、潤滑状態を改善する処置が必要である。例えば、潤滑不足の可能性があるレールに潤滑剤(例:グリス、摩擦調整剤)を塗布すればよい。管理室9のコンピュータからの指令により、地上に設置された供給装置を作動させ、この供給装置からレールに潤滑剤を供給してもよい。 In the lubricated state (a), the turning index Y is larger than −0.2 and smaller than 0.3. As a result, there is a possibility of insufficient lubrication for both the front wheel axle and the rear wheel axle. In this case, measures to improve the lubrication state are required. For example, a lubricant (eg, grease, friction modifier) may be applied to a rail that may be under-lubricated. A supply device installed on the ground may be operated by a command from the computer of the control room 9, and the lubricant may be supplied to the rail from this supply device.

潤滑状態(b)では、旋回指標Yが0.3以上である。これにより、先頭輪軸の車輪について潤滑不足で、後尾輪軸の車輪について潤滑良好の可能性がある。この場合、先頭輪軸の車輪と後尾輪軸の車輪との間で潤滑状態のムラがあると言える。ただし、潤滑状態のムラは一時的なものと考えられる。車両の繰り返しの走行により、潤滑状態は平準化すると考えられるからである。このため、潤滑状態を改善する処置は保留すればよい。 In the lubrication state (b), the turning index Y is 0.3 or more. As a result, there is a possibility that the wheels on the front wheel set are insufficiently lubricated and the wheels on the rear wheel set are well lubricated. In this case, it can be said that there is uneven lubrication between the wheel of the front wheel axle and the wheel of the tail wheel axle. However, uneven lubrication is considered to be temporary. This is because it is considered that the lubrication state is leveled by the repeated running of the vehicle. Therefore, the measures for improving the lubrication state may be withheld.

潤滑状態(c)では、旋回指標Yが-0.2以下である。これにより、先頭輪軸の車輪について潤滑良好で、後尾輪軸の車輪について潤滑不足の可能性がある。この場合、潤滑状態を改善する処置は必要ない。この状態は、最も潤滑の確保が必要な先頭輪軸の外軌側車輪で潤滑状態が良好だからである。 In the lubrication state (c), the turning index Y is −0.2 or less. As a result, there is a possibility that the wheels on the front wheel set have good lubrication and the wheels on the rear wheel set have insufficient lubrication. In this case, no action is required to improve the lubrication condition. This is because the lubrication condition is good for the wheels on the outer rail side of the leading wheel axle, which require the most lubrication.

以上、本開示に係る実施形態を説明した。しかしながら、上述した実施形態は例示に過ぎない。したがって、本開示は上述した実施形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施形態を適宜変更して実施することができる。 The embodiments according to the present disclosure have been described above. However, the above-described embodiment is merely an example. Therefore, the present disclosure is not limited to the above-described embodiment, and the above-mentioned embodiment can be appropriately modified and implemented without departing from the spirit thereof.

1:台車
11:先頭輪軸
11o:外軌側車輪
11i:内軌側車輪
12:後尾輪軸
12o:外軌側車輪
12i:内軌側車輪
3:線路
31:曲線路
31o:外軌側レール
31i:内軌側レール
4a:第1横圧測定用検出部
4b:第2横圧測定用検出部
5a:第1輪重測定用検出部
5b:第2輪重測定用検出部
6:横圧測定部
7:輪重測定部
8:潤滑状態推定部
9:管理室
1: Cart 11: Front wheel shaft 11o: Outer rail side wheel 11i: Inner rail side wheel 12: Rear tail wheel shaft 12o: Outer rail side wheel 12i: Inner rail side wheel 3: Railroad 31: Curved road 31o: Outer rail side rail 31i: Inner rail side rail 4a: 1st lateral pressure measurement detection unit 4b: 2nd lateral pressure measurement detection unit 5a: 1st wheel weight measurement detection unit 5b: 2nd wheel weight measurement detection unit 6: lateral pressure measurement unit 7: Wheel load measurement unit 8: Lubrication status estimation unit 9: Control room

Claims (7)

鉄道車両の車輪と曲線路のレールとの間の潤滑状態を監視する、鉄道車両用の潤滑状態監視システムであって、
各々が曲線路の一方のレールに設置された第1横圧測定用検出部及び第1輪重測定用検出部と、
各々が前記曲線路の他方のレールに設置された第2横圧測定用検出部及び第2輪重測定用検出部と、
車両が前記曲線路を走行するときに、前記第1横圧測定用検出部及び前記第2横圧測定用検出部のそれぞれから検出値を取得する横圧測定部であって、取得した検出値に基づいて、前記車両が備える台車の先頭輪軸の外軌側車輪に作用する先頭外軌側横圧、前記先頭輪軸の内軌側車輪に作用する先頭内軌側横圧、前記台車の後尾輪軸の外軌側車輪に作用する後尾外軌側横圧、及び前記後尾輪軸の内軌側車輪に作用する後尾内軌側横圧を算出する前記横圧測定部と、
前記車両が前記曲線路を走行するときに、前記第1輪重測定用検出部及び第2輪重測定用検出部のそれぞれから検出値を取得する輪重測定部であって、取得した検出値に基づいて、前記先頭輪軸の前記外軌側車輪に作用する先頭外軌側輪重、前記先頭輪軸の前記内軌側車輪に作用する先頭内軌側輪重、前記後尾輪軸の前記外軌側車輪に作用する後尾外軌側輪重、及び前記後尾輪軸の前記内軌側車輪に作用する後尾内軌側輪重を算出する前記輪重測定部と、
前記横圧測定部で算出された前記先頭外軌側横圧、前記先頭内軌側横圧、前記後尾外軌側横圧、及び前記後尾内軌側横圧、並びに前記輪重測定部で算出された前記先頭外軌側輪重、前記先頭内軌側輪重、前記後尾外軌側輪重、及び前記後尾内軌側輪重に基づいて、前記車輪と前記レールとの間の潤滑状態を推定する潤滑状態推定部と、を備える、鉄道車両用の潤滑状態監視システム。
A lubrication status monitoring system for railroad vehicles that monitors the lubrication status between the wheels of railroad vehicles and rails on curved roads.
A first lateral pressure measuring detector and a first wheel weight measuring detector, each of which is installed on one rail of a curved road.
A second lateral pressure measuring detector and a second wheel weight measuring detector, each of which is installed on the other rail of the curved road.
A lateral pressure measuring unit that acquires detection values from each of the first lateral pressure measuring detection unit and the second lateral pressure measuring detecting unit when the vehicle travels on the curved road, and the acquired detection values. Based on, the front outer rail side lateral pressure acting on the outer rail side wheel of the front wheel axle of the trolley provided by the vehicle, the leading inner rail side lateral pressure acting on the inner rail side wheel of the leading wheel axle, and the rear tail wheel shaft of the trolley. The lateral pressure measuring unit for calculating the tail-outer-rail side lateral pressure acting on the outer-rail-side wheel and the tail-inner-rail-side lateral pressure acting on the inner-rail-side wheel of the rear-tail wheel axle.
A wheel weight measuring unit that acquires detection values from each of the first wheel weight measuring detection unit and the second wheel weight measuring detection unit when the vehicle travels on the curved road, and the acquired detection values. Based on the above, the leading outer rail side wheel weight acting on the outer rail side wheel of the leading wheel axle, the leading inner rail side wheel weight acting on the inner rail side wheel of the leading wheel axle, and the outer rail side of the rear tail wheel axle. The wheel weight measuring unit that calculates the tail outer rail side wheel weight acting on the wheel and the tail inner rail side wheel weight acting on the inner rail side wheel of the rear wheel axle, and the wheel weight measuring unit.
Calculated by the front outer rail side lateral pressure, the front inner rail side lateral pressure, the tail outer rail side lateral pressure, the tail inner rail side lateral pressure, and the wheel load measuring unit calculated by the lateral pressure measuring unit. The lubrication state between the wheel and the rail is determined based on the head outer rail side wheel weight, the head inner rail side wheel weight, the tail outer rail side wheel weight, and the tail inner rail side wheel weight. A lubrication status monitoring system for railroad vehicles, including a lubrication status estimation unit for estimating.
請求項1に記載の鉄道車両用の潤滑状態監視システムであって、
前記第1横圧測定用検出部及び前記第2横圧測定用検出部のそれぞれは、対応する前記レールの底部に取り付けられたひずみゲージであり、
前記第1輪重測定用検出部及び前記第2輪重測定用検出部のそれぞれは、対応する前記レールの腹部に取り付けられたひずみゲージである、鉄道車両用の潤滑状態監視システム。
The lubrication condition monitoring system for a railway vehicle according to claim 1.
Each of the first lateral pressure measuring detector and the second lateral pressure measuring detector is a strain gauge attached to the bottom of the corresponding rail.
Each of the first wheel weight measurement detection unit and the second wheel weight measurement detection unit is a strain gauge attached to the abdomen of the corresponding rail, which is a lubrication condition monitoring system for railway vehicles.
請求項1又は2に記載の鉄道車両用の潤滑状態監視システムであって、
前記潤滑状態推定部は、下記の式(1)で表される旋回指標Y、及び下記の式(2)で表される横圧・輪重比κに基づいて、前記車輪と前記レールとの間の潤滑状態を推定する、鉄道車両用の潤滑状態監視システム。
Y={-(Q1o-Q1i)+(Q2o-Q2i)}/{(P1o+P1i+P2o+P2i)/4} (1)
κ=Q1i/P1i (2)
上記式(1)及び式(2)における各記号の意味は以下の通りである;
Q1o:前記先頭外軌側横圧、
Q1i:前記先頭内軌側横圧、
Q2o:前記後尾外軌側横圧、
Q2i:前記後尾内軌側横圧、
P1o:前記先頭外軌側輪重、
P1i:前記先頭内軌側輪重、
P2o:前記後尾外軌側輪重、及び
P2i:前記後尾内軌側輪重。
The lubrication condition monitoring system for a railway vehicle according to claim 1 or 2.
The lubrication state estimation unit of the wheel and the rail is based on the turning index Y represented by the following formula (1) and the lateral pressure / wheel load ratio κ represented by the following formula (2). Lubrication status monitoring system for railroad vehicles that estimates the lubrication status between.
Y = {-(Q1o-Q1i) + (Q2o-Q2i)} / {(P1o + P1i + P2o + P2i) / 4} (1)
κ = Q1i / P1i (2)
The meanings of the symbols in the above equations (1) and (2) are as follows;
Q1o: Lateral pressure on the front outer rail side,
Q1i: Lateral pressure on the inner rail side of the head,
Q2o: Lateral pressure on the tail outer rail side,
Q2i: Lateral pressure on the tail tail side,
P1o: The front outer rail side wheel weight,
P1i: The front inner rail side wheel weight,
P2o: the tail outer rail side wheel weight, and P2i: the tail inner rail side wheel weight.
請求項3に記載の鉄道車両用の潤滑状態監視システムであって、
前記潤滑状態推定部は、前記横圧・輪重比κが0.4以上の場合、前記旋回指標Yに応じて、前記車輪と前記レールとの間の潤滑状態を以下の潤滑状態(a)~(c)と判定する、鉄道車両用の潤滑状態監視システム。
(a)前記旋回指標Yが-0.2よりも大きくて0.3よりも小さい場合:前記先頭輪軸及び前記後尾輪軸の両方の前記車輪について潤滑不足の可能性がある、
(b)前記旋回指標Yが0.3以上である場合:前記先頭輪軸の前記車輪について潤滑不足で、前記後尾輪軸の前記車輪について潤滑良好の可能性がある、及び
(c)前記旋回指標Yが-0.2以下である場合:前記先頭輪軸の前記車輪について潤滑良好で、前記後尾輪軸の前記車輪について潤滑不足の可能性がある。
The lubrication condition monitoring system for a railway vehicle according to claim 3.
When the lateral pressure / wheel load ratio κ is 0.4 or more, the lubrication state estimation unit determines the lubrication state between the wheel and the rail according to the turning index Y as follows (a). A lubrication status monitoring system for railway vehicles that determines (c).
(A) When the turning index Y is larger than −0.2 and smaller than 0.3: There is a possibility of insufficient lubrication for the wheels of both the front wheel axle and the tail wheel axle.
(B) When the turning index Y is 0.3 or more: There is a possibility that the wheel of the leading wheel axle is insufficiently lubricated and the wheel of the tail wheel axle is lubricated well, and (c) the turning index Y. When is -0.2 or less: There is a possibility that the wheel of the front wheel axle is lubricated well and the wheel of the tail wheel axle is insufficiently lubricated.
鉄道車両の車輪と曲線路のレールとの間の潤滑状態を監視する、鉄道車両用の潤滑状態監視方法であって、
曲線路の一方のレールに第1横圧測定用検出部及び第1輪重測定用検出部が設置され、
前記曲線路の他方のレールに第2横圧測定用検出部及び第2輪重測定用検出部が設置されており、
前記潤滑状態監視方法は、
車両が前記曲線路を走行するときに、前記第1横圧測定用検出部及び前記第2横圧測定用検出部のそれぞれから検出値を取得する横圧測定ステップであって、取得した検出値に基づいて、前記車両が備える台車の先頭輪軸の外軌側車輪に作用する先頭外軌側横圧、前記先頭輪軸の内軌側車輪に作用する先頭内軌側横圧、前記台車の後尾輪軸の外軌側車輪に作用する後尾外軌側横圧、及び前記後尾輪軸の内軌側車輪に作用する後尾内軌側横圧を算出する前記横圧測定ステップと、
前記車両が前記曲線路を走行するときに、前記第1輪重測定用検出部及び第2輪重測定用検出部のそれぞれから検出値を取得する輪重測定ステップであって、取得した検出値に基づいて、前記先頭輪軸の前記外軌側車輪に作用する先頭外軌側輪重、前記先頭輪軸の前記内軌側車輪に作用する先頭内軌側輪重、前記後尾輪軸の前記外軌側車輪に作用する後尾外軌側輪重、及び前記後尾輪軸の前記内軌側車輪に作用する後尾内軌側輪重を算出する前記輪重測定ステップと、
前記横圧測定ステップで算出された前記先頭外軌側横圧、前記先頭内軌側横圧、前記後尾外軌側横圧、及び前記後尾内軌側横圧、並びに前記輪重測定ステップで算出された前記先頭外軌側輪重、前記先頭内軌側輪重、前記後尾外軌側輪重、及び前記後尾内軌側輪重に基づいて、前記車輪と前記レールとの間の潤滑状態を推定する潤滑状態推定ステップと、を備える、鉄道車両用の潤滑状態監視方法。
A lubrication condition monitoring method for railway vehicles that monitors the lubrication condition between the wheels of a railway vehicle and the rails of a curved road.
A first lateral pressure measurement detection unit and a first wheel weight measurement detection unit are installed on one rail of the curved road.
A second lateral pressure measurement detection unit and a second wheel weight measurement detection unit are installed on the other rail of the curved road.
The lubrication condition monitoring method is
This is a lateral pressure measurement step in which detection values are acquired from each of the first lateral pressure measurement detection unit and the second lateral pressure measurement detection unit when the vehicle travels on the curved road, and the acquired detection values are obtained. Based on, the front outer rail side lateral pressure acting on the outer rail side wheel of the front wheel axle of the trolley provided by the vehicle, the leading inner rail side lateral pressure acting on the inner rail side wheel of the leading wheel axle, and the rear tail wheel shaft of the trolley. The lateral pressure measuring step for calculating the tail-outer-rail side lateral pressure acting on the outer-rail-side wheel and the tail-inner-rail-side lateral pressure acting on the inner-rail-side wheel of the rear-tail wheel axle.
It is a wheel weight measurement step of acquiring detection values from each of the first wheel weight measurement detection unit and the second wheel weight measurement detection unit when the vehicle travels on the curved road, and the acquired detection values. Based on the above, the leading outer rail side wheel weight acting on the outer rail side wheel of the leading wheel axle, the leading inner rail side wheel weight acting on the inner rail side wheel of the leading wheel axle, and the outer rail side of the rear tail wheel axle. The wheel weight measuring step for calculating the tail outer rail side wheel weight acting on the wheel and the tail inner rail side wheel weight acting on the inner rail side wheel of the tail wheel axle.
Calculated in the front outer rail side lateral pressure, the front inner rail side lateral pressure, the tail outer rail side lateral pressure, and the tail inner rail side lateral pressure calculated in the lateral pressure measuring step, and the wheel load measuring step. The lubrication state between the wheel and the rail is determined based on the head outer rail side wheel weight, the head inner rail side wheel weight, the tail outer rail side wheel weight, and the tail inner rail side wheel weight. A lubrication status monitoring method for railroad vehicles, comprising an estimation lubrication status estimation step.
請求項5に記載の鉄道車両用の潤滑状態監視方法であって、
前記潤滑状態推定ステップは、下記の式(1)で表される旋回指標Y、及び下記の式(2)で表される横圧・輪重比κに基づいて、前記車輪と前記レールとの間の潤滑状態を推定する、鉄道車両用の潤滑状態監視方法。
Y={-(Q1o-Q1i)+(Q2o-Q2i)}/{(P1o+P1i+P2o+P2i)/4} (1)
κ=Q1i/P1i (2)
上記式(1)及び式(2)における各記号の意味は以下の通りである;
Q1o:前記先頭外軌側横圧、
Q1i:前記先頭内軌側横圧、
Q2o:前記後尾外軌側横圧、
Q2i:前記後尾内軌側横圧、
P1o:前記先頭外軌側輪重、
P1i:前記先頭内軌側輪重、
P2o:前記後尾外軌側輪重、及び
P2i:前記後尾内軌側輪重。
The lubrication condition monitoring method for a railway vehicle according to claim 5.
The lubrication state estimation step is based on the turning index Y represented by the following formula (1) and the lateral pressure / wheel load ratio κ represented by the following formula (2). Lubrication status monitoring method for railroad vehicles that estimates the lubrication status between.
Y = {-(Q1o-Q1i) + (Q2o-Q2i)} / {(P1o + P1i + P2o + P2i) / 4} (1)
κ = Q1i / P1i (2)
The meanings of the symbols in the above equations (1) and (2) are as follows;
Q1o: Lateral pressure on the front outer rail side,
Q1i: Lateral pressure on the inner rail side of the head,
Q2o: Lateral pressure on the tail outer rail side,
Q2i: Lateral pressure on the tail tail side,
P1o: The front outer rail side wheel weight,
P1i: The front inner rail side wheel weight,
P2o: the tail outer rail side wheel weight, and P2i: the tail inner rail side wheel weight.
請求項6に記載の鉄道車両用の潤滑状態監視方法であって、
前記潤滑状態推定ステップは、前記横圧・輪重比κが0.4以上の場合、前記旋回指標Yに応じて、前記車輪と前記レールとの間の潤滑状態を以下の潤滑状態(a)~(c)と判定する、鉄道車両用の潤滑状態監視方法。
(a)前記旋回指標Yが-0.2よりも大きくて0.3よりも小さい場合:前記先頭輪軸及び前記後尾輪軸の両方の前記車輪について潤滑不足の可能性がある、
(b)前記旋回指標Yが0.3以上である場合:前記先頭輪軸の前記車輪について潤滑不足で、前記後尾輪軸の前記車輪について潤滑良好の可能性がある、及び
(c)前記旋回指標Yが-0.2以下である場合:前記先頭輪軸の前記車輪について潤滑良好で、前記後尾輪軸の前記車輪について潤滑不足の可能性がある。
The lubrication condition monitoring method for a railway vehicle according to claim 6.
In the lubrication state estimation step, when the lateral pressure / wheel load ratio κ is 0.4 or more, the lubrication state between the wheel and the rail is changed to the following lubrication state (a) according to the turning index Y. A lubrication state monitoring method for a railroad vehicle, which is determined to be (c).
(A) When the turning index Y is larger than −0.2 and smaller than 0.3: There is a possibility of insufficient lubrication for the wheels of both the front wheel axle and the tail wheel axle.
(B) When the turning index Y is 0.3 or more: There is a possibility that the wheel of the leading wheel axle is insufficiently lubricated and the wheel of the tail wheel axle is lubricated well, and (c) the turning index Y. When is -0.2 or less: There is a possibility that the wheel of the front wheel axle is lubricated well and the wheel of the tail wheel axle is insufficiently lubricated.
JP2020206699A 2020-12-14 2020-12-14 Lubrication state monitoring system and method for railway vehicle Pending JP2022093955A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020206699A JP2022093955A (en) 2020-12-14 2020-12-14 Lubrication state monitoring system and method for railway vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020206699A JP2022093955A (en) 2020-12-14 2020-12-14 Lubrication state monitoring system and method for railway vehicle

Publications (1)

Publication Number Publication Date
JP2022093955A true JP2022093955A (en) 2022-06-24

Family

ID=82081372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020206699A Pending JP2022093955A (en) 2020-12-14 2020-12-14 Lubrication state monitoring system and method for railway vehicle

Country Status (1)

Country Link
JP (1) JP2022093955A (en)

Similar Documents

Publication Publication Date Title
JP4763432B2 (en) Rail vehicle friction control device
JP5583006B2 (en) Error monitoring device for bogie components of rail vehicles
JP7250018B2 (en) System and method for determining wheel-rail adhesion values for rail vehicles
EP2790002B1 (en) Vehicle abnormality detection method and device
JP5691319B2 (en) Monitoring method and apparatus for guide rail type railway
KR100946232B1 (en) Apparatus and method for measuring derailment coefficient using vertical displacement and steady-state lateral acceleration
KR101256901B1 (en) Prediction methods for derailment of the wheels using the external force acted on the wheelset
RU2394120C2 (en) Method to estimate track state
JP2003240626A (en) Wheel load acquiring device, wheel load acquiring method, rolling stock, maintenance method of rolling stock and maintenance method of track
EP3040251B1 (en) Method of decreasing lateral pressure in railroad vehicle
JP2022093955A (en) Lubrication state monitoring system and method for railway vehicle
JP2002122468A (en) Method and device for acquiring wheel weight maldistribution degree, rolling stock, and maintenance method of rolling stock and railway
JPH09218122A (en) Device for monitoring inflating pressure of tire of vehicle
JP4935469B2 (en) Railway vehicle running abnormality detection method and apparatus
CN100434320C (en) Friction control device for railway vehicle
CN201092324Y (en) Non-bolster air spring narrow gage passenger car steering rack
JP3495332B2 (en) System for monitoring rotation or roll damper operation
CN210363843U (en) Unpowered comprehensive detection vehicle and bogie thereof
JP2007015484A (en) Abnormality detection method and device of truck steering mechanism for articulated railway vehicle
JP6458220B2 (en) Track lubrication management method
CN110793702B (en) Indirect measurement method of transverse force of wheel track and method for determining radius of curve track
JP2005204462A (en) Vehicular driving control device
JP7430622B2 (en) Wear diagnosis system and method for wheel flanges of railway vehicles
CN112304551B (en) Stability testing device and method for motor train unit bogie
CN216684425U (en) Automatic digital display rail inspection vehicle for adjusting center of steel rail by screw thread

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211105

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20211105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20211105

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240430