WO2021014854A1 - Inspection system, inspection method, and program - Google Patents

Inspection system, inspection method, and program Download PDF

Info

Publication number
WO2021014854A1
WO2021014854A1 PCT/JP2020/024341 JP2020024341W WO2021014854A1 WO 2021014854 A1 WO2021014854 A1 WO 2021014854A1 JP 2020024341 W JP2020024341 W JP 2020024341W WO 2021014854 A1 WO2021014854 A1 WO 2021014854A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
shaft spring
spring
rigidity
matrix
Prior art date
Application number
PCT/JP2020/024341
Other languages
French (fr)
Japanese (ja)
Inventor
中川 淳一
大輔 品川
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to JP2021533874A priority Critical patent/JP7099637B2/en
Publication of WO2021014854A1 publication Critical patent/WO2021014854A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61FRAIL VEHICLE SUSPENSIONS, e.g. UNDERFRAMES, BOGIES OR ARRANGEMENTS OF WHEEL AXLES; RAIL VEHICLES FOR USE ON TRACKS OF DIFFERENT WIDTH; PREVENTING DERAILING OF RAIL VEHICLES; WHEEL GUARDS, OBSTRUCTION REMOVERS OR THE LIKE FOR RAIL VEHICLES
    • B61F5/00Constructional details of bogies; Connections between bogies and vehicle underframes; Arrangements or devices for adjusting or allowing self-adjustment of wheel axles or bogies when rounding curves
    • B61F5/02Arrangements permitting limited transverse relative movements between vehicle underframe or bolster and bogie; Connections between underframes and bogies
    • B61F5/22Guiding of the vehicle underframes with respect to the bogies
    • B61F5/24Means for damping or minimising the canting, skewing, pitching, or plunging movements of the underframes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/08Railway vehicles
    • G01M17/10Suspensions, axles or wheels

Definitions

  • the present invention relates to inspection systems, inspection methods, and programs, and is particularly suitable for use in inspecting shaft springs in railroad vehicles.
  • the present application claims priority based on Japanese Patent Application No. 2019-137036 filed in Japan on July 25, 2019, and the entire contents of Japanese Patent Application No. 2019-137036 are incorporated herein by reference.
  • Patent Document 1 describes a railway vehicle condition monitoring system including one acceleration sensor arranged on each bogie of a railway vehicle and an acceleration sensor arranged on a specific axle box to detect a defect of the railway vehicle. ing. Further, Patent Document 1 describes a method for monitoring the state of a railroad vehicle that detects an abnormality of an air spring based on an amplitude ratio based on the vertical acceleration of the bogie frame of the own bogie or another bogie when the railcar is sound. There is.
  • the frequency response of the vertical acceleration of the bogie frame based on the vertical acceleration of the axle box is shown, there is a difference between when the air spring is healthy and when it is abnormal in the frequency band of 3 Hz to 8 Hz.
  • the occurrence is used to detect an abnormality in the air spring.
  • the method for monitoring the state of a railroad vehicle utilizes the fact that the amplitude ratio of the acceleration waveform of the bogie frame when there is a defect in the air spring deviates from 1 in a wide frequency band around 1 Hz to 10 Hz, resulting in an abnormality in the air spring. Is detected.
  • the amplitude ratio of the acceleration waveform of the bogie frame when there is a defect in the air spring is an amplitude ratio based on the acceleration of the bogie frame when there is no abnormality in the air spring. Further, Patent Document 1 describes that the air spring is a shaft spring.
  • Patent Document 1 measures the acceleration of the bogie and the axle box. Therefore, the physical quantity indicating the state of the shaft spring is not directly evaluated. In addition, it is not easy to extract data that contributes to detecting the state of the shaft spring from only the measurement data of the acceleration of the bogie and the axle box. Therefore, there is a problem that it is not easy to accurately detect the state of the shaft spring of the railway vehicle.
  • the present invention has been made in view of the above problems, and an object of the present invention is to enable accurate detection of the state of a shaft spring of a railway vehicle.
  • the inspection system of the present invention is an inspection system for inspecting the state of a shaft spring of a railroad vehicle having a vehicle body, a carriage, a wheel shaft, an axle box, and a shaft spring, and is measured by running the railroad vehicle on a track.
  • the physical quantity for which the measured value is acquired by the data acquisition means includes a front-rear direction force, and the front-rear direction force is generated in a member arranged between the wheel shaft and a carriage on which the wheel shaft is provided. It is a directional force, the member is a member for supporting the axle box, and the front-rear direction is a direction along the traveling direction of the railcar.
  • the inspection method of the present invention is an inspection method for inspecting the state of a shaft spring of a railroad vehicle having a vehicle body, a carriage, a wheel shaft, an axle box, and a shaft spring, and is measured by running the railroad vehicle on a track. It has a data acquisition step of acquiring the measured value of the physical quantity and a shaft spring state detecting step of detecting the state of the shaft spring of the railroad vehicle by using the measured value of the physical quantity acquired by the data acquisition step.
  • the physical quantity whose measured value is acquired by the data acquisition process includes a front-rear direction force, and the front-rear direction force is generated in a member arranged between the wheel shaft and a carriage on which the wheel shaft is provided. It is a directional force, the member is a member for supporting the axle box, and the front-rear direction is a direction along the traveling direction of the railcar.
  • the program of the present invention is a program for causing a computer to execute a process for inspecting the state of a shaft spring of a railroad vehicle having a vehicle body, a carriage, a wheel set, an axle box, and a shaft spring, and tracks the railroad vehicle.
  • the physical quantity obtained by causing a computer to execute the spring state detection step and the measured value is acquired by the data acquisition step includes the front-rear direction force, and the front-rear direction force includes the wheel axle and the carriage provided with the wheel axle. It is a force in the front-rear direction generated in the member arranged between the members, the member is a member for supporting the axle box, and the front-rear direction is a direction along the traveling direction of the railroad vehicle. It is a feature.
  • FIG. 1A is a diagram showing a schematic example of a railway vehicle.
  • FIG. 1B is a diagram showing an example of the configuration of the lower portion of the vehicle body of the railway vehicle.
  • FIG. 2 is a diagram conceptually showing the directions of the main movements of the components of the railway vehicle.
  • FIG. 3 is a diagram showing a first example of the functional configuration of the inspection device.
  • FIG. 4 is a diagram showing an example of the hardware configuration of the inspection device.
  • FIG. 5 is a diagram showing an example of the distribution of eigenvalues of the autocorrelation matrix.
  • FIG. 6 is a flowchart illustrating a first example of processing in the inspection device.
  • FIG. 7 is a diagram showing the curvature of the rail, the amount of deviation, and the amount of high and low deviation.
  • FIG. 1A is a diagram showing a schematic example of a railway vehicle.
  • FIG. 1B is a diagram showing an example of the configuration of the lower portion of the vehicle body of the railway vehicle.
  • FIG. 8 is a diagram showing a first example of time-series data of forward / backward force.
  • FIG. 9 is a diagram showing a second example of time-series data of forward / backward force.
  • FIG. 10 is a diagram showing a third example of time-series data of forward / backward force.
  • FIG. 11 is a diagram showing an example of time-series data of the modified front shaft spring rigidity.
  • FIG. 12 is a diagram showing a first example of time-series data of the modified shaft spring rigidity.
  • FIG. 13 is a diagram showing a second example of time-series data of the corrected shaft spring rigidity.
  • FIG. 14 is a diagram showing a third example of time-series data of the modified shaft spring rigidity.
  • FIG. 15 is a diagram showing an example of the configuration of the inspection system.
  • FIG. 16 is a diagram showing a first example of the functional configuration of the inspection device.
  • FIG. 17 is a flowchart illustrating a second example of processing in the inspection device.
  • FIG. 18 is a diagram showing a first example of the relationship between the restoring force and the displacement.
  • FIG. 19 is a diagram showing a second example of the relationship between the restoring force and the displacement.
  • FIG. 20 is a diagram showing a second example of the relationship between the restoring force and the displacement.
  • FIG. 1A is a diagram showing a schematic example of a railway vehicle.
  • FIG. 1B is a diagram showing an example of the configuration of the lower portion of the vehicle body of the railway vehicle.
  • the railroad vehicle travels in the positive direction of the x-axis (the x-axis is an axis along the traveling direction of the railroad vehicle).
  • the z-axis is in the direction perpendicular to the track 30 (ground) (in the height direction of the railroad vehicle). It is assumed that the y-axis is a horizontal direction perpendicular to the traveling direction of the railway vehicle (a direction perpendicular to both the traveling direction and the height direction of the railway vehicle).
  • railroad vehicles shall be commercial vehicles. In each figure, those with a cross in ⁇ indicate the direction from the front side to the back side of the paper.
  • the railroad vehicle has a vehicle body 11, bogies 12a and 12b, and wheel sets 13a to 13d.
  • a railroad vehicle in which two bogies 12a and 12b and four sets of wheel sets 13a to 13d are provided in one vehicle body 11 will be described as an example.
  • the wheel sets 13a to 13d have axles 15a to 15d and wheels 14a to 14d provided at both ends thereof.
  • the bogies 12a and 12b are bogies with bolsters will be described as an example.
  • FIG. 1A for convenience of notation, only one wheel 14a to 14d of the wheel sets 13a to 13d is shown, but as shown in FIG.
  • FIG. 1B a wheel is also provided on the other side of the wheel sets 13a to 13d (FIG. 1). In the example shown in, there are a total of 8 wheels).
  • the railroad vehicle has components other than the components shown in FIGS. 1A and 1B (components described in the equation of motion described later, etc.), but for convenience of notation, the components are shown in FIGS. 1A and 1B. Is omitted.
  • FIG. 1B only the bogie frame 16 in the bogie 12b is shown, but the bogie frame in the bogie 12a is also realized by the same one as shown in FIG. 1B. Further, FIG.
  • FIG. 1B shows only the components (axle boxes 17L, 17R, shaft springs 18L, 18R, shaft dampers 19L, 19R, etc.) of the bogie 12b with respect to the wheel sets 13d, but other components with respect to the wheel sets are also shown in FIG. 1B. It is realized by the same thing as shown.
  • Shaft boxes 17L and 17R are arranged on both sides of each wheel axle 13a to 13d in the direction along the y-axis.
  • the bogie frame 16 and the axle boxes 17L and 17R are connected to each other by the axle box support device.
  • the axle box support device has axle springs 18L, 18R and axle dampers 19L, 19R.
  • the axle box support device is a device (suspension) arranged between the axle boxes 17L, 17R and the bogie frame 16. The axle box support device absorbs the vibration transmitted from the track 30 to the railway vehicle.
  • axle box support device with respect to the bogie frame 16 of the axle boxes 17L and 17R so as to prevent the axle boxes 17L and 17R from moving in the direction along the x-axis and the direction along the y-axis with respect to the bogie frame 16.
  • the axle boxes 17L and 17R are supported in a restricted position.
  • the axle box support devices are arranged on both sides of each wheel axle 13a to 13d in the direction along the y-axis.
  • a pillow beam 21 is arranged above the bogie frame 16.
  • Pillow springs 22L and 22R and a left-right moving damper 23 are arranged between the pillow beam 21 and the vehicle body 11.
  • the pillow spring is a commonly used air spring.
  • the pillow springs 22L and 22R will be referred to as air springs 22L and 22R, but the pillow springs do not have to be air springs.
  • the right side and the left side mean the right side and the left side in the traveling direction of the railway vehicle (positive direction of the x-axis), respectively.
  • axle box 17L, axle spring 18L, axle damper 19L, and air spring 22L are arranged on the left side of the railcar, and the axle box 17R, axle spring 18R, axle damper 19R, and air spring 22R are arranged on the right side of the rolling stock. .. Since the railway vehicle itself can be realized by a known technique, detailed description thereof will be omitted here. Further, the trolley may be a bolsterless trolley.
  • FIG. 2 is a diagram conceptually showing the main motion directions of the components of the railway vehicle (wheel sets 13a to 13d, bogies 12a, 12b, vehicle body 11).
  • the x-axis, y-axis, and z-axis shown in FIG. 2 correspond to the x-axis, y-axis, and z-axis shown in FIG. 1, respectively.
  • the movement of the railroad vehicle in the vertical direction is referred to as vertical movement as necessary (see the double-headed arrow line along the z-axis in FIG. 2).
  • the vertical direction is a direction perpendicular to the orbit 30.
  • the vertical direction is a direction along the z-axis.
  • the traveling direction of the railway vehicle is referred to as a front-rear direction as necessary, and the direction along the z-axis is referred to as a vertical direction as necessary.
  • a direction perpendicular to both the front-rear direction (traveling direction of the railroad vehicle) and the vertical direction (direction perpendicular to the track 30) is referred to as a left-right direction, if necessary.
  • the motion of the railroad vehicle rotating around the x-axis is referred to as rolling as necessary (see the double-headed arrow line around the x-axis in FIG. 2), and the rotation with the x-axis as the rotation axis.
  • the direction is referred to as the rolling direction as necessary.
  • the motion of the railroad vehicle rotating around the y-axis (the motion of the leading portion of the railroad vehicle swinging up and down) is called pitching as necessary (double arrow around the y-axis in FIG. 2). (See line), the rotation direction with the y-axis as the rotation axis is referred to as the pitching direction, if necessary.
  • the motion of the railroad vehicle rotating around the z-axis is referred to as yawing as necessary (see the double-headed arrow line around the z-axis in FIG. 2), and the rotation with the z-axis as the rotation axis.
  • the direction is referred to as the yawing direction as necessary.
  • Equation of motion representing the vertical movement of trolleys 12a and 12b The equation of motion representing the vertical movement of the carriages 12a and 12b is expressed by the equation (1).
  • m t is carriage 12a, the mass of 12b.
  • z t, j Is the vertical acceleration of the carriages 12a, 12b (in the equation, ... is attached above z t, j (hereinafter, the same applies to other variables)).
  • FASzj L is the load received by the left air spring 22L.
  • FASzj R is the load received by the air spring 22R on the right side.
  • k 1 and i are average values of the rigidity (spring constant) of the shaft springs 18L and 18R attached to the axle boxes 17L and 17R of the wheel sets 13a and 13c.
  • z t and j are displacements of the carriages 12a and 12b in the vertical direction.
  • j is 1 or 2.
  • a represents 1/2 of the distance in the front-rear direction between the wheel sets 13a to 13b and 13c to 13d provided on the carriages 12a and 12b, respectively (the wheel sets 13a to 13b and 13c provided on the carriages 12a and 12b).
  • the distance between ⁇ 13d is 2a).
  • ⁇ t and j are the amount of rotation (angular displacement) of the carriages 12a and 12b in the pitching direction.
  • z w and i are vertical displacements of the wheel sets 13a and 13c.
  • k 1 and i + 1 are average values of the rigidity (spring constant) of the shaft springs 18L and 18R attached to the axle boxes 17L and 17R of the wheel sets 13b and 13d.
  • z w and i + 1 are vertical displacements of the wheel sets 13b and 13d.
  • z w, i , z w, i + 1 can be obtained, for example, by time-integrating the acceleration detected by the acceleration sensor attached to the axle box.
  • c 1 is an average value of the damping constants of the shaft dampers 19L and 19R in the vertical direction.
  • z t, j ⁇ is the vertical velocity of the carriages 12a, 12b (in the equation, ⁇ is attached above z t, j (hereinafter, the same applies to other variables)).
  • z w, i ⁇ are the velocities in the vertical direction of the wheel sets 13a, 13c.
  • z w, i + 1 ⁇ are the velocities in the vertical direction of the wheel sets 13b and 13d.
  • v is the traveling speed of the railway vehicle.
  • Ri is the radius of curvature of the rail at the positions of the wheel sets 13a and 13c.
  • R i + 1 is the radius of curvature of the rail at the positions of the wheel sets 13b and 13d.
  • ⁇ rail and i are cant angles of the rails at the positions of the wheel sets 13a and 13c.
  • ⁇ rail and i + 1 are cant angles of rails at positions of wheel sets 13b and 13d.
  • g is the gravitational acceleration.
  • z w, i ⁇ , z w, i + 1 ⁇ can be obtained, for example, by time-integrating the acceleration detected by the acceleration sensor attached to the axle box.
  • z t, j are measured by, for example, an acceleration sensor attached to the carriages 12a and 12b.
  • z t, j ⁇ , z t, j can be obtained, for example, by time-integrating the acceleration detected by the acceleration sensors attached to the carriages 12a and 12b.
  • c 1 is given in advance as a constant. It is assumed that ⁇ rail, i , ⁇ rail, and i + 1 have been measured in advance.
  • the left side of the equation (1) represents the inertial force in the vertical direction of the carriages 12a and 12b.
  • the first and second terms on the right side of the equation (1) represent the loads received by the air springs 22L and 22R, respectively.
  • the third and fourth terms on the right side of the equation (1) represent the average value of the forces received by the left shaft spring 18L and the right shaft spring 18R arranged at intervals in the left-right direction.
  • the fifth term on the right side of the equation (1) represents the average value of the forces received by the left shaft dampers 19L and the right shaft dampers 19R arranged at intervals in the left-right direction.
  • the sixth term on the right side of the equation (1) represents the centrifugal force received by the carriages 12a and 12b.
  • the seventh term on the right side of the equation (1) is the gravity received by the carriages 12a and 12b.
  • Equation of motion representing pitching of trolleys 12a and 12b The equation of motion representing the pitching of the carriages 12a and 12b is expressed by the following equation (2).
  • ⁇ t, j are angular accelerations of the carriages 12a and 12b in the pitching direction.
  • a 1 is trolley 12a, (carriage 12a represents a half of the distance in the longitudinal direction between the two axes dampers 19L arranged at a distance in the front-rear direction (19R) in each of 12b, back and forth in each of 12b distance in longitudinal direction between the two axes dampers 19L arranged at a distance in the direction (19R) is 2a 1).
  • ⁇ t, j ⁇ are the angular velocities of the carriages 12a and 12b in the pitching direction.
  • h 1 is the distance between the center of the axle and the center of gravity of the carriages 12a and 12b in the vertical direction.
  • F Wx, i L is the longitudinal direction forces in the left wheel set 13a, 13c.
  • F Wx and i R are the front-rear directional forces on the right side of the wheel sets 13a and 13c.
  • F Wx, i + 1 L are front-rear directional forces on the left side of the wheel sets 13b and 13d.
  • F Wx, i + 1 R is a front-back force on the right side of the wheel sets 13b and 13d.
  • F Wx, i L , F Wx, i R , F Wx, i + 1 L , F Wx, i + 1 R are measured by a sensor attached to a member for supporting the axle box as described later.
  • the left side of equation (2) is the sum of the moments of force received by the bogies 12a and 12b during pitching.
  • the first and second terms on the right side of the equation (2) are moments of force received from the shaft springs 18L and 18R in pitching.
  • the third term on the right side of the equation (2) is the moment of force received from the shaft dampers 19L and 19R in pitching.
  • the fourth term on the right side of the equation (2) is the moment of force (total value) received by the carriages 12a and 12b based on the front-rear direction force.
  • the in-phase component of the vertical creep force of one of the left and right wheels on one wheel set and the vertical creep force of the other wheel is a component corresponding to the braking force and the driving force. Therefore, it is preferable to determine the anteroposterior force so as to correspond to the opposite phase component of the longitudinal creep force.
  • the anti-phase component of the vertical creep force is a component in which the vertical creep force of one of the left and right wheels on one wheel set and the vertical creep force of the other wheel are in opposite phases to each other. That is, the reverse phase component of the vertical creep force is a component of the vertical creep force in the direction of twisting the axle.
  • the front-rear direction force is a component in the front-rear direction that is opposite to each other among the components in the front-rear direction of the force generated in the two members attached to both sides in the left-right direction of one wheel set.
  • the axle box support device is a monolink type axle box support device
  • the axle box support device includes a link
  • the axle box and the bogie frame are connected by the link. Rubber bushes are attached to both ends of this link.
  • the front-rear force is a component in the front-rear direction of the load received by each of the two links attached to the left-right ends of one wheel set, which are opposite to each other.
  • the link receives mainly the load in the front-rear direction among the loads in the front-rear direction, the left-right direction, and the up-down direction. Therefore, for example, one strain gauge may be attached to each link. By deriving the anteroposterior component of the load received by the link using the measured value of this strain gauge, the measured value of the anteroposterior force is obtained.
  • the displacement of the rubber bush attached to the link in the front-rear direction may be measured with a displacement meter. In this case, the product of the measured displacement and the spring constant of the rubber bush is used as the measured value of the front-rear force.
  • the axle box support device is a monolink type axle box support device
  • the above-mentioned member for supporting the axle box is a link or a rubber bush.
  • the load measured by the strain gauge attached to the link may include not only the components in the front-rear direction but also at least one of the components in the left-right direction and the components in the up-down direction.
  • the load of the component in the left-right direction and the load of the component in the vertical direction received by the link are sufficiently smaller than the load of the component in the front-rear direction. Therefore, by attaching one strain gauge to each link, it is possible to obtain a measured value of the anteroposterior force having practically required accuracy.
  • the measured value of the anteroposterior force may include components other than the components in the anteroposterior direction. Therefore, three or more strain gauges may be attached to each link so that the vertical and horizontal strains are cancelled. In this way, the accuracy of the measured value of the front-rear force can be improved.
  • the axle box support device is an axle beam type axle box support device
  • the axle box support device is provided with an axle beam
  • the axle box and the bogie frame are connected by the axle beam.
  • the axle beam may be configured integrally with the axle box.
  • a rubber bush is attached to the end of the axle beam on the bogie frame side.
  • the front-rear force is a component of the front-rear direction of the load received by each of the two shaft beams attached to the left-right ends of one wheel set, which are opposite to each other.
  • the shaft beam is likely to receive the load in the left-right direction in addition to the load in the front-rear direction among the loads in the front-rear direction, the left-right direction, and the up-down direction.
  • two or more strain gauges are attached to each shaft beam so that the distortion in the left-right direction is canceled.
  • the measured value of these strain gauges is obtained.
  • the displacement of the rubber bush attached to the shaft beam in the front-rear direction may be measured with a displacement meter.
  • the product of the measured displacement and the spring constant of the rubber bush is used as the measured value of the front-rear force.
  • the axle box support device is an axle beam type axle box support device
  • the above-mentioned member for supporting the axle box is an axle beam or a rubber bush.
  • the load measured by the strain gauge attached to the shaft beam may include not only the components in the front-rear direction and the left-right direction but also the components in the vertical direction.
  • the load of the component in the vertical direction received by the shaft beam is sufficiently smaller than the load of the component in the front-rear direction and the load of the component in the left-right direction. .. Therefore, it is possible to obtain a measured value of the longitudinal force having practically required accuracy without attaching a strain gauge so as to cancel the load of the component in the vertical direction received by the shaft beam.
  • the measured anteroposterior force may include components other than the anteroposterior component, and three or more strain gauges so as to cancel the vertical distortion in addition to the horizontal distortion. May be attached to each shaft beam. In this way, the accuracy of the measured value of the front-rear force can be improved.
  • the axle box support device When the axle box support device is a leaf spring type axle box support device, the axle box support device includes a leaf spring, and the axle box and the bogie frame are connected by the leaf spring. A rubber bush is attached to the end of this leaf spring.
  • the front-rear direction force is a component in the front-rear direction of the load received by each of the two leaf springs attached to the left-right ends of one wheel set, which are in opposite phases to each other.
  • the leaf spring is likely to receive the load in the left-right direction and the load in the up-down direction in addition to the load in the front-rear direction among the loads in the front-rear direction, the left-right direction, and the up-down direction.
  • the axle box support device is a leaf spring type axle box support device
  • the above-mentioned member for supporting the axle box is a leaf spring or a rubber bush.
  • the front-rear direction force has been described by taking as an example the case where the type of the axle box support device is a monolink type, a shaft beam type, and a leaf spring type.
  • the method of the axle box support device is not limited to the monolink type, the axle beam type, and the leaf spring type.
  • the front-rear direction force can be determined according to the type of the axle box support device.
  • Equation (1) and (2) are equations of motion for vertical movement of the carriages 12a and 12b and equations of motion for pitching the carriages 12a and 12b.
  • equation (3) the average value of the forces received by the left shaft spring 18L and the right shaft spring 18R arranged at intervals in the left-right direction on the front wheels (wheel sets 13a, 13c) provided on the bogies 12a and 12b is calculated. It is an equation to represent.
  • the fifth term on the right side of the equation (3) is a centrifugal force received by the bogies 12a and 12b, and is therefore unnecessary unless the railroad vehicle travels on a curved track.
  • equation (4) the average value of the forces received by the left shaft spring 18L and the right shaft spring 18R arranged at intervals in the left-right direction on the rear wheels (wheel sets 13b, 13d) provided on the carriages 12a and 12b. Is an equation that represents.
  • the fifth term on the right side of the equation (4) is a term that is unnecessary unless the railroad vehicle travels on a curved track because it is the centrifugal force received by the bogies 12a and 12b.
  • the load F ASzj L received by the left air spring 22L provided on the carriages 12a and 12b and the load F ASzj R received by the right air spring 22R provided on the carriages 12a and 12b are as follows. It is expressed by the equations (5) and (6).
  • Aj L is the pressure receiving area of the left air spring 22L provided on the carriages 12a and 12b.
  • Pj L is the internal pressure of the left air spring 22L provided on the carriages 12a and 12b.
  • Pat is atmospheric pressure.
  • b 2 represents 1/2 of the distance between the air springs 22L and 22R arranged in the left-right direction in the left-right direction (the distance between the air springs 22L and 22R arranged in the left-right direction in the left-right direction). 2b 2 ).
  • y b is the displacement of the vehicle body 11 in the left-right direction.
  • dy b is the amount of eccentricity in the left-right direction of the center of gravity of the vehicle body 11.
  • L represents 1/2 of the distance between the centers of the carriages 12a and 12b in the front-rear direction (the distance between the centers of the carriages 12a and 12b in the front-rear direction is 2L).
  • dx b is the amount of eccentricity in the front-rear direction of the center of gravity of the vehicle body 11.
  • mb is the mass of the vehicle body 11.
  • a j R is the pressure receiving area of the right air spring 22R provided on the carriages 12a and 12b.
  • Pj R is the internal pressure of the right air spring 22R provided on the carriages 12a and 12b.
  • the symbol with-under the + indicates that + is adopted for the equation for the carriage 12a and-is adopted for the equation for the carriage 12b. ..
  • Pj L and Pj R are measured by a sensor that detects the internal pressure of the air springs 22L and 22R.
  • z ASj L is a displacement of the left air spring 22L provided on the carriages 12a and 12b in the vertical direction.
  • dA / dz is the rate of change (change amount per unit length) of the effective pressure receiving area of the air springs 22L and 22R in the vertical direction.
  • a 0 is the effective pressure receiving area of the air springs 22L and 22R.
  • z ASj R is the vertical displacement of the right air spring 22R provided on the carriages 12a and 12b.
  • dA / dz is given in advance as a constant.
  • a 0 is given in advance as an initial value.
  • z ASj R and z ASj L are measured by a sensor that detects the displacement of the air springs 22L and 22R.
  • the variables other than ⁇ t, j , ⁇ t, j ⁇ , ⁇ t, j ⁇ are values given in advance or measured values. Therefore, if ⁇ t, j , ⁇ t, j ⁇ , ⁇ t, j ⁇ ⁇ are derived, the rigidity (spring constant) of the shaft springs 18L and 18R is k 1 (k) according to the equations (3) and (4). 1, i , k 1, i + 1 ) can be derived.
  • the average value k 1, i + 1 of the rigidity (spring constant) of the attached shaft springs 18L and 18R is referred to as the shaft spring rigidity, if necessary.
  • K Wx is a spring constant in the front-rear direction of the axle box support device.
  • x t and j are displacements of the carriages 12a and 12b in the front-rear direction.
  • C Wx is a damping constant in the left-right direction of the axle box support device.
  • x t, j ⁇ are the speeds of the carriages 12a and 12b in the front-rear direction.
  • ⁇ t, j ⁇ are the angular velocities of the carriages 12a and 12b in the pitching direction.
  • K Wx and C Wx are given in advance as constants.
  • z b is the displacement of the vehicle body 11 in the vertical direction.
  • ⁇ b is the amount of rotation (angular displacement) of the vehicle body 11 in the rolling direction.
  • ⁇ b is the amount of rotation (angular displacement) of the vehicle body 11 in the pitching direction.
  • ⁇ tj is the amount of rotation (angular displacement) of the carriages 12a and 12b in the rolling direction.
  • the symbol with + under-indicates that-is adopted for the equation for the carriage 12a and + is adopted for the equation for the carriage 12b.
  • .. z b is obtained by time-integrating the acceleration detected by the acceleration sensor attached to the vehicle body 11.
  • ⁇ b (the amount of rotation (angular displacement) of the vehicle body 11 in the pitching direction) is derived as follows, for example.
  • ⁇ b (the amount of rotation (angular displacement) of the vehicle body 11 in the rolling direction)
  • ⁇ b ⁇ angular velocity of the vehicle body 11 in the yawing direction
  • ⁇ b vehicle body 11
  • the amount of rotation (angular displacement) in the yawing direction of The contents described in Patent Document 2 are incorporated herein by reference.
  • ⁇ b (the amount of rotation (angular displacement) of the vehicle body 11 in the pitching direction) is derived based on the equation of motion representing the pitching of the vehicle body 11 shown in the following equation (14).
  • I b and y are moments of inertia of the vehicle body 11 in the pitching direction.
  • ⁇ b ... Is the angular acceleration of the vehicle body 11 in the pitching direction.
  • h 14 is the distance between the position of the center of gravity of the vehicle body 11 and the position of the center of gravity of the yaw damper.
  • c 0 is a damping constant in the front-rear direction of the yaw damper.
  • ⁇ b ⁇ is the angular velocity of the vehicle body 11 in the pitching direction.
  • k ′′ 2 is the spring constant of the air springs 22L and 22R in the front-rear direction.
  • c 0 is a damping constant in the front-rear direction of the yaw damper.
  • c 0 and k ′′ 2 are given in advance as constants.
  • ⁇ Modified autoregressive model> It is assumed that the time-series data of the physical quantity is not stable, and the time-series data of the physical quantity contains noise components other than the essential components. It is possible to remove the noise component of the time series data of the physical quantity by using a low-pass filter or a band-pass filter, but it is not easy to set the cutoff frequency.
  • the present inventors devised a model modified from the autoregressive model (AR (Auto-regressive) model) as a model for extracting the essential signal component of the physical quantity. Then, the present inventors have come up with the idea of extracting the essential signal component from the signal of the physical quantity by using this model.
  • AR Auto-regressive
  • the model devised by the present inventors will be referred to as a modified autoregressive model.
  • a known autoregressive model is simply referred to as an autoregressive model.
  • the modified autoregressive model itself is described in Patent Document 3. The contents described in Patent Document 3 are incorporated herein by reference.
  • y k be the value of the time series data y of the physical quantity at the time k (1 ⁇ k ⁇ M).
  • the physical quantities are the shaft spring rigidity k 1, i and k 1, i + 1 .
  • M is a number indicating up to what time the time-series data y of the physical quantity includes the data, and is preset.
  • time series data of physical quantities will be abbreviated as data y as necessary.
  • An autoregressive model that approximates the value y k of the data y is, for example, the following equation (15). As shown in the equation (15), the autoregressive model is a time k ⁇ in which the predicted value y ⁇ k of the physical quantity at the time k (m + 1 ⁇ k ⁇ M) in the data y is set before the time k in the data y.
  • ⁇ in Eq. (16) is a coefficient of the autoregressive model.
  • m is the number of data y values used to approximate the data y value y k at time k in the autoregressive model, and is a continuous time k-1 to km prior to that time k. It is the number of values y k-1 to y km of the data y in.
  • m is an integer less than M. For example, 1500 can be used as m.
  • R jl in the equation (18) is called the autocorrelation of the data y, and is a value defined by the following equation (19).
  • at this time is called a time difference.
  • the Yule-Walker equation is obtained.
  • the constant vector on the left side in the equation (20) is a vector whose component is the autocorrelation of the data y having a time difference of 1 to m.
  • the constant vector on the left side in Eq. (20) will be referred to as an autocorrelation vector, if necessary.
  • (20) is a matrix whose component is the autocorrelation of the data y having a time difference of 0 to m-1.
  • the coefficient matrix on the right side in Eq. (20) will be referred to as an autocorrelation matrix, if necessary.
  • the autocorrelation matrix (m ⁇ m matrix composed of R jl ) on the right side in the equation (20) is referred to as an autocorrelation matrix R as in the following equation (21).
  • the method of solving Eq. (20) with respect to the coefficient ⁇ is used.
  • a part of the eigenvalues of the autocorrelation matrix R is used to reduce the influence of noise contained in the data y and emphasize the essential signal components.
  • the autocorrelation matrix R is rewritten so as to (increase the SN ratio).
  • the autocorrelation matrix R When the autocorrelation matrix R is decomposed into singular values, it becomes the product of the orthogonal matrix U, the diagonal matrix ⁇ , and the transposed matrix of the orthogonal matrix U, as shown in Eq. (22) below.
  • the diagonal matrix ⁇ of the equation (22) is a matrix in which the diagonal component is an eigenvalue of the autocorrelation matrix R, as shown in the following equation (23).
  • the diagonal components of the diagonal matrix ⁇ be ⁇ 11 , ⁇ 22 , ..., ⁇ mm .
  • the orthogonal matrix U is a matrix in which each column component vector is an eigenvector of the autocorrelation matrix R.
  • the column component vectors of the orthogonal matrix U be u 1 , u 2 , ..., U m .
  • the eigenvalue of the autocorrelation matrix R with respect to the eigenvector u j is ⁇ JJ .
  • the eigenvalues of the autocorrelation matrix R are variables that reflect the intensity of the components of each frequency included in the time waveform of the predicted value y ⁇ k of the physical quantity at time k by the autoregressive model.
  • ⁇ 11 , ⁇ 22 , ..., ⁇ mm which are the diagonal components of the diagonal matrix ⁇ obtained from the result of the singular value decomposition of the autocorrelation matrix R, are in descending order to simplify the notation of the mathematical formula. To do.
  • s eigenvalues are used to define the matrix R'as in equation (24) below.
  • s is a number greater than or equal to 1 and less than m. In this embodiment, s is predetermined.
  • the matrix R' is a matrix that approximates the autocorrelation matrix R by using s eigenvalues among the eigenvalues of the autocorrelation matrix R.
  • the matrix U s in formula is a m ⁇ s matrix constituted by (22) s number of columns of the vector from the left of the orthogonal matrix U of (eigenvectors corresponding to eigenvalues used). Further, the U s T in (24), a transposed matrix of U s.
  • U s T is a s ⁇ m matrix composed of s rows component vectors from the top of the matrix U T of equation (22).
  • the matrix ⁇ s in the equation (24) is an s ⁇ s matrix composed of s columns from the left and s rows from the top of the diagonal matrix ⁇ in the equation (22). If the matrix ⁇ s and the matrix Us are expressed by the matrix components, the following equation (25) is obtained.
  • the following equation (27) can be obtained as an equation for obtaining the coefficient ⁇ .
  • the "modified autoregressive model” is a model that calculates the predicted value y ⁇ k of the physical quantity at time k by the equation (15) using the coefficient ⁇ obtained by the equation (27).
  • Equation (27) is an equation used to determine the coefficients of the modified autoregressive model.
  • (27) of the matrix U s is a partial matrix of the orthogonal matrix U obtained by singular value decomposition of the autocorrelation matrix R, column eigenvector corresponding to the eigenvalue which is used to determine the coefficients of the correction autoregressive model It is a matrix (third matrix) as a component vector.
  • the matrix ⁇ s of Eq. (27) is a submatrix of the diagonal matrix obtained by the singular value decomposition of the autocorrelation matrix R, and the eigenvalues used for determining the coefficients of the modified autocorrelation model are diagonal components. It is a matrix (second matrix).
  • (27) is a matrix U s ⁇ s U s T of the equation is a matrix derived from a matrix sigma s and the matrix U s (first matrix).
  • the coefficient ⁇ of the modified autoregressive model can be obtained.
  • the example of the method of deriving the coefficient ⁇ of the modified autoregressive model has been described above.
  • the autocorrelation of the data y in the present embodiment may be replaced with a value calculated by another calculation formula as long as it approximates the autocorrelation of the stochastic process.
  • R 22 to R mm are autocorrelation with a time difference of 0 (zero), but these may be replaced with R 11 .
  • the number s of eigenvalues extracted from the autocorrelation matrix R shown in equation (23) can be determined, for example, from the distribution of the eigenvalues of the autocorrelation matrix R.
  • the physical quantities in the description of the modified autoregressive model described above are the shaft spring rigidity k 1, i and k 1, i + 1 .
  • the values of the shaft spring rigidity k 1, i and k 1, i + 1 vary depending on the state of the railway vehicle. Therefore, first, the railroad vehicle is run on the track 30 to obtain data y for the shaft spring rigidity k 1, i and k 1, i + 1 . For each of the obtained data y, the autocorrelation matrix R is obtained using the equations (19) and (21).
  • the eigenvalues of the autocorrelation matrix R are obtained by performing the singular value decomposition represented by Eq. (22) on the autocorrelation matrix R.
  • FIG. 5 is a diagram showing an example of the distribution of the eigenvalues of the autocorrelation matrix R.
  • the eigenvalues ⁇ 11 to ⁇ mm obtained by singular value decomposition of the autocorrelation matrix R for each of the data y of the shaft spring stiffness k 1 and 1 are rearranged in ascending order and plotted.
  • the horizontal axis of FIG. 5 is an index of eigenvalues, and the vertical axis represents the value of eigenvalues in common logarithm.
  • m of equation (15) was set to 1500.
  • the sampling period was set to 0.002 s.
  • the eigenvalues of all the shaft spring stiffnesses k 1 , 1 , k 1 , 2 , k 1 , 3 , and k 1 , 4 have significantly higher values than the others, as in FIG. There was one. From this, for example, 1 can be adopted as the number s of the eigenvalues extracted from the autocorrelation matrix R shown in the equation (23). In addition, for example, an eigenvalue exceeding the threshold value can be extracted.
  • the coefficient ⁇ of the modified autoregressive model is determined as follows. Based on the data y of the shaft spring rigidity k 1, i , k 1, i + 1 , and the preset numbers M, m, the autocorrelation matrix R is calculated using the equations (19) and (21). Generate.
  • the orthogonal matrix U and the diagonal matrix ⁇ of Eq. (22) are derived by singular value decomposition of the autocorrelation matrix R, and the eigenvalues ⁇ 11 to ⁇ mm of the autocorrelation matrix R are derived from the diagonal matrix ⁇ .
  • the eigenvalues ⁇ 11 to ⁇ mm of the autocorrelation matrix R are derived from the diagonal matrix ⁇ .
  • s predetermined eigenvalues ⁇ 11 to ⁇ ss are used to obtain the coefficient ⁇ of the modified autoregressive model. Select as the eigenvalue of R.
  • FIG. 3 is a diagram showing an example of a functional configuration of the inspection device 300.
  • FIG. 4 is a diagram showing an example of the hardware configuration of the inspection device 300.
  • the inspection device 300 has a data acquisition unit 301, a shaft spring state detection unit 302, a determination unit 303, and an output unit 304 as its functions.
  • the inspection device 300 includes a CPU 401, a main storage device 402, an auxiliary storage device 403, a communication circuit 404, a signal processing circuit 405, an image processing circuit 406, an I / F circuit 407, a user interface 408, a display 409, and a bus. It has 410.
  • the CPU 401 controls the entire inspection device 300 in an integrated manner.
  • the CPU 401 uses the main storage device 402 as a work area to execute a program stored in the auxiliary storage device 403.
  • the main storage device 402 temporarily stores data.
  • the auxiliary storage device 403 stores various data in addition to the program executed by the CPU 401.
  • the communication circuit 404 is a circuit for communicating with the outside of the inspection device 300.
  • the communication circuit 404 receives, for example, information on the measured value of the front-rear force, which will be described later.
  • the communication circuit 404 may perform wireless communication or wired communication with the outside of the inspection device 300.
  • the communication circuit 404 is connected to an antenna provided on a railroad vehicle when performing wireless communication.
  • the signal processing circuit 405 performs various signal processing on the signal received by the communication circuit 404 and the signal input according to the control by the CPU 401.
  • the data acquisition unit 301 is realized by using, for example, a CPU 401, a communication circuit 404, and a signal processing circuit 405.
  • the shaft spring state detection unit 302 and the determination unit 303 are realized by using, for example, a CPU 401 and a signal processing circuit 405.
  • the image processing circuit 406 performs various image processing on the signal input under the control of the CPU 401.
  • the signal after this image processing is performed is output to the display 409.
  • the user interface 408 is a part in which the operator gives an instruction to the inspection device 300.
  • the user interface 408 includes, for example, buttons, switches, dials, and the like. Further, the user interface 408 may have a graphical user interface using the display 409.
  • the display 409 displays an image based on the signal output from the image processing circuit 406.
  • the I / F circuit 407 exchanges data with a device connected to the I / F circuit 407.
  • FIG. 4 shows a user interface 408 and a display 409 as devices connected to the I / F circuit 407.
  • the device connected to the I / F circuit 407 is not limited to these.
  • a portable storage medium may be connected to the I / F circuit 407.
  • at least a part of the user interface 408 and the display 409 may be outside the inspection device 300.
  • the output unit 303 is realized, for example, by using at least one of the communication circuit 404 and the signal processing circuit 405, the image processing circuit 406, the I / F circuit 407, and the display 409.
  • the CPU 401, the main storage device 402, the auxiliary storage device 403, the signal processing circuit 405, the image processing circuit 406, and the I / F circuit 407 are connected to the bus 410. Communication between these components takes place via bus 410. Further, the hardware of the inspection device 300 is not limited to that shown in FIG. 4 as long as the functions of the inspection device 300 described later can be realized.
  • the data acquisition unit 301 acquires the measured values for the railway vehicle to be inspected and is necessary for the calculation of the equations (3) and (4) at a predetermined sampling cycle. As a result, time series data of each measured value can be obtained.
  • the acceleration z t, j ..., the vertical acceleration z w, i ..., z w, i + 1 ... of the wheel shafts 13a to 13b, 13c to 13d, and the traveling speed v of the railroad vehicle are obtained as measured values.
  • the data acquisition unit 301 derives the displacement z b of the vehicle body 11 in the vertical direction by time-integrating the measured values of the acceleration z b ... In the vertical direction of the vehicle body 11.
  • the data acquisition unit 301 time-integrates the measured values of the vertical accelerations zw , i ..., zw , i + 1 ...
  • the shaft spring state detection unit 302 derives the rigidity (spring constant) k 1 (k 1, i , k 1, i + 1 ) of the shaft springs 18L and 18R using the measurement data obtained by the data acquisition unit 301. To do.
  • the shaft spring state detection unit 302 has a shaft spring rigidity lead-out unit 302a and a frequency component adjusting unit 302b.
  • the shaft spring rigidity deriving unit 302a uses the measurement data obtained by the data acquisition unit 301 to perform the calculations of equations (3) and (4), whereby the shaft spring rigidity k 1, i , k 1, i + 1 Is derived at a predetermined sampling period.
  • the shaft spring rigidity k 1, i and k 1, i + 1 are proportional constants obtained by dividing the load when a load is applied to the shaft springs 18L and 18R by the elongation, so that the elongation originally approaches "0". Even if it does, it has the property of converging to a constant value.
  • the data used in the calculation includes errors (measurement error and numerical error). Therefore, the present inventors considered that when the elongation is close to "0", the S / N ratio of the data used in the calculation decreases, and such a phenomenon occurs. It is considered that the original information is largely lost in the values of the shaft spring rigidity k 1, i and k 1, i + 1 which are extremely large or small.
  • the present inventors have invalidated the values of the shaft spring stiffnesses k 1, i and k 1, i + 1 derived as described above to a certain extent, and then used them as time-series data. It was thought that the accuracy of the shaft spring rigidity could be improved by reducing the component (noise). Therefore, in the present embodiment, when the values of the shaft spring rigidity k 1, i and k 1, i + 1 derived as described above exceed the upper limit value, the shaft spring rigidity deriving unit 302a has the shaft spring rigidity.
  • the values of k 1, i and k 1, i + 1 are set as the upper limit value, and when the value is lower than the lower limit value, the values of the shaft spring rigidity k 1, i and k 1, i + 1 are set as the lower limit value. By doing so, the range of the shaft spring rigidity k 1, i and k 1, i + 1 is limited.
  • the coefficients q 1 and q 2 are real numbers of 0 or more, and the range of the shaft spring rigidity k 1, i , k 1, i + 1 is limited to the sections shown in the following equations (28a) and (28b).
  • k 1, i - is the average value of the spring constants of the normal shaft springs 18L and 18R, and for example, a design value can be used (in the formula,-is added above k (hereinafter, other). The same applies to variables)).
  • the average value of the spring constants of the normal shaft springs 18L and 18R will be referred to as a reference value of the shaft spring rigidity, if necessary.
  • the shaft spring rigidity derived by the shaft spring rigidity lead-out unit 302a by limiting the range to the section shown in the equation (28a) and (28b) is referred to as a modified front shaft spring rigidity, if necessary. ..
  • Frequency component adjustment unit 302b performs the following processing using the value y k of the modified front shaft spring rigidity data y at the time k.
  • the frequency component adjusting unit 302b uses the equations (19) and (21) to form an autocorrelation matrix based on the data y of the modified front shaft spring rigidity and the preset numbers M and m. Generate R.
  • the frequency component adjusting unit 302b derives the orthogonal matrix U and the diagonal matrix ⁇ of the equation (22) by decomposing the autocorrelation matrix R into singular values, and the eigenvalues of the autocorrelation matrix R are derived from the diagonal matrix ⁇ . Derivation of ⁇ 11 to ⁇ mm .
  • the frequency component adjusting unit 302b has s eigenvalues ⁇ 11 to ⁇ ss out of a plurality of eigenvalues ⁇ 11 to ⁇ mm of the autocorrelation matrix R (one eigenvalue ⁇ 11 in the example shown in FIG. 5). Is selected as the eigenvalue of the autocorrelation matrix R used to obtain the coefficient ⁇ of the modified autoregressive model.
  • the frequency component adjusting unit 302b is based on the modified front shaft spring rigidity data y, the eigenvalues ⁇ 11 to ⁇ ss, and the orthogonal matrix U obtained by the singular value decomposition of the autocorrelation matrix R.
  • the coefficient ⁇ of the modified autoregressive model is determined using the equation 27).
  • the frequency component adjusting unit 302b is based on the coefficient ⁇ of the modified autoregressive model and the modified front shaft spring rigidity data y, according to the equation (15), at the time k of the modified front shaft spring rigidity data y.
  • the predicted value y ⁇ k is derived.
  • the frequency component adjusting unit 302b derives the predicted value y ⁇ k of the modified front shaft spring rigidity data y derived in this way at time k at a predetermined sampling cycle.
  • the predicted value y ⁇ k of the modified front shaft spring rigidity data y at time k is referred to as the modified rear shaft spring rigidity, if necessary.
  • the determination unit 303 determines the rigidity (spring constant) of the shaft springs 18L and 18R based on the shaft spring rigidity k 1, i , k 1, i + 1 (corrected shaft spring rigidity) derived by the shaft spring state detection unit 302. ) Is determined to be present.
  • the determination unit 303 has the shaft spring rigidity k 1, i , k 1, i + 1 (corrected shaft spring rigidity) derived by the shaft spring state detection unit 302, and the normal shaft spring rigidity k 1, i ⁇ . , K 1, i + 1 ⁇ , and the presence or absence of abnormality in the rigidity (spring constant) of the shaft springs 18L and 18R is determined.
  • the determination unit 303 has the shaft spring rigidity k 1, i , k 1, i + 1 (corrected shaft spring rigidity) derived by the shaft spring state detection unit 302, and the normal shaft spring rigidity k 1, i ⁇ . , K 1, i + 1-If the absolute value of the difference exceeds the threshold value, it is determined that the rigidity (spring constant) of the shaft springs 18L and 18R is abnormal, and if not, the shaft spring 18L, It is determined that the rigidity (spring constant) of 18R is not abnormal.
  • the determination unit 303 can make the above determination regardless of the traveling position of the railway vehicle. However, the determination unit 303 may make the above determination by limiting the traveling position of the railway vehicle. For example, the determination unit 303 may make the above determination only when the railway vehicle is traveling on a straight track, or may perform the above determination only when the railway vehicle is traveling on a curved track. You may. Further, the determination unit 303 determines whether or not there is an abnormality in the left shaft spring 18L when the railroad vehicle is traveling on a clockwise curved track in the traveling direction, and whether or not there is an abnormality in the right shaft spring 18R. Does not have to be determined.
  • the determination unit 303 determines whether or not there is an abnormality in the right shaft spring 18R when the railroad vehicle is traveling on a counterclockwise curved track in the traveling direction, and whether or not there is an abnormality in the left shaft spring 18L. Does not have to be determined.
  • I , k 1, i + 1 corrected shaft spring rigidity
  • the axial spring rigidity k 1 obtained, i, k 1, i + 1 from the magnitude of the value of (corrected axial spring stiffness), the axial spring stiffness k 1, i, k 1, i + 1 (after correction shaft A section in which the value of spring rigidity) changes remarkably when the shaft springs 18L and 18R are abnormal is specified.
  • the section specified in this way can be determined in advance as a section for determining the presence or absence of abnormality in the rigidity (spring constant) of the shaft springs 18L and 18R.
  • the traveling position of the rolling stock at the time when the shaft spring rigidity k 1, i , k 1, i + 1 (corrected shaft spring rigidity) is derived is determined by using, for example, GPS (Global Positioning System). It is obtained by detecting the position of. Further, the traveling position of the railway vehicle at the relevant time may be obtained from the integrated value of the speeds of the railway vehicle at each time.
  • Output section 304 The output unit 304 outputs information based on the result determined by the determination unit 303. Specifically, when the determination unit 303 determines that at least one of the rigidity (spring constant) of the shaft springs 18L and 18R is abnormal, the output unit 304 outputs information indicating that fact. At this time, the output unit 304 also outputs information for identifying the shaft spring whose rigidity (spring constant) is determined to be abnormal. The output unit 304 may also output information indicating the traveling position of the railway vehicle at the timing when the rigidity (spring constant) of the shaft spring is determined to be abnormal. Further, when the determination unit 303 determines that all of the shaft springs 18L and 18R are not abnormal, the output unit 304 may output information indicating that fact. As the form of output, for example, at least one of display on a computer display, transmission to an external device, and storage in an internal or external storage medium of the inspection device 300 can be adopted.
  • step S601 the inspection device 300 waits until the railroad vehicle to be inspected enters the inspection section.
  • step S602. the inspection device 300 waits until the predetermined sampling cycle (start time) arrives.
  • start time the predetermined sampling cycle
  • the data acquisition unit 301 determines the measurement data ( FWx, i L , F Wx, i R , F Wx, i + 1 L , F Wx, i + 1 R , P j L , P j R , z ASj L , z ASj R , z b , z t, j ..., z t, j ⁇ , z t, j , z w, i ⁇ , z w, i + 1 ⁇ , z w, i , z w, i + 1 , v) is acquired.
  • step S604 the shaft spring rigidity deriving unit 302a uses the measurement data acquired in step S603 to perform calculations using Eqs. (3) and (4), whereby the shaft spring rigidity k 1 , I , k 1, i + 1 (corrected front axle spring rigidity) is derived.
  • the measurement data derivation unit 302a has the shaft spring rigidity k 1, i , k. 1, i + 1 is changed to the upper limit value.
  • the measurement data derivation unit 302a has the shaft spring rigidity k 1, i , k 1 , I + 1 is changed to the lower limit value.
  • the frequency component adjusting unit 302b generates an autocorrelation matrix R based on the modified front shaft spring rigidity data y and the preset numbers M and m.
  • the frequency component adjusting unit 302b derives the eigenvalues ⁇ 11 to ⁇ ss of the autocorrelation matrix R based on the result of singular value decomposition of the autocorrelation matrix R.
  • the frequency component adjusting unit 302b is a modified autoregressive model based on the modified front shaft spring rigidity data y, the eigenvalues ⁇ 11 to ⁇ ss, and the orthogonal matrix U obtained by singular value decomposition of the autocorrelation matrix R. Determine the coefficient ⁇ .
  • the frequency component adjusting unit 302b calculates the predicted value y ⁇ k at the time k of the modified front shaft spring rigidity data y based on the coefficient ⁇ of the modified autoregressive model and the modified front shaft spring rigidity data y. , Derived as the modified shaft spring rigidity.
  • the process of step S605 is executed when the value of each time of the modified front shaft spring rigidity data is m (for example, 1500) or more. If the value of each time of the modified front shaft spring rigidity data is not m or more, the process of step S605 is not executed until the value of each time of the modified front shaft spring rigidity data becomes m or more.
  • the processes of steps S602 to S604 are repeated.
  • step S606 the determination unit 303 determines the rigidity of the shaft springs 18L and 18R based on the shaft spring rigidity k 1, i and k 1, i + 1 (corrected shaft spring rigidity) derived in step S605. Judge whether or not (spring constant) is abnormal. As a result of the determination in step S606, if the rigidity (spring constant) of at least one of the shaft springs 18L and 18R is not normal, the process proceeds to step S607. On the other hand, when the rigidity (spring constant) of all the shaft springs 18L and 18R is normal, the process skips step S607 and proceeds to step S608 described later.
  • step S608 the output unit 304 outputs abnormal information including that the rigidity (spring constant) of the shaft springs 18L and 18R is abnormal.
  • step S608 the inspection device 300 determines whether or not the railroad vehicle to be inspected has left the inspection section. As a result of this determination, if the railroad vehicle to be inspected does not leave the inspection section, the process returns to step S602, and the processes of steps S602 to S608 are repeatedly executed until the railroad vehicle to be inspected leaves the inspection section. .. Then, in step S608, when it is determined that the railway vehicle to be inspected has left the inspection section, the process according to the flowchart of FIG. 6 ends.
  • step S606 when the rigidity (spring constant) of all the shaft springs 18L and 18R is normal, the output unit 304 includes that the rigidity (spring constant) of all the shaft springs 18L and 18R is normal. Normal information may be output.
  • FIG. 7 is a diagram showing the curvature 1 / R of the rail used in this calculation example, the amount of deviation y R, and the amount of deviation y H.
  • the time on the horizontal axis shown in FIG. 7 corresponds to the time on the horizontal axis shown in FIGS. 8 to 14.
  • Passage is a left-right displacement of the rail in the longitudinal direction, as described in the Japanese Industrial Standards (JIS E 1001: 2001).
  • the amount of deviation is the amount of displacement.
  • High-low deviation is a vertical displacement of the rail in the longitudinal direction as described in the Japanese Industrial Standards (JIS E 1001: 2001).
  • the amount of high-low deviation is the amount of displacement.
  • a positive curvature 1 / R indicates that the railroad vehicle turns clockwise in the direction of travel.
  • FIG. 8 is a diagram showing a first example of time-series data of the front-back directional forces F Wx, 1 , F Wx, 2 , F Wx, 3 , and F Wx, 4 used in this calculation example.
  • FIG. 8 shows the sum of the anteroposterior force F Wx, i L on the left side of the same wheel set 13a to 13d and the anteroposterior force F Wx, i R on the right side.
  • FIG. 8 shows an example of time-series data of the longitudinal forces FWx, 1 , FWx, 2 , FWx, 3 , FWx, 4 when all the shaft springs 18L and 18R are normal.
  • FIG. 9 is a diagram showing a second example of time-series data of the front-back directional forces F Wx, 1 , F Wx, 2 , F Wx, 3 , and F Wx, 4 used in this calculation example.
  • FIG. 9 similarly to FIG. 8, the sum of the front-rear direction forces F Wx, i L on the left side of the same wheel set 13a to 13d and the front-rear direction force F Wx, i R on the right side is shown.
  • FIG. 9 shows the front-rear direction forces F Wx, 1 , F Wx, 2 when the rigidity (spring constant) of the left shaft spring 18L of the front wheel (wheel axle 13a) of the front bogie 12a is halved from the normal state.
  • FWx, 3 , FWx, 4 shows an example of time-series data.
  • normal indicates time series data of the front-rear direction forces F Wx, 1 , F Wx, 2 , F Wx, 3 , and F Wx, 4 when all the shaft springs 18L and 18R are normal.
  • fail is the front-rear direction force F Wx, 1 , F Wx, 2 , when the rigidity (spring constant) of the left shaft spring 18L of the front wheel (wheel set 13a) of the front bogie 12a is halved from the normal state.
  • the time series data of F Wx, 3 and F Wx, 4 are shown. Note that normal corresponds to a graph having a low density and is the same as the graph shown in FIG. fail corresponds to a dense graph.
  • FIG. 10 is a diagram showing a third example of time-series data of the front-back directional forces F Wx, 1 , F Wx, 2 , F Wx, 3 , and F Wx, 4 used in this calculation example. Also in FIG. 10, similarly to FIGS. 8 and 9, the sum of the front-rear direction forces F Wx, i L on the left side of the same wheel sets 13a to 13d and the front-rear direction forces F Wx, i R on the right side is shown. FIG. 10 shows the front-rear direction forces F Wx, 1 , F Wx, 2 when the rigidity (spring constant) of the right shaft spring 18R of the front wheel (wheel set 13a) of the front bogie 12a is halved from the normal state.
  • FWx, 3 , FWx, 4 shows an example of time-series data.
  • normal indicates time-series data of the longitudinal forces F Wx, 1 , F Wx, 2 , F Wx, 3 , and F Wx, 4 when all the shaft springs 18L and 18R are normal.
  • fail is the front-rear direction force F Wx, 1 , F Wx, 2 , when the rigidity (spring constant) of the right shaft spring 18R of the front wheel (wheel set 13a) of the front bogie 12a is halved from the normal state.
  • the time series data of F Wx, 3 and F Wx, 4 are shown. Note that normal corresponds to a graph having a low density and is the same as the graph shown in FIG. fail corresponds to a dense graph.
  • FIG. 11 is a diagram showing an example of time-series data of the modified front shaft spring rigidity k 1 , 1 , k 1 , 2 , k 1 , 3 , and k 1 , 4 .
  • reference is normal axis spring 18L
  • the average value k of the spring constant of 18R 1, 1 - indicates a -, k 1,2 -, k 1,3 -, k 1,4.
  • the estimated values show the modified front shaft spring rigidity k 1 , 1 , k 1 , 2 , k 1 , 3 , and k 1 , 4 obtained by the method of the present embodiment.
  • the standard corresponds to a graph having a low density. Estimates correspond to denser graphs.
  • the modified front shaft spring rigidity k 1 , 1 , k 1 , 2 , k 1 , 3 , and k 1 , 4 may be unstable. Note that FIG.
  • FIG. 11 shows an example of time-series data of the modified front shaft spring rigidity k 1 , 1 , k 1 , 2 , k 1 , 3 , k 1 , 4 when all the shaft springs 18L and 18R are normal. Shown.
  • FIG. 12 is a diagram showing a first example of time-series data of the modified shaft spring rigidity k 1 , 1 , k 1 , 2 , k 1 , 3 , and k 1 , 4 .
  • FIG. 12 shows an example of time-series data of the modified shaft spring rigidity k 1 , 1 , k 1 , 2 , k 1 , 3 , and k 1 , 4 when all the shaft springs 18L and 18R are normal. That is, FIG. 12 shows the modified front shaft spring rigidity k 1 , 1 , k 1 , 2 , k 1 , 3 , k 1 , 4 shown in FIG. 11 after modification obtained by the method of the present embodiment.
  • the time series data of the shaft spring rigidity k 1 , 1 , k 1 , 2 , k 1 , 3 , and k 1 , 4 are shown. 12, reference is normal axis spring 18L, the average value k of the spring constant of 18R 1, 1 - indicates a -, k 1,2 -, k 1,3 -, k 1,4.
  • the estimated values show the modified shaft spring stiffness k 1 , 1 , k 1 , 2 , k 1 , 3 , and k 1 , 4 obtained by the method of the present embodiment.
  • the standard corresponds to a graph having a low density. Estimates correspond to denser graphs.
  • the average values of the modified shaft spring rigidity k 1 , 1 , k 1 , 2 , k 1 , 3 , and k 1 , 4 (estimated values) obtained by the method of the present embodiment are normal, respectively.
  • the modified shaft spring rigidity k 1 , 1 , k 1 , 2 , k 1 , 3 , k 1 obtained by the method of the present embodiment is used.
  • , 4 (estimated values) are the average values of the spring constants of the normal shaft springs 18L and 18R, k 1 , 1- , k 1 , 2, -, k 1 , 3- , k 1 , 4- (, respectively. It was 1.02 times, 1.09 times, 1.03 times, and 1.07 times the average value of the reference value).
  • FIG. 13 is a diagram showing a second example of time-series data of the modified shaft spring rigidity k 1 , 1 , k 1 , 2 , k 1 , 3 , and k 1 , 4 .
  • FIG. 13 shows the modified rear shaft spring rigidity k 1 , 1 , k 1 when the rigidity (spring constant) of the left shaft spring 18L of the front wheel (wheel axle 13a) of the front carriage 12a is halved from the normal state.
  • An example of time-series data of , 2 , k 1 , 3 , and k 1 , 4 is shown.
  • the average value k of the spring constant of 18R 1, 1 - indicates a -, k 1,2 -, k 1,3 -, k 1,4.
  • the estimated values show the modified shaft spring stiffness k 1 , 1 , k 1 , 2 , k 1 , 3 , and k 1 , 4 obtained by the method of the present embodiment.
  • the standard corresponds to a graph having a low density. Estimates correspond to denser graphs.
  • the average values of the modified shaft spring rigidity k 1 , 1 , k 1 , 2 , k 1 , 3 , and k 1 , 4 (estimated values) obtained by the method of the present embodiment are normal, respectively.
  • the modified shaft spring rigidity k 1 , 1 , k 1 , 2 , k 1 , 3 , k 1 obtained by the method of the present embodiment is used.
  • , 4 (estimated values) are the average values of the spring constants of the normal shaft springs 18L and 18R, k 1 , 1- , k 1 , 2, -, k 1 , 3- , k 1 , 4- (, respectively. It was 0.77 times, 1.08 times, 1.04 times, and 1.08 times the average value of the reference value).
  • the method of the present embodiment is that of the railcar. It can be seen that a result equivalent to the value set when simulating (numerical analysis) the running of a railroad vehicle is obtained assuming that the motion state has 86 degrees of freedom.
  • FIG. 14 is a diagram showing a second example of time-series data of the modified shaft spring rigidity k 1 , 1 , k 1 , 2 , k 1 , 3 , and k 1 , 4 .
  • FIG. 14 shows the modified rear shaft spring rigidity k 1 , 1 , k 1 when the rigidity (spring constant) of the right shaft spring 18R of the front wheel (wheel axle 13a) of the front carriage 12a is halved from the normal state.
  • An example of time-series data of , 2 , k 1 , 3 , and k 1 , 4 is shown.
  • the estimated values show the modified shaft spring stiffness k 1 , 1 , k 1 , 2 , k 1 , 3 , and k 1 , 4 obtained by the method of the present embodiment.
  • the standard corresponds to a graph having a low density. Estimates correspond to denser graphs.
  • the average values of the modified shaft spring rigidity k 1 , 1 , k 1 , 2 , k 1 , 3 , and k 1 , 4 (estimated values) obtained by the method of the present embodiment are normal, respectively. 0.74 times, 1.07 times the average value of the average values of the spring constants of the shaft springs 18L and 18R, k 1,1- , k 1 , 2, -, k 1,3- , k 1,4- (reference value) It was double, 1.03 times, and 1.09 times. In the linear orbit with the time shown in FIG.
  • the modified shaft spring rigidity k 1 , 1 , k 1 , 2 , k 1 , 3 , k 1 obtained by the method of the present embodiment is used.
  • , 4 (estimated values) are the average values of the spring constants of the normal shaft springs 18L and 18R, k 1 , 1- , k 1 , 2, -, k 1 , 3- , k 1 , 4- (, respectively. It was 0.76 times, 1.08 times, 1.04 times, and 1.08 times the average value of the reference value).
  • the method of the present embodiment uses the method of the railroad vehicle. It can be seen that the same result as the value set when simulating (numerical analysis) the running of the railroad vehicle is obtained assuming that the motion state has 86 degrees of freedom.
  • the rigidity (spring constant) of the shaft spring 18R on the right side of the front wheel (wheel set 13a) of the front bogie 12a is 1/2 times the normal value
  • the rigidity (spring constant) of the shaft spring of the front wheel (wheel axle 13a) of the front bogie 12a is 0.76 times that in the normal state, which is close to 0.75 times.
  • the spring constant is smaller (see the top graphs of FIGS. 13 and 14). Therefore, when determining the presence or absence of an abnormality in the rigidity (spring constant) of the shaft springs 18L and 18R in a curved track, it is determined whether or not there is an abnormality in the rigidity (spring constant) of the shaft spring in the direction opposite to the bending direction of the railroad vehicle. Is easier to do.
  • the inspection device 300 uses the measured values of the longitudinal force (F Wx, i L + F Wx, i R + F Wx, i + 1 L + F Wx, i + 1 R ) to obtain the shaft spring 18L.
  • the state of 18R is detected.
  • the average value of the forces received by the left shaft spring 18L and the right shaft spring 18R arranged at intervals in the left-right direction (k 1, i (z t, j ⁇ a ⁇ t, j)
  • Axle spring stiffness k 1, i , k 1, i + 1 is derived using a mathematical formula expressing ⁇ z w, i ), k 1, i + 1 (z t, j + a ⁇ t, j ⁇ z w, i + 1 )). ..
  • the formula is derived based on the equation of motion (Equation (1)) representing the vertical movement of the carriages 12a and 12b and the equation of motion (Equation (2)) representing the pitching of the carriages 12a and 12b. Then, the inspection device 300 determines whether or not the rigidity (spring constant) of the shaft springs 18L and 18R is normal based on the derived shaft spring rigidity k 1, i and k 1, i + 1 . Therefore, the state of rigidity (spring constant) of the shaft springs 18L and 18R can be accurately detected. This makes it possible to accurately determine whether or not the rigidity (spring constant) of the shaft springs 18L and 18R is normal.
  • the above formula is based on the load ( FASzj L , FASzj R ) received by the air springs 22L and 22R, and the left shaft damper 19L and the right shaft damper 19L arranged at intervals in the left-right direction.
  • the average value of the force received by 19R (c 1 ⁇ 2z t, j ⁇ -(z w, i ⁇ + z w, i + 1 ⁇ ) ⁇ ) and the moment of force received by the axle dampers 19L and 19R from the axle dampers 19L and 19R.
  • the inspection device 300 when the shaft spring rigidity k 1, i , k 1, i + 1 derived as described above exceeds the upper limit value, the inspection device 300 has the shaft spring rigidity k 1, i , Let k 1, i + 1 be the upper limit value. Further, when the shaft spring rigidity k 1, i , k 1, i + 1 derived as described above exceeds the lower limit value, the inspection device 300 determines the shaft spring rigidity k 1, i , k 1, i + 1 . The lower limit is used. Therefore, it is possible to prevent the values of the shaft spring rigidity k 1, i and k 1, i + 1 from becoming extremely large or small. Therefore, it is possible to more accurately determine whether or not the shaft springs 18L and 18R are normal.
  • the inspection device 300 generates an autocorrelation matrix R from the data y of the shaft spring rigidity k 1, i , k 1, i + 1 (corrected front shaft spring rigidity) derived as described above. ..
  • the inspection device 300 uses the eigenvalue having the largest value among the eigenvalues obtained by decomposing the autocorrelation matrix R into singular values, and uses the eigenvalues k 1, i , k 1, i + 1 (corrected front shaft spring rigidity). ),
  • the coefficient ⁇ of the modified autoregressive model that approximates the data y is determined.
  • the inspection device 300 corrects the shaft spring rigidity k 1, i and k 1, i + 1 by using the determined coefficient ⁇ (the corrected shaft spring rigidity is derived). Therefore, the noise contained in the shaft spring rigidity k 1, i and k 1, i + 1 can be appropriately reduced without adjusting the cutoff frequency or the like. Therefore, it is possible to more accurately determine whether or not the shaft springs 18L and 18R are normal.
  • a low-pass filter or a band-pass filter may be used instead of the modified autoregressive model.
  • the inspection device 300 uses the time series data of the shaft spring rigidity k 1, i , k 1, i + 1 as it is. , It may be determined whether or not the shaft springs 18L and 18R (rigidity (spring constant)) are normal. Further, in such a case, it is not necessary to change the shaft spring rigidity to the upper and lower limit values of k 1, i and k 1, i + 1 .
  • the pillow spring does not have to be an air spring, and the load received by the bogie from the pillow spring may be calculated according to the type of spring used.
  • the inspection device 300 mounted on the railroad vehicle determines whether or not the shaft springs 18L and 18R (rigidity (spring constant)) are normal has been described as an example.
  • a data processing device equipped with some functions of the inspection device 300 is arranged at the command center. This data processing device receives the measurement data transmitted from the railroad vehicle, and uses the received measurement data to check whether the shaft springs 18L and 18R (rigidity (spring constant)) of the railroad vehicle to be inspected are normal. Judge whether or not.
  • the functions of the inspection device 300 of the first embodiment are shared and executed by the railway vehicle and the command center.
  • the configuration and processing according to this are mainly different between the present embodiment and the first embodiment. Therefore, in the description of the present embodiment, detailed description of the same parts as those of the first embodiment will be omitted by adding the same reference numerals as those given in FIGS. 1 to 14.
  • FIG. 15 is a diagram showing an example of the configuration of the inspection system.
  • the inspection system includes data collecting devices 1510a and 1510b and a data processing device 1520.
  • FIG. 15 also shows an example of the functional configuration of the data collecting devices 1510a and 1510b and the data processing device 1520.
  • the hardware of the data collecting devices 1510a and 1510b and the data processing device 1520 can be realized by, for example, those shown in FIG. Therefore, detailed description of the hardware configuration of the data collection devices 1510a and 1510b and the data processing device 1520 will be omitted.
  • Each railroad vehicle is equipped with one data collection device 1510a and one 1510b.
  • the data processing device 1520 is located at the command center.
  • the command center for example, centrally manages the operation of a plurality of rolling stock.
  • the data collection devices 1510a and 1510b can be realized by the same device.
  • the data acquisition devices 1510a and 1510b include data acquisition units 1511a and 1511b and data transmission units 1512a and 1512b.
  • the data acquisition units 1511a and 1511b have the same functions as the track information acquisition unit 501 and the railway vehicle state information acquisition unit 502. That is, the data acquisition units 1511a and 1511b, like the data acquisition unit 301, measure data ( FWx, i L , F Wx, i R , F Wx, i + 1 L , F Wx, i + 1 R , P j L , P j R , z ASj L , z ASj R , z b , z t, j ..., z t, j ⁇ , z t, j , z w, i ⁇ , z w, i + 1 ⁇ , z w, i , z Acquire w, i + 1 , v).
  • the data transmission units 1512a and 1512b transmit the measurement data of the railway vehicle to be inspected acquired by the data acquisition units 1511a and 1511b to the data processing device 1520.
  • the data transmission units 1512a and 1512b transmit the measurement data of the railway vehicle to be inspected acquired by the data acquisition units 1511a and 1511b to the data processing device 1520 by wireless communication.
  • the data transmission units 1512a and 1512b add the identification number of the railroad vehicle on which the data collection devices 1510a and 1510b are mounted to the measurement data of the railroad vehicle to be inspected acquired by the data acquisition units 1511a and 1511b. .. In this way, the data transmission units 1512a and 1512b transmit data to which the identification number of the railway vehicle is added as the data of the measurement data of the railway vehicle to be inspected.
  • the data storage unit 1522 stores the measurement data of the railway vehicle to be inspected received by the data reception unit 1521.
  • the data storage unit 1522 stores the measurement data of the railway vehicle to be inspected for each identification number of the railway vehicle. Based on the current operation status of the railroad vehicle and the reception time of the measurement data of the railroad vehicle to be inspected, the data storage unit 1522 determines the traveling position of the railroad vehicle at the reception time of the measurement data of the railroad vehicle to be inspected.
  • the information of the specified running position and the measurement data of the railroad vehicle to be inspected are stored in association with each other.
  • the data collection devices 1510a and 1510b may collect information on the current traveling position of the railway vehicle, and the collected information may be added to the measurement data of the railway vehicle to be inspected.
  • the data reading unit 1523 reads out the measurement data of the railway vehicle to be inspected stored by the data storage unit 1522.
  • the data reading unit 1523 can read the measurement data specified by the operator from the measurement data of the railway vehicle to be inspected stored by the data storage unit 1522.
  • the data reading unit 1523 can also read out the measured values that match the predetermined conditions from the measurement data of the railway vehicle to be inspected at a predetermined timing.
  • the measurement data of the railway vehicle to be inspected read by the data reading unit 1523 is determined based on, for example, at least one of the identification number of the railway vehicle and the traveling position.
  • the shaft spring state detection unit 302 uses the measurement data of the railroad vehicle to be inspected read by the data reading unit 1523 instead of the measurement data of the railcar to be inspected acquired by the data acquisition unit 301. Derived the shaft spring rigidity (corrected shaft spring rigidity) of the railroad vehicle to be inspected.
  • the data collecting devices 1510a and 1510b mounted on the railroad vehicle collect the measurement data of the railroad vehicle to be inspected and transmit it to the data processing device 1520.
  • the data processing device 1520 arranged at the command center stores the measurement data of the rolling stock to be inspected received from the data collecting devices 1510a and 1510b, and uses the stored measurement data of the rolling stock to be inspected to be inspected. It is determined whether or not the shaft springs 18L and 18R (rigidity (spring constant)) of the railroad vehicle are normal. Therefore, in addition to the effects described in the first embodiment, for example, the following effects are exhibited.
  • the data processing device 1520 reads the measurement data of the railroad vehicle to be inspected at an arbitrary timing, and at an arbitrary timing, the rigidity (spring) of the shaft springs 18L and 18R in each railroad vehicle managed by the command center. It can be determined whether or not the constant) is normal.
  • ⁇ Modification example> In the present embodiment, the case where the measurement data of the railroad vehicle to be inspected is directly transmitted from the data collecting devices 1510a and 1510b to the data processing device 1520 has been described as an example. However, it is not always necessary to do this. For example, an inspection system may be constructed using cloud computing. Further, in the present embodiment, the case where the data collecting devices 1510a and 1510b acquire all of the measured data has been described as an example. However, it is not always necessary to do this.
  • variables obtained from the measured values (z b , z t, j ⁇ , z t, j , z w, i ⁇ , z w, i + 1 ⁇ , z w, i , z w, i + 1 ) May be derived in the data processing device 1520.
  • various modifications described in the first embodiment can be adopted.
  • the shaft spring stiffnesses k 1, i and k 1, i + 1 are derived in a predetermined sampling period by performing the calculations of the equations (3) and (4). In this way, when the value of the denominator of the equations (3) and (4) is "0", so-called zero division calculation is performed. Therefore, it is necessary to limit the range of the shaft spring rigidity k 1, i and k 1, i + 1 (see equations (28a) and (28b)). Further, in the first embodiment, time series data is derived as data y of the shaft spring rigidity k 1, i , k 1, i + 1 (corrected front shaft spring rigidity). Therefore, it is necessary to remove the noise component.
  • the calculation load for deriving the shaft spring rigidity k 1, i and k 1, i + 1 becomes high. Therefore, in the present embodiment, the measurement data in the inspection section ( FWx, i L , F Wx, i R , F Wx, i + 1 L , F Wx, i + 1 R , P j L , P j R , z ASj L , z Based on ASj R , z b , z t, j ..., z t, j ⁇ , z t, j , z w, i ⁇ , z w, i + 1 ⁇ , z w, i , z w, i + 1 , v) Then, the shaft spring rigidity k 1, i and k 1, i + 1 in the inspection section are derived one by one for each wheel set.
  • FIG. 16 is a diagram showing an example of the functional configuration of the inspection device 1600.
  • the inspection device 1600 replaces the inspection device 300.
  • the hardware configuration of the inspection device 1600 is, for example, the same as that shown in FIG.
  • the inspection device 1600 has a data acquisition unit 1601, a shaft spring state detection unit 1602, a determination unit 1603, and an output unit 1604 as its functions.
  • the data acquisition unit 1601 acquires the measured values required for the calculation described later at a predetermined sampling cycle when the railway vehicle to be inspected is traveling in the inspection section. Similar to the data acquisition unit 301, the data acquisition unit 1601 has measurement data ( FWx, i L , F Wx, i R , F Wx, i + 1 L , F Wx, i + 1 R , P j L , P j R , z.
  • the data acquisition unit 301 outputs the measurement data to the shaft spring state detection unit 302 every time the measurement data is obtained in a predetermined sampling cycle.
  • the data acquisition unit 1601 may collectively output the measurement data in the inspection section to the shaft spring state detection unit 1602 when the measurement data in the inspection section is obtained.
  • the data acquisition unit 1601 may output the measurement data to the shaft spring state detection unit 302 each time the measurement data is obtained in a predetermined sampling cycle.
  • ⁇ Shaft spring state detector 1602 The shaft spring state detection unit 1602 derives the rigidity (spring constant) k 1 (k 1, i , k 1, i + 1 ) of the shaft springs 18L and 18R using the measurement data obtained by the data acquisition unit 1601. To do.
  • the shaft spring state detection unit 1602 has a shaft spring rigidity lead-out unit 1602a.
  • ⁇ Shaft spring rigidity lead-out unit 1602a >>>
  • the shaft spring rigidity derivation unit 1602a is activated when the data acquisition unit 1601 obtains the measurement data in the inspection section.
  • the shaft spring rigidity derivation unit 1602a derives the shaft spring rigidity k 1, i , k 1, i + 1 in the inspection section by using the measurement data in the inspection section obtained by the data acquisition unit 1601.
  • Equation (3) is an equation representing the average value of the forces received by the left shaft spring 18L and the right shaft spring 18R arranged at intervals in the left-right direction on the front wheels (wheel sets 13a and 13c).
  • the product of k 1, i and (z t, j- a ⁇ t, j- z w, i ) is on the left side of the front wheels (axles 13a, 13c) arranged with a space in the left-right direction. It is the average value of the forces received by the shaft spring 18L and the right shaft spring 18R.
  • k 1 and i are average values of rigidity (spring constant) of the left shaft spring 18L and the right shaft spring 18R arranged at intervals in the left-right direction on the front wheels (wheel sets 13a and 13c). Therefore, (z t, j- a ⁇ t, j- z w, i ) is the displacement of the left shaft spring 18L and the right shaft spring 18R arranged at intervals in the left-right direction on the front wheels (wheel axles 13a, 13c). Represents the average value of.
  • equation (3) assuming that only the product of k 1, i and (z t, j ⁇ a ⁇ t, j ⁇ z w, i ) is on the left side, and the other constants and variables in equation (3) are on the right side. It becomes like the following equation (29).
  • Equation (4) is an equation representing the average value of the forces received by the left shaft spring 18L and the right shaft spring 18R arranged at intervals in the left-right direction on the rear wheels (wheel sets 13b and 13d).
  • the product of k 1, i + 1 and (z t, j + a ⁇ t, j- z w, i + 1 ) is the left side of the rear wheels (axles 13b, 13d) lined up with a space in the left-right direction. It is the average value of the forces received by the shaft spring 18L and the right shaft spring 18R.
  • k 1 and i + 1 are average values of the rigidity (spring constant) of the left shaft spring 18L and the right shaft spring 18R arranged at intervals in the left-right direction on the rear wheels (wheel sets 13b and 13d). Therefore, (z t, j + a ⁇ t, j- z w, i + 1 ) is the displacement of the left shaft spring 18L and the right shaft spring 18R arranged at intervals in the left-right direction on the rear wheels (wheel axles 13b, 13d). Represents the average value of.
  • equation (4) assuming that only the product of k 1, i + 1 and (z t, j + a ⁇ t, j- z w, i + 1 ) is the left side, and the other constants and variables in equation (4) are the right side, the following It becomes like the equation (30) of.
  • the shaft spring rigidity deriving unit 1602a uses the measurement data of the same sampling period to displace (z t, j ⁇ a ⁇ t, j ⁇ z w, i ), (z t, j + a ⁇ t, j ⁇ z w,). i + 1 ) is derived. As described in the first embodiment, ⁇ t and j are derived by solving Eq. (11). Further, the shaft spring rigidity derivation unit 1602a derives the restoring force by using the measurement data of the same sampling period. The shaft spring rigidity derivation unit 1602a creates a set of displacement and restoring force derived using measurement data of the same sampling period as one data set.
  • the shaft spring rigidity derivation unit 1602a creates such a data set for the measurement data in the inspection section.
  • a data set at each sampling time measured when the railroad vehicle to be inspected is traveling in the inspection section is created.
  • the data set at each sampling time measured when the railroad vehicle to be inspected is traveling in the inspection section is referred to as a data set in the inspection section, if necessary.
  • the shaft spring rigidity derivation unit 1602a derives a simple regression equation showing the relationship between the restoring force and the displacement based on the data set in the inspection section.
  • the restoring force be FR i and the displacement be DI i .
  • the objective variable is the restoring force FR i
  • the explanatory variable is the displacement DI i .
  • the simple regression equation showing the relationship between the restoring force and the displacement is expressed by the following equation (31).
  • FR i ⁇ i ⁇ DI i + ⁇ i ... (31)
  • ⁇ i and ⁇ i are regression coefficients.
  • ⁇ i is a regression coefficient that is multiplied by the explanatory variable DI i , and corresponds to the slope of the simple regression equation.
  • ⁇ i corresponds to the intercept of the simple regression equation.
  • Derivation of the simple regression equation of Eq. (31) is equivalent to deriving the regression coefficients ⁇ i and ⁇ i .
  • the regression coefficients ⁇ i and ⁇ i are derived, for example, by the method of least squares.
  • Axial spring rigidity deriving unit 1602a includes regression coefficients alpha i, of the beta i, a regression coefficient alpha i representing the inclination of the single regression equation, the axial spring rigidity k 1, i in the test section, derived as k 1, i + 1.
  • the regression coefficients ⁇ i and ⁇ i are derived for each wheel set 13a to 13d.
  • the value of (z t, j ⁇ a ⁇ t, j ⁇ z w, i ) on the left side of equation (29) when the subscript i is 1 and the subscript j is 1 is the displacement DI 1 on the wheel set 13a.
  • the value on the right side of the equation (29) is the restoring force FR 1 on the wheel set 13a.
  • the regression coefficient ⁇ 1 is k 1, i of Eq. (29) when the subscript i is 1. That is, the regression coefficient ⁇ 1 is an average value k 1 , 1 of the forces received by the left shaft spring 18L and the right shaft spring 18R arranged at intervals in the left-right direction on the wheel axle 13a.
  • the value of (z t, j + a ⁇ t, j- z w, i + 1 ) on the left side of equation (30) when the subscript i is 1 and the subscript j is 1 is the displacement DI 2 on the wheel set 13b. ..
  • the value on the right side of the equation (30) is the restoring force FR 2 on the wheel set 13b.
  • the regression coefficient ⁇ 2 is k 1, i + 1 of the equation (30) when the subscript i is 1. That is, the regression coefficient ⁇ 2 is an average value k 1 and 2 of the forces received by the left shaft spring 18L and the right shaft spring 18R arranged at intervals in the left-right direction on the wheel axle 13b.
  • the value of (z t, j ⁇ a ⁇ t, j ⁇ z w, i ) on the left side of equation (29) when the subscript i is 3 and the subscript j is 2, is the displacement DI 3 on the wheel set 13c.
  • the value on the right side of the equation (29) is the restoring force FR 3 on the wheel set 13c.
  • the regression coefficient ⁇ 3 is k 1, i of Eq. (29) when the subscript i is 3. That is, the regression coefficient ⁇ 3 is an average value k 1 , 3 of the forces received by the left shaft spring 18L and the right shaft spring 18R arranged at intervals in the left-right direction on the wheel axle 13c.
  • the value of (z t, j + a ⁇ t, j- z w, i + 1 ) on the left side of the equation (30) is the displacement DI 4 on the wheel set 13d. ..
  • the value on the right side of the equation (30) is the restoring force FR 4 on the wheel set 13d.
  • the regression coefficient ⁇ 4 is an average value k 1 , 4 of the forces received by the left shaft spring 18L and the right shaft spring 18R arranged at intervals in the left-right direction on the wheel axle 13d.
  • the shaft spring rigidity deriving unit 1602a derives the shaft spring rigidity k 1, i and k 1, i + 1 in the inspection section as described above.
  • the determination unit 1603 determines whether or not there is an abnormality in the rigidity (spring constant) of the shaft springs 18L and 18R based on the shaft spring rigidity k 1, i and k 1, i + 1 derived by the shaft spring state detection unit 1602. To do.
  • the determination unit 1603 has the shaft spring rigidity k 1, i , k 1, i + 1 derived by the shaft spring state detection unit 1602 and the normal shaft spring rigidity k 1, i ⁇ , k 1, i + 1. Based on the result of comparison with ⁇ , it is determined whether or not there is an abnormality in the rigidity (spring constant) of the shaft springs 18L and 18R.
  • the determination unit 1603 has the shaft spring rigidity k 1, i , k 1, i + 1 derived by the shaft spring state detection unit 1602 and the normal shaft spring rigidity k 1, i ⁇ , k 1, i + 1.
  • the rigidity (spring constant) of the shaft springs 18L and 18R is abnormal, and when not, the rigidity (spring constant) of the shaft springs 18L and 18R is determined. Is not abnormal.
  • the shaft spring rigidity k 1, i and k 1, i + 1 are derived each time measurement data is obtained at a time determined by a predetermined sampling cycle. Therefore, it is determined whether or not the rigidity (spring constant) of the shaft springs 18L and 18R is abnormal at a time determined by a predetermined sampling cycle.
  • one shaft spring rigidity k 1, i and k 1, i + 1 are derived for one wheel set 13a to 13d using the measurement data in the inspection section. Therefore, when the measurement data in the inspection section is obtained, it is determined only once whether or not the rigidity (spring constant) of the shaft springs 18L and 18R is abnormal for one wheel set 13a to 13d.
  • Output 1604 The output unit 1604 outputs information based on the result determined by the determination unit 1603. Specifically, when the determination unit 1603 determines that the rigidity (spring constant) of all the shaft springs 18L and 18R is normal, the output unit 1604 outputs information indicating that fact. Further, when the determination unit 1603 determines that the rigidity (spring constant) of at least the shaft springs 18L and 18R is abnormal, the output unit 1604 outputs information indicating that fact. At this time, the output unit 1604 also outputs information for identifying the shaft spring whose rigidity (spring constant) is determined to be abnormal. As the form of output, for example, at least one of display on a computer display, transmission to an external device, and storage in an internal or external storage medium of the inspection device 300 can be adopted.
  • An arbitrary section is preset as the inspection section.
  • a straight track may be an inspection section, or a curved track may be an inspection section.
  • the determination unit 1603 determines whether or not the left shaft spring 18L is abnormal, and determines whether or not the right shaft spring 18R is abnormal. It is not necessary to judge.
  • the determination unit 1603 determines whether or not the right shaft spring 18R is abnormal, and determines whether or not the left shaft spring 18L is abnormal. It is not necessary to judge.
  • step S1701 the data acquisition unit 1601 acquires the measurement data in the inspection section. Then, the process of step S1702 is executed. The processing after step S1702 is started after the railroad vehicle travels in the inspection section and the measurement data in the inspection section is acquired.
  • step S1702 the shaft spring rigidity derivation unit 1602a creates a data set in the inspection section using the measurement data of the same sampling period.
  • step S1703 the shaft spring rigidity deriving unit 1602a derives a simple regression equation showing the relationship between the restoring force FR i and the displacement DI i based on the data set in the inspection section.
  • the shaft spring rigidity derivation unit 1602a derives the regression coefficient ⁇ i of the simple regression equation as the shaft spring stiffness k 1, i , k 1, i + 1 in the inspection section.
  • step S1704 the determination unit 1603 determines the rigidity (spring constant) of the shaft springs 18L and 18R based on the shaft spring rigidity k 1, i and k 1, i + 1 derived by the shaft spring state detection unit 1602. ) Is determined to be present. Then, the determination unit 1603 determines whether or not the rigidity (spring constant) of all the shaft springs 18L and 18R is normal.
  • step S1705 if the rigidity (spring constant) of all the shaft springs 18L and 18R is normal, the process proceeds to step S1705.
  • the output unit 1604 outputs normal information including that the rigidity (spring constant) of all the shaft springs 18L and 18R is normal.
  • step S1706 the output unit 1604 outputs abnormal information including the presence of a shaft spring whose rigidity (spring constant) is determined to be abnormal.
  • the present embodiment is based on the result of simulating (numerical analysis) the running of the railroad vehicle traveling at 270 km / hr, assuming that the moving state of the railroad vehicle has 86 degrees of freedom. Data corresponding to the measurement data in the form was acquired. Using the data acquired in this way, the shaft spring rigidity is derived by the method described in this embodiment, and the value set in the simulation is compared with the value obtained by the method described in this embodiment. did.
  • FIG. 18 is a diagram showing the relationship between the restoring force FR 1 and the displacement DI 1 when all the shaft springs 18L and 18R are normal. From the results of simulating all the shaft springs 18L and 18R as normal values, data corresponding to the measurement data in this embodiment was acquired. Using the data acquired in this way, a data set was created as described in the present embodiment. Of the data sets created in this way, when the data set for the front wheels (wheel sets 13a) of the front carriage 12a is plotted, each point shown in FIG. 18 is obtained. Based on the points obtained in this way, a simple regression equation was derived by the least squares method. Graph 1801 shown in FIG. 18 shows a simple regression equation derived in this way.
  • FIG. 19 shows the relationship between the restoring force FR 1 and the displacement DI 1 when the rigidity (spring constant) of the left shaft spring 18L of the front wheel (wheel set 13a) of the front bogie 12a is halved from the normal state. It is a figure which shows. Data corresponding to the measurement data in this embodiment was obtained from the result of simulating the rigidity (spring constant) of the left shaft spring 18L of the front wheel (wheel axle 13a) of the front bogie 12a as 1/2 times the normal value. Using the data acquired in this way, a data set was created as described in the present embodiment. Among the data sets created in this way, when the data set for the front wheels (wheel sets 13a) of the front carriage 12a is plotted, each point shown in FIG. 19 is obtained. Based on the points obtained in this way, a simple regression equation was derived by the least squares method. Graph 1901, shown in FIG. 19, shows a simple regression equation thus derived.
  • FIG. 20 shows the relationship between the restoring force FR 1 and the displacement DI 1 when the rigidity (spring constant) of the right shaft spring 18R of the front wheel (wheel set 13a) of the front bogie 12a is halved from the normal state. It is a figure which shows. From the result of simulating the rigidity (spring constant) of the shaft spring 18R on the right side of the front wheel (wheel axle 13a) of the front bogie 12a as 1/2 of the normal time, data corresponding to the measurement data in this embodiment was acquired. Using the data acquired in this way, a data set was created as described in the present embodiment. Among the data sets created in this way, when the data set for the front wheels (wheel sets 13a) of the front carriage 12a is plotted, each point shown in FIG. 20 is obtained. Based on the points obtained in this way, a simple regression equation was derived by the least squares method. Graph 2001 shown in FIG. 20 shows the simple regression equation thus derived.
  • the value set in the simulation (the average of the rigidity (spring constant) of the shaft springs 18L and 18R of the front wheel (wheel axle 13a) of the front bogie 12a). Value) is used as the reference value.
  • the shaft spring rigidity k 1 , 1 in the inspection section derived from the graph 1801 shown in FIG. 18 was 103% (1.48 ⁇ 10 6 N / m) of the reference value. Therefore, it can be seen that the method of the present embodiment can accurately estimate that the shaft springs 18L and 18R are normal.
  • Axial spring rigidity k 1, 1 in the test section is derived from the graph 1901 shown in Figure 19, it was 56% of the reference value (8.00 ⁇ 10 5 N / m ).
  • the shaft spring stiffness k 1, 1 in the test section is derived from the graph 2001 shown in Figure 20, it was 69% of the reference value (9.99 ⁇ 10 5 N / m ). Therefore, it can be seen that the shaft spring rigidity k1 and i in the inspection section derived by the method of the present embodiment show a remarkable difference between when the shaft springs 18L and 18R are normal and when they are abnormal. Therefore, it can be seen that the method of the present embodiment can reliably detect the abnormality of the shaft springs 18L and 18R.
  • Multiple data including the value of (z t, j + a ⁇ t, j- z w, i + 1 )) and the value of the restoring force FR i , which is the calculated value on the right side of equations (29) and (30).
  • Eqs. (29) and (30) are the average values of the forces received by the left shaft spring 18L and the right shaft spring 18R arranged at intervals in the left-right direction, as in the equations (3) and (4). It is a mathematical formula that expresses.
  • the inspection device 1600 Based on a plurality of data sets, the inspection device 1600 has a restoring force FR i represented by the right side of the equations (29) and (30) and a displacement DI i included in the left side of the equations (29) and (30).
  • a simple regression equation representing the relationship with is derived, and the regression coefficients ⁇ i representing the slope of the derived simple regression equation are derived as the axial spring stiffness k 1, i and k 1, i + 1 in the inspection section.
  • the shaft spring rigidity k 1, i and k 1, i + 1 can be derived without calculating the equations (3) and (4). Therefore, the calculation load when deriving the shaft spring rigidity k 1, i and k 1, i + 1 can be reduced.
  • the method of the present embodiment it is not possible to derive the time series data of the shaft spring rigidity k 1, i , k 1, i + 1 in the inspection section. Therefore, for example, when deriving the time series data of the shaft spring rigidity k 1, i , k 1, i + 1 (corrected front shaft spring rigidity) in the inspection section, the method of the first embodiment is applied.
  • the axial spring rigidity k 1 in the test interval, i, k 1, i + 1 of the time series data is not necessary to derive, to derive the axial spring rigidity k 1, i, k 1, i + 1 in the test section
  • this embodiment may be applied to the second embodiment.
  • the embodiment of the present invention described above can be realized by executing a program by a computer. Further, a computer-readable recording medium on which the program is recorded and a computer program product such as the program can also be applied as an embodiment of the present invention.
  • the recording medium for example, a flexible disk, a hard disk, an optical disk, a magneto-optical disk, a CD-ROM, a magnetic tape, a non-volatile memory card, a ROM, or the like can be used.
  • the embodiments of the present invention described above are merely examples of embodiment of the present invention, and the technical scope of the present invention should not be construed in a limited manner by these. It is a thing. That is, the present invention can be implemented in various forms without departing from the technical idea or its main features.
  • the present invention can be used, for example, for inspecting railway vehicles.

Abstract

According to the present invention, an inspection device (300) detects the states of axle springs (18L, 18R) of a railway vehicle by using a measured value of a physical quantity measured by causing the railway vehicle to travel on a track (30).

Description

検査システム、検査方法、およびプログラムInspection system, inspection method, and program
 本発明は、検査システム、検査方法、およびプログラムに関し、特に、鉄道車両における軸バネを検査するために用いて好適なものである。本願は、2019年7月25日に日本に出願された特願2019-137036号に基づき優先権を主張し、特願2019-137036号の内容を全てここに援用する。 The present invention relates to inspection systems, inspection methods, and programs, and is particularly suitable for use in inspecting shaft springs in railroad vehicles. The present application claims priority based on Japanese Patent Application No. 2019-137036 filed in Japan on July 25, 2019, and the entire contents of Japanese Patent Application No. 2019-137036 are incorporated herein by reference.
 鉄道車両には高い安全性が求められる。そこで、鉄道車両が正常であるか否かを検査することが必要である。
 特許文献1には、鉄道車両の各台車に配置される1つの加速度センサと特定の軸箱に配置される加速度センサとを備え、鉄道車両の不具合を検出する鉄道車両の状態監視システムが記載されている。また、特許文献1には、鉄道車両の健全時の自台車や他台車の台車枠上下加速度を基準とした振幅比に基づいて空気バネの異常を検知する鉄道車両の状態監視方法が記載されている。
 前記鉄道車両の状態監視システムは、軸箱上下加速度を基準とした台車枠の上下加速度の周波数応答を示すときに、3Hzから8Hzの周波数帯域において、空気バネの健全時と異常時とで差異が生じることを利用して、空気バネの異常を検知する。
 前記鉄道車両の状態監視方法は、空気バネの不具合がある場合の台車枠の加速度波形の振幅比が、1Hzから10Hz付近の広い周波数帯で1と乖離することを利用して、空気バネの異常を検知する。空気バネの不具合がある場合の台車枠の加速度波形の振幅比は、空気バネに異常がない場合の台車枠の加速度を基準とする振幅比である。
 また、特許文献1には、前記空気バネが軸バネであることが記載されている。
High safety is required for railroad vehicles. Therefore, it is necessary to inspect whether the railroad vehicle is normal or not.
Patent Document 1 describes a railway vehicle condition monitoring system including one acceleration sensor arranged on each bogie of a railway vehicle and an acceleration sensor arranged on a specific axle box to detect a defect of the railway vehicle. ing. Further, Patent Document 1 describes a method for monitoring the state of a railroad vehicle that detects an abnormality of an air spring based on an amplitude ratio based on the vertical acceleration of the bogie frame of the own bogie or another bogie when the railcar is sound. There is.
In the railcar condition monitoring system, when the frequency response of the vertical acceleration of the bogie frame based on the vertical acceleration of the axle box is shown, there is a difference between when the air spring is healthy and when it is abnormal in the frequency band of 3 Hz to 8 Hz. The occurrence is used to detect an abnormality in the air spring.
The method for monitoring the state of a railroad vehicle utilizes the fact that the amplitude ratio of the acceleration waveform of the bogie frame when there is a defect in the air spring deviates from 1 in a wide frequency band around 1 Hz to 10 Hz, resulting in an abnormality in the air spring. Is detected. The amplitude ratio of the acceleration waveform of the bogie frame when there is a defect in the air spring is an amplitude ratio based on the acceleration of the bogie frame when there is no abnormality in the air spring.
Further, Patent Document 1 describes that the air spring is a shaft spring.
特開2012-58208号公報Japanese Unexamined Patent Publication No. 2012-58208 国際公開第2017/164133号International Publication No. 2017/164133 国際公開第2019/043859号International Publication No. 2019/0433859
 しかしながら、特許文献1に記載の技術では、台車および軸箱の加速度を測定するものである。このため、軸バネの状態を示す物理量を直接の評価対象としていない。また、台車および軸箱の加速度の測定データのみから、軸バネの状態を検出するのに資するデータを抽出することは容易ではない。このため、鉄道車両の軸バネの状態を正確に検出することが容易ではないという問題点がある。 However, the technique described in Patent Document 1 measures the acceleration of the bogie and the axle box. Therefore, the physical quantity indicating the state of the shaft spring is not directly evaluated. In addition, it is not easy to extract data that contributes to detecting the state of the shaft spring from only the measurement data of the acceleration of the bogie and the axle box. Therefore, there is a problem that it is not easy to accurately detect the state of the shaft spring of the railway vehicle.
 本発明は、以上のような問題点に鑑みてなされたものであり、鉄道車両の軸バネの状態を正確に検出することができるようにすることを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to enable accurate detection of the state of a shaft spring of a railway vehicle.
 本発明の検査システムは、車体と台車と輪軸と軸箱と軸バネとを有する鉄道車両の軸バネの状態を検査する検査システムであって、前記鉄道車両を軌道上で走行させることにより測定される物理量の測定値を取得するデータ取得手段と、前記データ取得手段により取得された前記物理量の測定値を用いて、前記鉄道車両の軸バネの状態を検出する軸バネ状態検出手段と、を有し、前記データ取得手段により測定値が取得される前記物理量は、前後方向力を含み、前記前後方向力は、前記輪軸と、当該輪軸が設けられる台車との間に配置される部材に生じる前後方向の力であり、前記部材は、前記軸箱を支持するための部材であり、前記前後方向は、前記鉄道車両の走行方向に沿う方向であることを特徴とする。 The inspection system of the present invention is an inspection system for inspecting the state of a shaft spring of a railroad vehicle having a vehicle body, a carriage, a wheel shaft, an axle box, and a shaft spring, and is measured by running the railroad vehicle on a track. There are a data acquisition means for acquiring the measured value of the physical quantity, and a shaft spring state detecting means for detecting the state of the shaft spring of the railroad vehicle by using the measured value of the physical quantity acquired by the data acquisition means. The physical quantity for which the measured value is acquired by the data acquisition means includes a front-rear direction force, and the front-rear direction force is generated in a member arranged between the wheel shaft and a carriage on which the wheel shaft is provided. It is a directional force, the member is a member for supporting the axle box, and the front-rear direction is a direction along the traveling direction of the railcar.
 本発明の検査方法は、車体と台車と輪軸と軸箱と軸バネとを有する鉄道車両の軸バネの状態を検査する検査方法であって、前記鉄道車両を軌道上で走行させることにより測定される物理量の測定値を取得するデータ取得工程と、前記データ取得工程により取得された前記物理量の測定値を用いて、前記鉄道車両の軸バネの状態を検出する軸バネ状態検出工程と、を有し、前記データ取得工程により測定値が取得される前記物理量は、前後方向力を含み、前記前後方向力は、前記輪軸と、当該輪軸が設けられる台車との間に配置される部材に生じる前後方向の力であり、前記部材は、前記軸箱を支持するための部材であり、前記前後方向は、前記鉄道車両の走行方向に沿う方向であることを特徴とする。 The inspection method of the present invention is an inspection method for inspecting the state of a shaft spring of a railroad vehicle having a vehicle body, a carriage, a wheel shaft, an axle box, and a shaft spring, and is measured by running the railroad vehicle on a track. It has a data acquisition step of acquiring the measured value of the physical quantity and a shaft spring state detecting step of detecting the state of the shaft spring of the railroad vehicle by using the measured value of the physical quantity acquired by the data acquisition step. The physical quantity whose measured value is acquired by the data acquisition process includes a front-rear direction force, and the front-rear direction force is generated in a member arranged between the wheel shaft and a carriage on which the wheel shaft is provided. It is a directional force, the member is a member for supporting the axle box, and the front-rear direction is a direction along the traveling direction of the railcar.
 本発明のプログラムは、車体と台車と輪軸と軸箱と軸バネとを有する鉄道車両の軸バネの状態を検査するための処理をコンピュータに実行させるためのプログラムであって、前記鉄道車両を軌道上で走行させることにより測定される物理量の測定値を取得するデータ取得工程と、前記データ取得工程により取得された前記物理量の測定値を用いて、前記鉄道車両の軸バネの状態を検出する軸バネ状態検出工程と、をコンピュータに実行させ、前記データ取得工程により測定値が取得される前記物理量は、前後方向力を含み、前記前後方向力は、前記輪軸と、当該輪軸が設けられる台車との間に配置される部材に生じる前後方向の力であり、前記部材は、前記軸箱を支持するための部材であり、前記前後方向は、前記鉄道車両の走行方向に沿う方向であることを特徴とする。 The program of the present invention is a program for causing a computer to execute a process for inspecting the state of a shaft spring of a railroad vehicle having a vehicle body, a carriage, a wheel set, an axle box, and a shaft spring, and tracks the railroad vehicle. A shaft that detects the state of the shaft spring of the railroad vehicle by using the data acquisition step of acquiring the measured value of the physical quantity measured by running on the above and the measured value of the physical quantity acquired by the data acquisition step. The physical quantity obtained by causing a computer to execute the spring state detection step and the measured value is acquired by the data acquisition step includes the front-rear direction force, and the front-rear direction force includes the wheel axle and the carriage provided with the wheel axle. It is a force in the front-rear direction generated in the member arranged between the members, the member is a member for supporting the axle box, and the front-rear direction is a direction along the traveling direction of the railroad vehicle. It is a feature.
図1Aは、鉄道車両の概略の一例を示す図である。FIG. 1A is a diagram showing a schematic example of a railway vehicle. 図1Bは、鉄道車両の車体の下方の部分の構成の一例を示す図である。FIG. 1B is a diagram showing an example of the configuration of the lower portion of the vehicle body of the railway vehicle. 図2は、鉄道車両の構成要素の主な運動の方向を概念的に示す図である。FIG. 2 is a diagram conceptually showing the directions of the main movements of the components of the railway vehicle. 図3は、検査装置の機能的な構成の第1の例を示す図である。FIG. 3 is a diagram showing a first example of the functional configuration of the inspection device. 図4は、検査装置のハードウェアの構成の一例を示す図である。FIG. 4 is a diagram showing an example of the hardware configuration of the inspection device. 図5は、自己相関行列の固有値の分布の一例を示す図である。FIG. 5 is a diagram showing an example of the distribution of eigenvalues of the autocorrelation matrix. 図6は、検査装置における処理の第1の例を説明するフローチャートである。FIG. 6 is a flowchart illustrating a first example of processing in the inspection device. 図7は、軌条(レール)の曲率と、通り狂い量と、高低狂い量とを示す図である。FIG. 7 is a diagram showing the curvature of the rail, the amount of deviation, and the amount of high and low deviation. 図8は、前後方向力の時系列データの第1の例を示す図である。FIG. 8 is a diagram showing a first example of time-series data of forward / backward force. 図9は、前後方向力の時系列データの第2の例を示す図である。FIG. 9 is a diagram showing a second example of time-series data of forward / backward force. 図10は、前後方向力の時系列データの第3の例を示す図である。FIG. 10 is a diagram showing a third example of time-series data of forward / backward force. 図11は、修正前軸バネ剛性の時系列データの一例を示す図である。FIG. 11 is a diagram showing an example of time-series data of the modified front shaft spring rigidity. 図12は、修正後軸バネ剛性の時系列データの第1の例を示す図である。FIG. 12 is a diagram showing a first example of time-series data of the modified shaft spring rigidity. 図13は、修正後軸バネ剛性の時系列データの第2の例を示す図である。FIG. 13 is a diagram showing a second example of time-series data of the corrected shaft spring rigidity. 図14は、修正後軸バネ剛性の時系列データの第3の例を示す図である。FIG. 14 is a diagram showing a third example of time-series data of the modified shaft spring rigidity. 図15は、検査システムの構成の一例を示す図である。FIG. 15 is a diagram showing an example of the configuration of the inspection system. 図16は、検査装置の機能的な構成の第1の例を示す図である。FIG. 16 is a diagram showing a first example of the functional configuration of the inspection device. 図17は、検査装置における処理の第2の例を説明するフローチャートである。FIG. 17 is a flowchart illustrating a second example of processing in the inspection device. 図18は、復元力と変位との関係の第1の例を示す図である。FIG. 18 is a diagram showing a first example of the relationship between the restoring force and the displacement. 図19は、復元力と変位との関係の第2の例を示す図である。FIG. 19 is a diagram showing a second example of the relationship between the restoring force and the displacement. 図20は、復元力と変位との関係の第2の例を示す図である。FIG. 20 is a diagram showing a second example of the relationship between the restoring force and the displacement.
 以下、図面を参照しながら、本発明の実施形態を説明する。
(第1の実施形態)
 まず、第1の実施形態を説明する。
<鉄道車両の概略>
 まず、本実施形態で例示する鉄道車両について説明する。図1Aは、鉄道車両の概略の一例を示す図である。図1Bは、鉄道車両の車体の下方の部分の構成の一例を示す図である。尚、図1A、図1Bにおいて、鉄道車両は、x軸の正の方向に進むものとする(x軸は、鉄道車両の走行方向に沿う軸である)。また、z軸は、軌道30(地面)に対し垂直方向(鉄道車両の高さ方向)であるものとする。y軸は、鉄道車両の走行方向に対して垂直な水平方向(鉄道車両の走行方向と高さ方向との双方に垂直な方向)であるものとする。また、鉄道車両は、営業車両であるものとする。尚、各図において、○の中に×が付されているものは、紙面の手前側から奥側に向かう方向を示す。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(First Embodiment)
First, the first embodiment will be described.
<Outline of railway vehicle>
First, the railway vehicle illustrated in this embodiment will be described. FIG. 1A is a diagram showing a schematic example of a railway vehicle. FIG. 1B is a diagram showing an example of the configuration of the lower portion of the vehicle body of the railway vehicle. In addition, in FIGS. 1A and 1B, it is assumed that the railroad vehicle travels in the positive direction of the x-axis (the x-axis is an axis along the traveling direction of the railroad vehicle). Further, it is assumed that the z-axis is in the direction perpendicular to the track 30 (ground) (in the height direction of the railroad vehicle). It is assumed that the y-axis is a horizontal direction perpendicular to the traveling direction of the railway vehicle (a direction perpendicular to both the traveling direction and the height direction of the railway vehicle). In addition, railroad vehicles shall be commercial vehicles. In each figure, those with a cross in ◯ indicate the direction from the front side to the back side of the paper.
 図1Aに示すように本実施形態では、鉄道車両は、車体11と、台車12a、12bと、輪軸13a~13dとを有する。このように本実施形態では、1つの車体11に、2つの台車12a、12bと4組の輪軸13a~13dとが備わる鉄道車両を例に挙げて説明する。輪軸13a~13dは、車軸15a~15dとその両端に設けられた車輪14a~14dとを有する。本実施形態では、台車12a、12bが、ボルスタ付き台車である場合を例に挙げて説明する。尚、図1Aでは、表記の都合上、輪軸13a~13dの一方の車輪14a~14dのみを示すが、図1Bに示すように輪軸13a~13dの他方にも車輪が設けられている(図1に示す例では、車輪は合計8個ある)。また、鉄道車両は、図1A、図1Bに示す構成要素以外の構成要素(後述する運動方程式で説明する構成要素等)を有するが、表記の都合上、図1A、図1Bでは、当該構成要素の図示を省略する。また、図1Bでは、台車12bにおける台車枠16のみを示すが、台車12aにおける台車枠も図1Bに示すものと同じもので実現される。また、図1Bでは、台車12bにおける輪軸13dに対する構成要素(軸箱17L、17R、軸バネ18L、18Rと、軸ダンパ19L、19R等)のみを示すが、その他の輪軸に対する構成要素も図1Bに示すものと同じもので実現される。 As shown in FIG. 1A, in the present embodiment, the railroad vehicle has a vehicle body 11, bogies 12a and 12b, and wheel sets 13a to 13d. As described above, in the present embodiment, a railroad vehicle in which two bogies 12a and 12b and four sets of wheel sets 13a to 13d are provided in one vehicle body 11 will be described as an example. The wheel sets 13a to 13d have axles 15a to 15d and wheels 14a to 14d provided at both ends thereof. In the present embodiment, the case where the bogies 12a and 12b are bogies with bolsters will be described as an example. In FIG. 1A, for convenience of notation, only one wheel 14a to 14d of the wheel sets 13a to 13d is shown, but as shown in FIG. 1B, a wheel is also provided on the other side of the wheel sets 13a to 13d (FIG. 1). In the example shown in, there are a total of 8 wheels). Further, the railroad vehicle has components other than the components shown in FIGS. 1A and 1B (components described in the equation of motion described later, etc.), but for convenience of notation, the components are shown in FIGS. 1A and 1B. Is omitted. Further, in FIG. 1B, only the bogie frame 16 in the bogie 12b is shown, but the bogie frame in the bogie 12a is also realized by the same one as shown in FIG. 1B. Further, FIG. 1B shows only the components ( axle boxes 17L, 17R, shaft springs 18L, 18R, shaft dampers 19L, 19R, etc.) of the bogie 12b with respect to the wheel sets 13d, but other components with respect to the wheel sets are also shown in FIG. 1B. It is realized by the same thing as shown.
 各輪軸13a~13dのy軸に沿う方向の両側には、軸箱17L、17Rが配置される。台車枠16と軸箱17L、17Rは、軸箱支持装置により相互に結合される。図1Bに示す例では、軸箱支持装置は、軸バネ18L、18Rと、軸ダンパ19L、19Rと、を有する。軸箱支持装置は、軸箱17L、17Rおよび台車枠16の間に配置される装置(サスペンション)である。軸箱支持装置は、軌道30から鉄道車両に伝わる振動を吸収する。また、軸箱支持装置は、軸箱17L、17Rが台車枠16に対してx軸に沿う方向およびy軸に沿う方向に移動することを抑制するように軸箱17L、17Rの台車枠16に対する位置を規制した状態で軸箱17L、17Rを支持する。軸箱支持装置は、各輪軸13a~13dのy軸に沿う方向の両側に配置される。 Shaft boxes 17L and 17R are arranged on both sides of each wheel axle 13a to 13d in the direction along the y-axis. The bogie frame 16 and the axle boxes 17L and 17R are connected to each other by the axle box support device. In the example shown in FIG. 1B, the axle box support device has axle springs 18L, 18R and axle dampers 19L, 19R. The axle box support device is a device (suspension) arranged between the axle boxes 17L, 17R and the bogie frame 16. The axle box support device absorbs the vibration transmitted from the track 30 to the railway vehicle. Further, the axle box support device with respect to the bogie frame 16 of the axle boxes 17L and 17R so as to prevent the axle boxes 17L and 17R from moving in the direction along the x-axis and the direction along the y-axis with respect to the bogie frame 16. The axle boxes 17L and 17R are supported in a restricted position. The axle box support devices are arranged on both sides of each wheel axle 13a to 13d in the direction along the y-axis.
 台車枠16の上方には、枕ばり21が配置される。枕ばり21と車体11との間には、枕バネ22L、22Rと、左右動ダンパ23とが配置される。尚、本実施形態では、枕バネを一般的に使用される空気バネであるとする。以下において枕バネ22L、22Rを空気バネ22L、22Rと記載するが、枕バネは空気バネである必要はない。
 ここで、本実施形態では、右側、左側とは、それぞれ、鉄道車両の進行方向(x軸の正の方向)に向かって右側、左側を意味するものとする。軸箱17L、軸バネ18L、軸ダンパ19L、空気バネ22Lは、鉄道車両の左側に配置され、軸箱17R、軸バネ18R、軸ダンパ19R、空気バネ22Rは、鉄道車両の右側に配置される。
 尚、鉄道車両自体は公知の技術で実現できるので、ここでは、その詳細な説明を省略する。また、台車は、ボルスタレス台車であってもよい。
A pillow beam 21 is arranged above the bogie frame 16. Pillow springs 22L and 22R and a left-right moving damper 23 are arranged between the pillow beam 21 and the vehicle body 11. In this embodiment, it is assumed that the pillow spring is a commonly used air spring. In the following, the pillow springs 22L and 22R will be referred to as air springs 22L and 22R, but the pillow springs do not have to be air springs.
Here, in the present embodiment, the right side and the left side mean the right side and the left side in the traveling direction of the railway vehicle (positive direction of the x-axis), respectively. The axle box 17L, axle spring 18L, axle damper 19L, and air spring 22L are arranged on the left side of the railcar, and the axle box 17R, axle spring 18R, axle damper 19R, and air spring 22R are arranged on the right side of the rolling stock. ..
Since the railway vehicle itself can be realized by a known technique, detailed description thereof will be omitted here. Further, the trolley may be a bolsterless trolley.
 鉄道車両が軌道30上を走行すると、車輪14a~14dと軌道30との間の作用力(クリープ力)が振動源となり、輪軸13a~13d、台車12a、12b、車体11に振動が順次伝搬する。図2は、鉄道車両の構成要素(輪軸13a~13d、台車12a、12b、車体11)の主な運動の方向を概念的に示す図である。図2に示すx軸、y軸、z軸は、それぞれ、図1に示したx軸、y軸、z軸に対応する。 When a railroad vehicle travels on the track 30, the acting force (creep force) between the wheels 14a to 14d and the track 30 becomes a vibration source, and the vibration propagates sequentially to the wheel sets 13a to 13d, the bogies 12a, 12b, and the vehicle body 11. .. FIG. 2 is a diagram conceptually showing the main motion directions of the components of the railway vehicle (wheel sets 13a to 13d, bogies 12a, 12b, vehicle body 11). The x-axis, y-axis, and z-axis shown in FIG. 2 correspond to the x-axis, y-axis, and z-axis shown in FIG. 1, respectively.
 以下の説明では、鉄道車両が、上下方向に動く運動を、必要に応じて上下動と称する(図2のz軸に沿う両矢印線を参照)。上下方向は、軌道30に対し垂直な方向である。図1Aおよび図1Bに示す例では、上下方向は、z軸に沿う方向である。また、以下の説明では、鉄道車両の走行方向を、必要に応じて前後方向と称し、z軸に沿う方向を、必要に応じて上下方向と称する。また、前後方向(鉄道車両の走行方向)と上下方向(軌道30に対し垂直な方向)との双方に垂直な方向を、必要に応じて左右方向と称する。 In the following explanation, the movement of the railroad vehicle in the vertical direction is referred to as vertical movement as necessary (see the double-headed arrow line along the z-axis in FIG. 2). The vertical direction is a direction perpendicular to the orbit 30. In the examples shown in FIGS. 1A and 1B, the vertical direction is a direction along the z-axis. Further, in the following description, the traveling direction of the railway vehicle is referred to as a front-rear direction as necessary, and the direction along the z-axis is referred to as a vertical direction as necessary. Further, a direction perpendicular to both the front-rear direction (traveling direction of the railroad vehicle) and the vertical direction (direction perpendicular to the track 30) is referred to as a left-right direction, if necessary.
 また、鉄道車両が、x軸を回動軸として回動する運動を必要に応じてローリングと称し(図2のx軸回りの両矢印線を参照)、x軸を回動軸とする回動方向を必要に応じてローリング方向と称する。また、鉄道車両が、y軸を回動軸として回動する運動(鉄道車両の先頭部が上下に揺動する運動)を、必要に応じてピッチングと称し(図2のy軸回りの両矢印線を参照)、y軸を回動軸とする回動方向を必要に応じてピッチング方向と称する。また、鉄道車両が、z軸を回動軸として回動する運動を必要に応じてヨーイングと称し(図2のz軸回りの両矢印線を参照)、z軸を回動軸とする回動方向を必要に応じてヨーイング方向と称する。 Further, the motion of the railroad vehicle rotating around the x-axis is referred to as rolling as necessary (see the double-headed arrow line around the x-axis in FIG. 2), and the rotation with the x-axis as the rotation axis. The direction is referred to as the rolling direction as necessary. Further, the motion of the railroad vehicle rotating around the y-axis (the motion of the leading portion of the railroad vehicle swinging up and down) is called pitching as necessary (double arrow around the y-axis in FIG. 2). (See line), the rotation direction with the y-axis as the rotation axis is referred to as the pitching direction, if necessary. Further, the motion of the railroad vehicle rotating around the z-axis is referred to as yawing as necessary (see the double-headed arrow line around the z-axis in FIG. 2), and the rotation with the z-axis as the rotation axis. The direction is referred to as the yawing direction as necessary.
<台車12a、12bの上下動とピッチングの運動方程式>
 次に、台車12a、12bの上下動とピッチングの運動方程式について説明する。
 各式において、添え字iは、輪軸13a、13b、13c、13dを識別するための記号である(i=1、2、3、4は、それぞれ、輪軸13a、13b、13c、13dに対応する)。また、添え字jは、台車12a、12bを識別するための記号である(j=1、2は、それぞれ、台車12a、12bに対応する)。また、各式において、鉄道車両の情報(質量や寸法等)および軌条の情報(曲率等)は、定数として予め与えられるものであるとする。
<Equation of motion of vertical movement and pitching of bogies 12a and 12b>
Next, the equations of motion for vertical movement and pitching of the carriages 12a and 12b will be described.
In each equation, the subscript i is a symbol for identifying the wheel sets 13a, 13b, 13c, 13d (i = 1, 2, 3, 4 correspond to the wheel sets 13a, 13b, 13c, 13d, respectively). ). Further, the subscript j is a symbol for identifying the carriages 12a and 12b (j = 1 and 2 correspond to the carriages 12a and 12b, respectively). Further, in each equation, it is assumed that the information of the railway vehicle (mass, dimensions, etc.) and the information of the rail (curvature, etc.) are given in advance as constants.
<<台車12a、12bの上下動を表す運動方程式>>
 台車12a、12bの上下動を表す運動方程式は、(1)式で表される。
<< Equation of motion representing the vertical movement of trolleys 12a and 12b >>
The equation of motion representing the vertical movement of the carriages 12a and 12b is expressed by the equation (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここで、mは、台車12a、12bの質量である。zt,j・・は、台車12a、12bの上下方向の加速度である(式において・・はzt,jの上に付される(以下、その他の変数についても同様))。FASzj は、左側の空気バネ22Lが受ける荷重である。FASzj は、右側の空気バネ22Rが受ける荷重である。k1,iは、輪軸13a、13cの軸箱17L、17Rに取り付けられている軸バネ18L、18Rの剛性(バネ定数)の平均値である。iは1または3である。前述したように、i=1は、輪軸13aを表し、i=3は、輪軸13cを表す(以下、その他の変数についても同様)。 Here, m t is carriage 12a, the mass of 12b. z t, j ... Is the vertical acceleration of the carriages 12a, 12b (in the equation, ... is attached above z t, j (hereinafter, the same applies to other variables)). FASzj L is the load received by the left air spring 22L. FASzj R is the load received by the air spring 22R on the right side. k 1 and i are average values of the rigidity (spring constant) of the shaft springs 18L and 18R attached to the axle boxes 17L and 17R of the wheel sets 13a and 13c. i is 1 or 3. As described above, i = 1 represents the wheel set 13a, and i = 3 represents the wheel set 13c (hereinafter, the same applies to other variables).
 また、zt,jは、台車12a、12bの上下方向の変位である。jは1または2である。前述したように、j=1は、台車12aを表し、j=2は、台車12bを表す(以下、その他の変数についても同様)。aは、台車12a、12bのそれぞれに設けられている輪軸13a~13b、13c~13d間の前後方向における距離の1/2を表す(台車12a、12bに設けられている輪軸13a~13b、13c~13d間の距離は2aになる)。θt,jは、台車12a、12bのピッチング方向における回動量(角変位)である。zw,iは、輪軸13a、13cの上下方向の変位である。k1,i+1は、輪軸13b、13dの軸箱17L、17Rに取り付けられている軸バネ18L、18Rの剛性(バネ定数)の平均値である。前述したように、i+1=2は、輪軸13bを表し、i+1=4は、輪軸13dを表す(以下、その他の変数についても同様)。zw,i+1は、輪軸13b、13dの上下方向の変位である。zw,i、zw,i+1は、例えば、軸箱に取り付けられた加速度センサにより検出される加速度を時間積分することにより得られる。 Further, z t and j are displacements of the carriages 12a and 12b in the vertical direction. j is 1 or 2. As described above, j = 1 represents the carriage 12a, and j = 2 represents the carriage 12b (hereinafter, the same applies to other variables). a represents 1/2 of the distance in the front-rear direction between the wheel sets 13a to 13b and 13c to 13d provided on the carriages 12a and 12b, respectively (the wheel sets 13a to 13b and 13c provided on the carriages 12a and 12b). The distance between ~ 13d is 2a). θ t and j are the amount of rotation (angular displacement) of the carriages 12a and 12b in the pitching direction. z w and i are vertical displacements of the wheel sets 13a and 13c. k 1 and i + 1 are average values of the rigidity (spring constant) of the shaft springs 18L and 18R attached to the axle boxes 17L and 17R of the wheel sets 13b and 13d. As described above, i + 1 = 2 represents a wheel set 13b, and i + 1 = 4 represents a wheel set 13d (hereinafter, the same applies to other variables). z w and i + 1 are vertical displacements of the wheel sets 13b and 13d. z w, i , z w, i + 1 can be obtained, for example, by time-integrating the acceleration detected by the acceleration sensor attached to the axle box.
 また、cは、軸ダンパ19L、19Rの上下方向のダンピング定数の平均値である。zt,j・は、台車12a、12bの上下方向の速度である(式において・はzt,jの上に付される(以下、その他の変数についても同様))。zw,i・は、輪軸13a、13cの上下方向の速度である。zw,i+1・は、輪軸13b、13dの上下方向の速度である。vは、鉄道車両の走行速度である。Rは、輪軸13a、13cの位置での軌条の曲率半径である。Ri+1は、輪軸13b、13dの位置での軌条の曲率半径である。φrail,iは、輪軸13a、13cの位置の軌条のカント角である。φrail,i+1は、輪軸13b、13dの位置の軌条のカント角である。gは、重力加速度である。zw,i・、zw,i+1・は、例えば、軸箱に取り付けられた加速度センサにより検出される加速度を時間積分することにより得られる。zt,j・・は、例えば、台車12a、12bに取り付けられた加速度センサにより測定される。zt,j・、zt,jは、例えば、台車12a、12bに取り付けられた加速度センサにより検出される加速度を時間積分することにより得られる。cは、定数として予め与えられる。φrail,i、φrail,i+1は、予め測定されているものとする。 Further, c 1 is an average value of the damping constants of the shaft dampers 19L and 19R in the vertical direction. z t, j · is the vertical velocity of the carriages 12a, 12b (in the equation, · is attached above z t, j (hereinafter, the same applies to other variables)). z w, i · are the velocities in the vertical direction of the wheel sets 13a, 13c. z w, i + 1 · are the velocities in the vertical direction of the wheel sets 13b and 13d. v is the traveling speed of the railway vehicle. Ri is the radius of curvature of the rail at the positions of the wheel sets 13a and 13c. R i + 1 is the radius of curvature of the rail at the positions of the wheel sets 13b and 13d. φ rail and i are cant angles of the rails at the positions of the wheel sets 13a and 13c. φ rail and i + 1 are cant angles of rails at positions of wheel sets 13b and 13d. g is the gravitational acceleration. z w, i ·, z w, i + 1 · can be obtained, for example, by time-integrating the acceleration detected by the acceleration sensor attached to the axle box. z t, j ... Are measured by, for example, an acceleration sensor attached to the carriages 12a and 12b. z t, j ·, z t, j can be obtained, for example, by time-integrating the acceleration detected by the acceleration sensors attached to the carriages 12a and 12b. c 1 is given in advance as a constant. It is assumed that φ rail, i , φ rail, and i + 1 have been measured in advance.
 (1)式の左辺は、台車12a、12bの上下方向における慣性力を表す。(1)式の右辺第1項、第2項は、それぞれ空気バネ22L、22Rが受ける荷重を表す。(1)式の右辺第3項および第4項は、左右方向に間隔を有して並ぶ左側の軸バネ18Lおよび右側の軸バネ18Rが受ける力の平均値を表す。(1)式の右辺第5項は、左右方向に間隔を有して並ぶ左側の軸ダンパ19Lおよび右側の軸ダンパ19Rが受ける力の平均値を表す。(1)式の右辺第6項は、台車12a、12bが受ける遠心力を表す。(1)式の右辺第7項は、台車12a、12bが受ける重力である。 The left side of the equation (1) represents the inertial force in the vertical direction of the carriages 12a and 12b. The first and second terms on the right side of the equation (1) represent the loads received by the air springs 22L and 22R, respectively. The third and fourth terms on the right side of the equation (1) represent the average value of the forces received by the left shaft spring 18L and the right shaft spring 18R arranged at intervals in the left-right direction. The fifth term on the right side of the equation (1) represents the average value of the forces received by the left shaft dampers 19L and the right shaft dampers 19R arranged at intervals in the left-right direction. The sixth term on the right side of the equation (1) represents the centrifugal force received by the carriages 12a and 12b. The seventh term on the right side of the equation (1) is the gravity received by the carriages 12a and 12b.
<<台車12a、12bのピッチングを表す運動方程式>>
 台車12a、12bのピッチングを表す運動方程式は、以下の(2)式で表される。
<< Equation of motion representing pitching of trolleys 12a and 12b >>
The equation of motion representing the pitching of the carriages 12a and 12b is expressed by the following equation (2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 It,yは、ピッチング方向における台車12a、12bの慣性モーメントである。It,yは、予め与えられるものとする。θt,j・・は、台車12a、12bのピッチング方向における角加速度である。aは、台車12a、12bのそれぞれにおいて前後方向に間隔を有して並ぶ2つの軸ダンパ19L(19R)の間の前後方向における距離の1/2を表す(台車12a、12bのそれぞれにおいて前後方向に間隔を有して並ぶ2つの軸ダンパ19L(19R)の間の前後方向における距離は、2aである)。θt,j・は、台車12a、12bのピッチング方向における角速度である。hは、車軸の中心と台車12a、12bの重心との上下方向における距離である。FWx,i は、輪軸13a、13cの左側における前後方向力である。FWx,i は、輪軸13a、13cの右側における前後方向力である。FWx,i+1 は、輪軸13b、13dの左側における前後方向力である。FWx,i+1 は、輪軸13b、13dの右側における前後方向力である。FWx,i 、FWx,i 、FWx,i+1 、FWx,i+1 は、後述するように軸箱を支持するための部材に取り付けられたセンサにより測定される。 It and y are moments of inertia of the carriages 12a and 12b in the pitching direction. It and y shall be given in advance. θ t, j ... Are angular accelerations of the carriages 12a and 12b in the pitching direction. a 1 is trolley 12a, (carriage 12a represents a half of the distance in the longitudinal direction between the two axes dampers 19L arranged at a distance in the front-rear direction (19R) in each of 12b, back and forth in each of 12b distance in longitudinal direction between the two axes dampers 19L arranged at a distance in the direction (19R) is 2a 1). θ t, j · are the angular velocities of the carriages 12a and 12b in the pitching direction. h 1 is the distance between the center of the axle and the center of gravity of the carriages 12a and 12b in the vertical direction. F Wx, i L is the longitudinal direction forces in the left wheel set 13a, 13c. F Wx and i R are the front-rear directional forces on the right side of the wheel sets 13a and 13c. F Wx, i + 1 L are front-rear directional forces on the left side of the wheel sets 13b and 13d. F Wx, i + 1 R is a front-back force on the right side of the wheel sets 13b and 13d. F Wx, i L , F Wx, i R , F Wx, i + 1 L , F Wx, i + 1 R are measured by a sensor attached to a member for supporting the axle box as described later.
 (2)式の左辺は、ピッチングにおいて台車12a、12bが受ける力のモーメントの総和である。(2)式の右辺第1項および第2項は、ピッチングにおいて軸バネ18L、18Rより受ける力のモーメントである。(2)式の右辺第3項は、ピッチングにおいて軸ダンパ19L、19Rより受ける力のモーメントである。(2)式の右辺第4項は、前後方向力に基づいて台車12a、12bが受ける力のモーメント(の合計値)である。 The left side of equation (2) is the sum of the moments of force received by the bogies 12a and 12b during pitching. The first and second terms on the right side of the equation (2) are moments of force received from the shaft springs 18L and 18R in pitching. The third term on the right side of the equation (2) is the moment of force received from the shaft dampers 19L and 19R in pitching. The fourth term on the right side of the equation (2) is the moment of force (total value) received by the carriages 12a and 12b based on the front-rear direction force.
<前後方向力>
 ここで、前後方向力について説明する。
 1つの輪軸における左右の車輪のうち一方の車輪における縦クリープ力と他方の車輪における縦クリープ力との同相の成分は、ブレーキ力や駆動力に対応する成分である。従って、縦クリープ力の逆相成分に対応するように前後方向力を定めるのが好ましい。縦クリープ力の逆相成分とは、1つの輪軸における左右の車輪のうち一方の車輪における縦クリープ力と他方の車輪における縦クリープ力との相互に逆位相となる成分である。即ち、縦クリープ力の逆相成分とは、縦クリープ力の、車軸をねじる方向の成分である。この場合、前後方向力は、1つの輪軸の左右方向の両側に取り付けられた2つの前記部材に生じる力の前後方向の成分のうち、相互に逆位相となる成分となる。
<Forward and backward force>
Here, the front-rear direction force will be described.
The in-phase component of the vertical creep force of one of the left and right wheels on one wheel set and the vertical creep force of the other wheel is a component corresponding to the braking force and the driving force. Therefore, it is preferable to determine the anteroposterior force so as to correspond to the opposite phase component of the longitudinal creep force. The anti-phase component of the vertical creep force is a component in which the vertical creep force of one of the left and right wheels on one wheel set and the vertical creep force of the other wheel are in opposite phases to each other. That is, the reverse phase component of the vertical creep force is a component of the vertical creep force in the direction of twisting the axle. In this case, the front-rear direction force is a component in the front-rear direction that is opposite to each other among the components in the front-rear direction of the force generated in the two members attached to both sides in the left-right direction of one wheel set.
 以下に、縦クリープ力の逆相成分に対応するように前後方向力を定める場合の前後方向力の具体例について説明する。
 軸箱支持装置が、モノリンク式の軸箱支持装置である場合、軸箱支持装置は、リンクを備えており、軸箱と台車枠とがリンクにより連結されている。このリンクの両端にはゴムブッシュが取り付けられる。この場合、前後方向力は、1つの輪軸の左右方向の端にそれぞれ1つずつ取り付けられる2つのリンクのそれぞれが受ける荷重の前後方向の成分のうち、相互に逆位相となる成分になる。また、リンクの配置および構成により、リンクは、前後方向、左右方向、上下方向の荷重のうち主に前後方向の荷重を受ける。従って、例えば、各リンクに歪ゲージを1つ取り付ければよい。この歪ゲージの測定値を用いて、当該リンクが受ける荷重の前後方向の成分を導出することにより、前後方向力の測定値を得る。また、このようにすることに替えて、リンクに取り付けられたゴムブッシュの前後方向の変位を変位計で測定してもよい。この場合、測定した変位と当該ゴムブッシュのバネ定数との積を、前後方向力の測定値とする。軸箱支持装置が、モノリンク式の軸箱支持装置である場合、前述した、軸箱を支持するための部材は、リンクまたはゴムブッシュになる。
A specific example of the anteroposterior force when the anteroposterior force is determined so as to correspond to the opposite phase component of the longitudinal creep force will be described below.
When the axle box support device is a monolink type axle box support device, the axle box support device includes a link, and the axle box and the bogie frame are connected by the link. Rubber bushes are attached to both ends of this link. In this case, the front-rear force is a component in the front-rear direction of the load received by each of the two links attached to the left-right ends of one wheel set, which are opposite to each other. Further, depending on the arrangement and configuration of the link, the link receives mainly the load in the front-rear direction among the loads in the front-rear direction, the left-right direction, and the up-down direction. Therefore, for example, one strain gauge may be attached to each link. By deriving the anteroposterior component of the load received by the link using the measured value of this strain gauge, the measured value of the anteroposterior force is obtained. Alternatively, instead of doing so, the displacement of the rubber bush attached to the link in the front-rear direction may be measured with a displacement meter. In this case, the product of the measured displacement and the spring constant of the rubber bush is used as the measured value of the front-rear force. When the axle box support device is a monolink type axle box support device, the above-mentioned member for supporting the axle box is a link or a rubber bush.
 尚、リンクに取り付けられる歪ゲージにより測定される荷重には、前後方向の成分だけでなく、左右方向の成分および上下方向の成分のうち少なくとも何れか一方の成分が含まれる場合がある。しかしながら、このような場合であっても、軸箱支持装置の構造上、リンクが受ける左右方向の成分の荷重および上下方向の成分の荷重は、前後方向の成分の荷重に比べて十分に小さい。従って、各リンクに歪ゲージを1つ取り付けるだけで、実用上要求される精度を有する前後方向力の測定値を得ることができる。このように、前後方向力の測定値には、前後方向の成分以外の成分が含まれることがある。従って、上下方向および左右方向の歪みがキャンセルされるように3つ以上の歪ゲージを各リンクに取り付けてもよい。このようにすれば、前後方向力の測定値の精度を向上させることができる。 Note that the load measured by the strain gauge attached to the link may include not only the components in the front-rear direction but also at least one of the components in the left-right direction and the components in the up-down direction. However, even in such a case, due to the structure of the axle box support device, the load of the component in the left-right direction and the load of the component in the vertical direction received by the link are sufficiently smaller than the load of the component in the front-rear direction. Therefore, by attaching one strain gauge to each link, it is possible to obtain a measured value of the anteroposterior force having practically required accuracy. As described above, the measured value of the anteroposterior force may include components other than the components in the anteroposterior direction. Therefore, three or more strain gauges may be attached to each link so that the vertical and horizontal strains are cancelled. In this way, the accuracy of the measured value of the front-rear force can be improved.
 軸箱支持装置が、軸はり式の軸箱支持装置である場合、軸箱支持装置は、軸はりを備えており、軸箱と台車枠とが、軸はりにより連結されている。軸はりは、軸箱と一体に構成されていてもよい。この軸はりの台車枠側の端にはゴムブッシュが取り付けられる。この場合、前後方向力は、1つの輪軸の左右方向の端にそれぞれ1つずつ取り付けられる2つの軸はりのそれぞれが受ける荷重の前後方向の成分のうち、相互に逆位相となる成分になる。また、軸はりの配置構成により、軸はりは、前後方向、左右方向、上下方向の荷重のうち前後方向の荷重に加えて、左右方向の荷重も受けやすい。従って、例えば、左右方向の歪みがキャンセルされるように2つ以上の歪ゲージを各軸はりに取り付ける。これらの歪ゲージの測定値を用いて、軸はりが受ける荷重の前後方向の成分を導出することにより、前後方向力の測定値を得る。また、このようにすることに替えて、軸はりに取り付けられたゴムブッシュの前後方向の変位を変位計で測定してもよい。この場合、測定した変位と当該ゴムブッシュのバネ定数との積を、前後方向力の測定値とする。軸箱支持装置が、軸はり式の軸箱支持装置である場合、前述した、軸箱を支持するための部材は、軸はりまたはゴムブッシュになる。 When the axle box support device is an axle beam type axle box support device, the axle box support device is provided with an axle beam, and the axle box and the bogie frame are connected by the axle beam. The axle beam may be configured integrally with the axle box. A rubber bush is attached to the end of the axle beam on the bogie frame side. In this case, the front-rear force is a component of the front-rear direction of the load received by each of the two shaft beams attached to the left-right ends of one wheel set, which are opposite to each other. Further, due to the arrangement configuration of the shaft beam, the shaft beam is likely to receive the load in the left-right direction in addition to the load in the front-rear direction among the loads in the front-rear direction, the left-right direction, and the up-down direction. Therefore, for example, two or more strain gauges are attached to each shaft beam so that the distortion in the left-right direction is canceled. By using the measured values of these strain gauges to derive the anteroposterior component of the load received by the shaft beam, the measured value of the anteroposterior force is obtained. Alternatively, instead of doing so, the displacement of the rubber bush attached to the shaft beam in the front-rear direction may be measured with a displacement meter. In this case, the product of the measured displacement and the spring constant of the rubber bush is used as the measured value of the front-rear force. When the axle box support device is an axle beam type axle box support device, the above-mentioned member for supporting the axle box is an axle beam or a rubber bush.
 尚、軸はりに取り付けられる歪ゲージにより測定される荷重には、前後方向および左右方向の成分だけでなく、上下方向の成分が含まれる場合がある。しかしながら、このような場合であっても、軸箱支持装置の構造上、軸はりが受ける上下方向の成分の荷重は、前後方向の成分の荷重および左右方向の成分の荷重に比べて十分に小さい。従って、軸はりが受ける上下方向の成分の荷重をキャンセルするように歪ゲージを取り付けなくても、実用上要求される精度を有する前後方向力の測定値を得ることができる。このように、計測された前後方向力には、前後方向の成分以外の成分が含まれることがあり、左右方向の歪みに加えて上下方向の歪みもキャンセルされるように3つ以上の歪ゲージを各軸はりに取り付けてもよい。このようにすれば、前後方向力の測定値の精度を向上させることができる。 Note that the load measured by the strain gauge attached to the shaft beam may include not only the components in the front-rear direction and the left-right direction but also the components in the vertical direction. However, even in such a case, due to the structure of the axle box support device, the load of the component in the vertical direction received by the shaft beam is sufficiently smaller than the load of the component in the front-rear direction and the load of the component in the left-right direction. .. Therefore, it is possible to obtain a measured value of the longitudinal force having practically required accuracy without attaching a strain gauge so as to cancel the load of the component in the vertical direction received by the shaft beam. In this way, the measured anteroposterior force may include components other than the anteroposterior component, and three or more strain gauges so as to cancel the vertical distortion in addition to the horizontal distortion. May be attached to each shaft beam. In this way, the accuracy of the measured value of the front-rear force can be improved.
 軸箱支持装置が、板バネ式の軸箱支持装置である場合、軸箱支持装置は、板バネを備えており、軸箱と台車枠とが、板バネにより連結されている。この板バネの端にはゴムブッシュが取り付けられる。この場合、前後方向力は、1つの輪軸の左右方向の端にそれぞれ1つずつ取り付けられる2つの板バネのそれぞれが受ける荷重の前後方向の成分のうち、相互に逆位相となる成分になる。また、板バネの配置構成により、板バネは、前後方向、左右方向、上下方向の荷重のうち前後方向の荷重に加えて、左右方向の荷重および上下方向の荷重も受けやすい。従って、例えば、左右方向および上下方向の歪みがキャンセルされるように3つ以上の歪ゲージを各板バネに取り付ける。これらの歪ゲージの測定値を用いて、板バネが受ける荷重の前後方向の成分を導出することにより、前後方向力の測定値を得る。また、このようにすることに替えて、板バネに取り付けられたゴムブッシュの前後方向の変位を変位計で測定してもよい。この場合、測定した変位と当該ゴムブッシュのバネ定数との積を、前後方向力の測定値とする。軸箱支持装置が、板バネ式の軸箱支持装置である場合、前述した、軸箱を支持するための部材は、板バネまたはゴムブッシュになる。 When the axle box support device is a leaf spring type axle box support device, the axle box support device includes a leaf spring, and the axle box and the bogie frame are connected by the leaf spring. A rubber bush is attached to the end of this leaf spring. In this case, the front-rear direction force is a component in the front-rear direction of the load received by each of the two leaf springs attached to the left-right ends of one wheel set, which are in opposite phases to each other. Further, depending on the arrangement configuration of the leaf spring, the leaf spring is likely to receive the load in the left-right direction and the load in the up-down direction in addition to the load in the front-rear direction among the loads in the front-rear direction, the left-right direction, and the up-down direction. Therefore, for example, three or more strain gauges are attached to each leaf spring so as to cancel the distortion in the horizontal direction and the strain in the vertical direction. By using the measured values of these strain gauges to derive the front-rear component of the load received by the leaf spring, the measured value of the front-rear force is obtained. Alternatively, instead of doing so, the displacement of the rubber bush attached to the leaf spring in the front-rear direction may be measured with a displacement meter. In this case, the product of the measured displacement and the spring constant of the rubber bush is used as the measured value of the front-rear force. When the axle box support device is a leaf spring type axle box support device, the above-mentioned member for supporting the axle box is a leaf spring or a rubber bush.
 尚、前述した変位計としては、公知のレーザ変位計や渦電流式の変位計を用いることができる。
 また、ここでは、軸箱支持装置の方式が、モノリンク式、軸はり式、および板バネ式である場合を例に挙げて、前後方向力を説明した。しかしながら、軸箱支持装置の方式は、モノリンク式、軸はり式、および板バネ式に限定されない。軸箱支持装置の方式に合わせて、モノリンク式、軸はり式、および板バネ式と同様に、前後方向力を定めることができる。
As the displacement meter described above, a known laser displacement meter or an eddy current type displacement meter can be used.
Further, here, the front-rear direction force has been described by taking as an example the case where the type of the axle box support device is a monolink type, a shaft beam type, and a leaf spring type. However, the method of the axle box support device is not limited to the monolink type, the axle beam type, and the leaf spring type. As with the monolink type, the shaft beam type, and the leaf spring type, the front-rear direction force can be determined according to the type of the axle box support device.
<軸バネ18L、18Rの剛性(バネ定数)kを導出するための計算式>
 次に、軸バネ18L、18Rの剛性(バネ定数)kを導出するための計算式について説明する。軸バネ18L、18Rの剛性(バネ定数)kを導出するための計算式は、(1)式および(2)式を用いて導かれる。尚、(1)式および(2)式は、台車12a、12bの上下動の運動方程式と台車12a、12bのピッチングの運動方程式である。
<Calculation formula for deriving the rigidity (spring constant) k 1 of the shaft springs 18L and 18R>
Next, a calculation formula for deriving the rigidity (spring constant) k 1 of the shaft springs 18L and 18R will be described. The calculation formula for deriving the rigidity (spring constant) k 1 of the shaft springs 18L and 18R is derived using the formulas (1) and (2). Equations (1) and (2) are equations of motion for vertical movement of the carriages 12a and 12b and equations of motion for pitching the carriages 12a and 12b.
 まず、(2)式の両辺をa(台車12a、12bに設けられている輪軸13a~13b、13c~13d間の前後方向における距離の1/2)で割った式の左辺、右辺を、それぞれ、(1)式の左辺、右辺から引く((1)式-(2)式÷a)。このようにして得られた式の左辺を右辺に移項する。このようにして得られた式において、(1)式の右辺の「-k1,i(zt,j-aθt,j-zw,i)」と、(2)式の右辺の「ak1,i(zt,j-aθt,j-zw,i)」を-aで割った値(「-{ak1,i(zt,j-aθt,j-zw,i)}÷a」)と、の和を左辺に移項する。そうすると、以下の(3)式が得られる。 First, the left side and the right side of the formula (2) divided by a (1/2 of the distance between the wheel sets 13a to 13b and 13c to 13d provided on the bogies 12a and 12b in the front-rear direction) are obtained. , Subtract from the left and right sides of equation (1) (formula (1)-formula (2) ÷ a). The left side of the equation thus obtained is transferred to the right side. In the equation thus obtained, "-k 1, i (z t, j-t, j- z w, i )" on the right side of equation (1) and "-k 1, i (z t, j-t, j- z w, i )" on the right side of equation (2) The value obtained by dividing "ak 1, i (z t, j-t, j- z w, i )" by -a ("-{ak 1, i (z t, j-t, j- z w, i )" i )} ÷ a ") and the sum is transferred to the left side. Then, the following equation (3) is obtained.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 (3)式は、台車12a、12bに設けられている前輪(輪軸13a、13c)において左右方向に間隔を有して並ぶ左側の軸バネ18Lおよび右側の軸バネ18Rが受ける力の平均値を表す方程式である。尚、(3)式の右辺第5項は、台車12a、12bが受ける遠心力であるため、鉄道車両が曲線軌道を走行しなければ不要となる項である。 In equation (3), the average value of the forces received by the left shaft spring 18L and the right shaft spring 18R arranged at intervals in the left-right direction on the front wheels ( wheel sets 13a, 13c) provided on the bogies 12a and 12b is calculated. It is an equation to represent. The fifth term on the right side of the equation (3) is a centrifugal force received by the bogies 12a and 12b, and is therefore unnecessary unless the railroad vehicle travels on a curved track.
 次に、(2)式の両辺をa(台車12a、12bに設けられている輪軸13a~13b、13c~13d間の前後方向における距離の1/2)で割った式の左辺、右辺を、それぞれ、(1)式の左辺、右辺に足す((1)式+(2)式÷a)。このようにして得られた式の左辺を右辺に移項する。このようにして得られた式において、(1)式の右辺の「-k1,i+1(zt,j+aθt,j-zw,i+1)」と、(2)式の右辺の「-ak1,i+1(zt,j+aθt,j-zw,i+1)」をaで割った値(「-{ak1,i+1(zt,j+aθt,j-zw,i+1)}÷a」)と、の和を左辺に移項する。そうすると、以下の(4)式が得られる。 Next, the left and right sides of the equation (2) divided by a (1/2 of the distance between the wheel sets 13a to 13b and 13c to 13d provided on the carriages 12a and 12b in the front-rear direction) are divided into the left and right sides. Add to the left and right sides of equation (1), respectively (formula (1) + equation (2) ÷ a). The left side of the equation thus obtained is transferred to the right side. In the equation thus obtained, "-k 1, i + 1 (z t, j + aθ t, j- z w, i + 1 )" on the right side of equation ( 1 ) and the right side of equation (2) The value obtained by dividing "-ak 1, i + 1 (z t, j + aθ t, j- z w, i + 1 )" by a ("-{ak 1, i + 1 (z t, j + aθ t, j- z w, i + 1)" )} ÷ a ") and the sum is transferred to the left side. Then, the following equation (4) is obtained.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 (4)式は、台車12a、12bに設けられている後輪(輪軸13b、13d)において左右方向に間隔を有して並ぶ左側の軸バネ18Lおよび右側の軸バネ18Rが受ける力の平均値を表す方程式である。尚、(4)式の右辺第5項は、台車12a、12bが受ける遠心力であるため、鉄道車両が曲線軌道を走行しなければ不要となる項である。 In equation (4), the average value of the forces received by the left shaft spring 18L and the right shaft spring 18R arranged at intervals in the left-right direction on the rear wheels (wheel sets 13b, 13d) provided on the carriages 12a and 12b. Is an equation that represents. The fifth term on the right side of the equation (4) is a term that is unnecessary unless the railroad vehicle travels on a curved track because it is the centrifugal force received by the bogies 12a and 12b.
 ここで、台車12a、12bに設けられている左側の空気バネ22Lが受ける荷重FASzj 、台車12a、12bに設けられている右側の空気バネ22Rが受ける荷重FASzj は、それそれ、以下の(5)式、(6)式で表される。 Here, the load F ASzj L received by the left air spring 22L provided on the carriages 12a and 12b and the load F ASzj R received by the right air spring 22R provided on the carriages 12a and 12b are as follows. It is expressed by the equations (5) and (6).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 ここで、A は、台車12a、12bに設けられている左側の空気バネ22Lの受圧面積である。P は、台車12a、12bに設けられている左側の空気バネ22Lの内圧である。Patは、大気圧である。bは、左右方向に間隔を有して並ぶ空気バネ22L、22Rの左右方向における間隔の1/2を表す(左右方向に間隔を有して並ぶ空気バネ22L、22Rの左右方向における間隔は2bになる)。yは、車体11の左右方向における変位である。dyは、車体11の重心の左右方向における偏芯量である。Lは、台車12a、12bの中心間の前後方向における間隔の1/2を表す(台車12a、12bの中心間の前後方向における間隔は2Lになる)。dxは、車体11の重心の前後方向における偏芯量である。mは、車体11の質量である。A は、台車12a、12bに設けられている右側の空気バネ22Rの受圧面積である。P は、台車12a、12bに設けられている右側の空気バネ22Rの内圧である。また、(5)式、(6)式において、+の下に-が付されている記号は、台車12aに対する式には+を採用し、台車12bに対する式には-を採用することを示す。P 、P は、空気バネ22L、22Rの内圧を検出するセンサにより測定される。 Here, Aj L is the pressure receiving area of the left air spring 22L provided on the carriages 12a and 12b. Pj L is the internal pressure of the left air spring 22L provided on the carriages 12a and 12b. Pat is atmospheric pressure. b 2 represents 1/2 of the distance between the air springs 22L and 22R arranged in the left-right direction in the left-right direction (the distance between the air springs 22L and 22R arranged in the left-right direction in the left-right direction). 2b 2 ). y b is the displacement of the vehicle body 11 in the left-right direction. dy b is the amount of eccentricity in the left-right direction of the center of gravity of the vehicle body 11. L represents 1/2 of the distance between the centers of the carriages 12a and 12b in the front-rear direction (the distance between the centers of the carriages 12a and 12b in the front-rear direction is 2L). dx b is the amount of eccentricity in the front-rear direction of the center of gravity of the vehicle body 11. mb is the mass of the vehicle body 11. A j R is the pressure receiving area of the right air spring 22R provided on the carriages 12a and 12b. Pj R is the internal pressure of the right air spring 22R provided on the carriages 12a and 12b. Further, in the equations (5) and (6), the symbol with-under the + indicates that + is adopted for the equation for the carriage 12a and-is adopted for the equation for the carriage 12b. .. Pj L and Pj R are measured by a sensor that detects the internal pressure of the air springs 22L and 22R.
 台車12a、12bに設けられている左側・右側の空気バネ22L・22Rの受圧面積A ・A は、それぞれ、以下の(7)式、(8)式で表される。 Receiving area A j L · A j R of the carriage 12a, the left and right are provided on 12b air springs 22L · 22R, respectively, the following equation (7) is expressed by equation (8).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 ここで、zASj は、台車12a、12bに設けられている左側の空気バネ22Lの上下方向における変位である。dA/dzは、空気バネ22L、22Rの有効受圧面積の上下方向における変化率(単位長さ当たりの変化量)である。Aは、空気バネ22L、22Rの有効受圧面積である。zASj は、台車12a、12bに設けられている右側の空気バネ22Rの上下方向における変位である。dA/dzは、定数として予め与えられる。Aは、初期値として予め与えられる。また、zASj 、zASj は、空気バネ22L、22Rの変位を検出するセンサにより測定される。 Here, z ASj L is a displacement of the left air spring 22L provided on the carriages 12a and 12b in the vertical direction. dA / dz is the rate of change (change amount per unit length) of the effective pressure receiving area of the air springs 22L and 22R in the vertical direction. A 0 is the effective pressure receiving area of the air springs 22L and 22R. z ASj R is the vertical displacement of the right air spring 22R provided on the carriages 12a and 12b. dA / dz is given in advance as a constant. A 0 is given in advance as an initial value. Further, z ASj R and z ASj L are measured by a sensor that detects the displacement of the air springs 22L and 22R.
 以上のように、(3)式および(4)式において、θt,j、θt,j・、θt,j・・以外の変数は、予め与えられる値または測定値である。従って、θt,j、θt,j・、θt,j・・を導出すれば、(3)式および(4)式により、軸バネ18L、18Rの剛性(バネ定数)k(k1,i、k1,i+1)を導出することができる。以下の説明では、輪軸13a、13cの軸箱17L、17Rに取り付けられている軸バネ18L、18Rの剛性(バネ定数)の平均値k1,i、輪軸13b、13dの軸箱17L、17Rに取り付けられている軸バネ18L、18Rの剛性(バネ定数)の平均値k1,i+1を、必要に応じて、軸バネ剛性と称する。 As described above, in the equations (3) and (4), the variables other than θ t, j , θ t, j ·, θ t, j ··· are values given in advance or measured values. Therefore, if θ t, j , θ t, j ·, θ t, j · · are derived, the rigidity (spring constant) of the shaft springs 18L and 18R is k 1 (k) according to the equations (3) and (4). 1, i , k 1, i + 1 ) can be derived. In the following description, the average values k 1, i of the rigidity (spring constant) of the shaft springs 18L and 18R attached to the axle boxes 17L and 17R of the axles 13a and 13c, and the axle boxes 17L and 17R of the axles 13b and 13d. The average value k 1, i + 1 of the rigidity (spring constant) of the attached shaft springs 18L and 18R is referred to as the shaft spring rigidity, if necessary.
<<θt,j、θt,j・、θt,j・・の導出>>
 FWx,i (台車12a、12bの前輪(輪軸13a、13c)の左側における前後方向力)と、FWx,i (台車12a、12bの前輪(輪軸13a、13c)の右側における前後方向力)との和(=FWx,i +FWx,i )は、以下の(9)式で表される。また、FWx,i+1 (台車12a、12bの後輪(輪軸13b、13d)の左側における前後方向力)と、FWx,i+1 (台車12a、12bの後輪(輪軸13b、13d)の右側における前後方向力)との和(=FWx,i+1 +FWx,i+1 )は、以下の(10)式で表される。従って、(9)式および(10)式から以下の(11)式が得られる。
<< Derivation of θ t, j , θ t, j ·, θ t, j · · >>
F Wx, i L (front-rear direction force on the left side of the front wheels ( wheel sets 13a, 13c) of the bogies 12a, 12b) and F Wx, i R (front-rear direction on the right side of the front wheels ( wheel sets 13a, 13c) of the bogies 12a, 12b) The sum (= F Wx, i L + F Wx, i R ) with the force) is expressed by the following equation (9). Further, the F Wx, i + 1 L (front-rear direction force on the left side of the rear wheels (wheel sets 13b, 13d) of the bogies 12a, 12b) and the F Wx, i + 1 R (rear wheels (wheel sets 13b, 13d) of the bogies 12a, 12b). The sum (= F Wx, i + 1 L + F Wx, i + 1 R ) with the front-back force on the right side is expressed by the following equation (10). Therefore, the following equation (11) can be obtained from the equations (9) and (10).
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 ここで、KWxは、軸箱支持装置の前後方向のバネ定数である。xt,jは、台車12a、12bの前後方向における変位である。CWxは、軸箱支持装置の左右方向におけるダンピング定数である。xt,j・は、台車12a、12bの前後方向における速度である。θt,j・は、台車12a、12bのピッチング方向における角速度である。KWx、CWxは、定数として予め与えられる。
 (11)式を解くことにより、θt,jを常微分方程式の解として求めることができる。また、θt,jを時間微分することによりθt,j・とθt,j・・が導出される。
Here, K Wx is a spring constant in the front-rear direction of the axle box support device. x t and j are displacements of the carriages 12a and 12b in the front-rear direction. C Wx is a damping constant in the left-right direction of the axle box support device. x t, j · are the speeds of the carriages 12a and 12b in the front-rear direction. θ t, j · are the angular velocities of the carriages 12a and 12b in the pitching direction. K Wx and C Wx are given in advance as constants.
By solving Eq. (11), θ t and j can be obtained as solutions to ordinary differential equations. In addition, θ t, j · and θ t, j ·· is derived by differentiating the θ t, j time.
<<zASj 、zASj を計算で導出する方法>>
 (7)式、(8)式に示すzASj 、zASj は、それぞれ、以下の(12)式、(13)式により計算することもできる。
<< How to derive z ASj R and z ASj L by calculation >>
The z ASj L and z ASj R shown in the equations (7) and (8) can also be calculated by the following equations (12) and (13), respectively.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 ここで、zは、車体11の上下方向における変位である。φは、車体11のローリング方向における回動量(角変位)である。θは、車体11のピッチング方向における回動量(角変位)である。φtjは、台車12a、12bのローリング方向における回動量(角変位)である。また、(12)式、(13)式において、-の下に+が付されている記号は、台車12aに対する式には-を採用し、台車12bに対する式には+を採用することを示す。zは、車体11に取り付けられた加速度センサにより検出される加速度を時間積分することにより得られる。 Here, z b is the displacement of the vehicle body 11 in the vertical direction. φ b is the amount of rotation (angular displacement) of the vehicle body 11 in the rolling direction. θ b is the amount of rotation (angular displacement) of the vehicle body 11 in the pitching direction. φ tj is the amount of rotation (angular displacement) of the carriages 12a and 12b in the rolling direction. Further, in the equations (12) and (13), the symbol with + under-indicates that-is adopted for the equation for the carriage 12a and + is adopted for the equation for the carriage 12b. .. z b is obtained by time-integrating the acceleration detected by the acceleration sensor attached to the vehicle body 11.
 θ(車体11のピッチング方向における回動量(角変位))は、例えば、以下のようにして導出される。まず、特許文献2に記載されているようにして、φ(車体11のローリング方向における回動量(角変位))、ψ・(車体11のヨーイング方向における角速度)、およびψ(車体11のヨーイング方向における回動量(角変位))を導出する。特許文献2に記載されている内容は、本明細書に援用される。そして、以下の(14)式に示す車体11のピッチングを表す運動方程式に基づいて、θ(車体11のピッチング方向における回動量(角変位))を導出する。 θ b (the amount of rotation (angular displacement) of the vehicle body 11 in the pitching direction) is derived as follows, for example. First, as described in Patent Document 2, φ b (the amount of rotation (angular displacement) of the vehicle body 11 in the rolling direction), ψ b · (angular velocity of the vehicle body 11 in the yawing direction), and ψ b (vehicle body 11). The amount of rotation (angular displacement) in the yawing direction of The contents described in Patent Document 2 are incorporated herein by reference. Then, θ b (the amount of rotation (angular displacement) of the vehicle body 11 in the pitching direction) is derived based on the equation of motion representing the pitching of the vehicle body 11 shown in the following equation (14).
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 ここで、Ib,yは、ピッチング方向における車体11の慣性モーメントである。θ・・は、車体11のピッチング方向における角加速度である。h14は、車体11の重心の位置とヨーダンパの重心の位置との距離である。cは、ヨーダンパの前後方向のダンピング定数である。θ・は、車体11のピッチング方向における角速度である。k´´は、空気バネ22L、22Rの前後方向のバネ定数である。cは、ヨーダンパの前後方向のダンピング定数である。c、k´´は、定数として予め与えられる。 Here, I b and y are moments of inertia of the vehicle body 11 in the pitching direction. θ b ... Is the angular acceleration of the vehicle body 11 in the pitching direction. h 14 is the distance between the position of the center of gravity of the vehicle body 11 and the position of the center of gravity of the yaw damper. c 0 is a damping constant in the front-rear direction of the yaw damper. θ b · is the angular velocity of the vehicle body 11 in the pitching direction. k ″ 2 is the spring constant of the air springs 22L and 22R in the front-rear direction. c 0 is a damping constant in the front-rear direction of the yaw damper. c 0 and k ″ 2 are given in advance as constants.
<修正自己回帰モデル>
 物理量の時系列データが安定せず、物理量の時系列データに、本質的な成分以外のノイズ成分が含まれることが想定される。ローパスフィルタやバンドバスフィルタにより、物理量の時系列データのノイズ成分を除去することも可能ではあるが、カットオフ周波数を設定することが容易ではない。
<Modified autoregressive model>
It is assumed that the time-series data of the physical quantity is not stable, and the time-series data of the physical quantity contains noise components other than the essential components. It is possible to remove the noise component of the time series data of the physical quantity by using a low-pass filter or a band-pass filter, but it is not easy to set the cutoff frequency.
 そこで、本発明者らは、物理量の本質的な信号成分を抽出するためのモデルとして、自己回帰モデル(AR(Auto-regressive)モデル)を修正したモデルを考案した。そして、本発明者らは、このモデルを用いて、物理量の信号から本質的な信号成分を抽出することに想到した。以下の説明では、本発明者らが考案したモデルを、修正自己回帰モデルと称する。これに対し、公知の自己回帰モデルを、単に自己回帰モデルと称する。尚、修正自己回帰モデル自体は、特許文献3に記載されている。特許文献3に記載されている内容は、本明細書に援用される。 Therefore, the present inventors devised a model modified from the autoregressive model (AR (Auto-regressive) model) as a model for extracting the essential signal component of the physical quantity. Then, the present inventors have come up with the idea of extracting the essential signal component from the signal of the physical quantity by using this model. In the following description, the model devised by the present inventors will be referred to as a modified autoregressive model. On the other hand, a known autoregressive model is simply referred to as an autoregressive model. The modified autoregressive model itself is described in Patent Document 3. The contents described in Patent Document 3 are incorporated herein by reference.
 時刻k(1≦k≦M)における物理量の時系列データyの値をyとする。本実施形態において、物理量は、軸バネ剛性k1,i、k1,i+1である。 Let y k be the value of the time series data y of the physical quantity at the time k (1 ≦ k ≦ M). In the present embodiment, the physical quantities are the shaft spring rigidity k 1, i and k 1, i + 1 .
 Mは、物理量の時系列データyがどの時刻までのデータを含むかを示す数であり、予め設定されている。以下の説明では、物理量の時系列データを必要に応じてデータyと略称する。データyの値yを近似する自己回帰モデルは、例えば、以下の(15)式のようになる。(15)式に示すように、自己回帰モデルとは、データyにおける時刻k(m+1≦k≦M)の物理量の予測値y^を、データyにおけるその時刻kよりも前の時刻k-l(1≦l≦m)の物理量の実績値yk-lと、当該実績値に対する係数αとを用いて表す式である。尚、y^は、(15)式において、yの上に^を付けて表記したものである。 M is a number indicating up to what time the time-series data y of the physical quantity includes the data, and is preset. In the following description, time series data of physical quantities will be abbreviated as data y as necessary. An autoregressive model that approximates the value y k of the data y is, for example, the following equation (15). As shown in the equation (15), the autoregressive model is a time k − in which the predicted value y ^ k of the physical quantity at the time k (m + 1 ≦ k ≦ M) in the data y is set before the time k in the data y. It is an expression expressed by using the actual value y kl of the physical quantity of l (1 ≦ l ≦ m) and the coefficient α l with respect to the actual value. In addition, y ^ k is expressed by adding ^ on top of y k in the equation (15).
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 (16)式におけるαは、自己回帰モデルの係数である。mは、自己回帰モデルにおいて時刻kにおけるデータyの値yを近似するために用いられるデータyの値の数であって、その時刻kよりも前の連続する時刻k-1~k-mにおけるデータyの値yk-1~yk-mの数である。mは、M未満の整数である。mとして、例えば、1500を用いることができる。 Α in Eq. (16) is a coefficient of the autoregressive model. m is the number of data y values used to approximate the data y value y k at time k in the autoregressive model, and is a continuous time k-1 to km prior to that time k. It is the number of values y k-1 to y km of the data y in. m is an integer less than M. For example, 1500 can be used as m.
 自己回帰モデルによる時刻kにおける物理量の予測値y^を値yとの二乗誤差を最小にするための条件式は、以下の(16)式のようになる。 Conditions for the square error of the prediction value y ^ k of the physical quantity and the value y k at time k by autoregressive model minimizes equation is given by the following equation (16).
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 (16)式より、以下の(17)式の関係が成り立つ。 From equation (16), the relationship of equation (17) below holds.
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 また、(18)式を変形(行列表記)することで、以下の(18)式が得られる。 Further, by modifying the equation (18) (matrix notation), the following equation (18) can be obtained.
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
 (18)式におけるRjlはデータyの自己相関と呼ばれるもので、以下の(19)式で定義される値である。このときの|j-l|を時差という。 R jl in the equation (18) is called the autocorrelation of the data y, and is a value defined by the following equation (19). | Jl | at this time is called a time difference.
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
 自己回帰モデルによる時刻kにおける物理量の予測値y^と、その予測値y^に対応する時刻kにおける物理量の値yと、の誤差を最小化する条件から、以下の(20)式のユール・ウォーカー(Yule-Walker)方程式が得られる。(20)式における左辺の定数ベクトルは、時差が1からmまでのデータyの自己相関を成分とするベクトルである。以下の説明では、(20)式における左辺の定数ベクトルを必要に応じて自己相関ベクトルと称する。また、(20)式における右辺の係数行列は、時差が0からm-1までのデータyの自己相関を成分とする行列である。以下の説明では、(20)式における右辺の係数行列を必要に応じて自己相関行列と称する。 The predicted value y ^ k of the physical quantity at the time k by autoregressive model, from the condition of minimizing the value y k of the physical quantity, of the error at time k corresponding to the predicted value y ^ k, the following equation (20) The Yule-Walker equation is obtained. The constant vector on the left side in the equation (20) is a vector whose component is the autocorrelation of the data y having a time difference of 1 to m. In the following description, the constant vector on the left side in Eq. (20) will be referred to as an autocorrelation vector, if necessary. The coefficient matrix on the right side in Eq. (20) is a matrix whose component is the autocorrelation of the data y having a time difference of 0 to m-1. In the following description, the coefficient matrix on the right side in Eq. (20) will be referred to as an autocorrelation matrix, if necessary.
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
 また、(20)式における右辺の自己相関行列(Rjlで構成されるm×mの行列)を、以下の(21)式のように、自己相関行列Rと表記する。 Further, the autocorrelation matrix (m × m matrix composed of R jl ) on the right side in the equation (20) is referred to as an autocorrelation matrix R as in the following equation (21).
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
 一般に、自己回帰モデルの係数を求める際には、(20)式を係数αについて解くという方法が用いられる。これに対し、修正自己回帰モデルの係数を求める際には、自己相関行列Rの固有値の一部を用いて、データyに含まれるノイズの影響が低減され、本質的な信号成分が強調される(SN比を高める)ように自己相関行列Rを書き換える。 Generally, when obtaining the coefficient of the autoregressive model, the method of solving Eq. (20) with respect to the coefficient α is used. On the other hand, when obtaining the coefficients of the modified autoregressive model, a part of the eigenvalues of the autocorrelation matrix R is used to reduce the influence of noise contained in the data y and emphasize the essential signal components. The autocorrelation matrix R is rewritten so as to (increase the SN ratio).
 自己相関行列Rを特異値分解すると以下の(22)式のように、直交行列Uと、対角行列Σと、直交行列Uの転置行列との積となる。 When the autocorrelation matrix R is decomposed into singular values, it becomes the product of the orthogonal matrix U, the diagonal matrix Σ, and the transposed matrix of the orthogonal matrix U, as shown in Eq. (22) below.
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000017
 (22)式の対角行列Σは、以下の(23)式に示すように、対角成分が自己相関行列Rの固有値となる行列である。対角行列Σの対角成分を、σ11、σ22、・・・、σmmとする。また、直交行列Uは、各列成分ベクトルが自己相関行列Rの固有ベクトルとなる行列である。直交行列Uの列成分ベクトルを、u、u、・・・、uとする。自己相関行列Rの固有ベクトルuに対する固有値がσjjという対応関係がある。自己相関行列Rの固有値は、自己回帰モデルによる時刻kにおける物理量の予測値y^の時間波形に含まれる各周波数の成分の強度を反映する変数である。 The diagonal matrix Σ of the equation (22) is a matrix in which the diagonal component is an eigenvalue of the autocorrelation matrix R, as shown in the following equation (23). Let the diagonal components of the diagonal matrix Σ be σ 11 , σ 22 , ..., Σ mm . Further, the orthogonal matrix U is a matrix in which each column component vector is an eigenvector of the autocorrelation matrix R. Let the column component vectors of the orthogonal matrix U be u 1 , u 2 , ..., U m . There is a correspondence that the eigenvalue of the autocorrelation matrix R with respect to the eigenvector u j is σ JJ . The eigenvalues of the autocorrelation matrix R are variables that reflect the intensity of the components of each frequency included in the time waveform of the predicted value y ^ k of the physical quantity at time k by the autoregressive model.
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000018
 自己相関行列Rの特異値分解の結果から得られる対角行列Σの対角成分であるσ11、σ22、・・・、σmmの値は、数式の表記を簡略にするために降順とする。(23)式に示す自己相関行列Rの固有値のうち、s個の固有値を用いて、以下の(24)式のように、行列R’を定義する。sは、1以上且つm未満の数である。本実施形態では、sは、予め定められる。行列R’は、自己相関行列Rの固有値のうちs個の固有値を用いて自己相関行列Rを近似した行列である。 The values of σ 11 , σ 22 , ..., Σ mm , which are the diagonal components of the diagonal matrix Σ obtained from the result of the singular value decomposition of the autocorrelation matrix R, are in descending order to simplify the notation of the mathematical formula. To do. Of the eigenvalues of the autocorrelation matrix R shown in equation (23), s eigenvalues are used to define the matrix R'as in equation (24) below. s is a number greater than or equal to 1 and less than m. In this embodiment, s is predetermined. The matrix R'is a matrix that approximates the autocorrelation matrix R by using s eigenvalues among the eigenvalues of the autocorrelation matrix R.
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000019
 (24)式における行列Uは、(22)式の直交行列Uの左からs個の列成分ベクトル(使用される固有値に対応する固有ベクトル)により構成されるm×s行列である。また、(24)式におけるU は、Uの転置行列である。U は、(22)式の行列Uの上からs個の行成分ベクトルにより構成されるs×m行列である。(24)式における行列Σは、(22)式の対角行列Σの左からs個の列と、上からs個の行により構成されるs×s行列である。
 行列Σおよび行列Uを行列成分で表現すれば、以下の(25)式のようになる。
(24) The matrix U s in formula is a m × s matrix constituted by (22) s number of columns of the vector from the left of the orthogonal matrix U of (eigenvectors corresponding to eigenvalues used). Further, the U s T in (24), a transposed matrix of U s. U s T is a s × m matrix composed of s rows component vectors from the top of the matrix U T of equation (22). The matrix Σ s in the equation (24) is an s × s matrix composed of s columns from the left and s rows from the top of the diagonal matrix Σ in the equation (22).
If the matrix Σ s and the matrix Us are expressed by the matrix components, the following equation (25) is obtained.
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000020
 自己相関行列Rの代わりに行列R’を用いることで、(20)式の関係式を、以下の(26)式のように書き換える。 By using the matrix R'instead of the autocorrelation matrix R, the relational expression of the equation (20) is rewritten as the following equation (26).
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000021
 (26)式を変形することで、係数αを求める式として、以下の(27)式が得られる。(27)式によって求められる係数αを用いて、(15)式により、時刻kにおける物理量の予測値y^を算出するモデルが「修正自己回帰モデル」である。 By modifying the equation (26), the following equation (27) can be obtained as an equation for obtaining the coefficient α. The "modified autoregressive model" is a model that calculates the predicted value y ^ k of the physical quantity at time k by the equation (15) using the coefficient α obtained by the equation (27).
Figure JPOXMLDOC01-appb-M000022
Figure JPOXMLDOC01-appb-M000022
 ここでは、対角行列Σの対角成分であるσ11、σ22、・・・、σmmの値を降順とする場合を例に挙げて説明した。しかしながら、係数αの算出過程において対角行列Σの対角成分は降順である必要はない。 Here, the case where the values of σ 11 , σ 22 , ..., Σ mm , which are the diagonal components of the diagonal matrix Σ, are in descending order has been described as an example. However, in the process of calculating the coefficient α, the diagonal components of the diagonal matrix Σ do not have to be in descending order.
 (27)式は、修正自己回帰モデルの係数の決定に利用される方程式である。(27)式の行列Uは、自己相関行列Rの特異値分解により得られる直交行列Uの部分行列であって、修正自己回帰モデルの係数の決定に利用される固有値に対応する固有ベクトルを列成分ベクトルとする行列(第3の行列)である。また、(27)式の行列Σは、自己相関行列Rの特異値分解により得られる対角行列の部分行列であって、修正自己回帰モデルの係数の決定に利用される固有値を対角成分とする行列(第2の行列)である。(27)式の行列UΣ は、行列Σと行列Uとから導出される行列(第1の行列)である。 Equation (27) is an equation used to determine the coefficients of the modified autoregressive model. (27) of the matrix U s is a partial matrix of the orthogonal matrix U obtained by singular value decomposition of the autocorrelation matrix R, column eigenvector corresponding to the eigenvalue which is used to determine the coefficients of the correction autoregressive model It is a matrix (third matrix) as a component vector. Further, the matrix Σ s of Eq. (27) is a submatrix of the diagonal matrix obtained by the singular value decomposition of the autocorrelation matrix R, and the eigenvalues used for determining the coefficients of the modified autocorrelation model are diagonal components. It is a matrix (second matrix). (27) is a matrix U s Σ s U s T of the equation is a matrix derived from a matrix sigma s and the matrix U s (first matrix).
 (27)式の右辺を計算することにより、修正自己回帰モデルの係数αが求まる。以上、修正自己回帰モデルの係数αの導出方法の一例について説明した。
 尚、本実施形態におけるデータyの自己相関は、確率過程の自己相関を近似するものであれば他の計算式で算出した値に代えてもよい。例えば、R22~Rmmは、時差が0(ゼロ)の自己相関であるが、これらをR11に置き換えてもよい。
By calculating the right side of equation (27), the coefficient α of the modified autoregressive model can be obtained. The example of the method of deriving the coefficient α of the modified autoregressive model has been described above.
The autocorrelation of the data y in the present embodiment may be replaced with a value calculated by another calculation formula as long as it approximates the autocorrelation of the stochastic process. For example, R 22 to R mm are autocorrelation with a time difference of 0 (zero), but these may be replaced with R 11 .
 (23)式に示す自己相関行列Rから抽出する固有値の数sは、例えば、自己相関行列Rの固有値の分布から決定することができる。
 本実施形態では、前述した修正自己回帰モデルの説明における物理量は、軸バネ剛性k1,i、k1,i+1になる。軸バネ剛性k1,i、k1,i+1の値は、鉄道車両の状態に応じて変動する。そこで、まず、鉄道車両を軌道30上で走行させて、軸バネ剛性k1,i、k1,i+1についてのデータyを得る。得られたデータy毎に、(19)式と(21)式とを用いて自己相関行列Rを求める。この自己相関行列Rについて(22)式で表される特異値分解を行うことによって自己相関行列Rの固有値を求める。
The number s of eigenvalues extracted from the autocorrelation matrix R shown in equation (23) can be determined, for example, from the distribution of the eigenvalues of the autocorrelation matrix R.
In the present embodiment, the physical quantities in the description of the modified autoregressive model described above are the shaft spring rigidity k 1, i and k 1, i + 1 . The values of the shaft spring rigidity k 1, i and k 1, i + 1 vary depending on the state of the railway vehicle. Therefore, first, the railroad vehicle is run on the track 30 to obtain data y for the shaft spring rigidity k 1, i and k 1, i + 1 . For each of the obtained data y, the autocorrelation matrix R is obtained using the equations (19) and (21). The eigenvalues of the autocorrelation matrix R are obtained by performing the singular value decomposition represented by Eq. (22) on the autocorrelation matrix R.
 図5は、自己相関行列Rの固有値の分布の一例を示す図である。図5では、軸バネ剛性k1,1のデータyのそれぞれについての自己相関行列Rを特異値分解して得られた固有値σ11~σmmを昇順に並べ替えて、プロットしている。図5の横軸は、固有値のインデックスであり、縦軸は、固有値の値を常用対数で表示したものである。尚、ここでは、(15)式のmを1500とした。また、サンプリング周期を0.002sとした。 FIG. 5 is a diagram showing an example of the distribution of the eigenvalues of the autocorrelation matrix R. In FIG. 5, the eigenvalues σ 11 to σ mm obtained by singular value decomposition of the autocorrelation matrix R for each of the data y of the shaft spring stiffness k 1 and 1 are rearranged in ascending order and plotted. The horizontal axis of FIG. 5 is an index of eigenvalues, and the vertical axis represents the value of eigenvalues in common logarithm. Here, m of equation (15) was set to 1500. The sampling period was set to 0.002 s.
 図5に示す例では、他よりも顕著に高い値をもつ固有値が1つある。図示を省略するが、何れの軸バネ剛性k1,1、k1,2、k1,3、k1,4においても、図5と同様に、他よりも顕著に高い値をもつ固有値が1つあった。このことから、(23)式に示す自己相関行列Rから抽出する固有値の数sとして、例えば、1を採用することができる。この他、例えば、閾値を上回る固有値を抽出することもできる。 In the example shown in FIG. 5, there is one eigenvalue with a significantly higher value than the others. Although not shown, the eigenvalues of all the shaft spring stiffnesses k 1 , 1 , k 1 , 2 , k 1 , 3 , and k 1 , 4 have significantly higher values than the others, as in FIG. There was one. From this, for example, 1 can be adopted as the number s of the eigenvalues extracted from the autocorrelation matrix R shown in the equation (23). In addition, for example, an eigenvalue exceeding the threshold value can be extracted.
 修正自己回帰モデルの係数αは、以下のようにして決定される。
 軸バネ剛性k1,i、k1,i+1のデータyと、予め設定されている数M、mと、に基づいて、(19)式と(21)式とを用いて自己相関行列Rを生成する。
The coefficient α of the modified autoregressive model is determined as follows.
Based on the data y of the shaft spring rigidity k 1, i , k 1, i + 1 , and the preset numbers M, m, the autocorrelation matrix R is calculated using the equations (19) and (21). Generate.
 次に、自己相関行列Rを特異値分解することで、(22)式の直交行列Uおよび対角行列Σを導出し、対角行列Σから自己相関行列Rの固有値σ11~σmmを導出する。
 次に、自己相関行列Rの複数の固有値σ11~σmmのうち、予め定められたs個の固有値σ11~σssを、修正自己回帰モデルの係数αを求めるのに利用する自己相関行列Rの固有値として選択する。
 次に、軸バネ剛性k1,i、k1,i+1のデータyと、固有値σ11~σssと、自己相関行列Rの特異値分解により得られた直交行列Uと、に基づいて、(27)式を用いて、修正自己回帰モデルの係数αを決定する。
Next, the orthogonal matrix U and the diagonal matrix Σ of Eq. (22) are derived by singular value decomposition of the autocorrelation matrix R, and the eigenvalues σ 11 to σ mm of the autocorrelation matrix R are derived from the diagonal matrix Σ. To do.
Next, of the plurality of eigenvalues σ 11 to σ mm of the autocorrelation matrix R, s predetermined eigenvalues σ 11 to σ ss are used to obtain the coefficient α of the modified autoregressive model. Select as the eigenvalue of R.
Next, based on the data y of the axial spring stiffness k 1, i , k 1, i + 1 , the eigenvalues σ 11 to σ ss, and the orthogonal matrix U obtained by the singular value decomposition of the autocorrelation matrix R, ( The coefficient α of the modified autoregressive model is determined using the equation 27).
<検査装置300の構成>
 図3は、検査装置300の機能的な構成の一例を示す図である。図4は、検査装置300のハードウェアの構成の一例を示す図である。
<Configuration of inspection device 300>
FIG. 3 is a diagram showing an example of a functional configuration of the inspection device 300. FIG. 4 is a diagram showing an example of the hardware configuration of the inspection device 300.
 図3において、検査装置300は、その機能として、データ取得部301、軸バネ状態検出部302、判定部303、および出力部304を有する。
 図4において、検査装置300は、CPU401、主記憶装置402、補助記憶装置403、通信回路404、信号処理回路405、画像処理回路406、I/F回路407、ユーザインターフェース408、ディスプレイ409、およびバス410を有する。
In FIG. 3, the inspection device 300 has a data acquisition unit 301, a shaft spring state detection unit 302, a determination unit 303, and an output unit 304 as its functions.
In FIG. 4, the inspection device 300 includes a CPU 401, a main storage device 402, an auxiliary storage device 403, a communication circuit 404, a signal processing circuit 405, an image processing circuit 406, an I / F circuit 407, a user interface 408, a display 409, and a bus. It has 410.
 CPU401は、検査装置300の全体を統括制御する。CPU401は、主記憶装置402をワークエリアとして用いて、補助記憶装置403に記憶されているプログラムを実行する。主記憶装置402は、データを一時的に格納する。補助記憶装置403は、CPU401によって実行されるプログラムの他、各種のデータを記憶する。 The CPU 401 controls the entire inspection device 300 in an integrated manner. The CPU 401 uses the main storage device 402 as a work area to execute a program stored in the auxiliary storage device 403. The main storage device 402 temporarily stores data. The auxiliary storage device 403 stores various data in addition to the program executed by the CPU 401.
 通信回路404は、検査装置300の外部との通信を行うための回路である。通信回路404は、例えば、後述する前後方向力の測定値の情報を受信する。通信回路404は、検査装置300の外部と無線通信を行っても有線通信を行ってもよい。通信回路404は、無線通信を行う場合、鉄道車両に設けられるアンテナに接続される。 The communication circuit 404 is a circuit for communicating with the outside of the inspection device 300. The communication circuit 404 receives, for example, information on the measured value of the front-rear force, which will be described later. The communication circuit 404 may perform wireless communication or wired communication with the outside of the inspection device 300. The communication circuit 404 is connected to an antenna provided on a railroad vehicle when performing wireless communication.
 信号処理回路405は、通信回路404で受信された信号や、CPU401による制御に従って入力した信号に対し、各種の信号処理を行う。データ取得部301は、例えば、CPU401、通信回路404、および信号処理回路405を用いることにより実現される。また、軸バネ状態検出部302および判定部303は、例えば、CPU401および信号処理回路405を用いることにより実現される。 The signal processing circuit 405 performs various signal processing on the signal received by the communication circuit 404 and the signal input according to the control by the CPU 401. The data acquisition unit 301 is realized by using, for example, a CPU 401, a communication circuit 404, and a signal processing circuit 405. Further, the shaft spring state detection unit 302 and the determination unit 303 are realized by using, for example, a CPU 401 and a signal processing circuit 405.
 画像処理回路406は、CPU401による制御に従って入力した信号に対し、各種の画像処理を行う。この画像処理が行われた信号は、ディスプレイ409に出力される。
 ユーザインターフェース408は、オペレータが検査装置300に対して指示を行う部分である。ユーザインターフェース408は、例えば、ボタン、スイッチ、およびダイヤル等を有する。また、ユーザインターフェース408は、ディスプレイ409を用いたグラフィカルユーザインターフェースを有していてもよい。
The image processing circuit 406 performs various image processing on the signal input under the control of the CPU 401. The signal after this image processing is performed is output to the display 409.
The user interface 408 is a part in which the operator gives an instruction to the inspection device 300. The user interface 408 includes, for example, buttons, switches, dials, and the like. Further, the user interface 408 may have a graphical user interface using the display 409.
 ディスプレイ409は、画像処理回路406から出力された信号に基づく画像を表示する。I/F回路407は、I/F回路407に接続される装置との間でデータのやり取りを行う。図4では、I/F回路407に接続される装置として、ユーザインターフェース408およびディスプレイ409を示す。しかしながら、I/F回路407に接続される装置は、これらに限定されない。例えば、可搬型の記憶媒体がI/F回路407に接続されてもよい。また、ユーザインターフェース408の少なくとも一部およびディスプレイ409は、検査装置300の外部にあってもよい。
 出力部303は、例えば、通信回路404および信号処理回路405と、画像処理回路406、I/F回路407、およびディスプレイ409との少なくとも何れか一方を用いることにより実現される。
The display 409 displays an image based on the signal output from the image processing circuit 406. The I / F circuit 407 exchanges data with a device connected to the I / F circuit 407. FIG. 4 shows a user interface 408 and a display 409 as devices connected to the I / F circuit 407. However, the device connected to the I / F circuit 407 is not limited to these. For example, a portable storage medium may be connected to the I / F circuit 407. Further, at least a part of the user interface 408 and the display 409 may be outside the inspection device 300.
The output unit 303 is realized, for example, by using at least one of the communication circuit 404 and the signal processing circuit 405, the image processing circuit 406, the I / F circuit 407, and the display 409.
 尚、CPU401、主記憶装置402、補助記憶装置403、信号処理回路405、画像処理回路406、およびI/F回路407は、バス410に接続される。これらの構成要素間の通信は、バス410を介して行われる。また、検査装置300のハードウェアは、後述する検査装置300の機能を実現することができれば、図4に示すものに限定されない。 The CPU 401, the main storage device 402, the auxiliary storage device 403, the signal processing circuit 405, the image processing circuit 406, and the I / F circuit 407 are connected to the bus 410. Communication between these components takes place via bus 410. Further, the hardware of the inspection device 300 is not limited to that shown in FIG. 4 as long as the functions of the inspection device 300 described later can be realized.
<<データ取得部301>>
 データ取得部301は、検査対象の鉄道車両に対する測定値であって、(3)式および(4)式の計算のために必要な測定値を所定のサンプリング周期で取得する。これにより、各測定値の時系列データが得られる。本実施形態では、例えば、前後方向力FWx,i 、FWx,i 、FWx,i+1 、FWx,i+1 、空気バネ22L、22Rの内圧P 、P 、台車12a、12bに設けられている左側、右側の空気バネ22L、22Rの上下方向における変位zASj 、zASj 、車体11の上下方向の加速度z・・、台車12a、12bの上下方向の加速度zt,j・・、輪軸13a~13b、13c~13dの上下方向の加速度zw,i・・、zw,i+1・・、および鉄道車両の走行速度vが、測定値として得られる。
<< Data acquisition unit 301 >>
The data acquisition unit 301 acquires the measured values for the railway vehicle to be inspected and is necessary for the calculation of the equations (3) and (4) at a predetermined sampling cycle. As a result, time series data of each measured value can be obtained. In the present embodiment, for example, the longitudinal forces F Wx, i L , F Wx, i R , F Wx, i + 1 L , F Wx, i + 1 R , air springs 22 L , 22 R internal pressures P j L , P j R , trolley. Displacements of the left and right air springs 22L and 22R provided on 12a and 12b in the vertical direction z ASj L , z ASj R , vertical acceleration z b of the vehicle body 11 and vertical directions of the carriages 12a and 12b. The acceleration z t, j ..., the vertical acceleration z w, i ..., z w, i + 1 ... of the wheel shafts 13a to 13b, 13c to 13d, and the traveling speed v of the railroad vehicle are obtained as measured values.
 データ取得部301は、車体11の上下方向の加速度z・・の測定値を時間積分することによって、車体11の上下方向における変位zを導出する。データ取得部301は、台車12a、12bの上下方向の加速度zt,j・・の測定値を時間積分することによって、台車12a12bの上下方向の速度zt,j・、変位zt,jを導出する。データ取得部301は、輪軸13a~13b、13c~13dの上下方向の加速度zw,i・・、zw,i+1・・の測定値を時間積分することによって、輪軸13a~13b、13c~13dの上下方向の速度zw,i・、zw,i+1・、変位zw,i、zw,i+1を導出する。
 以下の説明では、データ取得部301により取得・導出される各種の変数(FWx,i 、FWx,i 、FWx,i+1 、FWx,i+1 、P 、P 、zASj 、zASj 、z、zt,j・・、zt,j・、zt,j、zw,i・、zw,i+1・、zw,i、zw,i+1、v)を、必要に応じて、計測データと称する。
The data acquisition unit 301 derives the displacement z b of the vehicle body 11 in the vertical direction by time-integrating the measured values of the acceleration z b ... In the vertical direction of the vehicle body 11. Data acquisition unit 301, carriage 12a, vertical acceleration z t of 12b, by integrating the measured values of j · · time, vertical speed z t of the truck 12A12b, j ·, displacement z t, the j Derived. The data acquisition unit 301 time-integrates the measured values of the vertical accelerations zw , i ..., zw , i + 1 ... Of the wheel sets 13a to 13b and 13c to 13d, so that the wheel sets 13a to 13b and 13c to 13d The vertical velocities z w, i ·, z w, i + 1 ·, displacement z w, i , z w, i + 1 are derived.
In the following description, various variables ( FWx, i L , F Wx, i R , F Wx, i + 1 L , F Wx, i + 1 R , P j L , P j R) acquired and derived by the data acquisition unit 301. , Z ASj L , z ASj R , z b , z t, j ..., z t, j ·, z t, j , z w, i ·, z w, i + 1 ·, z w, i , z w, i + 1 , v) will be referred to as measurement data, if necessary.
<<軸バネ状態検出部302>>
 軸バネ状態検出部302は、データ取得部301により得られた計測データを用いて、軸バネ18L、18Rの剛性(バネ定数)k(k1,i、k1,i+1)を導出する。本実施形態では、軸バネ状態検出部302は、軸バネ剛性導出部302aと、周波数成分調整部302bと、を有する。
<<<軸バネ剛性導出部302a>>>
 軸バネ剛性導出部302aは、データ取得部301により得られた計測データを用いて、(3)式および(4)式の計算を行うことにより、軸バネ剛性k1,i、k1,i+1を所定のサンプリング周期で導出する。
<< Shaft spring state detector 302 >>
The shaft spring state detection unit 302 derives the rigidity (spring constant) k 1 (k 1, i , k 1, i + 1 ) of the shaft springs 18L and 18R using the measurement data obtained by the data acquisition unit 301. To do. In the present embodiment, the shaft spring state detection unit 302 has a shaft spring rigidity lead-out unit 302a and a frequency component adjusting unit 302b.
<<< Shaft spring rigidity lead-out unit 302a >>>
The shaft spring rigidity deriving unit 302a uses the measurement data obtained by the data acquisition unit 301 to perform the calculations of equations (3) and (4), whereby the shaft spring rigidity k 1, i , k 1, i + 1 Is derived at a predetermined sampling period.
 ここで、(3)式、(4)式を用いて、k1,i、k1,i+1を計算する際に、(3)式、(4)式の両辺を、それぞれ、(3)式の左辺の2(zt,j-aθt,j-zw,i)、(4)式の左辺の2(zt,j+aθt,j-zw,i+1)で割る必要がある。即ち、このようにして導出されたk1,i、k1,i+1を求める式において、それぞれ、(3)式の左辺の(zt,j-aθt,j-zw,i)、(4)式の左辺の(zt,j+aθt,j-zw,i+1)が分母になる。以下の説明では、このようにしてk1,i、k1,i+1を求める式の分母に位置する(zt,j-aθt,j-zw,i)、(zt,j+aθt,j-zw,i+1)を必要に応じてk1,i、k1,i+1を求める式の分母と称する。 Here, when calculating k 1, i and k 1, i + 1 using the equations (3) and (4), both sides of the equations (3) and (4) are changed to the equation (3), respectively. It is necessary to divide by 2 (z t, j-t, j- z w, i ) on the left side of, and 2 (z t, j + aθ t, j- z w, i + 1 ) on the left side of equation (4). That is, in the equations for obtaining k 1, i and k 1, i + 1 derived in this way, (z t, j −t, j − z w, i ) and ( i ) on the left side of equation (3), respectively. The denominator is (z t, j + aθ t, j- z w, i + 1 ) on the left side of equation 4). In the following description, it is located in the denominator of the equation for obtaining k 1, i , k 1, i + 1 in this way (z t, j −aθ t, j − z w, i ), (z t, j + aθ t). , J- z w, i + 1 ) is called the denominator of the formula for obtaining k 1, i , k 1, i + 1 as needed.
 この場合、(3)式、(4)式の分母の値が安定せずに、当該分母の値が「0」を跨いで正の値と負の値との双方を有すること(即ち、振動すること)が想定される。この場合、(3)式、(4)式の分母の値が「0」のときに、いわゆるゼロ割計算となるため、軸バネ剛性k1,i、k1,i+1の値が極端に大きくまたは小さくなる。尚、軸バネ剛性k1,i、k1,i+1を連続値として計算する場合(離散化(数値解析)しない場合)には、軸バネ剛性k1,i、k1,i+1の値は発散する。軸バネ剛性k1,i、k1,i+1は、軸バネ18L、18Rに負荷を加えた時の荷重を伸びで割った比例定数であるので、本来であれば、伸びが「0」に近づいた場合でも一定値に収束する性質のものである。しかしながら、計算に用いるデータには誤差(測定誤差や数値誤差)が含まれる。このため、本発明者らは、伸びが「0」に近い場合には計算に用いるデータのS/N比が低下し、このような現象が生じると考えた。極端に大きなまたは小さな軸バネ剛性k1,i、k1,i+1の値には本来の情報が大きく失われていると考えられる。このことから、本発明者らは、以上のようにして導出される軸バネ剛性k1,i、k1,i+1の値を一定程度無効化させた上で時系列データとしたときの高周波数成分(ノイズ)の低減を行った方が、軸バネ剛性の精度を向上させられると考えた。そこで、本実施形態では、軸バネ剛性導出部302aは、以上のようにして導出された軸バネ剛性k1,i、k1,i+1の値が、上限値を上回る場合には、軸バネ剛性k1,i、k1,i+1の値を、当該上限値とし、下限値を下回る場合には、軸バネ剛性k1,i、k1,i+1の値を、当該下限値とする。このようにすることによって軸バネ剛性k1,i、k1,i+1の範囲を制限する。本実施形態では、係数q、qを、0以上の実数として、軸バネ剛性k1,i、k1,i+1の範囲を以下の(28a)式、(28b)式に示す区間に制限するように、上限値(=q×k1,i-)および下限値(=q×k1,i-)を定める。 In this case, the values of the denominators in Eqs. (3) and (4) are not stable, and the value of the denominator straddles "0" and has both a positive value and a negative value (that is, vibration). To do) is assumed. In this case, when the denominator values of Eqs. (3) and (4) are "0", the so-called zero division calculation is performed, so that the values of the shaft spring rigidity k 1, i and k 1, i + 1 are extremely large. Or become smaller. When calculating the shaft spring stiffness k 1, i , k 1, i + 1 as continuous values (when not discretizing (numerical analysis)), the values of the shaft spring stiffness k 1, i , k 1, i + 1 diverge. To do. The shaft spring rigidity k 1, i and k 1, i + 1 are proportional constants obtained by dividing the load when a load is applied to the shaft springs 18L and 18R by the elongation, so that the elongation originally approaches "0". Even if it does, it has the property of converging to a constant value. However, the data used in the calculation includes errors (measurement error and numerical error). Therefore, the present inventors considered that when the elongation is close to "0", the S / N ratio of the data used in the calculation decreases, and such a phenomenon occurs. It is considered that the original information is largely lost in the values of the shaft spring rigidity k 1, i and k 1, i + 1 which are extremely large or small. From this, the present inventors have invalidated the values of the shaft spring stiffnesses k 1, i and k 1, i + 1 derived as described above to a certain extent, and then used them as time-series data. It was thought that the accuracy of the shaft spring rigidity could be improved by reducing the component (noise). Therefore, in the present embodiment, when the values of the shaft spring rigidity k 1, i and k 1, i + 1 derived as described above exceed the upper limit value, the shaft spring rigidity deriving unit 302a has the shaft spring rigidity. The values of k 1, i and k 1, i + 1 are set as the upper limit value, and when the value is lower than the lower limit value, the values of the shaft spring rigidity k 1, i and k 1, i + 1 are set as the lower limit value. By doing so, the range of the shaft spring rigidity k 1, i and k 1, i + 1 is limited. In the present embodiment, the coefficients q 1 and q 2 are real numbers of 0 or more, and the range of the shaft spring rigidity k 1, i , k 1, i + 1 is limited to the sections shown in the following equations (28a) and (28b). The upper limit value (= q 2 × k 1, i −) and the lower limit value (= q 1 × k 1, i −) are set so as to be performed.
Figure JPOXMLDOC01-appb-M000023
Figure JPOXMLDOC01-appb-M000023
 k1,i-は、正常な軸バネ18L、18Rのバネ定数の平均値であり、例えば、設計値を用いることができる(式において、-はkの上に付される(以下、その他の変数についても同様))。以下の説明では、正常な軸バネ18L、18Rのバネ定数の平均値を、必要に応じて、軸バネ剛性の基準値と称する。また、例えば、係数q、qとして、それぞれ、「0.5」、「1.5」を予め設定することができる(q=0.5、q=1.5)。以下の説明では、範囲を(28a)式、(28b)に示す区間に制限することにより軸バネ剛性導出部302aにより導出される軸バネ剛性を、必要に応じて、修正前軸バネ剛性と称する。 k 1, i -is the average value of the spring constants of the normal shaft springs 18L and 18R, and for example, a design value can be used (in the formula,-is added above k (hereinafter, other). The same applies to variables)). In the following description, the average value of the spring constants of the normal shaft springs 18L and 18R will be referred to as a reference value of the shaft spring rigidity, if necessary. Further, for example, "0.5" and "1.5" can be preset as the coefficients q 1 and q 2 , respectively (q 1 = 0.5, q 2 = 1.5). In the following description, the shaft spring rigidity derived by the shaft spring rigidity lead-out unit 302a by limiting the range to the section shown in the equation (28a) and (28b) is referred to as a modified front shaft spring rigidity, if necessary. ..
<<<周波数成分調整部302b>>>
 周波数成分調整部302bは、修正前軸バネ剛性のデータyの時刻kにおける値yを用いて以下の処理を行う。
 まず、周波数成分調整部302bは、修正前軸バネ剛性のデータyと、予め設定されている数M、mと、に基づいて、(19)式と(21)式とを用いて自己相関行列Rを生成する。
<<< Frequency component adjustment unit 302b >>>
The frequency component adjusting unit 302b performs the following processing using the value y k of the modified front shaft spring rigidity data y at the time k.
First, the frequency component adjusting unit 302b uses the equations (19) and (21) to form an autocorrelation matrix based on the data y of the modified front shaft spring rigidity and the preset numbers M and m. Generate R.
 次に、周波数成分調整部302bは、自己相関行列Rを特異値分解することで、(22)式の直交行列Uおよび対角行列Σを導出し、対角行列Σから自己相関行列Rの固有値σ11~σmmを導出する。
 次に、周波数成分調整部302bは、自己相関行列Rの複数の固有値σ11~σmmのうち、s個の固有値σ11~σss(図5に示した例では1個の固有値σ11)を、修正自己回帰モデルの係数αを求めるのに利用する自己相関行列Rの固有値として選択する。
 次に、周波数成分調整部302bは、修正前軸バネ剛性のデータyと、固有値σ11~σssと、自己相関行列Rの特異値分解により得られた直交行列Uと、に基づいて、(27)式を用いて、修正自己回帰モデルの係数αを決定する。
Next, the frequency component adjusting unit 302b derives the orthogonal matrix U and the diagonal matrix Σ of the equation (22) by decomposing the autocorrelation matrix R into singular values, and the eigenvalues of the autocorrelation matrix R are derived from the diagonal matrix Σ. Derivation of σ 11 to σ mm .
Next, the frequency component adjusting unit 302b has s eigenvalues σ 11 to σ ss out of a plurality of eigenvalues σ 11 to σ mm of the autocorrelation matrix R (one eigenvalue σ 11 in the example shown in FIG. 5). Is selected as the eigenvalue of the autocorrelation matrix R used to obtain the coefficient α of the modified autoregressive model.
Next, the frequency component adjusting unit 302b is based on the modified front shaft spring rigidity data y, the eigenvalues σ 11 to σ ss, and the orthogonal matrix U obtained by the singular value decomposition of the autocorrelation matrix R. The coefficient α of the modified autoregressive model is determined using the equation 27).
 そして、周波数成分調整部302bは、修正自己回帰モデルの係数αと、修正前軸バネ剛性のデータyと、に基づいて、(15)式により、修正前軸バネ剛性のデータyの時刻kにおける予測値y^を導出する。このようにして修正前軸バネ剛性のデータyの高周波成分が低減され(低周波成分が抽出され)、修正前軸バネ剛性のデータyが修正される。本実施形態では、周波数成分調整部302bは、このようにして導出される修正前軸バネ剛性のデータyの時刻kにおける予測値y^を、所定のサンプリング周期で導出する。以下の説明では、修正前軸バネ剛性のデータyの時刻kにおける予測値y^を、必要に応じて、修正後軸バネ剛性と称する。 Then, the frequency component adjusting unit 302b is based on the coefficient α of the modified autoregressive model and the modified front shaft spring rigidity data y, according to the equation (15), at the time k of the modified front shaft spring rigidity data y. The predicted value y ^ k is derived. In this way, the high frequency component of the modified front shaft spring rigidity data y is reduced (the low frequency component is extracted), and the modified front shaft spring rigidity data y is corrected. In the present embodiment, the frequency component adjusting unit 302b derives the predicted value y ^ k of the modified front shaft spring rigidity data y derived in this way at time k at a predetermined sampling cycle. In the following description, the predicted value y ^ k of the modified front shaft spring rigidity data y at time k is referred to as the modified rear shaft spring rigidity, if necessary.
<<判定部303>>
 判定部303は、軸バネ状態検出部302により導出された軸バネ剛性k1,i、k1,i+1(修正後軸バネ剛性)に基づいて、軸バネ18L、18Rの剛性(バネ定数)の異常の有無を判定する。例えば、判定部303は、軸バネ状態検出部302により導出された軸バネ剛性k1,i、k1,i+1(修正後軸バネ剛性)と、正常な軸バネ剛性k1,i-、k1,i+1-とを比較した結果に基づいて、軸バネ18L、18Rの剛性(バネ定数)の異常の有無を判定する。例えば、判定部303は、軸バネ状態検出部302により導出された軸バネ剛性k1,i、k1,i+1(修正後軸バネ剛性)と、正常な軸バネ剛性k1,i-、k1,i+1-との差の絶対値が、閾値を上回る場合に、軸バネ18L、18Rの剛性(バネ定数)が異常であると判定し、そうでない場合に、軸バネ18L、18Rの剛性(バネ定数)が異常でないと判定する。
<< Judgment unit 303 >>
The determination unit 303 determines the rigidity (spring constant) of the shaft springs 18L and 18R based on the shaft spring rigidity k 1, i , k 1, i + 1 (corrected shaft spring rigidity) derived by the shaft spring state detection unit 302. ) Is determined to be present. For example, the determination unit 303 has the shaft spring rigidity k 1, i , k 1, i + 1 (corrected shaft spring rigidity) derived by the shaft spring state detection unit 302, and the normal shaft spring rigidity k 1, i −. , K 1, i + 1 −, and the presence or absence of abnormality in the rigidity (spring constant) of the shaft springs 18L and 18R is determined. For example, the determination unit 303 has the shaft spring rigidity k 1, i , k 1, i + 1 (corrected shaft spring rigidity) derived by the shaft spring state detection unit 302, and the normal shaft spring rigidity k 1, i −. , K 1, i + 1-If the absolute value of the difference exceeds the threshold value, it is determined that the rigidity (spring constant) of the shaft springs 18L and 18R is abnormal, and if not, the shaft spring 18L, It is determined that the rigidity (spring constant) of 18R is not abnormal.
 判定部303は、鉄道車両の走行位置に関わらずに以上の判定を行うことができる。ただし、判定部303は、鉄道車両の走行位置を限定して以上の判定を行ってもよい。
 例えば、判定部303は、鉄道車両が直線軌道を走行しているときにのみ、以上の判定を行ってもよいし、鉄道車両が曲線軌道を走行しているときにのみ、以上の判定を行ってもよい。また、判定部303は、鉄道車両が進行方向に向かって右回りの曲線軌道を走行しているときに、左側の軸バネ18Lの異常の有無を判定し、右側の軸バネ18Rの異常の有無を判定しなくてもよい。また、判定部303は、鉄道車両が進行方向に向かって左回りの曲線軌道を走行しているときに、右側の軸バネ18Rの異常の有無を判定し、左側の軸バネ18Lの異常の有無を判定しなくてもよい。
The determination unit 303 can make the above determination regardless of the traveling position of the railway vehicle. However, the determination unit 303 may make the above determination by limiting the traveling position of the railway vehicle.
For example, the determination unit 303 may make the above determination only when the railway vehicle is traveling on a straight track, or may perform the above determination only when the railway vehicle is traveling on a curved track. You may. Further, the determination unit 303 determines whether or not there is an abnormality in the left shaft spring 18L when the railroad vehicle is traveling on a clockwise curved track in the traveling direction, and whether or not there is an abnormality in the right shaft spring 18R. Does not have to be determined. Further, the determination unit 303 determines whether or not there is an abnormality in the right shaft spring 18R when the railroad vehicle is traveling on a counterclockwise curved track in the traveling direction, and whether or not there is an abnormality in the left shaft spring 18L. Does not have to be determined.
 例えば、本実施形態の検査装置300を稼動させる前に、種々の状態の軸バネ18L、18Rの鉄道車両を試験的に走行させることにより軸バネ状態検出部302によって導出された軸バネ剛性k1,i、k1,i+1(修正後軸バネ剛性)の値を取得する。そして、取得した軸バネ剛性k1,i、k1,i+1(修正後軸バネ剛性)の値の大きさから、軸バネ剛性k1,i、k1,i+1(修正後軸バネ剛性)の値が軸バネ18L、18Rが異常であるときに顕著に変化する区間を特定する。このようにして特定される区間を、軸バネ18L、18Rの剛性(バネ定数)の異常の有無の判定を行う区間として予め決定することができる。軸バネ剛性k1,i、k1,i+1(修正後軸バネ剛性)が導出された時刻の鉄道車両の走行位置は、例えば、GPS(Global Positioning System)を用いて当該時刻における鉄道車両の位置を検出することにより得られる。また、当該時刻における鉄道車両の走行位置は、鉄道車両の各時刻における速度の積算値等から求めてもよい。 For example, before operating the inspection device 300 of the present embodiment, the shaft spring rigidity k 1 derived by the shaft spring state detection unit 302 by running a railroad vehicle of the shaft springs 18L and 18R in various states on a trial basis. , I , k 1, i + 1 (corrected shaft spring rigidity) is acquired. Then, the axial spring rigidity k 1 obtained, i, k 1, i + 1 from the magnitude of the value of (corrected axial spring stiffness), the axial spring stiffness k 1, i, k 1, i + 1 (after correction shaft A section in which the value of spring rigidity) changes remarkably when the shaft springs 18L and 18R are abnormal is specified. The section specified in this way can be determined in advance as a section for determining the presence or absence of abnormality in the rigidity (spring constant) of the shaft springs 18L and 18R. The traveling position of the rolling stock at the time when the shaft spring rigidity k 1, i , k 1, i + 1 (corrected shaft spring rigidity) is derived is determined by using, for example, GPS (Global Positioning System). It is obtained by detecting the position of. Further, the traveling position of the railway vehicle at the relevant time may be obtained from the integrated value of the speeds of the railway vehicle at each time.
<<出力部304>>
 出力部304は、判定部303により判定された結果に基づく情報を出力する。具体的に出力部304は、判定部303により、軸バネ18L、18Rの剛性(バネ定数)の少なくとも1つが異常であると判定された場合には、そのことを示す情報を出力する。このとき、出力部304は、剛性(バネ定数)が異常であると判定された軸バネを特定する情報も併せて出力する。出力部304は、軸バネの剛性(バネ定数)が異常であると判定されたタイミングにおける鉄道車両の走行位置を示す情報も併せて出力してもよい。また、出力部304は、判定部303により、軸バネ18L、18Rの全てが異常でないと判定された場合には、そのことを示す情報を出力してもよい。出力の形態としては、例えば、コンピュータディスプレイへの表示、外部装置への送信、および検査装置300の内部または外部の記憶媒体への記憶の少なくとも何れか1つを採用することができる。
<< Output section 304 >>
The output unit 304 outputs information based on the result determined by the determination unit 303. Specifically, when the determination unit 303 determines that at least one of the rigidity (spring constant) of the shaft springs 18L and 18R is abnormal, the output unit 304 outputs information indicating that fact. At this time, the output unit 304 also outputs information for identifying the shaft spring whose rigidity (spring constant) is determined to be abnormal. The output unit 304 may also output information indicating the traveling position of the railway vehicle at the timing when the rigidity (spring constant) of the shaft spring is determined to be abnormal. Further, when the determination unit 303 determines that all of the shaft springs 18L and 18R are not abnormal, the output unit 304 may output information indicating that fact. As the form of output, for example, at least one of display on a computer display, transmission to an external device, and storage in an internal or external storage medium of the inspection device 300 can be adopted.
<動作フローチャート>
 次に、図6のフローチャートを参照しながら、本実施形態の検査装置300における処理の一例を説明する。
 まず、ステップS601において、検査装置300は、検査対象の鉄道車両が検査区間に入るまで待機する。検査対象の鉄道車両が検査区間に入ると、処理は、ステップS602に進む。処理がステップS602に進むと、検査装置300は、所定のサンプリング周期(の開始時刻)が到来するまで待機する。所定のサンプリング周期(の開始時刻)が到来すると、処理はステップS603に進む。処理がステップS603に進むと、データ取得部301は、計測データ(FWx,i 、FWx,i 、FWx,i+1 、FWx,i+1 、P 、P 、zASj 、zASj 、z、zt,j・・、zt,j・、zt,j、zw,i・、zw,i+1・、zw,i、zw,i+1、v)を取得する。
<Operation flowchart>
Next, an example of processing in the inspection device 300 of the present embodiment will be described with reference to the flowchart of FIG.
First, in step S601, the inspection device 300 waits until the railroad vehicle to be inspected enters the inspection section. When the railroad vehicle to be inspected enters the inspection section, the process proceeds to step S602. When the process proceeds to step S602, the inspection device 300 waits until the predetermined sampling cycle (start time) arrives. When the predetermined sampling cycle (start time) arrives, the process proceeds to step S603. When the process proceeds to step S603, the data acquisition unit 301 determines the measurement data ( FWx, i L , F Wx, i R , F Wx, i + 1 L , F Wx, i + 1 R , P j L , P j R , z ASj L , z ASj R , z b , z t, j ..., z t, j ·, z t, j , z w, i ·, z w, i + 1 ·, z w, i , z w, i + 1 , v) is acquired.
 次に、ステップS604において、軸バネ剛性導出部302aは、ステップS603で取得された計測データを用いて、(3)式および(4)式を用いた計算を行うことにより、軸バネ剛性k1,i、k1,i+1(修正前軸バネ剛性)を導出する。このとき、計測データ導出部302aは、軸バネ剛性k1,i、k1,i+1が上限値(=q×k1,i-)を上回る場合、当該軸バネ剛性k1,i、k1,i+1を当該上限値に変更する。また、計測データ導出部302aは、軸バネ剛性k1,i、k1,i+1が下限値(=q×k1,i-)を下回る場合、当該軸バネ剛性k1,i、k1,i+1を当該下限値に変更する。 Next, in step S604, the shaft spring rigidity deriving unit 302a uses the measurement data acquired in step S603 to perform calculations using Eqs. (3) and (4), whereby the shaft spring rigidity k 1 , I , k 1, i + 1 (corrected front axle spring rigidity) is derived. At this time, when the shaft spring rigidity k 1, i , k 1, i + 1 exceeds the upper limit value (= q 2 × k 1, i −), the measurement data derivation unit 302a has the shaft spring rigidity k 1, i , k. 1, i + 1 is changed to the upper limit value. Further, when the shaft spring rigidity k 1, i , k 1, i + 1 is lower than the lower limit value (= q 1 × k 1, i −), the measurement data derivation unit 302a has the shaft spring rigidity k 1, i , k 1 , I + 1 is changed to the lower limit value.
 次に、ステップS605において、周波数成分調整部302bは、修正前軸バネ剛性のデータyと、予め設定されている数M、mと、に基づいて自己相関行列Rを生成する。周波数成分調整部302bは、自己相関行列Rを特異値分解した結果に基づいて自己相関行列Rの固有値σ11~σssを導出する。周波数成分調整部302bは、修正前軸バネ剛性のデータyと、固有値σ11~σssと、自己相関行列Rの特異値分解により得られた直交行列Uと、に基づいて修正自己回帰モデルの係数αを決定する。そして、周波数成分調整部302bは、修正自己回帰モデルの係数αと、修正前軸バネ剛性のデータyと、に基づいて、修正前軸バネ剛性のデータyの時刻kにおける予測値y^を、修正後軸バネ剛性として導出する。尚、ステップS605の処理は、修正前軸バネ剛性のデータの各時刻の値がm個(例えば、1500個)以上ある場合に実行される。修正前軸バネ剛性のデータの各時刻の値がm個以上ない場合には、ステップS605の処理は実行されずに、修正前軸バネ剛性のデータの各時刻の値がm個以上になるまでステップS602~S604の処理が繰り返される。 Next, in step S605, the frequency component adjusting unit 302b generates an autocorrelation matrix R based on the modified front shaft spring rigidity data y and the preset numbers M and m. The frequency component adjusting unit 302b derives the eigenvalues σ 11 to σ ss of the autocorrelation matrix R based on the result of singular value decomposition of the autocorrelation matrix R. The frequency component adjusting unit 302b is a modified autoregressive model based on the modified front shaft spring rigidity data y, the eigenvalues σ 11 to σ ss, and the orthogonal matrix U obtained by singular value decomposition of the autocorrelation matrix R. Determine the coefficient α. Then, the frequency component adjusting unit 302b calculates the predicted value y ^ k at the time k of the modified front shaft spring rigidity data y based on the coefficient α of the modified autoregressive model and the modified front shaft spring rigidity data y. , Derived as the modified shaft spring rigidity. The process of step S605 is executed when the value of each time of the modified front shaft spring rigidity data is m (for example, 1500) or more. If the value of each time of the modified front shaft spring rigidity data is not m or more, the process of step S605 is not executed until the value of each time of the modified front shaft spring rigidity data becomes m or more. The processes of steps S602 to S604 are repeated.
 次に、ステップS606において、判定部303は、ステップS605で導出された軸バネ剛性k1,i、k1,i+1(修正後軸バネ剛性)に基づいて、軸バネ18L、18Rの剛性(バネ定数)が異常であるか否かを判定する。ステップS606の判定の結果、少なくとも1つの軸バネ18L、18Rの剛性(バネ定数)が正常でない場合、処理はステップS607に進む。一方、全ての軸バネ18L、18Rの剛性(バネ定数)が正常である場合、処理はステップS607を省略して後述するステップS608に進む。 Next, in step S606, the determination unit 303 determines the rigidity of the shaft springs 18L and 18R based on the shaft spring rigidity k 1, i and k 1, i + 1 (corrected shaft spring rigidity) derived in step S605. Judge whether or not (spring constant) is abnormal. As a result of the determination in step S606, if the rigidity (spring constant) of at least one of the shaft springs 18L and 18R is not normal, the process proceeds to step S607. On the other hand, when the rigidity (spring constant) of all the shaft springs 18L and 18R is normal, the process skips step S607 and proceeds to step S608 described later.
 処理がステップS607に進むと、出力部304は、軸バネ18L、18Rの剛性(バネ定数)が異常であることを含む非正常情報を出力する。
 次に、ステップS608において、検査装置300は、検査対象の鉄道車両が検査区間を出たか否かを判定する。この判定の結果、検査対象の鉄道車両が検査区間を出ていない場合、処理は、ステップS602に戻り、検査対象の鉄道車両が検査区間を出るまで、ステップS602~S608の処理が繰り返し実行される。そして、ステップS608において、検査対象の鉄道車両が検査区間を出たと判定されると、図6のフローチャートによる処理が終了する。
 尚、ステップS606において、全ての軸バネ18L、18Rの剛性(バネ定数)が正常である場合、出力部304は、全ての軸バネ18L、18Rの剛性(バネ定数)が正常であることを含む正常情報を出力してもよい。
When the process proceeds to step S607, the output unit 304 outputs abnormal information including that the rigidity (spring constant) of the shaft springs 18L and 18R is abnormal.
Next, in step S608, the inspection device 300 determines whether or not the railroad vehicle to be inspected has left the inspection section. As a result of this determination, if the railroad vehicle to be inspected does not leave the inspection section, the process returns to step S602, and the processes of steps S602 to S608 are repeatedly executed until the railroad vehicle to be inspected leaves the inspection section. .. Then, in step S608, when it is determined that the railway vehicle to be inspected has left the inspection section, the process according to the flowchart of FIG. 6 ends.
In step S606, when the rigidity (spring constant) of all the shaft springs 18L and 18R is normal, the output unit 304 includes that the rigidity (spring constant) of all the shaft springs 18L and 18R is normal. Normal information may be output.
<計算例>
 次に、計算例を説明する。ここでは、鉄道車両の運動状態が86自由度を有するものとして、270km/hrで走行する鉄道車両の走行をシミュレーション(数値解析)した結果から、本実施形態における計測データに相当するデータを取得した。このようにして取得されたデータを用いて、本実施形態で説明した手法で軸バネ剛性の導出を行い、シミュレーションで設定した値と、本実施形態で説明した手法で得られた値とを比較した。
 図7は、本計算例において使用した軌条(レール)の曲率1/Rと、通り狂い量yと、高低狂い量yとを示す図である。尚、図7に示す横軸の時間と、図8~図14に示す横軸の時間は対応する。
<Calculation example>
Next, a calculation example will be described. Here, assuming that the motion state of the railroad vehicle has 86 degrees of freedom, data corresponding to the measurement data in the present embodiment was acquired from the result of simulating (numerical analysis) the running of the railroad vehicle traveling at 270 km / hr. .. Using the data acquired in this way, the shaft spring rigidity is derived by the method described in this embodiment, and the value set in the simulation is compared with the value obtained by the method described in this embodiment. did.
FIG. 7 is a diagram showing the curvature 1 / R of the rail used in this calculation example, the amount of deviation y R, and the amount of deviation y H. The time on the horizontal axis shown in FIG. 7 corresponds to the time on the horizontal axis shown in FIGS. 8 to 14.
 通り狂いとは、日本工業規格(JIS E 1001:2001)に記載されているように、レールの長手方向の左右の変位である。通り狂い量は、その変位の量である。高低狂いとは、日本工業規格(JIS E 1001:2001)に記載されているように、レールの長手方向の上下の変位である。高低狂い量は、その変位の量である。
 図7において、曲率1/Rが正であることは、鉄道車両が進行方向に向かって右回りに曲がる方向であることを示す。
Passage is a left-right displacement of the rail in the longitudinal direction, as described in the Japanese Industrial Standards (JIS E 1001: 2001). The amount of deviation is the amount of displacement. High-low deviation is a vertical displacement of the rail in the longitudinal direction as described in the Japanese Industrial Standards (JIS E 1001: 2001). The amount of high-low deviation is the amount of displacement.
In FIG. 7, a positive curvature 1 / R indicates that the railroad vehicle turns clockwise in the direction of travel.
 図8は、本計算例で用いた前後方向力FWx,1、FWx,2、FWx,3、FWx,4の時系列データの第1の例を示す図である。図8では、同一の輪軸13a~13dの左側における前後方向力FWx,i と右側における前後方向力FWx,i との和を示す。図8は、全ての軸バネ18L、18Rが正常である場合の前後方向力FWx,1、FWx,2、FWx,3、FWx,4の時系列データの一例を示す。 FIG. 8 is a diagram showing a first example of time-series data of the front-back directional forces F Wx, 1 , F Wx, 2 , F Wx, 3 , and F Wx, 4 used in this calculation example. FIG. 8 shows the sum of the anteroposterior force F Wx, i L on the left side of the same wheel set 13a to 13d and the anteroposterior force F Wx, i R on the right side. FIG. 8 shows an example of time-series data of the longitudinal forces FWx, 1 , FWx, 2 , FWx, 3 , FWx, 4 when all the shaft springs 18L and 18R are normal.
 図9は、本計算例で用いた前後方向力FWx,1、FWx,2、FWx,3、FWx,4の時系列データの第2の例を示す図である。図9でも、図8と同様に、同一の輪軸13a~13dの左側における前後方向力FWx,i と右側における前後方向力FWx,i との和を示す。図9は、前側の台車12aの前輪(輪軸13a)の左側の軸バネ18Lの剛性(バネ定数)を正常時の1/2倍とした場合の前後方向力FWx,1、FWx,2、FWx,3、FWx,4の時系列データの一例を示す。図9において、normalは、全ての軸バネ18L、18Rが正常である場合の前後方向力FWx,1、FWx,2、FWx,3、FWx,4の時系列データを示す。failは、前側の台車12aの前輪(輪軸13a)の左側の軸バネ18Lの剛性(バネ定数)を正常時の1/2倍とした場合の前後方向力FWx,1、FWx,2、FWx,3、FWx,4の時系列データを示す。尚、normalは、濃度が薄いグラフに対応し、図8に示すグラフと同じである。failは、濃度が濃いグラフに対応する。 FIG. 9 is a diagram showing a second example of time-series data of the front-back directional forces F Wx, 1 , F Wx, 2 , F Wx, 3 , and F Wx, 4 used in this calculation example. In FIG. 9, similarly to FIG. 8, the sum of the front-rear direction forces F Wx, i L on the left side of the same wheel set 13a to 13d and the front-rear direction force F Wx, i R on the right side is shown. FIG. 9 shows the front-rear direction forces F Wx, 1 , F Wx, 2 when the rigidity (spring constant) of the left shaft spring 18L of the front wheel (wheel axle 13a) of the front bogie 12a is halved from the normal state. , FWx, 3 , FWx, 4 shows an example of time-series data. In FIG. 9, normal indicates time series data of the front-rear direction forces F Wx, 1 , F Wx, 2 , F Wx, 3 , and F Wx, 4 when all the shaft springs 18L and 18R are normal. fail is the front-rear direction force F Wx, 1 , F Wx, 2 , when the rigidity (spring constant) of the left shaft spring 18L of the front wheel (wheel set 13a) of the front bogie 12a is halved from the normal state. The time series data of F Wx, 3 and F Wx, 4 are shown. Note that normal corresponds to a graph having a low density and is the same as the graph shown in FIG. fail corresponds to a dense graph.
 図10は、本計算例で用いた前後方向力FWx,1、FWx,2、FWx,3、FWx,4の時系列データの第3の例を示す図である。図10でも、図8および図9と同様に、同一の輪軸13a~13dの左側における前後方向力FWx,i と右側における前後方向力FWx,i との和を示す。図10は、前側の台車12aの前輪(輪軸13a)の右側の軸バネ18Rの剛性(バネ定数)を正常時の1/2倍とした場合の前後方向力FWx,1、FWx,2、FWx,3、FWx,4の時系列データの一例を示す。図10において、normalは、全ての軸バネ18L、18Rが正常である場合の前後方向力FWx,1、FWx,2、FWx,3、FWx,4の時系列データを示す。failは、前側の台車12aの前輪(輪軸13a)の右側の軸バネ18Rの剛性(バネ定数)を正常時の1/2倍とした場合の前後方向力FWx,1、FWx,2、FWx,3、FWx,4の時系列データを示す。尚、normalは、濃度が薄いグラフに対応し、図8に示すグラフと同じである。failは、濃度が濃いグラフに対応する。 FIG. 10 is a diagram showing a third example of time-series data of the front-back directional forces F Wx, 1 , F Wx, 2 , F Wx, 3 , and F Wx, 4 used in this calculation example. Also in FIG. 10, similarly to FIGS. 8 and 9, the sum of the front-rear direction forces F Wx, i L on the left side of the same wheel sets 13a to 13d and the front-rear direction forces F Wx, i R on the right side is shown. FIG. 10 shows the front-rear direction forces F Wx, 1 , F Wx, 2 when the rigidity (spring constant) of the right shaft spring 18R of the front wheel (wheel set 13a) of the front bogie 12a is halved from the normal state. , FWx, 3 , FWx, 4 shows an example of time-series data. In FIG. 10, normal indicates time-series data of the longitudinal forces F Wx, 1 , F Wx, 2 , F Wx, 3 , and F Wx, 4 when all the shaft springs 18L and 18R are normal. fail is the front-rear direction force F Wx, 1 , F Wx, 2 , when the rigidity (spring constant) of the right shaft spring 18R of the front wheel (wheel set 13a) of the front bogie 12a is halved from the normal state. The time series data of F Wx, 3 and F Wx, 4 are shown. Note that normal corresponds to a graph having a low density and is the same as the graph shown in FIG. fail corresponds to a dense graph.
 図11は、修正前軸バネ剛性k1,1、k1,2、k1,3、k1,4の時系列データの一例を示す図である。ここでは、(28a)式、(28b)式の係数q、qを、それぞれ、「0.5」、「1.5」とした(q=0.5、q=1.5)。
 図11において、基準は、正常な軸バネ18L、18Rのバネ定数の平均値k1,1-、k1,2-、k1,3-、k1,4-を示す。推定値は、本実施形態の手法で得られた修正前軸バネ剛性k1,1、k1,2、k1,3、k1,4を示す。尚、基準は、濃度が薄いグラフに対応する。推定値は、濃度が濃いグラフに対応する。図11に示す例のように、修正前軸バネ剛性k1,1、k1,2、k1,3、k1,4が不安定な場合がある。尚、図11は、全ての軸バネ18L、18Rが正常である場合の修正前軸バネ剛性k1,1、k1,2、k1,3、k1,4の時系列データの一例を示す。
FIG. 11 is a diagram showing an example of time-series data of the modified front shaft spring rigidity k 1 , 1 , k 1 , 2 , k 1 , 3 , and k 1 , 4 . Here, the coefficients q 1 and q 2 of the equations (28a) and (28b) are set to "0.5" and "1.5", respectively (q 1 = 0.5, q 2 = 1.5). ).
11, reference is normal axis spring 18L, the average value k of the spring constant of 18R 1, 1 - indicates a -, k 1,2 -, k 1,3 -, k 1,4. The estimated values show the modified front shaft spring rigidity k 1 , 1 , k 1 , 2 , k 1 , 3 , and k 1 , 4 obtained by the method of the present embodiment. The standard corresponds to a graph having a low density. Estimates correspond to denser graphs. As in the example shown in FIG. 11, the modified front shaft spring rigidity k 1 , 1 , k 1 , 2 , k 1 , 3 , and k 1 , 4 may be unstable. Note that FIG. 11 shows an example of time-series data of the modified front shaft spring rigidity k 1 , 1 , k 1 , 2 , k 1 , 3 , k 1 , 4 when all the shaft springs 18L and 18R are normal. Shown.
 図12は、修正後軸バネ剛性k1,1、k1,2、k1,3、k1,4の時系列データの第1の例を示す図である。図12は、全ての軸バネ18L、18Rが正常である場合の修正後軸バネ剛性k1,1、k1,2、k1,3、k1,4の時系列データの一例を示す。即ち、図12は、図11に示す修正前軸バネ剛性k1,1、k1,2、k1,3、k1,4の時系列データから本実施形態の手法により得られた修正後軸バネ剛性k1,1、k1,2、k1,3、k1,4の時系列データを示す。図12において、基準は、正常な軸バネ18L、18Rのバネ定数の平均値k1,1-、k1,2-、k1,3-、k1,4-を示す。推定値は、本実施形態の手法で得られた修正後軸バネ剛性k1,1、k1,2、k1,3、k1,4を示す。尚、基準は、濃度が薄いグラフに対応する。推定値は、濃度が濃いグラフに対応する。 FIG. 12 is a diagram showing a first example of time-series data of the modified shaft spring rigidity k 1 , 1 , k 1 , 2 , k 1 , 3 , and k 1 , 4 . FIG. 12 shows an example of time-series data of the modified shaft spring rigidity k 1 , 1 , k 1 , 2 , k 1 , 3 , and k 1 , 4 when all the shaft springs 18L and 18R are normal. That is, FIG. 12 shows the modified front shaft spring rigidity k 1 , 1 , k 1 , 2 , k 1 , 3 , k 1 , 4 shown in FIG. 11 after modification obtained by the method of the present embodiment. The time series data of the shaft spring rigidity k 1 , 1 , k 1 , 2 , k 1 , 3 , and k 1 , 4 are shown. 12, reference is normal axis spring 18L, the average value k of the spring constant of 18R 1, 1 - indicates a -, k 1,2 -, k 1,3 -, k 1,4. The estimated values show the modified shaft spring stiffness k 1 , 1 , k 1 , 2 , k 1 , 3 , and k 1 , 4 obtained by the method of the present embodiment. The standard corresponds to a graph having a low density. Estimates correspond to denser graphs.
 図12において、本実施形態の手法で得られた修正後軸バネ剛性k1,1、k1,2、k1,3、k1,4(推定値)の平均値は、それぞれ、正常な軸バネ18L、18Rのバネ定数の平均値k1,1-、k1,2-、k1,3-、k1,4-(基準値)の平均値の1.02倍、1.08倍、1.02倍、1.08倍であった。図7に示す時間が0秒から15秒程度までの直線軌道においては、本実施形態の手法で得られた修正後軸バネ剛性k1,1、k1,2、k1,3、k1,4(推定値)の平均値は、それぞれ、正常な軸バネ18L、18Rのバネ定数の平均値k1,1-、k1,2-、k1,3-、k1,4-(基準値)の平均値の1.02倍、1.09倍、1.03倍、1.07倍であった。
 以上のように、全ての軸バネ18L、18Rが正常である場合、本実施形態の手法では、鉄道車両の運動状態が86自由度を有するものとして鉄道車両の走行をシミュレーション(数値解析)するときに設定した値と同等の結果が得られることが分かる。
In FIG. 12, the average values of the modified shaft spring rigidity k 1 , 1 , k 1 , 2 , k 1 , 3 , and k 1 , 4 (estimated values) obtained by the method of the present embodiment are normal, respectively. axial springs 18L, the average value of the spring constant of 18R k 1,1 -, k 1,2 - , k 1,3 -, k 1,4 - 1.02 times the average value (reference value), 1.08 It was double, 1.02 times, and 1.08 times. In the linear orbit with the time shown in FIG. 7 from 0 seconds to about 15 seconds, the modified shaft spring rigidity k 1 , 1 , k 1 , 2 , k 1 , 3 , k 1 obtained by the method of the present embodiment is used. , 4 (estimated values) are the average values of the spring constants of the normal shaft springs 18L and 18R, k 1 , 1- , k 1 , 2, -, k 1 , 3- , k 1 , 4- (, respectively. It was 1.02 times, 1.09 times, 1.03 times, and 1.07 times the average value of the reference value).
As described above, when all the shaft springs 18L and 18R are normal, in the method of the present embodiment, when simulating the running of the railroad vehicle (numerical analysis) assuming that the motion state of the railroad vehicle has 86 degrees of freedom. It can be seen that the same result as the value set in is obtained.
 図13は、修正後軸バネ剛性k1,1、k1,2、k1,3、k1,4の時系列データの第2の例を示す図である。図13は、前側の台車12aの前輪(輪軸13a)の左側の軸バネ18Lの剛性(バネ定数)を正常時の1/2倍とした場合の修正後軸バネ剛性k1,1、k1,2、k1,3、k1,4の時系列データの一例を示す。図13において、基準は、正常な軸バネ18L、18Rのバネ定数の平均値k1,1-、k1,2-、k1,3-、k1,4-を示す。推定値は、本実施形態の手法で得られた修正後軸バネ剛性k1,1、k1,2、k1,3、k1,4を示す。尚、基準は、濃度が薄いグラフに対応する。推定値は、濃度が濃いグラフに対応する。 FIG. 13 is a diagram showing a second example of time-series data of the modified shaft spring rigidity k 1 , 1 , k 1 , 2 , k 1 , 3 , and k 1 , 4 . FIG. 13 shows the modified rear shaft spring rigidity k 1 , 1 , k 1 when the rigidity (spring constant) of the left shaft spring 18L of the front wheel (wheel axle 13a) of the front carriage 12a is halved from the normal state. An example of time-series data of , 2 , k 1 , 3 , and k 1 , 4 is shown. 13, reference is normal axis spring 18L, the average value k of the spring constant of 18R 1, 1 - indicates a -, k 1,2 -, k 1,3 -, k 1,4. The estimated values show the modified shaft spring stiffness k 1 , 1 , k 1 , 2 , k 1 , 3 , and k 1 , 4 obtained by the method of the present embodiment. The standard corresponds to a graph having a low density. Estimates correspond to denser graphs.
 図13において、本実施形態の手法で得られた修正後軸バネ剛性k1,1、k1,2、k1,3、k1,4(推定値)の平均値は、それぞれ、正常な軸バネ18L、18Rのバネ定数の平均値k1,1-、k1,2-、k1,3-、k1,4-(基準値)の平均値の0.61倍、1.08倍、1.04倍、1.09倍であった。図7に示す時間が0秒から15秒程度までの直線軌道においては、本実施形態の手法で得られた修正後軸バネ剛性k1,1、k1,2、k1,3、k1,4(推定値)の平均値は、それぞれ、正常な軸バネ18L、18Rのバネ定数の平均値k1,1-、k1,2-、k1,3-、k1,4-(基準値)の平均値の0.77倍、1.08倍、1.04倍、1.08倍であった。
 以上のように、前側の台車12aの前輪(輪軸13a)の左側の軸バネ18Lの剛性(バネ定数)を正常時の1/2倍とした場合でも、本実施形態の手法では、鉄道車両の運動状態が86自由度を有するものとして鉄道車両の走行をシミュレーション(数値解析)するときに設定した値と同等の結果が得られることが分かる。
In FIG. 13, the average values of the modified shaft spring rigidity k 1 , 1 , k 1 , 2 , k 1 , 3 , and k 1 , 4 (estimated values) obtained by the method of the present embodiment are normal, respectively. axial springs 18L, the average value of the spring constant of 18R k 1,1 -, k 1,2 - , k 1,3 -, k 1,4 - 0.61 times the average value (reference value), 1.08 It was double, 1.04 times, and 1.09 times. In the linear orbit with the time shown in FIG. 7 from 0 seconds to about 15 seconds, the modified shaft spring rigidity k 1 , 1 , k 1 , 2 , k 1 , 3 , k 1 obtained by the method of the present embodiment is used. , 4 (estimated values) are the average values of the spring constants of the normal shaft springs 18L and 18R, k 1 , 1- , k 1 , 2, -, k 1 , 3- , k 1 , 4- (, respectively. It was 0.77 times, 1.08 times, 1.04 times, and 1.08 times the average value of the reference value).
As described above, even when the rigidity (spring constant) of the left shaft spring 18L of the front wheel (wheelset 13a) of the front bogie 12a is halved of the normal state, the method of the present embodiment is that of the railcar. It can be seen that a result equivalent to the value set when simulating (numerical analysis) the running of a railroad vehicle is obtained assuming that the motion state has 86 degrees of freedom.
 軸バネ剛性k1,i、k1,i+1は、左右方向に間隔を有して並ぶ軸箱17L、17Rに取り付けられている軸バネ18L、18Rの剛性(バネ定数)の平均値である。従って、前側の台車12aの前輪(輪軸13a)の左側の軸バネ18Lの剛性(バネ定数)を正常時の1/2倍とすると、理論的に、軸バネ剛性の平均値は、正常時の0.75倍(=(1.0+0.5)÷2)になる。図13に示す結果では、前側の台車12aの前輪(輪軸13a)の軸バネの剛性(バネ定数)が、正常時の0.77倍となり、0.75倍に近い値を示す。 The shaft spring rigidity k 1, i and k 1, i + 1 are average values of the rigidity (spring constant) of the shaft springs 18L and 18R attached to the shaft boxes 17L and 17R arranged at intervals in the left-right direction. Therefore, assuming that the rigidity (spring constant) of the left shaft spring 18L of the front wheel (wheel axle 13a) of the front bogie 12a is 1/2 times the normal value, theoretically, the average value of the shaft spring rigidity is the normal value. It becomes 0.75 times (= (1.0 + 0.5) ÷ 2). In the result shown in FIG. 13, the rigidity (spring constant) of the shaft spring of the front wheel (wheel axle 13a) of the front bogie 12a is 0.77 times that in the normal state, which is close to 0.75 times.
 図14は、修正後軸バネ剛性k1,1、k1,2、k1,3、k1,4の時系列データの第2の例を示す図である。図14は、前側の台車12aの前輪(輪軸13a)の右側の軸バネ18Rの剛性(バネ定数)を正常時の1/2倍とした場合の修正後軸バネ剛性k1,1、k1,2、k1,3、k1,4の時系列データの一例を示す。図14において、基準は、正常な軸バネ18L、18Rのバネ定数の平均値k1,1-、k1,2-、k1,3-、k1,4-を示す。推定値は、本実施形態の手法で得られた修正後軸バネ剛性k1,1、k1,2、k1,3、k1,4を示す。尚、基準は、濃度が薄いグラフに対応する。推定値は、濃度が濃いグラフに対応する。 FIG. 14 is a diagram showing a second example of time-series data of the modified shaft spring rigidity k 1 , 1 , k 1 , 2 , k 1 , 3 , and k 1 , 4 . FIG. 14 shows the modified rear shaft spring rigidity k 1 , 1 , k 1 when the rigidity (spring constant) of the right shaft spring 18R of the front wheel (wheel axle 13a) of the front carriage 12a is halved from the normal state. An example of time-series data of , 2 , k 1 , 3 , and k 1 , 4 is shown. 14, reference is normal axis spring 18L, the average value k of the spring constant of 18R 1, 1 - indicates a -, k 1,2 -, k 1,3 -, k 1,4. The estimated values show the modified shaft spring stiffness k 1 , 1 , k 1 , 2 , k 1 , 3 , and k 1 , 4 obtained by the method of the present embodiment. The standard corresponds to a graph having a low density. Estimates correspond to denser graphs.
 図14において、本実施形態の手法で得られた修正後軸バネ剛性k1,1、k1,2、k1,3、k1,4(推定値)の平均値は、それぞれ、正常な軸バネ18L、18Rのバネ定数の平均値k1,1-、k1,2-、k1,3-、k1,4-(基準値)の平均値の0.74倍、1.07倍、1.03倍、1.09倍であった。図7に示す時間が0秒から15秒程度までの直線軌道においては、本実施形態の手法で得られた修正後軸バネ剛性k1,1、k1,2、k1,3、k1,4(推定値)の平均値は、それぞれ、正常な軸バネ18L、18Rのバネ定数の平均値k1,1-、k1,2-、k1,3-、k1,4-(基準値)の平均値の0.76倍、1.08倍、1.04倍、1.08倍であった。 In FIG. 14, the average values of the modified shaft spring rigidity k 1 , 1 , k 1 , 2 , k 1 , 3 , and k 1 , 4 (estimated values) obtained by the method of the present embodiment are normal, respectively. 0.74 times, 1.07 times the average value of the average values of the spring constants of the shaft springs 18L and 18R, k 1,1- , k 1 , 2, -, k 1,3- , k 1,4- (reference value) It was double, 1.03 times, and 1.09 times. In the linear orbit with the time shown in FIG. 7 from 0 seconds to about 15 seconds, the modified shaft spring rigidity k 1 , 1 , k 1 , 2 , k 1 , 3 , k 1 obtained by the method of the present embodiment is used. , 4 (estimated values) are the average values of the spring constants of the normal shaft springs 18L and 18R, k 1 , 1- , k 1 , 2, -, k 1 , 3- , k 1 , 4- (, respectively. It was 0.76 times, 1.08 times, 1.04 times, and 1.08 times the average value of the reference value).
 以上のように、前側の台車12aの前輪(輪軸13a)の右側の軸バネ18Rの剛性(バネ定数)を正常時の1/2倍とした場合でも、本実施形態の手法では、鉄道車両の運動状態が86自由度を有するものとして鉄道車両の走行をシミュレーション(数値解析)するときに設定した値と同等の結果が得られることが分かる。 As described above, even when the rigidity (spring constant) of the shaft spring 18R on the right side of the front wheel (wheelset 13a) of the front bogie 12a is set to 1/2 times the normal state, the method of the present embodiment uses the method of the railroad vehicle. It can be seen that the same result as the value set when simulating (numerical analysis) the running of the railroad vehicle is obtained assuming that the motion state has 86 degrees of freedom.
 また、前側の台車12aの前輪(輪軸13a)の右側の軸バネ18Rの剛性(バネ定数)を正常時の1/2倍とすると、理論的に、軸バネ剛性の平均値は正常時の0.75倍(=(1.0+0.5)÷2)になる。図14に示す結果では、前側の台車12aの前輪(輪軸13a)の軸バネの剛性(バネ定数)が、正常時の0.76倍となり、0.75倍に近い値を示す。 Further, assuming that the rigidity (spring constant) of the shaft spring 18R on the right side of the front wheel (wheel set 13a) of the front bogie 12a is 1/2 times the normal value, theoretically, the average value of the shaft spring rigidity is 0 at the normal time. It becomes .75 times (= (1.0 + 0.5) ÷ 2). In the result shown in FIG. 14, the rigidity (spring constant) of the shaft spring of the front wheel (wheel axle 13a) of the front bogie 12a is 0.76 times that in the normal state, which is close to 0.75 times.
 また、図13および図14に示す結果では、鉄道車両が曲がる方向(進行方向に向かって右側)における軸バネ18Rの剛性(バネ定数)よりも、反対側(左側)における軸バネ18Lの剛性(バネ定数)の方が小さくなる(図13および図14の一番上のグラフを参照)。従って、曲線軌道において軸バネ18L、18Rの剛性(バネ定数)の異常の有無を判定する場合、鉄道車両が曲がる方向とは逆の方向における軸バネの剛性(バネ定数)の異常の有無の判定が行い易くなる。 Further, in the results shown in FIGS. 13 and 14, the rigidity of the shaft spring 18L on the opposite side (left side) of the rigidity (spring constant) of the shaft spring 18R in the direction in which the railroad vehicle bends (on the right side in the traveling direction) The spring constant) is smaller (see the top graphs of FIGS. 13 and 14). Therefore, when determining the presence or absence of an abnormality in the rigidity (spring constant) of the shaft springs 18L and 18R in a curved track, it is determined whether or not there is an abnormality in the rigidity (spring constant) of the shaft spring in the direction opposite to the bending direction of the railroad vehicle. Is easier to do.
<まとめ>
 以上のように本実施形態では、検査装置300は、前後方向力(FWx,i +FWx,i +FWx,i+1 +FWx,i+1 )の測定値を用いて、軸バネ18L、18Rの状態を検出する。具体的に、検査装置300は、左右方向に間隔を有して並ぶ左側の軸バネ18Lおよび右側の軸バネ18Rが受ける力の平均値(k1,i(zt,j-aθt,j-zw,i)、k1,i+1(zt,j+aθt,j-zw,i+1))を表現する数式を用いて、軸バネ剛性k1,i、k1,i+1を導出する。当該数式は、台車12a、12bの上下動を表す運動方程式((1)式)と、台車12a、12bのピッチングを表す運動方程式((2)式)とに基づいて導出される。そして、検査装置300は、導出した軸バネ剛性k1,i、k1,i+1に基づいて、軸バネ18L、18Rの剛性(バネ定数)が正常であるか否かを判定する。
 従って、軸バネ18L、18Rの剛性(バネ定数)の状態を正確に検出することができる。これにより、軸バネ18L、18Rの剛性(バネ定数)が正常であるか否かを正確に判定することが可能になる。
<Summary>
As described above, in the present embodiment, the inspection device 300 uses the measured values of the longitudinal force (F Wx, i L + F Wx, i R + F Wx, i + 1 L + F Wx, i + 1 R ) to obtain the shaft spring 18L. The state of 18R is detected. Specifically, in the inspection device 300, the average value of the forces received by the left shaft spring 18L and the right shaft spring 18R arranged at intervals in the left-right direction (k 1, i (z t, j −t, j) Axle spring stiffness k 1, i , k 1, i + 1 is derived using a mathematical formula expressing −z w, i ), k 1, i + 1 (z t, j + aθ t, j − z w, i + 1 )). .. The formula is derived based on the equation of motion (Equation (1)) representing the vertical movement of the carriages 12a and 12b and the equation of motion (Equation (2)) representing the pitching of the carriages 12a and 12b. Then, the inspection device 300 determines whether or not the rigidity (spring constant) of the shaft springs 18L and 18R is normal based on the derived shaft spring rigidity k 1, i and k 1, i + 1 .
Therefore, the state of rigidity (spring constant) of the shaft springs 18L and 18R can be accurately detected. This makes it possible to accurately determine whether or not the rigidity (spring constant) of the shaft springs 18L and 18R is normal.
 ここで、前記数式は、空気バネ22L、22Rが受ける荷重(FASzj 、FASzj )と、左右方向に間隔を有して間隔を有して並ぶ左側の軸ダンパ19Lおよび右側の軸ダンパ19Rが受ける力の平均値(c{2zt,j・-(zw,i・+zw,i+1・)})と、ピッチングにおいて軸ダンパ19L、19Rより台車12a、12bが受ける力のモーメント(a{-2aθt,j・-(zw,i・-zw,i+1・)})と、台車12a、12bが受ける遠心力(m1/2(1/Rsinφrail,i+1/Ri+1sinφrail,i+1))と、台車12a、12bが受ける重力(mg(1-1/2cosφrail,i-1/2cosφrail,i+1))と、前後方向力に基づいて台車12a、12bが受ける力のモーメント(h(FWx,i +FWx,i +FWx,i+1 +FWx,i+1 )と、台車12a、12bの上下方向における慣性力(mt,j・・)と、ピッチングにおいて台車12a、12bが受ける力のモーメントの総和(It,yθt,j・・)とに基づいて、左右方向に間隔を有して間隔を有して並ぶ左側の軸バネ18Lおよび右側の軸バネ18Rが受ける力の平均値(k1,i(zt,j-aθt,j-zw,i)、k1,i+1(zt,j+aθt,j-zw,i+1))を導出する数式である。そして、検査装置300は、当該数式を用いて、軸バネ剛性k1,i、k1,i+1を導出する。従って、軸バネ18L、18Rの状態を示す物理量を直接の評価対象とすることができる。 Here, the above formula is based on the load ( FASzj L , FASzj R ) received by the air springs 22L and 22R, and the left shaft damper 19L and the right shaft damper 19L arranged at intervals in the left-right direction. The average value of the force received by 19R (c 1 {2z t, j ·-(z w, i · + z w, i + 1 ·)}) and the moment of force received by the axle dampers 19L and 19R from the axle dampers 19L and 19R. (a 1 c 1 {-2a 1 θ t, j · - (z w, i · -z w, i + 1 ·)}) and the centrifugal force the bogie 12a, 12b is subjected (m t v 2 1/2 (1 / R i sinφ rail, i + 1 / R i + 1 sinφ rail, i + 1)) and, carriage 12a, 12b is subjected to gravity (m t g (1-1 / 2cosφ rail, i -1 / 2cosφ rail, i + 1)) and, The moment of force (h 1 (F Wx, i L + F Wx, i R + F Wx, i + 1 L + F Wx, i + 1 R ) received by the trolleys 12a and 12b based on the front-rear direction force) and the trolleys 12a and 12b in the vertical direction. Yes inertia (m t z t, j ·· ) and, carriage 12a in pitching, 12b based on the receive sum of moments of force and (I t, y θ t, j ··), a distance in the lateral direction The average value of the forces received by the left shaft spring 18L and the right shaft spring 18R arranged at intervals (k 1, i (z t, j −a θ t, j − z w, i ), k 1, It is a formula for deriving i + 1 (z t, j + aθ t, j- z w, i + 1 )), and the inspection device 300 uses the formula to determine the shaft spring rigidity k 1, i , k 1, i + 1 . Therefore, the physical quantity indicating the state of the shaft springs 18L and 18R can be directly evaluated.
 また、本実施形態では、検査装置300は、以上のようにして導出した軸バネ剛性k1,i、k1,i+1が、上限値を上回る場合には、当該軸バネ剛性k1,i、k1,i+1を当該上限値とする。また、検査装置300は、以上のようにして導出した軸バネ剛性k1,i、k1,i+1が、下限値を上回る場合には、当該軸バネ剛性k1,i、k1,i+1を当該下限値とする。従って、軸バネ剛性k1,i、k1,i+1の値が極端に大きくまたは小さくなることを抑制することができる。よって、軸バネ18L、18Rが正常であるか否かをより正確に判定することができる。 Further, in the present embodiment, when the shaft spring rigidity k 1, i , k 1, i + 1 derived as described above exceeds the upper limit value, the inspection device 300 has the shaft spring rigidity k 1, i , Let k 1, i + 1 be the upper limit value. Further, when the shaft spring rigidity k 1, i , k 1, i + 1 derived as described above exceeds the lower limit value, the inspection device 300 determines the shaft spring rigidity k 1, i , k 1, i + 1 . The lower limit is used. Therefore, it is possible to prevent the values of the shaft spring rigidity k 1, i and k 1, i + 1 from becoming extremely large or small. Therefore, it is possible to more accurately determine whether or not the shaft springs 18L and 18R are normal.
 また、本実施形態では、検査装置300は、以上のようにして導出した軸バネ剛性k1,i、k1,i+1(修正前軸バネ剛性)のデータyから、自己相関行列Rを生成する。検査装置300は、自己相関行列Rを特異値分解して得られた固有値のうち、最大の値を有する固有値を用いて、軸バネ剛性k1,i、k1,i+1(修正前軸バネ剛性)のデータyを近似する修正自己回帰モデルの係数αを決定する。そして、検査装置300は、決定した係数αを用いて、軸バネ剛性k1,i、k1,i+1を修正する(修正後軸バネ剛性を導出する)。従って、カットオフ周波数の調整等を行わなくても、軸バネ剛性k1,i、k1,i+1に含まれるノイズを適切に低減することができる。よって、軸バネ18L、18Rが正常であるか否かをより正確に判定することができるようにすることができる。 Further, in the present embodiment, the inspection device 300 generates an autocorrelation matrix R from the data y of the shaft spring rigidity k 1, i , k 1, i + 1 (corrected front shaft spring rigidity) derived as described above. .. The inspection device 300 uses the eigenvalue having the largest value among the eigenvalues obtained by decomposing the autocorrelation matrix R into singular values, and uses the eigenvalues k 1, i , k 1, i + 1 (corrected front shaft spring rigidity). ), The coefficient α of the modified autoregressive model that approximates the data y is determined. Then, the inspection device 300 corrects the shaft spring rigidity k 1, i and k 1, i + 1 by using the determined coefficient α (the corrected shaft spring rigidity is derived). Therefore, the noise contained in the shaft spring rigidity k 1, i and k 1, i + 1 can be appropriately reduced without adjusting the cutoff frequency or the like. Therefore, it is possible to more accurately determine whether or not the shaft springs 18L and 18R are normal.
<変形例>
 前述したように、修正自己回帰モデルを用いずに、ローパスフィルタやバンドバスフィルタを用いてもよい。また、軸バネ剛性k1,i、k1,i+1の時系列データが安定している場合、検査装置300は、軸バネ剛性k1,i、k1,i+1の時系列データをそのまま用いて、軸バネ18L、18R(の剛性(バネ定数))が正常であるか否かを判定してもよい。また、このような場合には、軸バネ剛性k1,i、k1,i+1の上下限値への変更を行わなくてもよい。
 また、前述したように、枕バネは空気バネである必要はなく、使用するバネの種類に応じて枕バネより台車が受ける荷重を計算するようにすればよい。
<Modification example>
As described above, a low-pass filter or a band-pass filter may be used instead of the modified autoregressive model. Further, when the time series data of the shaft spring rigidity k 1, i , k 1, i + 1 is stable, the inspection device 300 uses the time series data of the shaft spring rigidity k 1, i , k 1, i + 1 as it is. , It may be determined whether or not the shaft springs 18L and 18R (rigidity (spring constant)) are normal. Further, in such a case, it is not necessary to change the shaft spring rigidity to the upper and lower limit values of k 1, i and k 1, i + 1 .
Further, as described above, the pillow spring does not have to be an air spring, and the load received by the bogie from the pillow spring may be calculated according to the type of spring used.
(第2の実施形態)
 次に、第2の実施形態を説明する。
 第1の実施形態では、鉄道車両に搭載した検査装置300が、軸バネ18L、18R(の剛性(バネ定数))が正常であるか否かを判定する場合を例に挙げて説明した。これに対し、本実施形態では、検査装置300の一部の機能が実装されたデータ処理装置が、指令所に配置される。このデータ処理装置は、鉄道車両から送信される計測データを受信し、受信した計測データを用いて、検査対象の鉄道車両における軸バネ18L、18R(の剛性(バネ定数))が正常であるか否かを判定する。このように、本実施形態では、第1の実施形態の検査装置300が有する機能を、鉄道車両と指令所とで分担して実行する。本実施形態と第1の実施形態とは、このことによる構成および処理が主として異なる。従って、本実施形態の説明において、第1の実施形態と同一の部分については、図1~図14に付した符号と同一の符号を付す等して詳細な説明を省略する。
(Second Embodiment)
Next, the second embodiment will be described.
In the first embodiment, a case where the inspection device 300 mounted on the railroad vehicle determines whether or not the shaft springs 18L and 18R (rigidity (spring constant)) are normal has been described as an example. On the other hand, in the present embodiment, a data processing device equipped with some functions of the inspection device 300 is arranged at the command center. This data processing device receives the measurement data transmitted from the railroad vehicle, and uses the received measurement data to check whether the shaft springs 18L and 18R (rigidity (spring constant)) of the railroad vehicle to be inspected are normal. Judge whether or not. As described above, in the present embodiment, the functions of the inspection device 300 of the first embodiment are shared and executed by the railway vehicle and the command center. The configuration and processing according to this are mainly different between the present embodiment and the first embodiment. Therefore, in the description of the present embodiment, detailed description of the same parts as those of the first embodiment will be omitted by adding the same reference numerals as those given in FIGS. 1 to 14.
 図15は、検査システムの構成の一例を示す図である。図15において、検査システムは、データ収集装置1510a、1510bと、データ処理装置1520とを有する。図15には、データ収集装置1510a、1510bおよびデータ処理装置1520の機能的な構成の一例も示す。尚、データ収集装置1510a、1510bおよびデータ処理装置1520のハードウェアは、例えば、図4に示すもので実現することができる。従って、データ収集装置1510a、1510bおよびデータ処理装置1520のハードウェアの構成の詳細な説明を省略する。 FIG. 15 is a diagram showing an example of the configuration of the inspection system. In FIG. 15, the inspection system includes data collecting devices 1510a and 1510b and a data processing device 1520. FIG. 15 also shows an example of the functional configuration of the data collecting devices 1510a and 1510b and the data processing device 1520. The hardware of the data collecting devices 1510a and 1510b and the data processing device 1520 can be realized by, for example, those shown in FIG. Therefore, detailed description of the hardware configuration of the data collection devices 1510a and 1510b and the data processing device 1520 will be omitted.
 鉄道車両のそれぞれには、データ収集装置1510a、1510bが1つずつ搭載される。データ処理装置1520は、指令所に配置される。指令所は、例えば、複数の鉄道車両の運行を集中管理する。 Each railroad vehicle is equipped with one data collection device 1510a and one 1510b. The data processing device 1520 is located at the command center. The command center, for example, centrally manages the operation of a plurality of rolling stock.
<データ収集装置1510a、1510b>
 データ収集装置1510a、1510bは、同じもので実現することができる。データ収集装置1510a、1510bは、データ取得部1511a、1511bと、データ送信部1512a、1512bとを有する。
< Data collection devices 1510a, 1510b>
The data collection devices 1510a and 1510b can be realized by the same device. The data acquisition devices 1510a and 1510b include data acquisition units 1511a and 1511b and data transmission units 1512a and 1512b.
<<データ取得部1511a、1511b>>
 データ取得部1511a、1511bは、軌道情報取得部501および鉄道車両状態情報取得部502と同じ機能を有する。即ち、データ取得部1511a、1511bは、データ取得部301と同様に、計測データ(FWx,i 、FWx,i 、FWx,i+1 、FWx,i+1 、P 、P 、zASj 、zASj 、z、zt,j・・、zt,j・、zt,j、zw,i・、zw,i+1・、zw,i、zw,i+1、v)を取得する。
<< Data acquisition units 1511a, 1511b >>
The data acquisition units 1511a and 1511b have the same functions as the track information acquisition unit 501 and the railway vehicle state information acquisition unit 502. That is, the data acquisition units 1511a and 1511b, like the data acquisition unit 301, measure data ( FWx, i L , F Wx, i R , F Wx, i + 1 L , F Wx, i + 1 R , P j L , P j R , z ASj L , z ASj R , z b , z t, j ..., z t, j ·, z t, j , z w, i ·, z w, i + 1 ·, z w, i , z Acquire w, i + 1 , v).
<<データ送信部1512a、1512b>>
 データ送信部1512a、1512bは、データ取得部1511a、1511bで取得された検査対象の鉄道車両の計測データを、データ処理装置1520に送信する。本実施形態では、データ送信部1512a、1512bは、データ取得部1511a、1511bで取得された検査対象の鉄道車両の計測データを、無線通信により、データ処理装置1520に送信する。このとき、データ送信部1512a、1512bは、データ収集装置1510a、1510bが搭載されている鉄道車両の識別番号を、データ取得部1511a、1511bで取得された検査対象の鉄道車両の計測データに付加する。このようにデータ送信部1512a、1512bは、検査対象の鉄道車両の計測データのデータとして、鉄道車両の識別番号が付加されたデータを送信する。
<< Data transmitters 1512a, 1512b >>
The data transmission units 1512a and 1512b transmit the measurement data of the railway vehicle to be inspected acquired by the data acquisition units 1511a and 1511b to the data processing device 1520. In the present embodiment, the data transmission units 1512a and 1512b transmit the measurement data of the railway vehicle to be inspected acquired by the data acquisition units 1511a and 1511b to the data processing device 1520 by wireless communication. At this time, the data transmission units 1512a and 1512b add the identification number of the railroad vehicle on which the data collection devices 1510a and 1510b are mounted to the measurement data of the railroad vehicle to be inspected acquired by the data acquisition units 1511a and 1511b. .. In this way, the data transmission units 1512a and 1512b transmit data to which the identification number of the railway vehicle is added as the data of the measurement data of the railway vehicle to be inspected.
<データ処理装置1520>
<<データ受信部1521>>
 データ受信部1521は、データ送信部1512a、1512bにより送信された検査対象の鉄道車両の計測データのデータを受信する。検査対象の鉄道車両の計測データには、当該測定値の送信元である鉄道車両の識別番号が付加されている。
<Data processing device 1520>
<< Data receiver 1521 >>
The data receiving unit 1521 receives the data of the measurement data of the railway vehicle to be inspected transmitted by the data transmitting units 1512a and 1512b. The identification number of the railway vehicle that is the source of the measured value is added to the measurement data of the railway vehicle to be inspected.
<<データ記憶部1522>>
 データ記憶部1522は、データ受信部1521で受信された検査対象の鉄道車両の計測データを記憶する。データ記憶部1522は、鉄道車両の識別番号ごとに検査対象の鉄道車両の計測データを記憶する。データ記憶部1522は、鉄道車両の現在の運行状況と、検査対象の鉄道車両の計測データの受信時刻とに基づいて、当該検査対象の鉄道車両の計測データの受信時刻における鉄道車両の走行位置を特定し、特定した走行位置の情報と、当該検査対象の鉄道車両の計測データとを相互に関連付けて記憶する。尚、データ収集装置1510a、1510bが、鉄道車両の現在の走行位置の情報を収集し、取集した情報を、検査対象の鉄道車両の計測データに付加してもよい。
<< Data storage unit 1522 >>
The data storage unit 1522 stores the measurement data of the railway vehicle to be inspected received by the data reception unit 1521. The data storage unit 1522 stores the measurement data of the railway vehicle to be inspected for each identification number of the railway vehicle. Based on the current operation status of the railroad vehicle and the reception time of the measurement data of the railroad vehicle to be inspected, the data storage unit 1522 determines the traveling position of the railroad vehicle at the reception time of the measurement data of the railroad vehicle to be inspected. The information of the specified running position and the measurement data of the railroad vehicle to be inspected are stored in association with each other. The data collection devices 1510a and 1510b may collect information on the current traveling position of the railway vehicle, and the collected information may be added to the measurement data of the railway vehicle to be inspected.
<<データ読み出し部1523>>
 データ読み出し部1523は、データ記憶部1522により記憶された検査対象の鉄道車両の計測データを読み出す。データ読み出し部1523は、データ記憶部1522により記憶された検査対象の鉄道車両の計測データのうち、オペレータにより指定された計測データを読み出すことができる。また、データ読み出し部1523は、予め定められたタイミングで、検査対象の鉄道車両の計測データのうち予め定められた条件に合致する測定値を読み出すこともできる。本実施形態では、データ読み出し部1523により読み出される検査対象の鉄道車両の計測データは、例えば、鉄道車両の識別番号および走行位置の少なくとも何れか1つに基づいて決定される。
<< Data reader 1523 >>
The data reading unit 1523 reads out the measurement data of the railway vehicle to be inspected stored by the data storage unit 1522. The data reading unit 1523 can read the measurement data specified by the operator from the measurement data of the railway vehicle to be inspected stored by the data storage unit 1522. In addition, the data reading unit 1523 can also read out the measured values that match the predetermined conditions from the measurement data of the railway vehicle to be inspected at a predetermined timing. In the present embodiment, the measurement data of the railway vehicle to be inspected read by the data reading unit 1523 is determined based on, for example, at least one of the identification number of the railway vehicle and the traveling position.
 軸バネ状態検出部302、判定部303、および出力部304は、第1の実施形態と説明したものと同じである。従って、ここでは、その詳細な説明を省略する。尚、軸バネ状態検出部302は、データ取得部301で取得された検査対象の鉄道車両の計測データに代えてデータ読み出し部1523で読み出された検査対象の鉄道車両の計測データを用いて、検査対象の鉄道車両における軸バネ剛性(修正後軸バネ剛性)を導出する。 The shaft spring state detection unit 302, the determination unit 303, and the output unit 304 are the same as those described in the first embodiment. Therefore, the detailed description thereof will be omitted here. The shaft spring state detection unit 302 uses the measurement data of the railroad vehicle to be inspected read by the data reading unit 1523 instead of the measurement data of the railcar to be inspected acquired by the data acquisition unit 301. Derived the shaft spring rigidity (corrected shaft spring rigidity) of the railroad vehicle to be inspected.
<まとめ>
 以上のように本実施形態では、鉄道車両に搭載されたデータ収集装置1510a、1510bは、検査対象の鉄道車両の計測データを収集してデータ処理装置1520に送信する。指令所に配置されたデータ処理装置1520は、データ収集装置1510a、1510bから受信した検査対象の鉄道車両の計測データを記憶し、記憶した検査対象の鉄道車両の計測データを用いて、検査対象の鉄道車両における軸バネ18L、18R(の剛性(バネ定数))が正常であるか否かを判定する。従って、第1の実施形態で説明した効果に加え、例えば、以下の効果を奏する。即ち、データ処理装置1520は、検査対象の鉄道車両の計測データを任意のタイミングで読み出すことにより、任意のタイミングで、指令所が管理している各鉄道車両における軸バネ18L、18Rの剛性(バネ定数)が正常であるか否かを判定することができる。
<Summary>
As described above, in the present embodiment, the data collecting devices 1510a and 1510b mounted on the railroad vehicle collect the measurement data of the railroad vehicle to be inspected and transmit it to the data processing device 1520. The data processing device 1520 arranged at the command center stores the measurement data of the rolling stock to be inspected received from the data collecting devices 1510a and 1510b, and uses the stored measurement data of the rolling stock to be inspected to be inspected. It is determined whether or not the shaft springs 18L and 18R (rigidity (spring constant)) of the railroad vehicle are normal. Therefore, in addition to the effects described in the first embodiment, for example, the following effects are exhibited. That is, the data processing device 1520 reads the measurement data of the railroad vehicle to be inspected at an arbitrary timing, and at an arbitrary timing, the rigidity (spring) of the shaft springs 18L and 18R in each railroad vehicle managed by the command center. It can be determined whether or not the constant) is normal.
<変形例>
 本実施形態では、データ収集装置1510a、1510bからデータ処理装置1520に検査対象の鉄道車両の計測データを直接送信する場合を例に挙げて説明した。しかしながら、必ずしもこのようにする必要はない。例えば、クラウドコンピューティングを利用して検査システムを構築してもよい。
 また、本実施形態では、データ収集装置1510a、1510bが計測データの全てを取得する場合を例に挙げて説明した。しかしながら、必ずしもこのようにする必要はない。例えば、計測データのうち、測定値から得られる変数(z、zt,j・、zt,j、zw,i・、zw,i+1・、zw,i、zw,i+1)は、データ処理装置1520において導出してもよい。
 その他、本実施形態においても、第1の実施形態で説明した種々の変形例を採用することができる。
<Modification example>
In the present embodiment, the case where the measurement data of the railroad vehicle to be inspected is directly transmitted from the data collecting devices 1510a and 1510b to the data processing device 1520 has been described as an example. However, it is not always necessary to do this. For example, an inspection system may be constructed using cloud computing.
Further, in the present embodiment, the case where the data collecting devices 1510a and 1510b acquire all of the measured data has been described as an example. However, it is not always necessary to do this. For example, among the measurement data, variables obtained from the measured values (z b , z t, j ·, z t, j , z w, i ·, z w, i + 1 ·, z w, i , z w, i + 1 ) May be derived in the data processing device 1520.
In addition, in this embodiment as well, various modifications described in the first embodiment can be adopted.
(第3の実施形態)
 次に、第3の実施形態を説明する。第1の実施形態では、(3)式および(4)式の計算を行うことにより、軸バネ剛性k1,i、k1,i+1を所定のサンプリング周期で導出する。このようにすると、(3)式、(4)式の分母の値が「0」のときに、いわゆるゼロ割計算となる。従って、軸バネ剛性k1,i、k1,i+1の範囲を制限する必要がある((28a)式、(28b)式を参照)。また、第1の実施形態では、軸バネ剛性k1,i、k1,i+1(修正前軸バネ剛性)のデータyとして、時系列データを導出する。このため、ノイズ成分を除去する必要がある。
(Third Embodiment)
Next, a third embodiment will be described. In the first embodiment, the shaft spring stiffnesses k 1, i and k 1, i + 1 are derived in a predetermined sampling period by performing the calculations of the equations (3) and (4). In this way, when the value of the denominator of the equations (3) and (4) is "0", so-called zero division calculation is performed. Therefore, it is necessary to limit the range of the shaft spring rigidity k 1, i and k 1, i + 1 (see equations (28a) and (28b)). Further, in the first embodiment, time series data is derived as data y of the shaft spring rigidity k 1, i , k 1, i + 1 (corrected front shaft spring rigidity). Therefore, it is necessary to remove the noise component.
 以上のことから、第1の実施形態では、軸バネ剛性k1,i、k1,i+1を導出するための計算負荷が高くなる。そこで、本実施形態では、検査区間における計測データ(FWx,i 、FWx,i 、FWx,i+1 、FWx,i+1 、P 、P 、zASj 、zASj 、z、zt,j・・、zt,j・、zt,j、zw,i・、zw,i+1・、zw,i、zw,i+1、v)に基づいて、検査区間における軸バネ剛性k1,i、k1,i+1を、1つの輪軸ごとに1つずつ導出する。このように本実施形態と、第1の実施形態とは、軸バネ剛性k1,i、k1,i+1を導出するための構成および処理が主として異なる。従って、本実施形態の説明において、第1の実施形態と同一の部分については、図1~図14に付した符号と同一の符号を付す等して詳細な説明を省略する。 From the above, in the first embodiment, the calculation load for deriving the shaft spring rigidity k 1, i and k 1, i + 1 becomes high. Therefore, in the present embodiment, the measurement data in the inspection section ( FWx, i L , F Wx, i R , F Wx, i + 1 L , F Wx, i + 1 R , P j L , P j R , z ASj L , z Based on ASj R , z b , z t, j ..., z t, j ·, z t, j , z w, i ·, z w, i + 1 ·, z w, i , z w, i + 1 , v) Then, the shaft spring rigidity k 1, i and k 1, i + 1 in the inspection section are derived one by one for each wheel set. As described above, the configuration and processing for deriving the shaft spring rigidity k 1, i , k 1, i + 1 are mainly different between the present embodiment and the first embodiment. Therefore, in the description of the present embodiment, detailed description of the same parts as those of the first embodiment will be omitted by adding the same reference numerals as those given in FIGS. 1 to 14.
 図16は、検査装置1600の機能的な構成の一例を示す図である。検査装置1600は、検査装置300に置き換わるものである。検査装置1600のハードウェアの構成は、例えば、図4に示したものと同じである。 FIG. 16 is a diagram showing an example of the functional configuration of the inspection device 1600. The inspection device 1600 replaces the inspection device 300. The hardware configuration of the inspection device 1600 is, for example, the same as that shown in FIG.
 図16において、検査装置1600は、その機能として、データ取得部1601、軸バネ状態検出部1602、判定部1603、および出力部1604を有する。 In FIG. 16, the inspection device 1600 has a data acquisition unit 1601, a shaft spring state detection unit 1602, a determination unit 1603, and an output unit 1604 as its functions.
<<データ取得部1601>>
 データ取得部1601は、検査対象の鉄道車両が検査区間を走行しているときに、後述する計算のために必要な測定値を所定のサンプリング周期で取得する。データ取得部1601は、データ取得部301と同様に、計測データ(FWx,i 、FWx,i 、FWx,i+1 、FWx,i+1 、P 、P 、zASj 、zASj 、z、zt,j・・、zt,j・、zt,j、zw,i・、zw,i+1・、zw,i、zw,i+1、v)を得る。第1の実施形態では、データ取得部301は、所定のサンプリング周期で計測データが得られる度に、当該計測データを軸バネ状態検出部302に出力する。これに対し、本実施形態では、データ取得部1601は、検査区間における計測データが得られた時点で、当該検査区間における計測データを一括して軸バネ状態検出部1602に出力してもよい。ただし、データ取得部1601は、データ取得部301と同様に、所定のサンプリング周期で計測データが得られる度に、当該計測データを軸バネ状態検出部302に出力してもよい。
<< Data acquisition unit 1601 >>
The data acquisition unit 1601 acquires the measured values required for the calculation described later at a predetermined sampling cycle when the railway vehicle to be inspected is traveling in the inspection section. Similar to the data acquisition unit 301, the data acquisition unit 1601 has measurement data ( FWx, i L , F Wx, i R , F Wx, i + 1 L , F Wx, i + 1 R , P j L , P j R , z. ASj L , z ASj R , z b , z t, j ..., z t, j ·, z t, j , z w, i ·, z w, i + 1 ·, z w, i , z w, i + 1 , v) is obtained. In the first embodiment, the data acquisition unit 301 outputs the measurement data to the shaft spring state detection unit 302 every time the measurement data is obtained in a predetermined sampling cycle. On the other hand, in the present embodiment, the data acquisition unit 1601 may collectively output the measurement data in the inspection section to the shaft spring state detection unit 1602 when the measurement data in the inspection section is obtained. However, similarly to the data acquisition unit 301, the data acquisition unit 1601 may output the measurement data to the shaft spring state detection unit 302 each time the measurement data is obtained in a predetermined sampling cycle.
<<軸バネ状態検出部1602>>
 軸バネ状態検出部1602は、データ取得部1601により得られた計測データを用いて、軸バネ18L、18Rの剛性(バネ定数)k(k1,i、k1,i+1)を導出する。本実施形態では、軸バネ状態検出部1602は、軸バネ剛性導出部1602aを有する。
<<<軸バネ剛性導出部1602a>>>
 軸バネ剛性導出部1602aは、データ取得部1601により検査区間における計測データが得られると起動する。軸バネ剛性導出部1602aは、データ取得部1601により得られた検査区間における計測データを用いて、検査区間における軸バネ剛性k1,i、k1,i+1を導出する。
<< Shaft spring state detector 1602 >>
The shaft spring state detection unit 1602 derives the rigidity (spring constant) k 1 (k 1, i , k 1, i + 1 ) of the shaft springs 18L and 18R using the measurement data obtained by the data acquisition unit 1601. To do. In the present embodiment, the shaft spring state detection unit 1602 has a shaft spring rigidity lead-out unit 1602a.
<<< Shaft spring rigidity lead-out unit 1602a >>>
The shaft spring rigidity derivation unit 1602a is activated when the data acquisition unit 1601 obtains the measurement data in the inspection section. The shaft spring rigidity derivation unit 1602a derives the shaft spring rigidity k 1, i , k 1, i + 1 in the inspection section by using the measurement data in the inspection section obtained by the data acquisition unit 1601.
 (3)式は、前輪(輪軸13a、13c)において左右方向に間隔を有して並ぶ左側の軸バネ18Lおよび右側の軸バネ18Rが受ける力の平均値を表す方程式である。(3)式において、k1,iと(zt,j-aθt,j-zw,i)との積は、前輪(輪軸13a、13c)において左右方向に間隔を有して並ぶ左側の軸バネ18Lおよび右側の軸バネ18Rが受ける力の平均値である。また、k1,iは、前輪(輪軸13a、13c)において左右方向に間隔を有して並ぶ左側の軸バネ18Lおよび右側の軸バネ18Rの剛性(バネ定数)の平均値である。従って、(zt,j-aθt,j-zw,i)は、前輪(輪軸13a、13c)において左右方向に間隔を有して並ぶ左側の軸バネ18Lおよび右側の軸バネ18Rの変位の平均値を表す。 Equation (3) is an equation representing the average value of the forces received by the left shaft spring 18L and the right shaft spring 18R arranged at intervals in the left-right direction on the front wheels (wheel sets 13a and 13c). In equation (3), the product of k 1, i and (z t, j-t, j- z w, i ) is on the left side of the front wheels ( axles 13a, 13c) arranged with a space in the left-right direction. It is the average value of the forces received by the shaft spring 18L and the right shaft spring 18R. Further, k 1 and i are average values of rigidity (spring constant) of the left shaft spring 18L and the right shaft spring 18R arranged at intervals in the left-right direction on the front wheels (wheel sets 13a and 13c). Therefore, (z t, j-t, j- z w, i ) is the displacement of the left shaft spring 18L and the right shaft spring 18R arranged at intervals in the left-right direction on the front wheels ( wheel axles 13a, 13c). Represents the average value of.
 (3)式において、k1,iと(zt,j-aθt,j-zw,i)との積のみを左辺とし、(3)式のその他の定数および変数を右辺とすると、以下の(29)式のようになる。 In equation (3) , assuming that only the product of k 1, i and (z t, j −aθ t, j − z w, i ) is on the left side, and the other constants and variables in equation (3) are on the right side. It becomes like the following equation (29).
Figure JPOXMLDOC01-appb-M000024
Figure JPOXMLDOC01-appb-M000024
 (4)式は、後輪(輪軸13b、13d)において左右方向に間隔を有して並ぶ左側の軸バネ18Lおよび右側の軸バネ18Rが受ける力の平均値を表す方程式である。(4)式において、k1,i+1と(zt,j+aθt,j-zw,i+1)との積は、後輪(輪軸13b、13d)において左右方向に間隔を有して並ぶ左側の軸バネ18Lおよび右側の軸バネ18Rが受ける力の平均値である。また、k1,i+1は、後輪(輪軸13b、13d)において左右方向に間隔を有して並ぶ左側の軸バネ18Lおよび右側の軸バネ18Rの剛性(バネ定数)の平均値である。従って、(zt,j+aθt,j-zw,i+1)は、後輪(輪軸13b、13d)において左右方向に間隔を有して並ぶ左側の軸バネ18Lおよび右側の軸バネ18Rの変位の平均値を表す。 Equation (4) is an equation representing the average value of the forces received by the left shaft spring 18L and the right shaft spring 18R arranged at intervals in the left-right direction on the rear wheels (wheel sets 13b and 13d). In equation (4), the product of k 1, i + 1 and (z t, j + aθ t, j- z w, i + 1 ) is the left side of the rear wheels ( axles 13b, 13d) lined up with a space in the left-right direction. It is the average value of the forces received by the shaft spring 18L and the right shaft spring 18R. Further, k 1 and i + 1 are average values of the rigidity (spring constant) of the left shaft spring 18L and the right shaft spring 18R arranged at intervals in the left-right direction on the rear wheels (wheel sets 13b and 13d). Therefore, (z t, j + aθ t, j- z w, i + 1 ) is the displacement of the left shaft spring 18L and the right shaft spring 18R arranged at intervals in the left-right direction on the rear wheels ( wheel axles 13b, 13d). Represents the average value of.
 (4)式において、k1,i+1と(zt,j+aθt,j-zw,i+1)との積のみを左辺とし、(4)式のその他の定数および変数を右辺とすると、以下の(30)式のようになる。 In equation (4), assuming that only the product of k 1, i + 1 and (z t, j + aθ t, j- z w, i + 1 ) is the left side, and the other constants and variables in equation (4) are the right side, the following It becomes like the equation (30) of.
Figure JPOXMLDOC01-appb-M000025
Figure JPOXMLDOC01-appb-M000025
 以下の説明では、(29)式および(30)式の左辺の((zt,j-aθt,j-zw,i)、(zt,j+aθt,j-zw,i+1))を、必要に応じて、変位と略称する。また、(29)式および(30)式の右辺の式を、必要に応じて、復元力と称する。 In the following description, ((z t, j −t, j − z w, i ), (z t, j + aθ t, j − z w, i + 1 ) on the left side of equations (29) and (30)). ) Is abbreviated as displacement, if necessary. Further, the equations on the right side of equations (29) and (30) are referred to as restoring force, if necessary.
 軸バネ剛性導出部1602aは、同一のサンプリング周期の計測データを用いて、変位(zt,j-aθt,j-zw,i)、(zt,j+aθt,j-zw,i+1)を導出する。尚、第1の実施形態で説明したように、θt,jは、(11)式を解くことにより導出される。また、軸バネ剛性導出部1602aは、同一のサンプリング周期の計測データを用いて、復元力を導出する。軸バネ剛性導出部1602aは、同一のサンプリング周期の計測データを用いて導出した変位および復元力の組を1つのデータセットとして作成する。軸バネ剛性導出部1602aは、検査区間における計測データに対して、このようなデータセットを作成する。これにより、検査対象の鉄道車両が検査区間を走行しているときに計時される各サンプリング時刻におけるデータセットが作成される。以下の説明では、検査対象の鉄道車両が検査区間を走行しているときに計時される各サンプリング時刻におけるデータセットを、必要に応じて、検査区間におけるデータセットと称する。 The shaft spring rigidity deriving unit 1602a uses the measurement data of the same sampling period to displace (z t, j −t, j − z w, i ), (z t, j + aθ t, j − z w,). i + 1 ) is derived. As described in the first embodiment, θ t and j are derived by solving Eq. (11). Further, the shaft spring rigidity derivation unit 1602a derives the restoring force by using the measurement data of the same sampling period. The shaft spring rigidity derivation unit 1602a creates a set of displacement and restoring force derived using measurement data of the same sampling period as one data set. The shaft spring rigidity derivation unit 1602a creates such a data set for the measurement data in the inspection section. As a result, a data set at each sampling time measured when the railroad vehicle to be inspected is traveling in the inspection section is created. In the following description, the data set at each sampling time measured when the railroad vehicle to be inspected is traveling in the inspection section is referred to as a data set in the inspection section, if necessary.
 軸バネ剛性導出部1602aは、検査区間におけるデータセットに基づいて、復元力と変位との関係を示す単回帰式を導出する。復元力をFRとし、変位をDIとする。また、目的変数を復元力FRとし、説明変数を変位DIとする。そうすると、復元力と変位との関係を示す単回帰式は、以下の(31)式で表される。 The shaft spring rigidity derivation unit 1602a derives a simple regression equation showing the relationship between the restoring force and the displacement based on the data set in the inspection section. Let the restoring force be FR i and the displacement be DI i . The objective variable is the restoring force FR i , and the explanatory variable is the displacement DI i . Then, the simple regression equation showing the relationship between the restoring force and the displacement is expressed by the following equation (31).
 FR=α×DI+β ・・・(31)
 α、βは、回帰係数である。αは、説明変数DIに乗算される回帰係数であり、単回帰式の傾きに対応する。βは、単回帰式の切片に対応する。添え字iは、輪軸13a、13b、13c、13dを識別するための記号である(i=1、2、3、4は、それぞれ、輪軸13a、13b、13c、13dに対応する)。
FR i = α i × DI i + β i ... (31)
α i and β i are regression coefficients. α i is a regression coefficient that is multiplied by the explanatory variable DI i , and corresponds to the slope of the simple regression equation. β i corresponds to the intercept of the simple regression equation. The subscript i is a symbol for identifying the wheel sets 13a, 13b, 13c, and 13d (i = 1, 2, 3, and 4 correspond to the wheel sets 13a, 13b, 13c, and 13d, respectively).
 (31)式の単回帰式を導出することは、回帰係数α、βを導出することと等価である。回帰係数α、βは、例えば、最小二乗法により導出される。 Derivation of the simple regression equation of Eq. (31) is equivalent to deriving the regression coefficients α i and β i . The regression coefficients α i and β i are derived, for example, by the method of least squares.
 軸バネ剛性導出部1602aは、回帰係数α、βのうち、単回帰式の傾きを表す回帰係数αを、検査区間における軸バネ剛性k1,i、k1,i+1として導出する。回帰係数α、βは、輪軸13a~13dごとに導出される。 Axial spring rigidity deriving unit 1602a includes regression coefficients alpha i, of the beta i, a regression coefficient alpha i representing the inclination of the single regression equation, the axial spring rigidity k 1, i in the test section, derived as k 1, i + 1. The regression coefficients α i and β i are derived for each wheel set 13a to 13d.
 添え字iを1とし、添え字jを1としたときの(29)式の左辺の(zt,j-aθt,j-zw,i)の値が、輪軸13aにおける変位DIになる。添え字iを1とし、添え字jを1としたときの(29)式の右辺の値が、輪軸13aにおける復元力FRになる。このようにして得られる変位DIおよび復元力FRを用いることにより、輪軸13aに対する回帰係数αが導出される。回帰係数αは、添え字iを1としたときの(29)式のk1,iである。即ち、回帰係数αは、輪軸13aにおいて左右方向に間隔を有して並ぶ左側の軸バネ18Lおよび右側の軸バネ18Rが受ける力の平均値k1,1となる。 The value of (z t, j −a θ t, j − z w, i ) on the left side of equation (29) when the subscript i is 1 and the subscript j is 1 is the displacement DI 1 on the wheel set 13a. Become. When the subscript i is 1 and the subscript j is 1, the value on the right side of the equation (29) is the restoring force FR 1 on the wheel set 13a. By using the displacement DI 1 and the restoring force FR 1 thus obtained, the regression coefficient α 1 with respect to the wheel set 13a is derived. The regression coefficient α 1 is k 1, i of Eq. (29) when the subscript i is 1. That is, the regression coefficient α 1 is an average value k 1 , 1 of the forces received by the left shaft spring 18L and the right shaft spring 18R arranged at intervals in the left-right direction on the wheel axle 13a.
 添え字iを1とし、添え字jを1としたときの(30)式の左辺の(zt,j+aθt,j-zw,i+1)の値が、輪軸13bにおける変位DIになる。添え字iを1とし、添え字jを1としたときの(30)式の右辺の値が、輪軸13bにおける復元力FRになる。このようにして得られる変位DIおよび復元力FRを用いることにより、輪軸13bに対する回帰係数αが導出される。回帰係数αは、添え字iを1としたときの(30)式のk1,i+1である。即ち、回帰係数αは、輪軸13bにおいて左右方向に間隔を有して並ぶ左側の軸バネ18Lおよび右側の軸バネ18Rが受ける力の平均値k1,2となる。 The value of (z t, j + aθ t, j- z w, i + 1 ) on the left side of equation (30) when the subscript i is 1 and the subscript j is 1 is the displacement DI 2 on the wheel set 13b. .. When the subscript i is 1 and the subscript j is 1, the value on the right side of the equation (30) is the restoring force FR 2 on the wheel set 13b. By using the displacement DI 2 and the restoring force FR 2 obtained in this way, the regression coefficient α 2 with respect to the wheel set 13b is derived. The regression coefficient α 2 is k 1, i + 1 of the equation (30) when the subscript i is 1. That is, the regression coefficient α 2 is an average value k 1 and 2 of the forces received by the left shaft spring 18L and the right shaft spring 18R arranged at intervals in the left-right direction on the wheel axle 13b.
 添え字iを3とし、添え字jを2としたときの(29)式の左辺の(zt,j-aθt,j-zw,i)の値が、輪軸13cにおける変位DIになる。添え字iを3とし、添え字jを2としたときの(29)式の右辺の値が、輪軸13cにおける復元力FRになる。このようにして得られる変位DIおよび復元力FRを用いることにより、輪軸13cに対する回帰係数αが導出される。回帰係数αは、添え字iを3としたときの(29)式のk1,iである。即ち、回帰係数αは、輪軸13cにおいて左右方向に間隔を有して並ぶ左側の軸バネ18Lおよび右側の軸バネ18Rが受ける力の平均値k1,3となる。 The value of (z t, j −a θ t, j − z w, i ) on the left side of equation (29) when the subscript i is 3 and the subscript j is 2, is the displacement DI 3 on the wheel set 13c. Become. When the subscript i is 3 and the subscript j is 2, the value on the right side of the equation (29) is the restoring force FR 3 on the wheel set 13c. By using the displacement DI 3 and the restoring force FR 3 thus obtained, the regression coefficient α 3 with respect to the wheel set 13c is derived. The regression coefficient α 3 is k 1, i of Eq. (29) when the subscript i is 3. That is, the regression coefficient α 3 is an average value k 1 , 3 of the forces received by the left shaft spring 18L and the right shaft spring 18R arranged at intervals in the left-right direction on the wheel axle 13c.
 添え字iを3とし、添え字jを2としたときの(30)式の左辺の(zt,j+aθt,j-zw,i+1)の値が、輪軸13dにおける変位DIになる。添え字iを3とし、添え字jを2としたときの(30)式の右辺の値が、輪軸13dにおける復元力FRになる。このようにして得られる変位DIおよび復元力FRを用いることにより、輪軸13dに対する回帰係数αが導出される。回帰係数αは、添え字iを3としたときの(30)式のk1,i+1である。即ち、回帰係数αは、輪軸13dにおいて左右方向に間隔を有して並ぶ左側の軸バネ18Lおよび右側の軸バネ18Rが受ける力の平均値k1,4となる。
 軸バネ剛性導出部1602aは、以上のようにして、検査区間における軸バネ剛性k1,i、k1,i+1を導出する。
When the subscript i is 3 and the subscript j is 2, the value of (z t, j + aθ t, j- z w, i + 1 ) on the left side of the equation (30) is the displacement DI 4 on the wheel set 13d. .. When the subscript i is 3 and the subscript j is 2, the value on the right side of the equation (30) is the restoring force FR 4 on the wheel set 13d. By using the displacement DI 4 and the restoring force FR 4 thus obtained, the regression coefficient α 4 with respect to the wheel set 13d is derived. The regression coefficient α 4 is k 1, i + 1 of Eq. (30) when the subscript i is 3. That is, the regression coefficient α 4 is an average value k 1 , 4 of the forces received by the left shaft spring 18L and the right shaft spring 18R arranged at intervals in the left-right direction on the wheel axle 13d.
The shaft spring rigidity deriving unit 1602a derives the shaft spring rigidity k 1, i and k 1, i + 1 in the inspection section as described above.
<<判定部1603>>
 判定部1603は、軸バネ状態検出部1602により導出された軸バネ剛性k1,i、k1,i+1に基づいて、軸バネ18L、18Rの剛性(バネ定数)の異常の有無を判定する。例えば、判定部1603は、軸バネ状態検出部1602により導出された軸バネ剛性k1,i、k1,i+1と、正常な軸バネ剛性k1,i-、k1,i+1-とを比較した結果に基づいて、軸バネ18L、18Rの剛性(バネ定数)の異常の有無を判定する。例えば、判定部1603は、軸バネ状態検出部1602により導出された軸バネ剛性k1,i、k1,i+1と、正常な軸バネ剛性k1,i-、k1,i+1-との差の絶対値が、閾値を上回る場合に、軸バネ18L、18Rの剛性(バネ定数)が異常であると判定し、そうでない場合に、軸バネ18L、18Rの剛性(バネ定数)が異常でないと判定する。
<< Judgment unit 1603 >>
The determination unit 1603 determines whether or not there is an abnormality in the rigidity (spring constant) of the shaft springs 18L and 18R based on the shaft spring rigidity k 1, i and k 1, i + 1 derived by the shaft spring state detection unit 1602. To do. For example, the determination unit 1603 has the shaft spring rigidity k 1, i , k 1, i + 1 derived by the shaft spring state detection unit 1602 and the normal shaft spring rigidity k 1, i −, k 1, i + 1. Based on the result of comparison with −, it is determined whether or not there is an abnormality in the rigidity (spring constant) of the shaft springs 18L and 18R. For example, the determination unit 1603 has the shaft spring rigidity k 1, i , k 1, i + 1 derived by the shaft spring state detection unit 1602 and the normal shaft spring rigidity k 1, i −, k 1, i + 1. When the absolute value of the difference from-exceeds the threshold value, it is determined that the rigidity (spring constant) of the shaft springs 18L and 18R is abnormal, and when not, the rigidity (spring constant) of the shaft springs 18L and 18R is determined. Is not abnormal.
 第1の実施形態では、所定のサンプリング周期に定まる時刻において計測データが得られる度に軸バネ剛性k1,i、k1,i+1(修正後軸バネ剛性)が導出される。従って、所定のサンプリング周期により定まる時刻において、軸バネ18L、18Rの剛性(バネ定数)が異常であるか否かが判定される。これに対し本実施形態では、検査区間における計測データを用いて、1つの輪軸13a~13dに対し、1つの軸バネ剛性k1,i、k1,i+1が導出される。従って、検査区間における計測データが得られると、1つの輪軸13a~13dに対し、軸バネ18L、18Rの剛性(バネ定数)が異常であるか否かの判定が1回だけ行われる。 In the first embodiment, the shaft spring rigidity k 1, i and k 1, i + 1 (corrected shaft spring rigidity) are derived each time measurement data is obtained at a time determined by a predetermined sampling cycle. Therefore, it is determined whether or not the rigidity (spring constant) of the shaft springs 18L and 18R is abnormal at a time determined by a predetermined sampling cycle. On the other hand, in the present embodiment, one shaft spring rigidity k 1, i and k 1, i + 1 are derived for one wheel set 13a to 13d using the measurement data in the inspection section. Therefore, when the measurement data in the inspection section is obtained, it is determined only once whether or not the rigidity (spring constant) of the shaft springs 18L and 18R is abnormal for one wheel set 13a to 13d.
<<出力部1604>>
 出力部1604は、判定部1603により判定された結果に基づく情報を出力する。具体的に出力部1604は、判定部1603により、全ての軸バネ18L、18Rの剛性(バネ定数)が正常であると判定された場合には、そのことを示す情報を出力する。また、出力部1604は、判定部1603により、少なくとも軸バネ18L、18Rの剛性(バネ定数)が異常であると判定された場合には、そのことを示す情報を出力する。このとき、出力部1604は、剛性(バネ定数)が異常であると判定された軸バネを特定する情報も併せて出力する。出力の形態としては、例えば、コンピュータディスプレイへの表示、外部装置への送信、および検査装置300の内部または外部の記憶媒体への記憶の少なくとも何れか1つを採用することができる。
<< Output 1604 >>
The output unit 1604 outputs information based on the result determined by the determination unit 1603. Specifically, when the determination unit 1603 determines that the rigidity (spring constant) of all the shaft springs 18L and 18R is normal, the output unit 1604 outputs information indicating that fact. Further, when the determination unit 1603 determines that the rigidity (spring constant) of at least the shaft springs 18L and 18R is abnormal, the output unit 1604 outputs information indicating that fact. At this time, the output unit 1604 also outputs information for identifying the shaft spring whose rigidity (spring constant) is determined to be abnormal. As the form of output, for example, at least one of display on a computer display, transmission to an external device, and storage in an internal or external storage medium of the inspection device 300 can be adopted.
 尚、検査区間として、任意の区間が予め設定される。例えば、直線軌道を検査区間としてもよいし、曲線軌道を検査区間としてもよい。また、鉄道車両が進行方向に向かって右回りの曲線軌道を検査区間とする場合、判定部1603は、左側の軸バネ18Lの異常の有無を判定し、右側の軸バネ18Rの異常の有無を判定しなくてもよい。一方、鉄道車両が進行方向に向かって左回りの曲線軌道を検査区間とする場合、判定部1603は、右側の軸バネ18Rの異常の有無を判定し、左側の軸バネ18Lの異常の有無を判定しなくてもよい。 An arbitrary section is preset as the inspection section. For example, a straight track may be an inspection section, or a curved track may be an inspection section. Further, when the railroad vehicle uses a curved track that rotates clockwise in the traveling direction as the inspection section, the determination unit 1603 determines whether or not the left shaft spring 18L is abnormal, and determines whether or not the right shaft spring 18R is abnormal. It is not necessary to judge. On the other hand, when the railroad vehicle uses a curved track counterclockwise in the direction of travel as the inspection section, the determination unit 1603 determines whether or not the right shaft spring 18R is abnormal, and determines whether or not the left shaft spring 18L is abnormal. It is not necessary to judge.
<動作フローチャート>
 次に、図17のフローチャートを参照しながら、本実施形態の検査装置1600における処理の一例を説明する。
 まず、ステップS1701において、データ取得部1601は、検査区間における計測データを取得する。そして、ステップS1702の処理が実行される。ステップS1702以降の処理は、鉄道車両が検査区間を走行し、検査区間における計測データが取得された後に開始される。
<Operation flowchart>
Next, an example of processing in the inspection device 1600 of the present embodiment will be described with reference to the flowchart of FIG.
First, in step S1701, the data acquisition unit 1601 acquires the measurement data in the inspection section. Then, the process of step S1702 is executed. The processing after step S1702 is started after the railroad vehicle travels in the inspection section and the measurement data in the inspection section is acquired.
 次に、ステップS1702において、軸バネ剛性導出部1602aは、同一のサンプリング周期の計測データを用いて、検査区間におけるデータセットを作成する。
 次に、ステップS1703において、軸バネ剛性導出部1602aは、検査区間におけるデータセットに基づいて、復元力FRと変位DIとの関係を示す単回帰式を導出する。軸バネ剛性導出部1602aは、単回帰式の回帰係数αを、検査区間における軸バネ剛性k1,i、k1,i+1として導出する。
Next, in step S1702, the shaft spring rigidity derivation unit 1602a creates a data set in the inspection section using the measurement data of the same sampling period.
Next, in step S1703, the shaft spring rigidity deriving unit 1602a derives a simple regression equation showing the relationship between the restoring force FR i and the displacement DI i based on the data set in the inspection section. The shaft spring rigidity derivation unit 1602a derives the regression coefficient α i of the simple regression equation as the shaft spring stiffness k 1, i , k 1, i + 1 in the inspection section.
 次に、ステップS1704において、判定部1603は、軸バネ状態検出部1602により導出された軸バネ剛性k1,i、k1,i+1に基づいて、軸バネ18L、18Rの剛性(バネ定数)の異常の有無を判定する。そして、判定部1603は、全ての軸バネ18L、18Rの剛性(バネ定数)が正常であるか否かを判定する。 Next, in step S1704, the determination unit 1603 determines the rigidity (spring constant) of the shaft springs 18L and 18R based on the shaft spring rigidity k 1, i and k 1, i + 1 derived by the shaft spring state detection unit 1602. ) Is determined to be present. Then, the determination unit 1603 determines whether or not the rigidity (spring constant) of all the shaft springs 18L and 18R is normal.
 この判定の結果、全ての軸バネ18L、18Rの剛性(バネ定数)が正常である場合、処理はステップS1705に進む。処理がステップS1705に進むと、出力部1604は、全ての軸バネ18L、18Rの剛性(バネ定数)が正常であることを含む正常情報を出力する。ステップS1705の処理が終了すると、図17のフローチャートによる処理が終了する。 As a result of this determination, if the rigidity (spring constant) of all the shaft springs 18L and 18R is normal, the process proceeds to step S1705. When the process proceeds to step S1705, the output unit 1604 outputs normal information including that the rigidity (spring constant) of all the shaft springs 18L and 18R is normal. When the process of step S1705 is completed, the process according to the flowchart of FIG. 17 is completed.
 一方、ステップS1704の判定の結果、少なくとも1つの軸バネ18L、18Rの剛性(バネ定数)が異常である場合、処理はステップS1706に進む。処理がステップS1706に進むと、出力部1604は、剛性(バネ定数)が異常であると判定された軸バネがあることを含む非正常情報を出力する。ステップS1706の処理が終了すると、図17のフローチャートによる処理が終了する。 On the other hand, if the rigidity (spring constant) of at least one of the shaft springs 18L and 18R is abnormal as a result of the determination in step S1704, the process proceeds to step S1706. When the process proceeds to step S1706, the output unit 1604 outputs abnormal information including the presence of a shaft spring whose rigidity (spring constant) is determined to be abnormal. When the process of step S1706 is completed, the process according to the flowchart of FIG. 17 is completed.
<計算例>
 次に、計算例を説明する。第1の実施形態の<計算例>と同様に、鉄道車両の運動状態が86自由度を有するものとして、270km/hrで走行する鉄道車両の走行をシミュレーション(数値解析)した結果から、本実施形態における計測データに相当するデータを取得した。このようにして取得されたデータを用いて、本実施形態で説明した手法で軸バネ剛性の導出を行い、シミュレーションで設定した値と、本実施形態で説明した手法で得られた値とを比較した。
<Calculation example>
Next, a calculation example will be described. Similar to the <calculation example> of the first embodiment, the present embodiment is based on the result of simulating (numerical analysis) the running of the railroad vehicle traveling at 270 km / hr, assuming that the moving state of the railroad vehicle has 86 degrees of freedom. Data corresponding to the measurement data in the form was acquired. Using the data acquired in this way, the shaft spring rigidity is derived by the method described in this embodiment, and the value set in the simulation is compared with the value obtained by the method described in this embodiment. did.
 図18は、全ての軸バネ18L、18Rが正常である場合の復元力FRと変位DIとの関係を示す図である。全ての軸バネ18L、18Rを正常値としてシミュレーションした結果から、本実施形態における計測データに相当するデータを取得した。このようにして取得したデータを用いて本実施形態で説明したようにして、データセットを作成した。このようにして作成したデータセットのうち、前側の台車12aの前輪(輪軸13a)に対するデータセットをプロットすると、図18に示す各点が得られる。このようにして得らえた点に基づいて、最小二乗法により単回帰式を導出した。図18に示すグラフ1801は、このようにして導出した単回帰式を示す。 FIG. 18 is a diagram showing the relationship between the restoring force FR 1 and the displacement DI 1 when all the shaft springs 18L and 18R are normal. From the results of simulating all the shaft springs 18L and 18R as normal values, data corresponding to the measurement data in this embodiment was acquired. Using the data acquired in this way, a data set was created as described in the present embodiment. Of the data sets created in this way, when the data set for the front wheels (wheel sets 13a) of the front carriage 12a is plotted, each point shown in FIG. 18 is obtained. Based on the points obtained in this way, a simple regression equation was derived by the least squares method. Graph 1801 shown in FIG. 18 shows a simple regression equation derived in this way.
 図19は、前側の台車12aの前輪(輪軸13a)の左側の軸バネ18Lの剛性(バネ定数)を正常時の1/2倍とした場合の復元力FRと変位DIとの関係を示す図である。前側の台車12aの前輪(輪軸13a)の左側の軸バネ18Lの剛性(バネ定数)を正常時の1/2倍としてシミュレーションした結果から、本実施形態における計測データに相当するデータを取得した。このようにして取得したデータを用いて本実施形態で説明したようにして、データセットを作成した。このようにして作成したデータセットのうち、前側の台車12aの前輪(輪軸13a)に対するデータセットをプロットすると、図19に示す各点が得られる。このようにして得らえた点に基づいて、最小二乗法により単回帰式を導出した。図19に示すグラフ1901は、このようにして導出した単回帰式を示す。 FIG. 19 shows the relationship between the restoring force FR 1 and the displacement DI 1 when the rigidity (spring constant) of the left shaft spring 18L of the front wheel (wheel set 13a) of the front bogie 12a is halved from the normal state. It is a figure which shows. Data corresponding to the measurement data in this embodiment was obtained from the result of simulating the rigidity (spring constant) of the left shaft spring 18L of the front wheel (wheel axle 13a) of the front bogie 12a as 1/2 times the normal value. Using the data acquired in this way, a data set was created as described in the present embodiment. Among the data sets created in this way, when the data set for the front wheels (wheel sets 13a) of the front carriage 12a is plotted, each point shown in FIG. 19 is obtained. Based on the points obtained in this way, a simple regression equation was derived by the least squares method. Graph 1901, shown in FIG. 19, shows a simple regression equation thus derived.
 図20は、前側の台車12aの前輪(輪軸13a)の右側の軸バネ18Rの剛性(バネ定数)を正常時の1/2倍とした場合の復元力FRと変位DIとの関係を示す図である。前側の台車12aの前輪(輪軸13a)の右側の軸バネ18Rの剛性(バネ定数)を正常時の1/2倍としてシミュレーションした結果から、本実施形態における計測データに相当するデータを取得した。このようにして取得したデータを用いて本実施形態で説明したようにして、データセットを作成した。このようにして作成したデータセットのうち、前側の台車12aの前輪(輪軸13a)に対するデータセットをプロットすると、図20に示す各点が得られる。このようにして得らえた点に基づいて、最小二乗法により単回帰式を導出した。図20に示すグラフ2001は、このようにして導出した単回帰式を示す。 FIG. 20 shows the relationship between the restoring force FR 1 and the displacement DI 1 when the rigidity (spring constant) of the right shaft spring 18R of the front wheel (wheel set 13a) of the front bogie 12a is halved from the normal state. It is a figure which shows. From the result of simulating the rigidity (spring constant) of the shaft spring 18R on the right side of the front wheel (wheel axle 13a) of the front bogie 12a as 1/2 of the normal time, data corresponding to the measurement data in this embodiment was acquired. Using the data acquired in this way, a data set was created as described in the present embodiment. Among the data sets created in this way, when the data set for the front wheels (wheel sets 13a) of the front carriage 12a is plotted, each point shown in FIG. 20 is obtained. Based on the points obtained in this way, a simple regression equation was derived by the least squares method. Graph 2001 shown in FIG. 20 shows the simple regression equation thus derived.
 全ての軸バネ18L、18Rが正常であるものとしてシミュレーションを実行する際に、シミュレーションに設定した値(前側の台車12aの前輪(輪軸13a)の軸バネ18L、18Rの剛性(バネ定数)の平均値)を基準値とする。 When executing the simulation assuming that all the shaft springs 18L and 18R are normal, the value set in the simulation (the average of the rigidity (spring constant) of the shaft springs 18L and 18R of the front wheel (wheel axle 13a) of the front bogie 12a). Value) is used as the reference value.
 図18に示すグラフ1801から導出される検査区間における軸バネ剛性k1,1は、基準値の103%(1.48×10N/m)となった。従って、本実施形態の手法により、軸バネ18L、18Rが正常であることを精度よく推定することができることが分かる。 The shaft spring rigidity k 1 , 1 in the inspection section derived from the graph 1801 shown in FIG. 18 was 103% (1.48 × 10 6 N / m) of the reference value. Therefore, it can be seen that the method of the present embodiment can accurately estimate that the shaft springs 18L and 18R are normal.
 図19に示すグラフ1901から導出される検査区間における軸バネ剛性k1,1は、基準値の56%(8.00×10N/m)となった。また、図20に示すグラフ2001から導出される検査区間における軸バネ剛性k1,1は、基準値の69%(9.99×10N/m)となった。従って、本実施形態の手法により導出される検査区間における軸バネ剛性k1,iは、軸バネ18L、18Rが正常であるときと異常であるときとで顕著な差を示すことが分かる。従って、本実施形態の手法により、軸バネ18L、18Rの異常を確実に検出することができることが分かる。 Axial spring rigidity k 1, 1 in the test section is derived from the graph 1901 shown in Figure 19, it was 56% of the reference value (8.00 × 10 5 N / m ). The shaft spring stiffness k 1, 1 in the test section is derived from the graph 2001 shown in Figure 20, it was 69% of the reference value (9.99 × 10 5 N / m ). Therefore, it can be seen that the shaft spring rigidity k1 and i in the inspection section derived by the method of the present embodiment show a remarkable difference between when the shaft springs 18L and 18R are normal and when they are abnormal. Therefore, it can be seen that the method of the present embodiment can reliably detect the abnormality of the shaft springs 18L and 18R.
<まとめ>
 以上のように本実施形態では、検査装置1600は、(29)式および(30)式の左辺に含まれる変位DI(=(zt,j-aθt,j-zw,i)、(zt,j+aθt,j-zw,i+1))の値と、(29)式、(30)式の右辺の計算値である復元力FRの値とをそれぞれが含む複数のデータセットを作成する。(29)式および(30)式は、(3)式および(4)式と同様に、左右方向に間隔を有して並ぶ左側の軸バネ18Lおよび右側の軸バネ18Rが受ける力の平均値を表現する数式である。
<Summary>
As described above, in the present embodiment, the inspection device 1600 includes the displacement DI i (= (z t, j −t, j − z w, i )) included in the left side of the equations (29) and (30). Multiple data including the value of (z t, j + aθ t, j- z w, i + 1 )) and the value of the restoring force FR i , which is the calculated value on the right side of equations (29) and (30). Create a set. Eqs. (29) and (30) are the average values of the forces received by the left shaft spring 18L and the right shaft spring 18R arranged at intervals in the left-right direction, as in the equations (3) and (4). It is a mathematical formula that expresses.
 検査装置1600は、複数のデータセットに基づいて、(29)式、(30)式の右辺で示される復元力FRと、(29)式および(30)式の左辺に含まれる変位DIとの関係を表す単回帰式を導出し、導出した単回帰式の傾きを表す回帰係数αを、検査区間における軸バネ剛性k1,i、k1,i+1として導出する。 Based on a plurality of data sets, the inspection device 1600 has a restoring force FR i represented by the right side of the equations (29) and (30) and a displacement DI i included in the left side of the equations (29) and (30). A simple regression equation representing the relationship with is derived, and the regression coefficients α i representing the slope of the derived simple regression equation are derived as the axial spring stiffness k 1, i and k 1, i + 1 in the inspection section.
 従って、(3)式および(4)式を計算しなくても、軸バネ剛性k1,i、k1,i+1を導出することができる。よって、軸バネ剛性k1,i、k1,i+1を導出する際の計算負荷を軽減することができる。 Therefore, the shaft spring rigidity k 1, i and k 1, i + 1 can be derived without calculating the equations (3) and (4). Therefore, the calculation load when deriving the shaft spring rigidity k 1, i and k 1, i + 1 can be reduced.
 本実施形態の手法では、検査区間内における軸バネ剛性k1,i、k1,i+1の時系列データを導出することができない。従って、例えば、検査区間内における軸バネ剛性k1,i、k1,i+1(修正前軸バネ剛性)の時系列データを導出する場合には、第1の実施形態の手法を適用する。一方、例えば、検査区間内における軸バネ剛性k1,i、k1,i+1の時系列データを導出する必要がなく、検査区間内における軸バネ剛性k1,i、k1,i+1を導出する際の計算負荷を軽減する場合には、本実施形態の手法を適用する。
 尚、本実施形態を第2の実施形態に適用してもよい。
In the method of the present embodiment, it is not possible to derive the time series data of the shaft spring rigidity k 1, i , k 1, i + 1 in the inspection section. Therefore, for example, when deriving the time series data of the shaft spring rigidity k 1, i , k 1, i + 1 (corrected front shaft spring rigidity) in the inspection section, the method of the first embodiment is applied. On the other hand, for example, the axial spring rigidity k 1 in the test interval, i, k 1, i + 1 of the time series data is not necessary to derive, to derive the axial spring rigidity k 1, i, k 1, i + 1 in the test section When reducing the calculation load at the time, the method of the present embodiment is applied.
In addition, this embodiment may be applied to the second embodiment.
(その他の実施形態)
 尚、以上説明した本発明の実施形態は、コンピュータがプログラムを実行することによって実現することができる。また、前記プログラムを記録したコンピュータ読み取り可能な記録媒体及び前記プログラム等のコンピュータプログラムプロダクトも本発明の実施形態として適用することができる。記録媒体としては、例えば、フレキシブルディスク、ハードディスク、光ディスク、光磁気ディスク、CD-ROM、磁気テープ、不揮発性のメモリカード、ROM等を用いることができる。
 また、以上説明した本発明の実施形態は、何れも本発明を実施するにあたっての具体化の例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその技術思想、またはその主要な特徴から逸脱することなく、様々な形で実施することができる。
(Other embodiments)
The embodiment of the present invention described above can be realized by executing a program by a computer. Further, a computer-readable recording medium on which the program is recorded and a computer program product such as the program can also be applied as an embodiment of the present invention. As the recording medium, for example, a flexible disk, a hard disk, an optical disk, a magneto-optical disk, a CD-ROM, a magnetic tape, a non-volatile memory card, a ROM, or the like can be used.
In addition, the embodiments of the present invention described above are merely examples of embodiment of the present invention, and the technical scope of the present invention should not be construed in a limited manner by these. It is a thing. That is, the present invention can be implemented in various forms without departing from the technical idea or its main features.
 本発明は、例えば、鉄道車両を検査することに利用することができる。 The present invention can be used, for example, for inspecting railway vehicles.

Claims (13)

  1.  車体と台車と輪軸と軸箱と軸バネとを有する鉄道車両の軸バネの状態を検査する検査システムであって、
     前記鉄道車両を軌道上で走行させることにより測定される物理量の測定値を取得するデータ取得手段と、
     前記データ取得手段により取得された前記物理量の測定値を用いて、前記鉄道車両の軸バネの状態を検出する軸バネ状態検出手段と、を有し、
     前記データ取得手段により測定値が取得される前記物理量は、前後方向力を含み、
     前記前後方向力は、前記輪軸と、当該輪軸が設けられる台車との間に配置される部材に生じる前後方向の力であり、
     前記部材は、前記軸箱を支持するための部材であり、
     前記前後方向は、前記鉄道車両の走行方向に沿う方向であることを特徴とする検査システム。
    It is an inspection system that inspects the state of the axle spring of a railroad vehicle having a vehicle body, a bogie, an axle, an axle box, and an axle spring.
    A data acquisition means for acquiring a measured value of a physical quantity measured by running the railway vehicle on a track, and
    It has a shaft spring state detecting means for detecting the state of the shaft spring of the railroad vehicle by using the measured value of the physical quantity acquired by the data acquisition means.
    The physical quantity whose measured value is acquired by the data acquisition means includes a force in the front-back direction.
    The front-rear direction force is a force in the front-rear direction generated in a member arranged between the wheel set and the carriage on which the wheel set is provided.
    The member is a member for supporting the axle box.
    An inspection system characterized in that the front-rear direction is a direction along a traveling direction of the railway vehicle.
  2.  前記軸バネ状態検出手段は、1つの前記台車と、前記輪軸との間に配置される全ての前記部材に対する前記前後方向力の測定値の加算値を用いて、前記鉄道車両の軸バネの状態を検出することを特徴とする請求項1に記載の検査システム。 The shaft spring state detecting means uses the sum of the measured values of the front-rear directional forces with respect to all the members arranged between the one bogie and the wheel axle to obtain the state of the shaft spring of the railroad vehicle. The inspection system according to claim 1, wherein the inspection system is used.
  3.  前記軸バネ状態検出手段は、前記軸バネが受ける力を表現する数式を用いて、前記軸バネの剛性を、前記軸バネの状態を示す物理量として導出する軸バネ剛性導出手段を更に有し、
     前記数式は、前記台車の上下方向に動く運動を表す運動方程式と、前記台車のピッチングを表す運動方程式とに基づいて導出され、
     前記ピッチングは、左右方向を回動軸として回動する運動であり、
     前記上下方向は、軌道に対し垂直な方向であり、
     前記左右方向は、軌道に対し垂直な方向である上下方向と前記前後方向とに垂直な方向であることを特徴とする請求項1または2に記載の検査システム。
    The shaft spring state detecting means further includes a shaft spring rigidity deriving means that derives the rigidity of the shaft spring as a physical quantity indicating the state of the shaft spring by using a mathematical formula expressing the force received by the shaft spring.
    The mathematical formula is derived based on the equation of motion representing the vertical movement of the trolley and the equation of motion representing the pitching of the trolley.
    The pitching is a motion of rotating around a left-right direction as a rotation axis.
    The vertical direction is a direction perpendicular to the orbit.
    The inspection system according to claim 1 or 2, wherein the left-right direction is a direction perpendicular to the orbit, which is a vertical direction, and a direction perpendicular to the front-rear direction.
  4.  前記鉄道車両は、枕バネと軸ダンパとを更に有し、
     前記軸バネ状態検出手段は、前記軸バネが受ける力を表現する数式を用いて、左右方向に間隔を有して並ぶ2つの前記軸バネの剛性の平均値を、前記軸バネの状態を示す物理量として導出する軸バネ剛性導出手段を更に有し、
     前記数式は、前記枕バネが受ける荷重と、左右方向に間隔を有して並ぶ2つの前記軸ダンパが受ける力の平均値と、ピッチングにおいて前記軸ダンパより前記台車が受ける力のモーメントと、前記台車が受ける重力と、前記前後方向力に基づいて前記台車が受ける力のモーメントと、前記台車の上下方向における慣性力と、ピッチングにより前記台車が受ける力のモーメントの総和と、を含み、
     前記ピッチングは、左右方向を回動軸として回動する運動であり、
     前記上下方向は、軌道に対し垂直な方向であり、
     前記左右方向は、前記上下方向と前記前後方向とに垂直な方向であり、
     前記データ取得手段により測定値が取得される前記物理量は、前記枕バネの内圧と、前記台車の前記上下方向の加速度とを更に含むことを特徴とする請求項1または2に記載の検査システム。
    The railroad vehicle further has a pillow spring and a shaft damper.
    The shaft spring state detecting means uses a mathematical formula expressing the force received by the shaft spring to indicate the state of the shaft spring by indicating the average value of the rigidityes of the two shaft springs arranged at intervals in the left-right direction. It also has a shaft spring rigidity derivation means to be derived as a physical quantity.
    The formula is the load received by the pillow spring, the average value of the forces received by the two shaft dampers arranged at intervals in the left-right direction, the moment of force received by the carriage from the shaft damper in pitching, and the above. Includes the gravity received by the trolley, the moment of force received by the trolley based on the front-rear force, the inertial force in the vertical direction of the trolley, and the sum of the moments of force received by the trolley due to pitching.
    The pitching is a motion of rotating around a left-right direction as a rotation axis.
    The vertical direction is a direction perpendicular to the orbit.
    The left-right direction is a direction perpendicular to the up-down direction and the front-back direction.
    The inspection system according to claim 1 or 2, wherein the physical quantity whose measured value is acquired by the data acquisition means further includes the internal pressure of the pillow spring and the vertical acceleration of the carriage.
  5.  前記鉄道車両は、枕バネと軸ダンパとを更に有し、
     前記軸バネ剛性導出手段により導出される前記軸バネの剛性は、左右方向に間隔を有して並ぶ2つの前記軸バネの剛性の平均値であり、
     前記数式は、前記枕バネが受ける荷重と、前記左右方向に間隔を有して並ぶ2つの前記軸ダンパが受ける力の平均値と、前記ピッチングにおいて前記軸ダンパより前記台車が受ける力のモーメントと、前記台車が受ける重力と、前記前後方向力に基づいて前記台車が受ける力のモーメントと、前記台車の前記上下方向における慣性力と、前記ピッチングにより前記台車が受ける力のモーメントの総和と、を含み、
     前記データ取得手段により測定値が取得される前記物理量は、前記枕バネの内圧と、前記台車の前記上下方向の加速度とを更に含むことを特徴とする請求項3に記載の検査システム。
    The railroad vehicle further has a pillow spring and a shaft damper.
    The rigidity of the shaft spring derived by the shaft spring rigidity deriving means is an average value of the rigidity of two shaft springs arranged at intervals in the left-right direction.
    The formula is the average value of the load received by the pillow spring, the force received by the two shaft dampers arranged at intervals in the left-right direction, and the moment of force received by the carriage from the shaft damper in the pitching. , The gravity received by the trolley, the moment of the force received by the trolley based on the front-rear direction force, the inertial force of the trolley in the vertical direction, and the sum of the moments of the force received by the trolley due to the pitching. Including
    The inspection system according to claim 3, wherein the physical quantity whose measured value is acquired by the data acquisition means further includes the internal pressure of the pillow spring and the vertical acceleration of the carriage.
  6.  前記数式は、前記台車が受ける遠心力を更に含み、
     前記データ取得手段により測定値が取得される前記物理量は、前記鉄道車両の走行速度を更に含むことを特徴とする請求項4または5に記載の検査システム。
    The formula further includes the centrifugal force received by the dolly.
    The inspection system according to claim 4 or 5, wherein the physical quantity whose measured value is acquired by the data acquisition means further includes a traveling speed of the railway vehicle.
  7.  前記軸バネ剛性導出手段は、前記数式を用いて導出された前記軸バネの状態を示す物理量が所定の上限値を上回る場合には、当該軸バネの状態を示す値を当該上限値とし、前記数式を用いて導出された前記軸バネの状態を示す物理量が所定の下限値を下回る場合には、当該軸バネの状態を示す値を当該下限値とすることを特徴とする請求項6に記載の検査システム。 When the physical quantity indicating the state of the shaft spring derived by using the formula exceeds a predetermined upper limit value, the shaft spring rigidity deriving means sets the value indicating the state of the shaft spring as the upper limit value, and the above-mentioned The sixth aspect of claim 6, wherein when the physical quantity indicating the state of the shaft spring derived by using the mathematical formula is less than a predetermined lower limit value, the value indicating the state of the shaft spring is set as the lower limit value. Inspection system.
  8.  前記軸バネ状態検出手段は、前記軸バネ剛性導出手段により導出された前記軸バネの状態を示す物理量の時系列データに含まれるノイズが低減されるように、当該軸バネの状態を示す値の時系列データの周波数成分を調整する周波数成分調整手段を更に有することを特徴とする請求項3~7の何れか1項に記載の検査システム。 The shaft spring state detecting means has a value indicating the state of the shaft spring so as to reduce noise included in the time series data of the physical quantity indicating the state of the shaft spring derived by the shaft spring rigidity deriving means. The inspection system according to any one of claims 3 to 7, further comprising a frequency component adjusting means for adjusting a frequency component of time-series data.
  9.  前記周波数成分調整手段は、前記軸バネ剛性導出手段により導出された前記軸バネの状態を示す物理量の時系列データを用いて、修正自己回帰モデルにおける係数を導出し、導出した前記係数を用いて、前記軸バネ剛性導出手段により導出された前記軸バネの状態を示す物理量を修正することにより、当該前記軸バネ剛性導出手段により導出された前記軸バネの状態を示す物理量の信号の周波数成分を調整し、
     前記修正自己回帰モデルは、前記軸バネの状態を示す物理量の実績値と、当該実績値に対する前記係数と、を用いて、前記軸バネの状態を示す物理量の予測値を表す式であり、
     前記係数は、第1の行列を係数行列とし、自己相関ベクトルを定数ベクトルとする方程式を用いて導出され、
     前記自己相関ベクトルは、時差が1から前記修正自己回帰モデルで用いられる前記軸バネの状態を示す物理量の数であるmまでの前記軸バネの状態を示す物理量の時系列データの自己相関を成分とするベクトルであり、
     前記第1の行列は、1以上且つm未満の設定された数であるsに対して、自己相関行列のs個の固有値と対角行列Σとから導出される第2の行列Σと、前記s個の固有値と直交行列Uとから導出される第3の行列Uと、から導出される行列UΣ であり、
     前記自己相関行列は、時差が0からm-1までの前記軸バネの状態を示す物理量の時系列データの自己相関を成分とする行列であり、
     前記対角行列は、前記自己相関行列を特異値分解することで導出される前記自己相関行列の固有値を対角成分とする行列であり、
     前記直交行列は、前記自己相関行列の固有ベクトルを列成分ベクトルとする行列であり、
     前記第2の行列は、前記対角行列の部分行列であって、前記s個の固有値を対角成分とする行列であり、
     前記第3の行列は、前記直交行列の部分行列であって、前記s個の固有値に対応する固有ベクトルを列成分ベクトルとする行列であることを特徴とする請求項8に記載の検査システム。
    The frequency component adjusting means derives a coefficient in the modified self-return model using the time series data of the physical quantity indicating the state of the shaft spring derived by the shaft spring rigidity deriving means, and uses the derived coefficient. By modifying the physical quantity indicating the state of the shaft spring derived by the shaft spring rigidity derivation means, the frequency component of the signal of the physical quantity indicating the state of the shaft spring derived by the shaft spring rigidity derivation means can be obtained. Adjust and
    The modified autoregressive model is an expression expressing a predicted value of a physical quantity indicating the state of the shaft spring by using an actual value of a physical quantity indicating the state of the shaft spring and the coefficient with respect to the actual value.
    The coefficients are derived using an equation with the first matrix as the coefficient matrix and the autocorrelation vector as the constant vector.
    The autocorrelation vector contains the autocorrelation of the time series data of the physical quantity indicating the state of the shaft spring from 1 to m, which is the number of physical quantities indicating the state of the shaft spring used in the modified autoregressive model. Is a vector that
    The first matrix includes a second matrix Σ s derived from the s eigenvalues of the autocorrelation matrix and the diagonal matrix Σ for s, which is a set number of 1 or more and less than m. wherein an s-number of the third matrix U s and, matrix U is derived from s sigma s U s T derived from the eigenvalues and orthogonal matrix U,
    The autocorrelation matrix is a matrix whose component is the autocorrelation of time series data of physical quantities indicating the state of the shaft spring having a time difference of 0 to m-1.
    The diagonal matrix is a matrix having an eigenvalue of the autocorrelation matrix derived by singular value decomposition of the autocorrelation matrix as a diagonal component.
    The orthogonal matrix is a matrix whose column component vector is the eigenvector of the autocorrelation matrix.
    The second matrix is a submatrix of the diagonal matrix, and is a matrix having the s eigenvalues as diagonal components.
    The inspection system according to claim 8, wherein the third matrix is a submatrix of the orthogonal matrix, and the eigenvectors corresponding to the s eigenvalues are used as column component vectors.
  10.  前記軸バネ剛性導出手段は、それぞれが、前記数式の左辺に含まれる変位の値と、前記数式の右辺の計算値とを含む複数のデータセットに基づいて、前記左右方向に間隔を有して並ぶ2つの前記軸バネの剛性の平均値を導出し、
     前記数式は、前記左右方向に間隔を有して並ぶ2つの前記軸バネの剛性の平均値と、前記変位との積を左辺とし、前記数式に表されるその他の定数および変数を右辺としたものであり、
     前記数式の左辺に含まれる変位は、前記左右方向に間隔を有して並ぶ2つの前記軸バネの変位の平均値であり、
     前記軸バネ剛性導出手段は、前記複数のデータセットに基づいて、前記数式の右辺の計算値である復元力と、前記数式の左辺に含まれる変位との関係を表す単回帰式を導出し、導出した単回帰式の傾きを表す回帰係数を、前記左右方向に間隔を有して並ぶ2つの前記軸バネの剛性の平均値として導出することを特徴とする請求項3~6の何れか1項に記載の検査システム。
    Each of the shaft spring rigidity deriving means has an interval in the left-right direction based on a plurality of data sets including a displacement value included in the left side of the formula and a calculated value on the right side of the formula. Derived the average value of the rigidity of the two shaft springs lined up,
    In the formula, the product of the average value of the rigidity of the two shaft springs arranged at intervals in the left-right direction and the displacement is the left side, and the other constants and variables represented by the formula are the right side. Is a thing
    The displacement included in the left side of the formula is the average value of the displacements of the two shaft springs arranged at intervals in the left-right direction.
    Based on the plurality of data sets, the shaft spring rigidity deriving means derives a simple regression equation expressing the relationship between the restoring force, which is a calculated value on the right side of the equation, and the displacement included in the left side of the equation. Any one of claims 3 to 6, wherein the regression coefficient representing the slope of the derived simple regression equation is derived as the average value of the rigidity of the two shaft springs arranged at intervals in the left-right direction. The inspection system described in the section.
  11.  前記軸バネ状態検出手段により検出された前記軸バネの状態を示す物理量に基づいて、前記軸バネが正常であるか否かを判定する判定手段を更に有することを特徴とする請求項1~10の何れか1項に記載の検査システム。 Claims 1 to 10 further include a determining means for determining whether or not the shaft spring is normal based on a physical quantity indicating the state of the shaft spring detected by the shaft spring state detecting means. The inspection system according to any one of the above.
  12.  車体と台車と輪軸と軸箱と軸バネとを有する鉄道車両の軸バネの状態を検査する検査方法であって、
     前記鉄道車両を軌道上で走行させることにより測定される物理量の測定値を取得するデータ取得工程と、
     前記データ取得工程により取得された前記物理量の測定値を用いて、前記鉄道車両の軸バネの状態を検出する軸バネ状態検出工程と、を有し、
     前記データ取得工程により測定値が取得される前記物理量は、前後方向力を含み、
     前記前後方向力は、前記輪軸と、当該輪軸が設けられる台車との間に配置される部材に生じる前後方向の力であり、
     前記部材は、前記軸箱を支持するための部材であり、
     前記前後方向は、前記鉄道車両の走行方向に沿う方向であることを特徴とする検査方法。
    It is an inspection method for inspecting the state of the axle spring of a railroad vehicle having a vehicle body, a bogie, an axle, an axle box, and an axle spring.
    A data acquisition process for acquiring measured values of physical quantities measured by running the railroad vehicle on a track, and
    It has a shaft spring state detection step of detecting the state of the shaft spring of the railroad vehicle by using the measured value of the physical quantity acquired by the data acquisition step.
    The physical quantity whose measured value is acquired by the data acquisition step includes a force in the front-back direction.
    The front-rear direction force is a force in the front-rear direction generated in a member arranged between the wheel set and the carriage on which the wheel set is provided.
    The member is a member for supporting the axle box.
    An inspection method characterized in that the front-rear direction is a direction along a traveling direction of the railway vehicle.
  13.  車体と台車と輪軸と軸箱と軸バネとを有する鉄道車両の軸バネの状態を検査するための処理をコンピュータに実行させるためのプログラムであって、
     前記鉄道車両を軌道上で走行させることにより測定される物理量の測定値を取得するデータ取得工程と、
     前記データ取得工程により取得された前記物理量の測定値を用いて、前記鉄道車両の軸バネの状態を検出する軸バネ状態検出工程と、をコンピュータに実行させ、
     前記データ取得工程により測定値が取得される前記物理量は、前後方向力を含み、
     前記前後方向力は、前記輪軸と、当該輪軸が設けられる台車との間に配置される部材に生じる前後方向の力であり、
     前記部材は、前記軸箱を支持するための部材であり、
     前記前後方向は、前記鉄道車両の走行方向に沿う方向であることを特徴とするプログラム。
    It is a program for causing a computer to execute a process for inspecting the state of a shaft spring of a railroad vehicle having a vehicle body, a bogie, a wheel set, an axle box, and a shaft spring.
    A data acquisition process for acquiring measured values of physical quantities measured by running the railroad vehicle on a track, and
    Using the measured value of the physical quantity acquired in the data acquisition step, a computer is made to execute a shaft spring state detection step of detecting the state of the shaft spring of the railroad vehicle.
    The physical quantity whose measured value is acquired by the data acquisition step includes a force in the front-back direction.
    The front-rear direction force is a force in the front-rear direction generated in a member arranged between the wheel set and the carriage on which the wheel set is provided.
    The member is a member for supporting the axle box.
    The program is characterized in that the front-rear direction is a direction along the traveling direction of the railway vehicle.
PCT/JP2020/024341 2019-07-25 2020-06-22 Inspection system, inspection method, and program WO2021014854A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021533874A JP7099637B2 (en) 2019-07-25 2020-06-22 Inspection system, inspection method, and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019137036 2019-07-25
JP2019-137036 2019-07-25

Publications (1)

Publication Number Publication Date
WO2021014854A1 true WO2021014854A1 (en) 2021-01-28

Family

ID=74193402

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/024341 WO2021014854A1 (en) 2019-07-25 2020-06-22 Inspection system, inspection method, and program

Country Status (2)

Country Link
JP (1) JP7099637B2 (en)
WO (1) WO2021014854A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012111480A (en) * 2010-11-05 2012-06-14 Railway Technical Research Institute Abnormality detection method and abnormality detection device of bolster spring system
JP2015178991A (en) * 2014-03-19 2015-10-08 公益財団法人鉄道総合技術研究所 Vehicle state determination device, vehicle state determination program, and load detection device
CN105021384A (en) * 2015-06-18 2015-11-04 广西大学 Online fault diagnosis method and device for secondary suspension air spring system
WO2016125448A1 (en) * 2015-02-04 2016-08-11 川崎重工業株式会社 Device for monitoring state of plate spring in railroad vehicular carriage
WO2020027045A1 (en) * 2018-07-31 2020-02-06 日本製鉄株式会社 Inspection system, inspecting method, and program

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4298433B2 (en) * 2003-08-20 2009-07-22 株式会社日立製作所 Railway vehicle abnormality detection device
JP4763432B2 (en) * 2004-12-06 2011-08-31 住友金属工業株式会社 Rail vehicle friction control device
EP3677485A4 (en) * 2017-08-31 2021-04-07 Nippon Steel Corporation Inspection system, inspection method, and program

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012111480A (en) * 2010-11-05 2012-06-14 Railway Technical Research Institute Abnormality detection method and abnormality detection device of bolster spring system
JP2015178991A (en) * 2014-03-19 2015-10-08 公益財団法人鉄道総合技術研究所 Vehicle state determination device, vehicle state determination program, and load detection device
WO2016125448A1 (en) * 2015-02-04 2016-08-11 川崎重工業株式会社 Device for monitoring state of plate spring in railroad vehicular carriage
CN105021384A (en) * 2015-06-18 2015-11-04 广西大学 Online fault diagnosis method and device for secondary suspension air spring system
WO2020027045A1 (en) * 2018-07-31 2020-02-06 日本製鉄株式会社 Inspection system, inspecting method, and program

Also Published As

Publication number Publication date
JP7099637B2 (en) 2022-07-12
JPWO2021014854A1 (en) 2021-01-28

Similar Documents

Publication Publication Date Title
JP6547902B2 (en) Inspection system, inspection method, and program
US7853412B2 (en) Estimation of wheel rail interaction forces
CN111065567B (en) Inspection system, inspection method, and computer-readable storage medium
CN110874450B (en) Railway bridge track irregularity calculation method based on vehicle-mounted monitoring
Aceituno et al. On the design of a scaled railroad vehicle for the validation of computational models
Muñoz et al. Estimation of lateral track irregularity through Kalman filtering techniques
Jesussek et al. Fault detection and isolation for a railway vehicle by evaluating estimation residuals
JP7017179B2 (en) Inspection system, inspection method, and program
JP7024874B6 (en) Inspection systems, inspection methods, and programs
WO2021014854A1 (en) Inspection system, inspection method, and program
JP7088315B2 (en) Inspection system, inspection method, and program
JP6939540B2 (en) Contact angle estimation system, contact angle estimation method, and program
JP2022134169A (en) Track state estimation method, device for the same and vehicle
JP7328779B2 (en) Abnormality detection device for beam type bogie
JP2020164022A (en) Wheel load measurement device for axis beam type dolly
Sugimoto et al. Applicability of Point Load Approximation to Traffic Load Estimation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20844444

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021533874

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20844444

Country of ref document: EP

Kind code of ref document: A1