WO2006059715A1 - メタノール資化性細菌を用いたl-リジン及びl-アルギニンの製造法 - Google Patents

メタノール資化性細菌を用いたl-リジン及びl-アルギニンの製造法 Download PDF

Info

Publication number
WO2006059715A1
WO2006059715A1 PCT/JP2005/022180 JP2005022180W WO2006059715A1 WO 2006059715 A1 WO2006059715 A1 WO 2006059715A1 JP 2005022180 W JP2005022180 W JP 2005022180W WO 2006059715 A1 WO2006059715 A1 WO 2006059715A1
Authority
WO
WIPO (PCT)
Prior art keywords
dna
lysine
bacterium
methanol
arginine
Prior art date
Application number
PCT/JP2005/022180
Other languages
English (en)
French (fr)
Inventor
Yoshiya Gunji
Hisao Ito
Original Assignee
Ajinomoto Co., Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co., Inc. filed Critical Ajinomoto Co., Inc.
Publication of WO2006059715A1 publication Critical patent/WO2006059715A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/34Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Corynebacterium (G)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/08Lysine; Diaminopimelic acid; Threonine; Valine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/10Citrulline; Arginine; Ornithine

Definitions

  • the present invention relates to a DNA encoding a novel mutant LysE protein that promotes the extracellular discharge of L-lysine and Z or L-arginine, and a methanol-assimilating bacterium into which the DNA has been introduced.
  • the present invention also relates to a method for producing L-lysine or L-arginine by fermentation using the methanol-assimilating bacterium.
  • L-amino acids such as L-lysine, L-glutamic acid, L-threonine, L-leucine, L-ilosoycin, L-noline, and L-ferulanin are genus Brevibacterium, Corynebaterium, Bacillus And industrially produced by fermentation using microorganisms belonging to the genus Escherichia, Streptomyces, Syudomonas, Arthrobacter, Serratia, Penicillium, Candida and the like.
  • natural strains isolated from natural forces or artificial mutants of the strains are used.
  • microorganisms with improved L-amino acid production ability by enhancing L-amino acid biosynthetic enzymes by recombinant DNA technology are also used.
  • Patent Document 8 By increasing the expression level of the amino acid excretion protein in Escherichia coli, It is known that the productivity of some L amino acids can be improved (Patent Document 8). For example, in Escherichia coli, it has been reported that productivity of cystine, cysteine, etc. is improved by enhancing the expression of the ORF306 gene (Patent Document 9).
  • Non-patent Document 1 This gene is named lysE, and it has been reported that L-lysine-producing ability of Corynebacterium bacteria is improved by enhancing the gene in Corynepacteria bacteria (Patent Document 10).
  • Patent Document 2 Japanese Patent Publication No. 49-125590
  • Patent Document 3 Japanese Patent Laid-Open No. 50-25790
  • Patent Document 4 Japanese Patent Laid-Open No. 52-18886
  • Patent Document 5 Japanese Patent Laid-Open No. 4-91793
  • Patent Document 6 Japanese Patent Laid-Open No. 3-505284
  • Patent Document 7 International Publication No. 00Z61723 Pamphlet
  • Patent Document 8 Japanese Unexamined Patent Publication No. 2000-189180
  • Patent Document 9 European Patent 885962 Specification
  • Patent Document 10 International Publication No. 97Z23597 Pamphlet
  • Patent Document 11 Japanese Unexamined Patent Application Publication No. 2004-166594
  • Non-Patent Document 1 Molecular Microbiology 22: 815-826 (1996)
  • An object of the present invention is to provide a method for producing L-lysine or L-arginine with high efficiency using methanol which can be obtained in large quantities at low cost.
  • the present inventors have encoded Lys E protein when L-amino acids are produced using methanol-assimilating bacteria, particularly Methylophilus bacteria.
  • methanol-assimilating bacteria particularly Methylophilus bacteria.
  • the present invention is as follows.
  • the region force termination codon encoding the loop region is included in all three types of translation reading frames.
  • a methanol-assimilating bacterium introduced in a state capable of expressing the DNA force of any one of (1) to (5) and having an ability to produce L-lysine or L-arginine.
  • the methanol-assimilating bacterium of (6) or (7) is cultured in a medium, L-lysine or -arginine is produced and accumulated in the culture, and L-lysine or L-arginine is produced from the culture.
  • a method for producing L-lysine or L-arginine which comprises collecting an acid.
  • FIG. 1 shows the structure of LysE protein.
  • FIG. 2 is a diagram showing the base sequence (bases 352 to 386 of SEQ ID NO: 3) at the introduction position of the stop codon, each translation frame, and the wild type amino acid sequence.
  • the DNA of the present invention has three types of region-stopping codons that code for the loop region in addition to the base sequence encoding the LysE protein of coryneform bacteria having a loop region and six hydrophobic helices. It has a base sequence modified to be present in the entire reading frame of translation, and when introduced into a methanol-assimilating bacterium, the L-lysine or arginine of the bacterium or both of these L-amino acids are released to the outside of the cell. DNA that promotes the discharge of
  • the LysE protein encoded by the lysE gene has six hydrophobic helix regions (Vrljic M., Sahm H., Eggeling L. Molecular Microbiology 22: 815-826 (1996)). Some of these hydrophobic helix regions are presumed to be transmembrane regions. N end The region between the 3rd and 4th hydrophobic helix regions from the end is presumed to be hydrophilic and take a loop structure. This hydrophilic region is called a loop region in the present invention.
  • the nucleotide sequence of wild-type lysE and the amino acid sequence of the LysE protein of Brevibaterum ratatofamentum are shown in SEQ ID NOs: 1 and 2, respectively.
  • the hydrophobic helix regions 1 to 6 correspond to the regions of amino acid numbers 5 to 20, 37 to 58, 67 to 93, 146 to 168, 181 to 203, and 211 to 232, respectively. .
  • the loop region corresponds to the region of amino acid numbers 94 to 145.
  • a region containing the hydrophobic helix regions 1 to 3 is shown in SEQ ID NO: 4, and a region containing the hydrophobic helix regions 1 to 3 is shown in SEQ ID NO: 5.
  • the DNA of the present invention is a nucleotide sequence encoding the LysE protein as described above, wherein the region encoding the loop region is modified so that the stop codon is present in all three translation reading frames. Have.
  • nucleotide sequence encoding LysE protein examples include the nucleotide sequence of SEQ ID NO: 1.
  • the nucleotide sequence of the nucleotide sequence of SEQ ID NO: 1 is stringent. It may be a sequence that can hybridize below.
  • stringent conditions 60 ° C, 1 X SSC is a condition washing ⁇ normal Sazan'no ⁇ Eve lida I See Chillon, 0. 1 0/0 SDS, or preferably ⁇ , 0. 1 Examples include conditions of washing once, preferably twice, at a salt concentration corresponding to X SSC, 0.1% SDS.
  • coryneform bacteria may differ in the nucleotide sequence of the gene encoding lysE depending on the strain of coryneform bacteria, and thus are sequences that can be neutralized under the stringent conditions described above. It may be a base sequence having a homologous base.
  • Examples of the region encoding the loop region include the region of base numbers 280 to 435 of the base sequence of SEQ ID NO: 1, or a region corresponding thereto.
  • stop codon examples include TGA, TAA, and TAG.
  • “Regional force to code the loop region has been modified so that the stop codon is present in all three translation frames” means that substitution has been introduced into the base contained in the region and there are three types of stop codons.
  • Read translations of The stop codon has been inserted into all three translation frames of the region, or the region has a stop codon in all three translation frames. It is replaced with another sequence as it exists. Two or more stop codons may exist in each reading frame. Note that this is a mutation with a stop codon inserted into all three reading frames of these translations. 3 ⁇ 4 hree-frame stop codon is used to completely stop the translation of proteins and efficiently express only the target protein.
  • site-specific mutation may be performed by a method well known to those skilled in the art.
  • the corresponding region of the lysE gene is converted into a vector for site-directed mutagenesis by Promega.
  • the DNA of the present invention can be obtained by incorporating three types of stop codons into the pSELECTTM-1 and using its site-directed mutagenesis kit Altered Sites TM.
  • the lysE gene containing mutations may be amplified and cloned using the overlap extension PCR method known to those skilled in the art using a PCR primer having a sequence containing mutations to amplify the relevant site. Can do. (Urban, A "Neumaschinen, S. and Jaeger, K. E., A rapid and efficient method for site-directed mutagenesis using one-step overla p extension PCR. Nucleic Acids Res, 25, 2227—8. (1997).)
  • the DNA of the present invention may be prepared using the lysE24 gene (Japanese Patent Publication No. 2004-166594) in which one stop codon has already been introduced.
  • the DNA of the present invention When the DNA of the present invention is introduced into a methanol-assimilating bacterium, it promotes the excretion of L-lysine or L-arginine by the bacterium.
  • “promoting L-lysine and / or L-arginine or both L-amino acids to the outside of the cell” means that when the DNA of the present invention is introduced into a methanol-assimilating bacterium. Increasing the amount of L-lysine or L-arginine or both L-amino acids excreted by the bacteria into the medium. As a result, the promotion of L-amino acid excretion out of the cell results when the methanol-assimilating bacterium that holds the DNA of the present invention is cultured compared to the methanol-assimilating bacterium that does not retain the DNA of the present invention. Observed by increasing L-amino acid concentration in the medium. L amino acid The promotion of the extracellular excretion of the DNA can also be observed by a decrease in the intracellular L-amino acid concentration when the DNA of the present invention is introduced into a methanol-utilizing bacterium.
  • the DNA of the present invention has stop codons in all three types of reading frames, and promotes the elimination of lysine and / or arginine or both of them when introduced into methanol-utilizing bacteria.
  • Methylophilus' methylotrophus AS1 strain into which DNA lacking the 4th to 6th hydrophobic helix region of the lysE gene was introduced did not accumulate L-lysine in the medium.
  • the lysE24 gene (including one stop codon in the loop region) disclosed in JP-A-2004-166594 and the lysE24m5 gene of the present application were introduced.
  • Methylophilus' methylotrophus AS1 strain accumulated L-lysine in the medium.
  • the peptides containing the first to third hydrophobic helices and the peptides containing the fourth to sixth hydrophobic helices are translated separately and function in Methylophilus' Methylotrophus. Estimated.
  • the LysE24 protein consists of a peptide containing the 1st to 3rd hydrophobic helix from the N-terminus and a peptide containing the 4th to 6th hydrophobic helix, and is a wild-type LysE protein. It has been suggested that white matter does not have a loop region present between the third and fourth hydrophobic helixes (JP 2004-166594). This is a stop codon located downstream of the DNA region encoding the third hydrophobic helix, and the translation is stopped and stopped. This is because any start codon force existing downstream is considered to have such a structure in order to resume translation. Until now, multiple translation resumption positions have not been determined.
  • the resumption position was determined by the following method, and the peptide containing the first to third hydrophobic helices of LysE24 (SEQ ID NO: 4) and 4
  • the sequence of the peptide containing the 6th to 6th hydrophobic helices (SEQ ID NO: 5) could be determined.
  • lysE24 gene disclosed in Japanese Patent Application Laid-Open No. 2004-166594, a codon that may be used as a start codon at the time of resuming translation was modified and the effect was examined.
  • the nucleotide sequence of wild type lysE and the amino acid sequence of LysE protein of Brevibaterium 'Ratatofmentum are shown in SEQ ID NOs: 1 and 2, respectively.
  • the loop region corresponds to the region of amino acid numbers 94 to 145.
  • the 4th to 6th hydrophobic helix is considered essential for the activity of LysE, and the codon downstream from the 444th is the region encoding the 4th hydrophobic helix, so it was excluded from the candidates.
  • a mutant gene in which the codon for the resumption position of translation is replaced with GTC in the case of GTG and CTG in the case of ATG is created and introduced into Methylophilus' Methylotoguchi Fas, and the 394th G force and 396th G ( G-TG) and 400-th G to 402-th G (GTG) are each replaced with GTC, the secretion activity of L-lysine is greatly reduced, and when other parts are changed, L-lysine is secreted.
  • the amino acid sequence of the peptide having the first to third hydrophobic helix is the sequence shown in SEQ ID NO: 4
  • the amino acid sequence of the peptide having the fourth to sixth hydrophobic helix is SEQ ID NO: It becomes the arrangement
  • SEQ ID NO: 5 is the amino acid sequence of the peptide having the 4th to 6th hydrophobic helices when the 394th to 396th GTG is the restart position.
  • the region encoding the loop region has two codons, the 394th to the 396th GTG and the 400th to the 402th GTG, and three types of stop codons exist on the 5th side of these codons.
  • An arrangement is preferred. That is, it is preferable that the DNA of the present invention has a base sequence of SEQ ID NO: 1 or a homologous sequence thereof in which stop codons for each of the three reading frames are introduced into the region of base numbers 280 to 393. More preferably, three types of reading codons are introduced into the region of numbers 354 to 393.
  • DNA of the present invention is the DNA (SEQ ID NO: 3) named lysE24m5 shown in the Examples below.
  • lysE24m5 is a mutant of the lysE24 gene.
  • the DNA of the present invention is sometimes referred to as “improved lysE24” for convenience.
  • the DNA of the present invention is not limited to DNA obtained by modifying lysE24, but can also be obtained by directly introducing three types of reading frame stop codons into the region encoding the loop region of the wild-type lysE gene. included.
  • the DNA of lysE24m5 has a mutation introduced so that the stop codon of the other two reading frames continues downstream of the stop codon (base numbers 373-375) of the LysE24 gene (SEQ ID NO: 10). So that all three translational reading frames are stop codons so that translation stops completely.
  • LysE24 is a mutation (frame shift mutation) in which T (thymine) is inserted after G (guanine) at position 355 of the wild-type LysE gene (SEQ ID NO: 1), and the reading frame differs from that of the wild-type LysE protein. Also called).
  • a T-residue is introduced as described above, resulting in a frameshift mutation.
  • the base number 373-375th TGA of SEQ ID NO: 10 (mutant LysE24) that originally does not function as a stop codon functions as a stop codon. is doing.
  • the DNA of lysE24m5 has been introduced with a mutation that causes a stop codon to appear even if translation is performed downstream of the TGA codon, that is, when translation is performed, that is, 377-379 of SEQ ID NO: 10. Mutations that replace the 3rd acg and the 381-383rd caa with stop codons, respectively.
  • the three stop codons contained in the loop region of lysE24m5 may be replaced with any combination of stop codons selected from TGA, TAG, and TAA force!
  • the improved lysE24 gene of the present invention has three types of reading frames in the region encoding the loop region.
  • a peptide having a sequence comprising one or several amino acid substitutions, deletions, insertions or additions at one or more positions, and one or more positions at one or more positions in the amino acid sequence of SEQ ID NO: 5 It may be a DNA encoding a peptide having a sequence containing several amino acid substitutions, deletions, insertions or additions.
  • the term “several” means 2 to 30, more preferably 2 to 20, more preferably 2 to 10, depending on the position and type of the amino acid residue in the three-dimensional structure of the protein. It is a piece.
  • the DNA of the present invention is a DNA encoding a sequence containing an amino acid substitution in the amino acid sequence of SEQ ID NO: 4 or 5
  • the substitution is a conservative substitution so that the activity of the protein is maintained. It is.
  • a substitution is a change in which at least one residue in the amino acid sequence is removed and another residue is inserted therein.
  • amino acids that replace the original amino acid of the enzyme protein and are considered conservative substitutions are ala to ser or thr, arg to gln, his or lys], asn force and glu, Substitution to gln, lys, his or asp, substitution to asp »asn, glu or gin, substitution of cys force to ser or ala, substitution of gin force to asn, glu, lys, his, asp or arg , Glu force, etc. gly, asn, gln, lys or asp substitution, gly force, substitution for pro, his force, etc., asn, lys, gl n, conversion to arg, tyr, ile force, etc.
  • the homologous DNA having substantially the same function as the improved lysE24 gene as described above is substituted with an amino acid residue at a specific site in the hydrophobic region of the encoded protein by, for example, site-directed mutagenesis. Obtained by modifying the base sequence (such as SEQ ID NO: 3) of the improved lys E24 to include a deletion, insertion, addition, or inversion.
  • the modified DNA as described above can also be obtained by a conventionally known mutation treatment.
  • Mutation treatment includes a method of treating DNA having a base sequence such as SEQ ID NO: 3 in vitro with hydroxylamine or the like, and a microorganism that retains the DNA, such as Esche There is a method of treating Lichia bacteria with ultraviolet light irradiation or normal mutagenesis treatment such as N-methyl-N '-tro-N--trosoguanidine (NTG) or nitrous acid! Can be mentioned.
  • DNA with substantially the same function as the improved lysE 24 gene can be obtained.
  • a cell having improved efflux activity of L-lysine or L-arginine which is a microorganism obtained by introducing the DNA into a microorganism and mutating the microorganism, is selected, for example, as shown in SEQ ID NO: 3 in the sequence listing DNA having substantially the same function as that of the improved lysE24 gene can be obtained by performing hybridization under stringent conditions using a probe having the nucleotide sequence of or a part thereof.
  • the “stringent conditions” referred to here are conditions under which so-called specific hybrids are formed and non-specific hybrids are not formed.
  • DNAs with high homology for example, 50% or more, preferably 70% or more, more preferably 80% or more, particularly preferably 90%
  • the conditions include hybridization at a salt concentration corresponding to ° C, 1 X SSC, 0.1% SDS, preferably 0.1 X SSC, 0.1% SDS. Homology can be searched using BLAST. (//blast.genome.jp/)
  • a partial sequence of the nucleotide sequence of SEQ ID NO can also be used as a probe.
  • Such a probe can be prepared by PCR using the oligonucleotide prepared on the basis of the base sequence of SEQ ID NO. As a primer and a DNA fragment containing the base sequence of SEQ ID NO.
  • the conditions for washing the hybridization include 50 ° C, 2 X SSC, and 0.1% SDS.
  • the DNA having substantially the same function as the improved lysE24 gene specifically, the base sequence shown in SEQ ID NO: 3, preferably 50% or more, more preferably 70% or more, and Preferably, the base sequence has a homology of 80%, particularly preferably 90% or more, most preferably 95% or more, and L-lysine and L-arginine are introduced when introduced into methanol-assimilating bacteria. For example, DNA that improves the activity to be excreted.
  • DNA having substantially the same function as the improved lysE24 gene obtained by the mutation treatment as described above is the three types of open reading frames included in the original "modified lysE24 gene". It is preferable that the terminator codon is retained as it is and that a base substitution or the like is introduced into another region.
  • a DNA having substantially the same function as the lysE24m5 gene having the base sequence shown in SEQ ID NO: 3 is subjected to stringent conditions with a probe capable of preparing the base sequence shown in SEQ ID NO: 3 or the same base sequence force.
  • a DNA to be hybridized which comprises the sequence of nucleotide numbers 373 to 383 of SEQ ID NO: 3, and when introduced into a methanol-assimilating bacterium, L lysine and / or arginine of the bacterium, or both L amino acids It is preferable that the DNA promotes the excretion of the protein to the outside of the cell.
  • the DNA of the present invention is completely different from the DNA described in International Publication No. 97/23597 pamphlet and Japanese Patent Application Laid-Open No. 2004-166594, and has unexpected power. That is, a document disclosing wild-type lysE (WO 97/23597 pamphlet) can present only the case where the wild-type lysE gene of coryneform bacteria is introduced into coryneform bacteria. Only L-lysine is shown as an excreted amino acid, and a single polypeptide containing 6 hydrophobic helices is disclosed as LysE protein.
  • the present inventors have found that the wild-type lysE gene cannot be introduced into methanol-assimilating bacteria, and that the wild-type lysE gene functions lethally in methanol-assimilating bacteria.
  • the DNA of the present invention contains three types of reading frame stop codons in the loop region, the basic structure is different from wild-type lysE, which consists of six hydrophobic hells of one polypeptide. From the previous pamphlet of WO 97/23597, neither structure nor effect can be predicted.
  • JP 2004-166594 A discloses that the lys E24 gene into which one stop codon has been introduced by base insertion is disclosed.
  • the DNA of the present invention further comprises two stop codons.
  • the lysine or arginine excretion effect is further enhanced.
  • all three types of reading frames Gene 24 (1983) 15-27
  • the methanol-assimilating bacterium of the present invention is a methanol-assimilating bacterium introduced with the DNA of the present invention in an expressible form and having the ability to produce L-lysine or L-arginine. It can be obtained by introducing the DNA of the present invention into a methanol-utilizing bacterium having the ability to produce L-lysine or L-arginine.
  • the methylophyllus bacterium of the present invention can also be obtained by imparting L-lysine or L-arginine-producing ability to the methanol-assimilating bacterium introduced with the DNA of the present invention.
  • the methanol-assimilating bacterium of the present invention may be one that has been given the ability to produce L-lysine or L-arginine by being introduced in a form in which the DNA of the present invention can be expressed.
  • a methanol-assimilating bacterium is a bacterium that can grow using methanol as a main carbon source, and is introduced into the L-lysine or the bacterium by introducing the DNA of the present invention.
  • This is a bacterium that promotes the export of L-amino acids such as arginine to the outside of cells.
  • Specific examples include Methylophilus bacteria such as Methylophilus methylotrophus and Methylobacillus bacteria such as Methylobacillus glycogenes.
  • Methylophilus' methylotrophus examples include AS1 strain (NCIMB10515).
  • Methylophilus' Methylotrophus AS1 strain (NCIMB10515) is a national collection of Industrial and Marine Bacteria, NCIMB Lts., Torry Research Station 135, Abbey Road , Aberdeen AB9 8DG, United Kingdom).
  • Methylobacillus glycogenes includes T-11 strain (NCIMB 11375), ATCC 21276 strain, ATCC 21371 strain, ATR80 strain (Appi. Microbiol. BiotechnoL, (1994), 42), p67-72), A513 Strains (described in Appl. Microbiol.
  • Methylobacillus Glycogenes NCIMB 11375 is a national collection of Industrial and Marine Bacteria ⁇ address NCIMB Lts., Torry Research Station 135, Abbey Road, Aberdeen AB9 8DG, United Kingdom).
  • the DNA is used as a vector that functions in the methanol-assimilating bacterium, preferably a multi-functional bacterium.
  • Recombinant DNA can be prepared by ligation with a copy-type vector, which is then introduced into a methanol-utilizing bacterial host for transformation.
  • a vector that functions in a methanol-assimilating bacterium and a vector that functions in a methanol-assimilating bacterium are, for example, plasmids that autonomously replicate in Methylophilus bacteria and Methylobacillus bacteria.
  • the broad host range vector RSF1010 and its derivatives such as pAYC32 (Chistorerdov, AY, Tsygankov, YD Plasmid, 1986, 16, 161-1 67), or pMFY42 (gene, 44, 53 (1990) ), PRP301, pTB70 (Nature, 287, 396, (1980)) and the like.
  • the introduction of the DNA of the present invention can also be achieved by allowing the DNA to exist in one copy or multiple copies on the chromosomal DNA of a methanol-assimilating bacterium.
  • To introduce multiple copies of a target gene onto the chromosomal DNA of a methanol-utilizing bacterium homologous recombination is performed using a sequence that exists in multiple copies on the chromosomal DNA as a target.
  • sequences that exist in multiple copies on chromosomal DNA include transposons, repetitive sequences, and inverted repeats that exist at the ends of transposable elements. It can also be achieved by transferring multiple copies of the mutant LysE24 gene onto the chromosome using Mu phage N transposon. (European Patent No. 0332488 specification)
  • Promoter strength is defined by the frequency of RNA synthesis initiation. Methods for evaluating promoter strength and examples of strong promoters are described in Goldstein et al. (Prokaryotic promoters in biotechnology. Biotechnol. Annu. Rev., 1995, 1, 105-128). Further, as disclosed in International Publication W000Z18935, it is possible to introduce a base substitution of several bases into the promoter region of the target gene and modify it to be more powerful.
  • promoters that function strongly in methanol-utilizing bacteria include the lac promoter, trp promoter, trc promoter, tac promoter, lambda phage PR promoter, PL promoter, tet promoter, amyE promoter, spac promoter, etc. .
  • the DNA of the present invention may be introduced by linking to an expression regulatory sequence modified so as to increase translation efficiency.
  • the methanol-assimilating bacterium of the present invention has the ability to produce lysine or arginine.
  • an auxotrophic mutant an analog Traditionally used for breeding coryneform bacteria or Escherichia bacteria, such as obtaining resistant strains or metabolically controlled mutant strains, and creating recombinant strains with enhanced L-lysine or L-arginine biosynthetic enzymes.
  • the method can be applied (see Amino Acid Fermentation, Academic Publishing Center, published the first edition on May 30, 1986, 77-: LOO).
  • the auxotrophy, analog resistance, metabolic control mutation, and other properties imparted may be two or three or more.
  • the L amino acid biosynthesis enzymes to be enhanced may be used alone or in combination of two or more.
  • imparting properties such as auxotrophy, analog resistance, and metabolic regulation mutation may be combined with enhancement of biosynthetic enzymes.
  • L-lysine-producing bacteria require L-homoserine, or mutant strains that require L-threonine and L-methionone (JP-B 48-28078, JP-B 56-6499), inositol or acetic acid.
  • Mutant strains JP 55-9784, JP 56-8692, or oxalidine, lysine hydroxamate, S- (2-aminoethyl) cysteine, ⁇ -methyllysine, (X chlorocaprolatatam, It can be bred as a mutant strain that is resistant to DL-a amino-epsilon prolatatam, a amino-laurino relatatam, aspartate monoanalogue, sulfa drugs, quinoids, or N lauroylleucine.
  • the L-arginine-producing bacterium is a mutant strain resistant to drugs such as sulfa drugs, 2 thiazolealanin or ⁇ -amino- ⁇ -hydroxyvaleric acid; L-histidine, L-proline, L-threonine, L-isoleucine, L-methionine, or L-tritophan fan-requiring mutant (Japanese Patent Laid-Open No.
  • Resistant mutant strains Resistant mutant strains, arginine hydroxamate, 2-Chiourashiru the resistant mutant strains, arginine hydroxamate Mutants resistant to mate and 6 azauracil (see JP 57-150381), mutants resistant to histidine analog or tributophan analog (see JP 52-114092), methionion, histidine, threonine , A mutant strain having a requirement for at least one of proline, iso-icin, lysine, adenine, guanine or uracil (or uracil precursor) (see JP-A-52-99289), a mutation resistant to arginine hydroxamate Strain (see Japanese Examined Patent Publication No.
  • mutant strain resistant to succinic acid requirement or nucleobase analog Japanese Patent Laid-Open No. 58-9692
  • lacking arginine resolution resistant to arginine antagonist and canavanine Mutants that require lysine (see JP 52-8729), arginine, arginine hydroxamate, homoarginine, D-arginine, canava Down ⁇ , mutant arginine human Dorokisameto and 6 Azaurashiru resistance (see JP-A 53-143288), and can be bred as mutants of canavanine resistance (see JP-A 53-3586).
  • the ability to produce L-lysine can be imparted, for example, by enhancing dihydrodipicolinate synthase activity and isnorthokinase activity.
  • a gene fragment encoding dihydrodipicolinate synthase and a gene fragment encoding aspartokinase are treated with methanol assimilation.
  • a recombinant DNA can be prepared by ligating to a vector that functions in bacteria, preferably a multi-copy vector, and then transformed into a host of a Methylophilus bacterium.
  • DDPS dihydrodipicolinate synthase
  • AK aspartokinase II.
  • any microorganism can be used as long as it can express DDPS activity and AK activity in a microorganism belonging to a methanol-assimilating bacterium. It can also be used with microorganisms.
  • the microorganism may be either a wild strain or a mutant derived therefrom. Specifically, E. coli (Escherichia a)) K-12 strain and Methylophilus' methylotrophus AS1 strain (NCIMB10515).
  • E. coli Esscherichia a
  • NCIMB10515 Methylophilus' methylotrophus AS1 strain
  • DDPS and AK used for surviving L-lysine producing ability are preferably those that are not subject to feedback inhibition by L-lysine.
  • Wild type DDPS derived from E. coli is known to undergo feedback inhibition by L-lysine
  • wild type AKI II from E. coli is known to undergo inhibition and feedback inhibition by L-lysine. Therefore, it is preferable that dapA and lysC introduced into a methanol-utilizing bacterium such as a Methylophilus bacterium encode DDPS and ⁇ having a mutation that cancels feedback inhibition by L-lysine, respectively.
  • a DDPS having a mutation that eliminates feedback inhibition by L-lysine may be referred to as “mutant DDPS”, and a DNA encoding the mutant DDPS may be referred to as “mutant dapA or dapA *”.
  • E. coli-derived moths with mutations that eliminate feedback inhibition by L-lysine are sometimes called “mutant ⁇ ”, and DNAs that encode mutated ⁇ are called “mutant lysC”.
  • DDPS and AK are not necessarily mutants.
  • DDPS derived from Corynebacterium bacteria is not originally feedback-inhibited by L-lysine.
  • DNA encoding mutant ⁇ ⁇ without being inhibited by feedback from L-lysine includes ⁇ having a sequence in which the threonine residue at position 352 in the amino acid sequence shown in SEQ ID NO: 15 is replaced with an isoleucine residue.
  • the encoding DNA includes ⁇ having a sequence in which the threonine residue at position 352 in the amino acid sequence shown in SEQ ID NO: 15 is replaced with an isoleucine residue.
  • plasmids used for cloning these genes include pBR322, pTWV228, pMW119, and pUC19, as long as they can replicate in microorganisms such as Escherichia.
  • a vector for introducing these genes into methanol-assimilating bacteria for example, a plasmid capable of autonomous replication in Methylophilus bacteria and Methylobacillus bacteria.
  • a broad host range vector RSF1010 and its derivatives such as pAYC32 (Chistorerdov, AY, Tsygankov, YD Plasmid, 1986, 16, 161-167) or pMF Y42 (gene, 44, 53 (1990)) PRP301, pTB70 (Nature, 287, 396, (1980)) and the like.
  • the vector is cleaved with a restriction enzyme that matches the ends of the DNA fragment containing dapA and lysC. Ligation is usually performed using a ligase such as T4 DNA ligase. dapA and lysC may be mounted on separate vectors or on the same vector.
  • a wide host range plasmid RSFD80 is known as a plasmid containing mutant dapA encoding mutant DDPS and mutant lysC encoding mutant ⁇ ⁇ ⁇ (WO95 / 16042).
  • the E. coli JM109 strain transformed with this plasmid was named AJ12396, and this strain was established on October 28, 1993 at the Institute of Biotechnology, National Institute of Advanced Industrial Science and Technology (currently the National Institute of Advanced Industrial Science and Technology). Deposited under the deposit number FERM P-13936, transferred to an international deposit under the Budapest Treaty on November 1, 1994, and deposited under the deposit number of FERM BP-4859.
  • RSFD80 can be obtained from AJ12396 strain by a known method.
  • Mutant dapA contained in RSFD80 has a sequence in which C of base number 598 is changed to T in the base sequence of wild-type dapA shown in SEQ ID NO: 12, and the encoded mutation Type DDPS has a sequence in which the histidine residue at position 118 in the amino acid sequence shown in SEQ ID NO: 13 is substituted with a tyrosine residue.
  • mutant lysC contained in RSFD80 has a sequence in which the C of base number 1055 is T-changed in the base sequence of wild-type lysC shown in SEQ ID NO: 14, so that the encoded mutant ⁇ is , SEQ ID NO: 15
  • the threonine residue strength at position 352 in the nonacid sequence has a sequence substituted with a soleucine residue.
  • Enhancement of DDPS activity and AK activity can also be achieved by having multiple copies of dapA and lysC on the chromosomal DNA of Methylophilus bacteria.
  • dapA and lysC are homologous recombination performed using a sequence that exists in multiple copies on the chromosomal DNA as a target.
  • sequences that exist in multiple copies on chromosomal DNA repetitive DNA and inverted repeats present at the ends of transposable elements can be used.
  • dapA and Z or lysC can be mounted on a transposon and transferred to introduce multiple copies onto chromosomal DNA. Either method increases the copy number of dap A and lysC in the transformed strain, resulting in amplification of DDPS activity and AK activity.
  • Amplification of DDPS activity and AK activity can be achieved by replacing expression control sequences such as dapA and lysC promoters with strong ones in addition to the above gene amplification.
  • lac promoter for example, lac promoter, trp promoter, trc promoter, tac promoter, lambda phage PR promoter, PL promoter, tet promoter, amyE promoter, spac promoter, etc. are known as strong promoters. By substituting these promoters, the expression of dapA and lysC is enhanced, thereby amplifying DDPS activity and AK activity. Enhancement of expression control sequences can be combined with increasing copy number of dapA and lysC! /.
  • the vector is cleaved with a restriction enzyme that matches the ends of the gene fragment. Ligation is usually performed using a ligase such as T4 DNA ligase.
  • a ligase such as T4 DNA ligase.
  • T4 DNA ligase For the methods such as DNA cleavage, ligation, chromosomal DNA preparation, PCR, plasmid DNA preparation, transformation, setting of oligonucleotides used as primers, etc., ordinary methods well known to those skilled in the art should be adopted. Can do. These methods are described in Sambrook, J., Fritsch, EF, and Maniatis, T., "Molecular Cloning A Laboratory Manual, Second Edition", Cold pring Harbor Laboratory Press, (1989).
  • enzymes involved in L-lysine biosynthesis may be enhanced in addition to the enhancement of DDPS and AK.
  • enzymes include dihydrodipicolinate reductase, diaminopimelate decarboxylase, diaminopimelate dehydrogenase (see WO96 / 40934), phosphoenolpyruvate carboxylase (JP-A-60-87788), aspartate Enzymes such as aminotransferase (Japanese Patent Publication No.
  • diaminopimelate epimerase gene enzymes of diaminopimelate pathway such as aspartate semialdehyde dehydrogenase, or enzymes of aminoadipate pathway such as homoaconate hydratase gene It is done.
  • the methanol-assimilating bacterium of the present invention is an enzyme that catalyzes a reaction that branches from the biosynthetic pathway of L-lysine to produce a compound other than L-lysine in order to enhance L-lysine production ability. May be reduced or deficient in activity.
  • Biosynthesis pathway of L-lysine Enzymes that catalyze the reaction of branching to produce compounds other than L-lysine include homoserine dehydrogenase and lysine decarboxylase (see WO 95/23864, JP 2004-254544). .
  • L-arginine-producing ability can enhance, for example, acetylol-tin deacetylase activity, N-acetyl glutamate- ⁇ -semialdehyde dehydrogenase activity, acetyl daltammokinase activity, and argininosuccinase activity. (No. 5-23750). It can also be imparted by releasing feedback inhibition by L-arginine of acetylacetyl glutamate synthase. (JP 2002-253268)
  • Methanol assimilating bacteria having the ability to produce lysine or L-arginine introduced in the above-described DNA of the present invention are cultured in a medium, and L-lysine or lysine is cultivated in the culture (medium or cells).
  • L-lysine or L-arginine can be produced by producing and accumulating L-arginine and collecting L-lysine or arginine from the culture.
  • the microorganism used in the present invention can be cultured by a method usually used for culturing methanol-assimilating microorganisms.
  • the medium used in the present invention is a medium containing a carbon source, a nitrogen source, an inorganic ion, and other organic trace components as necessary, any difference between a natural medium and a synthetic medium can be used.
  • L-lysine or L-arginine can be produced at low cost.
  • methanol is used as the main carbon source, 0.001 to 30% is added to the medium.
  • nitrogen source ammonium sulfate or the like is added to the medium.
  • trace components such as potassium phosphate, sodium phosphate, magnesium sulfate, ferrous sulfate, manganese sulfate is usually added.
  • Cultivation is performed under aerobic conditions such as shaking culture or aeration-agitation culture while maintaining the pH at 5 to 9 and the temperature at 20 to 45 ° C, and is usually completed in 24 to 120 hours.
  • Collection of L-lysine or L-arginine with culture strength can be usually performed by a combination of an ion exchange resin method, a sedimentation method, and other known methods.
  • Wako Pure Chemicals or those manufactured by Nacalai Testa Co., Ltd. were used as reagents.
  • the composition of the medium used in each example is as shown below.
  • the pH of each medium was adjusted with NaOH or HC1.
  • lysE24m5 SEQ ID NO: 3
  • lysE24m5 SEQ ID NO: 3
  • Plasmid pRSlysE24 is constructed from pRS, which is a pVIC40 plasmid derived from the broad host range vector plasmid pAYC32 (Chistorerdov, AY, T sygankov, YD Plasmid, 1986, 16, 161-167), which is a derivative of RSF1010 ( From the international publication WO90 / 04636 pamphlet, Japanese Patent Publication No. 3-501682), a plasmid having only the vector portion by deleting the DNA region encoding the threonine operon of the plasmid.
  • the E.coli JM109 strain transformed with pRSlysE24 was named AJ13830, and on June 4, 2001, the National Institute of Advanced Industrial Science and Technology, Patent Biological Deposit Center (Ibaraki 305-54 66, Japan) Deposited as FERM P-18369 at Tsukuba Sakai Higashi 1-chome 1 1-Chuo 6) and transferred to an international deposit under the Budapest Treaty on May 13, 2002. Deposited under the accession number of ERM BP-8040.
  • a vector for carrying lysE24m5 was prepared by deleting the lysE24 region from the plasmid pRSlysE24. was digested pRSL ys E24 with restriction enzymes Sse8387I and SAPL, added and mixed phenol 'chloroform solution, the reaction was stopped. After centrifuging the reaction solution, the upper layer is recovered, DNA is recovered by ethanol precipitation, separated on a 0.8% agarose gel, and about 8 DNA base pairs (hereinafter referred to as “kbp”) of EASY It was recovered using TRAP Ver.2 (DNA recovery kit, manufactured by Takara Shuzo).
  • the lysE24m5 gene fragment was prepared by the following method.
  • the 5 'fragment of the lysE24m5 gene was amplified by PCR using the pRSlysE24 plasmid as a saddle and the primers shown in SEQ ID NOs: 6 and 7 (denaturation 94 ° C-20 seconds, annealing 55 ° C-30 seconds, Elongation reaction 72 ° C-30 A cycle of 30 seconds was performed 30 times). Pyrobest DNA polymerase (Takara Shuzo) was used for the PCR reaction.
  • the 5th DNA fragment of the amplified lysE24m5 gene was purified with PCRprep (Promega).
  • the 3 ′ fragment of the lysE24m5 gene was PCR amplified in the same manner.
  • primers shown in SEQ ID NOs: 8 and 9 were used as primers.
  • the primers of SEQ ID NOs: 7 and 8 contain sequences for introducing three types of reading frame stop codons.
  • the 5 ′ and 3 ′ fragments obtained as described above were separated with 0.8% agarose gel, and DNA fragments of about 0.5 kbp and about 0.3 kbp were respectively obtained using EASY TRAP Ver.2. It was collected.
  • the recovered fragments were mixed, and the lysE24m5 gene fragment was amplified by PCR using the SEQ ID NOs: 7 and 10 as primers (denature 94 ° C-20 seconds, annealing 60 ° C-30 seconds, (Elongation reaction: 72 ° C-60 sec cycle was performed 30 cycles).
  • the lysE24m5 gene fragment obtained as described above was separated on a 0.8% agarose gel, and a DNA fragment of about 0.8 kbp was recovered using EASY TRAP Ver.2.
  • the pRSlysE24 vector digest lacking the lysE24 gene fragment prepared as described above and the lysE24m5 fragment were ligated using DNA Ligation Kit Ver.2 (Takara Shuzo).
  • This ligation solution was transformed into E. coli JM109 competent cells (Takara Shuzo), applied to an LB agar medium containing 20 mg / L of streptomycin, and incubated at 37 ° C. Colonies that appeared on the agar medium were inoculated into LB liquid medium containing 20 mg / L of streptomycin and cultured at 37 ° C for 8 hours with shaking. Alkaline-each culture medium by using SDS method DNA was extracted and digested with restriction enzymes to confirm the structure to obtain pRSlysE24m5.
  • the pRSlysE24m5 obtained as described above was converted into Methylophilus' methylotrophus ASl strain (NCI) by the Elect Mouth Position method (Canadian Journal of Microbiology, 43. 197 (1997)).
  • pRS and pRSlysE24 were introduced into AS1 strain in the same manner as pRSlySE24m5.
  • L-amino acid productivity of methanol-assimilating bacteria particularly the productivity of L-lysine and L-arginine can be improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

 ループ領域と、6個の疎水性ヘリックスとを有するコリネ型細菌のLysEタンパクをコードする塩基配列において、前記ループ領域をコードする領域が、終止コドンが3種類の翻訳の読み枠全てに存在するように改変された塩基配列を有し、かつメタノール資化性細菌に導入されたときに該細菌のL-リジンもしくはL-アルギニン又はこれらの両方のL-アミノ酸の細胞外への排出を促進するDNAをメチロフィラス属細菌などのメタノール資化性細菌に導入し、得られた細菌をL-リジン及びL-アルギニンの生産に用いる。

Description

明 細 書
メタノール資化性細菌を用レ、たし -リジン及び L -アルギニンの製造法 技術分野
[0001] 本発明は L リジン及び Z又は L アルギニンの細胞外への排出を促進する新規 変異型 LysEタンパク質をコードする DNA、並びに該 DNAが導入されたメタノール資 化性細菌に関する。本発明はまた、該メタノール資化性細菌を用いた発酵法による L リジン又は L アルギニンの製造法に関するものである。
背景技術
[0002] L リジン、 L グルタミン酸、 L—スレオ-ン、 L ロイシン、 L—イロソイシン、 L— ノ リン及び L—フエ-ルァラニン等の L—アミノ酸は、ブレビバクテリウム属、コリネバタ テリゥム属、バチルス属、ェシエリヒア属、ストレプトミセス属、シユードモナス属、ァー スロバクター属、セラチア属、ぺニシリウム属、キャンディダ属等に属する微生物を用 いた発酵法により工業生産されている。これらの微生物は、生産性を向上させるため に、自然界力 分離した菌株または該菌株の人工変異株が用いられている。また、 組換え DNA技術により L アミノ酸の生合成酵素を増強することによって、 L -ァミノ 酸の生産能が向上した微生物も用いられている。
[0003] 上記のような微生物を用いることにより、 L アミノ酸の生産性はかなり高まってはい る力 今後の需要のいっそうの拡大に応えるためには、さらに安価かつ効率的な L アミノ酸の製造法の開発が求められている。
[0004] ところで、従来、安価に大量に入手可能な発酵原料であるメタノール力 発酵法に より L アミノ酸を製造する方法としては、ァクロモパクター属およびシユードモナス属 (特許文献 1)、プロタミノバクター属(特許文献 2)、プロタミノバクター属及びメタノモ ナス属 (特許文献 3)、ミクロサイクラス属 (特許文献 4)、メチロバチルス属 (特許文献 5 )、バチルス属 (特許文献 6)などに属する微生物を用いる方法が知られている。本発 明者らはこれまで、人工変異による育種および組換え DNA技術を使って、メチロフィ ラス属細菌を用 ヽた L アミノ酸製造法の開発を行つてきた (特許文献 7)。
[0005] ェシエリヒア'コリにおいてアミノ酸排出タンパク質の発現量を上昇させることにより、 いくつかの L アミノ酸の生産性を向上させることができることが知られている(特許文 献 8)。例えば、ェシエリヒア'コリにおいては、 ORF306遺伝子の発現を増強することに よって、シスチン、システィン等の生産性が向上することが報告されている (特許文献 9)。
[0006] 近年、 L アミノ酸を特異的に微生物の菌体の外部に排出する機能を持つタンパク 質および遺伝子がいくつか同定され、特に Vrljicらは、コリネバタテリゥム属細菌から L リジンの菌体外への排出に関与する遺伝子を同定した (非特許文献 1)。この遺伝 子は lysEと名付けられ、同遺伝子をコリネパクテリゥム属細菌において増強させること によって、コリネバタテリゥム属細菌の L リジン生産能が向上することが報告されて いる(特許文献 10)。
[0007] 我々はこれまでに、上記 lysE遺伝子はメタノール資化性細菌に導入することができ ず、機能出来ないことを発見し、メタノール資化性細菌で L-リジン排出活性を発揮す るような改変体 lysE遺伝子を取得した。我々は上記の改変体 lysE遺伝子を使うことで 、 L-リジンを効率よく生産させることができることを明らかにし、メチロフイラス属細菌を 用いた L—アミノ酸製造法の開発を行ってきた (特許文献 11)。しかし、この改変体 Ly sEである LysE24の L-リジン排出活性は充分でなぐさらに効率よく L-リジンを分泌さ せ、培地中に蓄積させ、生産するためにはさらなる排出活性の向上が望まれた。 特許文献 1:特開昭 45 - 25273号公報
特許文献 2:特公昭 49— 125590号公報
特許文献 3:特開昭 50 - 25790号公報
特許文献 4:特開昭 52— 18886号公報
特許文献 5:特開平 4 - 91793号公報
特許文献 6:特開平 3 - 505284号公報
特許文献 7 :国際公開第 00Z61723号パンフレット
特許文献 8:特開 2000— 189180号公報
特許文献 9:欧州特許 885962号明細書
特許文献 10:国際公開第 97Z23597号パンフレット
特許文献 11 :特開 2004— 166594号公報 非特許文献 1 : Molecular Microbiology 22:815-826(1996)
発明の開示
[0008] 本発明は、安価に大量に入手可能なメタノールを用いて、効率良ぐ L リジン又は L アルギニンを製造する方法を提供することを課題とする。
[0009] 本発明者らは、上記課題を解決するために鋭意検討を重ねた結果、メタノール資 化性細菌、とりわけメチロフイラス属細菌を利用して L—アミノ酸を製造する場合、 Lys E蛋白質をコードする DNAにおいてループ領域をコードする DNA領域に翻訳が完全 に停止するように 3種類の翻訳の読み枠すべてに終止コドンが存在するような変異を 導入した変異型 DNAを細菌に導入することによって、該細菌の L-リジンの分泌効率 を向上することを見出した。このようなメタノール資化性細菌を利用することで効率の 良い L-アミノ酸生産が可能であることを見出し、本発明を完成させた。
[0010] すなわち本発明は以下のとおりである。
(1)ループ領域と、 6個の疎水性へリックスとを有するコリネ型細菌の LysEタンパクを コードする塩基配列において、前記ループ領域をコードする領域力 終止コドンが 3 種類の翻訳の読み枠全てに存在するように改変された塩基配列を有し、かつメタノー ル資化性細菌に発現可能な状態で導入されたときに該細菌による L リジンもしくは L アルギニン又はこれらの両方の L アミノ酸の細胞外への排出を促進する DNA
(2)前記終止コドン力 STGA,TAG,及び TAAから選択される(1)の DNA。
(3)前記終止コドン力 配列番号 1における塩基番号 354〜393の領域に導入された ことを特徴とする(1)の DNA。
(4)前記メタノール資化性細菌力メチロフイラス属細菌、又はメチロバチルス属細菌 である(1)〜(3)の!、ずれかの DNA。
(5) 前記 DNAが、下記(a)又は(b)に示す DNAである(1)〜(4)のいずれかの DN
A。
(a)配列番号 3に記載の塩基配列を含む DNA、
(b)配列番号 3に記載の塩基配列又は同塩基配列力 調製され得るプローブとストリ ンジヱントな条件下でハイブリダィズする DNAであって、配列番号 3の塩基番号 373 〜383の配列を含み、かつ、メタノール資化性細菌に発現可能な状態で導入された ときに該細菌による L リジンもしくはし アルギニン又はこれらの両方の L アミノ酸 の細胞外への排出を促進する DNA。
(6) (1)〜(5)のいずれかの DNA力 発現可能な状態で導入され、かつ、 L リジン 又は L アルギニン生産能を有するメタノール資化性細菌。
(7)メチロフイラス属細菌、又はメチロバチルス属細菌である(6)のメタノール資化性 細菌。
(8) (6)又は(7)のメタノール資化性細菌を培地に培養し、培養物中に L—リジン又 はし -アルギニンを生産蓄積させ、該培養物から L -リジン又は L -アルギニン酸を 採取することを特徴とする L リジン又は L アルギニンの製造法。
(9)前記培地力 Sメタノールを主たる炭素源とすることを特徴とする(8)の L—リジン又 はし ァノレギニンの製造法。
図面の簡単な説明
[0011] [図 l]LysEタンパクの構造を示す図。
[図 2]終止コドンの導入位置の塩基配列 (配列番号 3の塩基 352— 386)及び各翻訳 フレーム及び野生型のアミノ酸配列を示す図。
発明を実施するための最良の形態
[0012] 以下、本発明を詳細に説明する。
< 1 >本発明の DNA
本発明の DNAは、ループ領域と、 6個の疎水性へリックスとを有するコリネ型細菌 の LysEタンパクをコードする塩基配列にぉ 、て、前記ループ領域をコードする領域 力 終止コドンが 3種類の翻訳の読み枠全てに存在するように改変された塩基配列を 有し、かつメタノール資化性細菌に導入されたときに該細菌の L リジンもしくはし アルギニン又はこれらの両方の L アミノ酸の細胞外への排出を促進する DNAであ る。
[0013] lysE遺伝子がコードする LysEタンパク質は、 6個の疎水性へリックス領域を有してい る(Vrljic M., Sahm H., Eggeling L. Molecular Microbiology 22:815-826(1996))。そ れらの疎水性へリックス領域のいくつかは膜貫通領域であると推定される。また、 N末 端から 3番目と 4番目の疎水性へリックス領域の間の領域は親水性であり、ループ構 造をとると推定される。この親水性領域を本願発明においてはループ領域と呼ぶ。ブ レビバタテリゥム ·ラタトフアーメンタムの野生型 lysEの塩基配列及び LysEタンパク質 のアミノ酸配列をそれぞれ、配列番号 1、 2に示す。配列番号 2のアミノ酸配列におい て、疎水性へリックス領域 1〜6はそれぞれ、アミノ酸番号 5〜20、 37〜58、 67〜93 、 146〜168、 181〜203、 211〜232の領域に相当する。また、ループ領域はアミ ノ酸番号 94〜145の領域に相当する。疎水性へリックス領域 1〜3を含む領域を配 列番号 4に、疎水性へリックス領域 1〜3を含む領域を配列番号 5に示した。
本発明の DNAは、上記のような LysEタンパク質をコードする塩基配列において、ル ープ領域をコードする領域が、終止コドンが 3種類の翻訳の読み枠全てに存在する ように改変された配列を有する。
LysEタンパク質をコードする塩基配列としては、配列番号 1の塩基配列が挙げられ るが、 L-リジン排出能を有するタンパク質をコードする限り、配列番号 1の塩基配列を 有するポリヌクレオチドとストリンジェントな条件下でハイブリダィズしうる配列であって もよい。なお、「ストリンジェントな条件」とは、通常のサザンノヽイブリダィゼーシヨンの 洗 ヽの条件である 60°C、 1 X SSC, 0. 10/0SDS、好ましく ίま、 0. 1 X SSC、 0. 1%S DSに相当する塩濃度で 1回、好ましくは 2回洗浄する条件が挙げられる。また、 L-リ ジン排出能を有するタンパク質をコードする限り、配列番号 1の塩基配列と 50%以上 、好ましくは 70%以上、より好ましくは 80%、特に好ましくは 90%以上、最も好ましく は 95%以上の相同な塩基配列を有する塩基配列であってもよ!/ヽ。またコリネ型細菌 は、コリネ型細菌の種ゃ菌株によって lysEをコードする遺伝子の塩基配列に差異が 存在することがあるため、上記のようなストリンジェントな条件下でノヽイブリダィズしうる 配列であってもよぐ相同な塩基を有する塩基配列であってもよい。
ループ領域をコードする領域としては、配列番号 1の塩基配列の塩基番号 280〜4 35の領域、又はこれに相当する領域が挙げられる。
終止コドンとして具体的には、 TGA,TAA,又は TAGが挙げられる。「ループ領域をコ ードする領域力 終止コドンが 3種類の翻訳の読み枠全てに存在するように改変され た」とは、該領域に含まれる塩基に置換が導入されて終止コドンが 3種類の翻訳の読 み枠全てに存在するようになったことや、該領域の 3種類の翻訳の読み枠全てに終 止コドンが挿入されたことや、該領域が終止コドンが 3種類の翻訳の読み枠全てに存 在するような別の配列に置換されたことを含む。なお、終止コドンは各読み枠におい て 2個以上存在してもよい。尚、このような 3種類の翻訳の読み枠全てに終止コドンが 挿入された変異 ¾ hree-frame stop codonといい、タンパク質等の翻訳を完全に停止 させ、目的タンパク質のみを効率よく発現させるために開発された技術であり、 (Ralf F.Petterssonら Gene ,24(1983) 15- 27) pEXPRESS等多くのタンパク質発現ベクター で応用されている。(Forman BMら Gene 1991 Aug 30;105(1)9— 15 )
[0015] 終止コドンの導入は、当業者に良く知られた方法にて部位特異的変異を行えばよ いが、たとえば、 lysE遺伝子の該当領域を Promega社の部位特異的変異導入用べク ター pSELECTTM-1に組込み、同社の部位特異変異導入キット Altered Sites™を用 いて 3種類の終止コドンを導入することで、本発明の DNAを得ることができる。また、 変異を含む配列を有する PCRプライマーを用いて、該当箇所を増幅する当業者によ く知られたオーバーラップエクステンション PCR法を用いて、変異を含む lysE遺伝子 を増幅してクロー-ングすることができる。(Urban, A" Neukirchen, S. and Jaeger, K. E., A rapid and efficient method for site-directed mutagenesis using one-step overla p extension PCR. Nucleic Acids Res, 25, 2227—8. (1997).)
なお、本発明の DNAは、既に 1つの終止コドンが導入されている lysE24遺伝子(特 開 2004— 166594号公報)を利用して作製しても良い。
[0016] 本発明の DNAはメタノール資化性細菌に導入された場合に、該細菌による L-リジン 又は L-アルギニンの排出を促進させる。
本発明において、「L—リジンもしくは L—アルギニン又はこれらの両方の Lーァミノ 酸の細胞外への排出を促進する」とは、本発明の DNAをメタノール資化性細菌に導 入したときに、該細菌によって培地中に排出される L リジンもしくは L アルギニン 又はこれらの両方の L アミノ酸の量を増大させることを 、う。 L アミノ酸の細胞外へ の排出の促進は、その結果として、本発明の DNAを保持しないメタノール資化性細 菌に比べて、本発明の DNAを保持するメタノール資化性細菌を培養したときに培地 中に蓄積する L アミノ酸濃度が高くなることによって観察される。また、 L アミノ酸 の細胞外への排出の促進は、本発明の DNAをメタノール資化性細菌に導入したと きに、細胞内の L -アミノ酸濃度が低下することによつても観察され得る。
[0017] 本発明の DNAは、 3種類の読み枠全てに終止コドンを有し、メタノール資化性細菌 に導入したときにし リジンもしくはし アルギニン又はこれらの両方の細胞外への排 出を促進するものであれば特に制限されないが、 N末端から 1番目〜3番目の疎水 性へリックスを含むペプチドと、 4番目〜6番目の疎水性へリックスを含むペプチドの 2 つのペプチドをコードする DNAが好ましい。すなわち、終止コドンが導入されたこと により、 1番目〜3番目の疎水性へリックスを含むペプチドで翻訳がー且終結する力 翻訳が再開してループ領域の下流の 4番目〜6番目の疎水性へリックスを含むぺプ チドを生じさせるような DNAが好まし 、。
lysE遺伝子のループ領域をコードする領域に終止コドンを導入しても、翻訳が再開 して、下流の 4番目〜6番目の疎水性へリックスを含むペプチドが 1番目〜3番目の 疎水性へリックスを含むペプチドとともに生じることが、本発明者らによってなされた以 下の実験により強く示唆される。
[0018] すなわち、 lysE遺伝子の 4番目〜6番目の疎水性へリックスを含む領域を欠失した D NAが導入されたメチロフィラス'メチロトロファス AS1株は L リジンを培地中に蓄積し なかった。これに対し、特開 2004— 166594で示される lysE24遺伝子(ループ領域 に一個の終止コドンを含む)や、本願の lysE24m5遺伝子(ループ領域の 3種類全ての 読み枠に終止コドンを含む)が導入されたメチロフィラス'メチロトロファス AS1株は L— リジンを培地中に蓄積した。
このこと力ら、 1番目〜3番目の疎水性へリックスを含むペプチドと、 4番目〜6番目 の疎水性へリックスを含むペプチドがそれぞれ別個に翻訳され、メチロフィラス'メチロ トロファス中で機能しているものと推定される。
[0019] これまで、 LysE24蛋白質は N末端から 1番目〜3番目の疎水性へリックスを含むぺプ チドと、 4番目〜6番目の疎水性へリックスを含むペプチドからなり、野生型の LysE蛋 白質では 3番目の疎水性へリックスと 4番目のへリックスの間に存在するループ領域を 持たな 、ことが示唆されて 、た(特開 2004— 166594)。これは 3番目の疎水性ヘリ ックスをコードする DNA領域の下流に存在する終止コドンで翻訳がー且停止し、その 下流に存在するいずれかの開始コドン力 翻訳が再開するためにそのような構造を 持つと考えられるためである。これまで、複数ある翻訳再開位置については決定され ていなかったが、以下の方法で再開位置を決定し、 LysE24の 1番目〜3番目の疎水 性へリックスを含むペプチド(配列番号 4)と、 4番目〜6番目の疎水性へリックスを含 むペプチド (配列番号 5)の配列を決定することができた。
すなわち、特開 2004— 166594で示される lysE24遺伝子において、翻訳の再開の 際に開始コドンとして利用される可能性のあるコドンを改変してその影響を調べた。 ブレビバタテリゥム 'ラタトフアーメンタムの野生型 lysEの塩基配列及び LysEタンパク 質のアミノ酸配列を、配列番号 1及び 2に示す。配列番号 2においてループ領域はァ ミノ酸番号 94〜 145の領域に相当する。 lysE24配列で 3番目の疎水性へリックスのす ぐ下流に存在する終止コドンより下流側で、開始コドンとなりうるコドン、具体的には A TG, GTG, TTGの 3種をすベて列挙し、部位特異的変異導入によりその開始コドンを ひとつずつ非開始コドンに置換した遺伝子を作成した。具体的には配列番号 1にお ける 388〜390番目の GTG、同様に 394〜396番目の GTG、 400〜402番目の GT G、 427〜429番目の GTG、 436〜438番目の ATG、 442〜444番目の ATGの 6箇 所を開始コドン候補とした。 4番目〜6番目の疎水性へリックスは LysEの活性に必須 であると考えられ、 444番目より下流のコドンは 4番目の疎水性へリックスをコードする 領域となるので候補外とした。翻訳の再開位置候補のコドンを GTGの場合は GTCに 、 ATGの場合は CTGに置換した変異遺伝子を作成し、メチロフィラス 'メチロト口ファス に導入したところ、 394番目の G力ら 396番目の G (GTG)、 400番目の Gから 402番 目の G (GTG)をそれぞれ GTCに置換した場合に L—リジンの分泌活性が大幅に減少 し、それ以外の箇所を変更した場合、 L-リジンの分泌活性はあまり低下しな力つたこ と力ら、この 394〜396番目の GTG、 400〜402番目の GTGの 2つのコドンの少なく とも一方あるいは両方が翻訳の再開位置であることがわ力つた。このことにもとづき、 1 番目〜3番目の疎水性へリックスを持つペプチドのアミノ酸配列は配列番号 4に示す 配列になり、 4番目〜6番目の疎水性へリックスを持つペプチドのアミノ酸配列は配列 番号 5に示す配列となる。なお、配列番号 5は 394〜396番目の GTGを再開位置とし た場合の 4番目〜6番目の疎水性へリックスを持つペプチドのアミノ酸配列である。 [0021] したがって、ループ領域をコードする領域は、 394〜396番目の GTG、 400〜402 番目の GTGの 2つのコドンを有し、 3種類の終止コドンがこれらのコドンの 5,側に存在 する配列が好ましい。すなわち、本発明の DNAは、配列番号 1の塩基配列又はその 相同配列において、塩基番号 280〜393の領域に 3種類の読み枠それぞれの終止 コドンが導入されたものであることが好ましぐ塩基番号 354〜393の領域に 3種類の 読み枠それぞれの終止コドンが導入されたものであることがより好ましい。
[0022] 本発明の DNAの一形態は、後記実施例に示す lysE24m5と名付けられた DNA (配 列番号 3)である。 lysE24m5は、上記 lysE24遺伝子の変異体である。本発明の DNA を、便宜的に「改良型 lysE24」と称することがある。ただし、本発明の DNAは lysE24を 改変して得られる DNAには限られず、野生型 lysE遺伝子のループ領域をコードする 領域に直接 3種類の読み枠の終止コドンを導入することによって得られるものも含ま れる。
[0023] lysE24m5の DNAは、 LysE24遺伝子(配列番号 10)の終止コドン(塩基番号 373— 3 75)の下流にさらに他の 2種類の読み枠の終止コドンが続くように変異が導入された ものであり、翻訳が完全に停止するように 3種類の翻訳の読み枠すべてが終止コドン となるような配列を有するものである。
なお、 LysE24は野生型の LysE遺伝子(配列番号 1)の 355位の G (グァニン)のあと に T (チミン)が挿入されて、野生型の LysEタンパクとは読み枠が異なる変異 (フレー ムシフト変異ともいう)が導入されたものである。
lysE24遺伝子は上述のように T残基が導入されることによって、フレームシフト変異 が起こり、本来終止コドンとして機能しない配列番号 10 (変異型 LysE24)の塩基番号 373— 375番目 TGAが終止コドンとして機能している。
lysE24m5の DNAは、この TGAコドンの下流に仮に読み枠がずれて翻訳が行われた 場合にも、終止コドンが出現するような変異を導入したものであり、即ち、配列番号 10 の 377— 379番目の acg、 381-383番目の caaをそれぞれ終止コドンに置換する変異を 導入したものである。なお、 lysE24m5のループ領域に含まれる 3種類の終止コドンは 、 TGA,TAG,TAA力 選択される任意の組合わせの終止コドンに置換されてもよ!、。
[0024] 本発明の改良型 lysE24遺伝子は、ループ領域をコードする領域に 3種類の読み枠 の終止コドンを含み、かつメタノール資化性細菌に導入された場合に、該細菌による L-リジン、又は L-アルギニンの排出を促進できる DNAである限り、配列番号 4のァミノ 酸配列にお 、て 1若しくは複数の位置での 1若しくは数個のアミノ酸の置換、欠失、 挿入、又は付加を含む配列を有するペプチド、および配列番号 5のアミノ酸配列にお いて 1若しくは複数の位置での 1若しくは数個のアミノ酸の置換、欠失、挿入、又は付 加を含む配列を有するペプチドをコードする DNAであってもよい。ここで、「数個」とは 、アミノ酸残基のタンパク質の立体構造における位置や種類によっても異なる力 具 体的には 2から 30個、好ましくは、 2から 20個、より好ましくは 2から 10個である。
[0025] 本発明の DNAが配列番号 4又は 5のアミノ酸配列にぉ 、てアミノ酸置換を含む配列 をコードする DNAである場合、その置換は、タンパク質の活性が維持されるような保 存的置換である。置換は、アミノ酸配列中の少なくとも 1残基が除去され、そこに他の 残基が挿入される変化である。酵素タンパクの元々のアミノ酸を置換し、かつ、保存 的置換とみなされるアミノ酸としては、 alaから ser又は thrへの置換、 argから gln、 his又 は lysへの]^換、 asn力ら glu、 gln、 lys、 his又は aspへの置換、 asp»り asn、 glu又は ginへ の 換、 cys力ら ser又は alaへの 換、 gin力ら asn、 glu、 lys、 his、 asp又は argへの置換 、 glu力ら gly、 asn、 gln、 lys又は aspへの置換、 gly力ら proへの置換、 his力ら asn、 lys、 gl n、 arg又は tyrへの 換、 ile力ら leu、 met、 val又は pheへの 換、 leu力ら ile、 metゝ val 又は pheへの置換、 lys力ら asn、 glu、 gln、 his又は argへの置換、 met力ら ileゝ leu、 val又 は pheへの置換、 phe力ら trp、 tyr、 met、 ile又は leuへの置換、 serから thr又は alaへの 置換、 thrから ser又は alaへの置換、 trpから phe又は tyrへの置換、 tyrから his、 phe又は trpへの置換、及び、 valから met、 ile又は leuへの置換が挙げられる。
[0026] 上記のような改良型 lysE24遺伝子と実質的に同一の機能を有するホモログ DNAは 、例えば部位特異的変異法によって、コードされるタンパク質の疎水性領域の特定 の部位のアミノ酸残基が置換、欠失、挿入、付加、又は逆位を含むように、改良型 lys E24の塩基配列(配列番号 3など)を改変することによって得られる。
[0027] また、上記のような改変された DNAは、従来知られている変異処理によっても取得 され得る。変異処理としては、配列番号 3などの塩基配列を有する DNAをヒドロキシ ルァミン等でインビトロ処理する方法、及び該 DNAを保持する微生物、例えばェシェ リヒア属細菌を、紫外線照射または N—メチル— N'— -トロ— N— -トロソグァ二ジン( NTG)もしくは亜硝酸等の通常変異処理に用いられて!/、る変異剤によって処理する 方法が挙げられる。
変異処理された DNAを、メタノール資化性細菌で発現させ、 L-リジンまたは L-アル ギニン排出活性を調べることにより、改良型 lysE24遺伝子と実質的に同一の機能を 有する DNAが得られる。
また、上記 DNAを微生物に導入し、該微生物を変異処理して得られる微生物の中 力 L-リジン又は L-アルギニンの排出活性が向上した細胞を選択し、例えば配列表 の配列番号 3に記載の塩基配列又はその一部を有するプローブを用いてストリンジェ ントな条件下でノヽイブリダィゼーシヨンを行うことにより、改良型 lysE24遺伝子と実質 的に同一の機能を有する DNAが得られる。ここでいう「ストリンジェントな条件」とは、 いわゆる特異的なハイブリッドが形成され、非特異的なハイブリッドが形成されない条 件をいう。この条件を明確に数値ィ匕することは困難である力 一例を示せば、相同性 が高い DNA同士、例えば 50%以上、好ましくは 70%以上、より好ましくは 80%以上 、特に好ましくは 90%以上、最も好ましくは 95%以上の相同性を有する DNA同士が ハイブリダィズし、それより相同性が低い DNA同士がハイブリダィズしない条件、ある いは通常のサザンハイブリダィゼーシヨンの洗いの条件である 60°C、 1 X SSC, 0. 1 %SDS、好ましくは、 0. 1 X SSC、 0. 1%SDSに相当する塩濃度でハイブリダィズ する条件が挙げられる。相同性は BLASTを用いて検索出来る。 (//blast.genome.jp/ )
[0028] プローブとして、配列番号の塩基配列の一部の配列を用いることもできる。そのよう なプローブは、配列番号の塩基配列に基づ!/、て作製したオリゴヌクレオチドをプライ マーとし、配列番号の塩基配列を含む DNA断片を铸型とする PCRによって作製す ることができる。プローブとして、 300bp程度の長さの DNA断片を用いる場合には、 ハイブリダィゼーシヨンの洗いの条件は、 50°C、 2 X SSC、 0. 1%SDSが挙げられる
[0029] 改良型 lysE24遺伝子と実質的に同一の機能を有する DNAとして具体的には、配 列番号 3に示す塩基配列と、好ましくは 50%以上、より好ましくは 70%以上、さらに 好ましくは 80%、特に好ましくは 90%以上、最も好ましくは 95%以上の相同性を有 する塩基配列を有し、かつメタノール資化性細菌に導入したときに L-リジン、 L-アル ギニンを排出する活性を向上させるする DNAが挙げられる。
[0030] なお、上記のような変異処理などによって得られる「改良型 lysE24遺伝子と実質的 に同一の機能を有する DNA」は、元の「改良型 lysE24遺伝子」に含まれる 3種類の読 み枠の終止コドンをそのまま保持したうえで、他の領域に塩基置換などが導入された ものが好ましい。例えば、配列番号 3に示す塩基配列を有する lysE24m5遺伝子と実 質的に同一の機能を有する DNAは、配列番号 3に記載の塩基配列又は同塩基配列 力も調製され得るプローブとストリンジェントな条件下でノヽイブリダィズする DNAであ つて、配列番号 3の塩基番号 373〜383の配列を含み、かつ、メタノール資化性細菌 に導入されたときに該細菌の L リジンもしくはし アルギニン又はこれらの両方の L アミノ酸の細胞外への排出を促進する DNAであることが好ましい。
[0031] なお、本発明の DNAは国際公開第 97/23597号パンフレットゃ特開 2004— 16659 4号公報に記載された DNAとは全く異なるものであり、予期できな力つたものである。 すなわち、野生型 lysEを開示している文献(国際公開第 97/23597号パンフレット)は 、コリネ型細菌の野生型 lysE遺伝子をコリネ型細菌に導入した場合のみを提示して ヽ る。そして、排出されたアミノ酸として L リジンのみが示され、更に、 LysEタンパク質 として、 6個の疎水性へリックスを含む 1本のポリペプチドを開示している。しかし、本 発明者らは、メタノール資化性細菌に野生型 lysE遺伝子は導入できず、野生型 lysE 遺伝子は、メタノール資化性細菌で致死的に機能するものであることを見出していた 。一方、本発明の DNAはループ領域に 3種類の読み枠の終止コドンを含むため、疎 水性へリックス 6個を 1本のポリペプチドで構成している野生型 lysEとは基本的な構造 が異なり、先の国際公開第 97/23597号パンフレットからは構造も効果も全く予想でき るものではない。
また、特開 2004— 166594〖こは、塩基挿入により 1個の終止コドンが導入された lys E24遺伝子が開示されている力 本発明の DNAはさらに 2個の終止コドンを付カ卩して 3 種類全ての読み枠に終止コドンが存在するように改変することで、さらに、リジン又は アルギニンの排出効果を高めたものである。通常、 3種類の全ての読み枠に終止コド ンを導入した場合、タンパク質等の翻訳を完全に停止すると考えられており、 (Gene 24(1983)15-27)本発明の効果は全く予想外のことであり、先の該文献からは全く予 想できるものではない。
なお、 lysE24の終止コドン後の疎水性へリックスの翻訳は翻訳共役によって起こつ ていることが推定されるが、翻訳共役の場合、上流側の遺伝子にコードされる蛋白質 (この場合疎水性へリックス 3本目まで)の翻訳量の増減が、下流側の遺伝子にコード される蛋白質 (この場合は 4, 5, 6番目の疎水性へリックス)の合成量に顕著な影響を 及ほすことは知られてい Ο力 (¾panjaard, R. A. and van Duin, J., Translational reinitia tion in the presence and absence of a Shine and Dalgarno sequence. Nucleic Acids R es, 17, 5501-7. (1989).)(Rex, G., Surin, B., Besse, G., Schneppe, B. and McCarthy, J. E., The mechanism of translational coupling in Escherichia coli. Higher order stru cture in the atpHA mRNA acts as a conformational switch regulating the access of d e novo initiating ribosomes. J Biol Chem, 269, 18118—27. (1994).)上流側の遺伝子 にコードされる蛋白質の翻訳終止コドンに加えて、さらに別の読み枠の終止コドンを 追加することで、下流側の翻訳量が上昇するは知られていない。したがって、本願の DNAの 3種類全ての読み枠に終止コドンを導入したことによる効果は全く予想できな かった。
[0032] < 2 >本発明のメタノール資化性細菌
本発明のメタノール資化性細菌は、前記本発明の DNAが発現可能な形態で導入 され、かつ、 L リジン又は L アルギニン生産能を有するメタノール資化性細菌であ る。 L リジン又は L アルギニン生産能を有するメタノール資化性細菌に本発明の DNAを導入することによって得られる。また、本発明の DNAが導入されたメタノール 資化性細菌に、 L リジン又は L アルギニン生産能を付与することによつても、本発 明のメチロフイラス属細菌を得ることができる。また、本発明のメタノール資化性細菌 は、本発明の DNAが発現可能な形態で導入されたことによって L—リジン又は L— アルギニン生産能が付与されたものであってもよい。
[0033] 本発明にお 、てメタノール資化性細菌とは、メタノールを主たる炭素源として生育 することができる細菌であって、本発明の DNAを導入することによって L—リジン又 はし アルギニン等の L アミノ酸の細胞外への排出が促進される細菌である。具体 的には、メチロフィラス'メチロトロファス(Methylophilus methylotrophus)等のメチロフ イラス属細菌及び、メチロバチラス'グリコゲネス(Methylobacillus glycogenes)等のメ チロバチラス属細菌が挙げられる。
[0034] メチロフィラス'メチロトロファスとしては、 AS1株(NCIMB10515)等が挙げられる。メチ ロフィラス'メチロトロファス AS1株(NCIMB10515)は、ナショナル 'コレクション'ォブ 'ィ ンダストウリアル'アンド 'マリン'バクテリア(National Collections of Industrial and Mari ne Bacteria、住所 NCIMB Lts., Torry Research Station 135, Abbey Road, Aberdeen AB9 8DG, United Kingdom)から入手可能である。また、メチロバチラス 'グリコゲネス としては、 T- 11株(NCIMB 11375)、 ATCC 21276株、 ATCC 21371株、 ATR80株(Ap pi. Microbiol. BiotechnoL, (1994)、 42卷, p67- 72に記載)、 A513株(Appl. Microbiol. BiotechnoL, (1994)、 42卷, p67-72に記載)等が挙げられる。メチロバチラス.グリコゲ ネス NCIMB 11375株は、ナショナル.コレクション.ォブ.インダストウリアル.アンド'マリ ン'ノ クテリア (National Collections of Industrial and Marine Bacteriaゝ住所 NCIMB Lts., Torry Research Station 135, Abbey Road, Aberdeen AB9 8DG, United Kingdo m)から入手可能である。
[0035] 上記のようなメタノール資化性細菌に、発現可能な状態で本発明の DNAを導入す るためには、例えば、該 DNAを、メタノール資化性細菌で機能するベクター、好ましく はマルチコピー型のベクターと連結して組換え DNAを作製し、これをメタノール資化 性細菌宿主に導入して形質転換すればょ ヽ。
メタノール資化性細菌で機能するベクターとは、また、メタノール資化性細菌で機能 するベクターとは、例えばメチロフイラス属細菌、メチロバチルス属細菌で自律複製出 来るプラスミドである。具体的には、広宿主域ベクターである RSF1010及びその誘導 体、例えば pAYC32 (Chistorerdov, A.Y., Tsygankov, Y.D. Plasmid, 1986, 16, 161-1 67)、あるいは pMFY42 (gene, 44, 53(1990))、 pRP301、 pTB70 (Nature, 287, 396, (19 80))等が挙げられる。
[0036] 改良型 lysE24遺伝子とメタノール細菌で機能するベクターを連結して組み換え DN Aを調製するには、改良型 lysE24遺伝子を含む DNA断片の末端に合うような制限酵 素でベクターを切断する。連結は、 T4 DNAリガーゼ等のリガーゼを用いて行うのが 普通である。
[0037] 上記のように調製した組換え DNAをメチロフイラス属細菌に導入するには、十分な 形質転換効率が得られる方法ならば、いかなる方法を用いてもよいが、例えば、エレ タトロポレーシヨン法(Canadian Journal of Microbiology, 43. 197(1997))や接合法が 挙げられる。
[0038] 本発明の DNAの導入は、該 DNAをメタノール資化性細菌の染色体 DNA上に 1コピ 一、あるいは多コピー存在させることによつても達成できる。メタノール資化性細菌の 染色体 DNA上に目的遺伝子を多コピーで導入するには、染色体 DNA上に多コピ 一存在する配列を標的に利用して相同組換えにより行う。染色体 DNA上に多コピー 存在する配列としては、トランスポゾン、繰返し配列、転移因子の端部に存在するイン バーテッド ·リピート等が利用できる。また Muファージゃトランスポゾンを用いて染色体 上に変異型 LysE24遺伝子を多コピー転移させることによつても達成出来る。(欧州特 許 0332488号明細書)
[0039] さらにアミノ酸排出活性を増強するためには、本発明の DNAを強力なプロモーター 等に連結して導入することが好ましい。プロモーターの強度は、 RNA合成開始の頻 度により定義される。プロモーターの強度の評価法および強力なプロモーターの例 【ま、 Goldsteinらの論文 (Prokaryotic promoters in biotechnology. Biotechnol. Annu. Rev., 1995, 1, 105-128)等に記載されている。また、国際公開 W000Z18935に開 示されているように、 目的遺伝子のプロモーター領域に数塩基の塩基置換を導入し 、より強力なものに改変することも可能である。例えばメタノール資化性細菌で強力に 機能するプロモーターとしては、 lacプロモーター、 trpプロモーター、 trcプロモータ 一、 tacプロモーター、ラムダファージの PRプロモーター、 PLプロモーター、 tetプロ モーター、 amyEプロモーター、 spacプロモーター等が挙げられる。
[0040] さらに、リボソーム結合部位 (RBS)と開始コドンとの間のスぺーサ、特に開始コドン のすぐ上流の配列における数個のヌクレオチドの置換が mRNAの翻訳効率に非常 に影響を及ぼすことが知られている。したがって、本発明の DNAを翻訳効率が上昇 するように改変された発現調節配列に連結して導入してもよ ヽ。 [0041] 本発明のメタノール資化性細菌はし リジン又はし アルギニンの生産能を有する が、メタノール資化性細菌に Lーリジン又はし アルギニン生産能を付与するには、 栄養要求性変異株、アナログ耐性株、又は代謝制御変異株の取得、 L リジン又は L アルギニンの生合成系酵素が増強された組換え株の創製等、従来、コリネ型細 菌又はェシエリヒア属細菌等の育種に採用されてきた方法を適用することができる( アミノ酸発酵、(株)学会出版センター、 1986年 5月 30日初版発行、第 77〜: LOO頁参 照)。 L—リジン又は L—アルギニン生産菌の育種において、付与される栄養要求性 、アナログ耐性、代謝制御変異等の性質は、単独でもよぐ 2種又は 3種以上であつ てもよい。また、増強される L アミノ酸生合成系酵素も、単独であっても、 2種又は 3 種以上であってもよい。さらに、栄養要求性、アナログ耐性、代謝制御変異等の性質 の付与と、生合成系酵素の増強が組み合わされてもよい。
[0042] 例えば、 L—リジン生産菌は、 L—ホモセリン、又は Lースレオニン及び Lーメチォ- ンを要求する変異株 (特公昭 48-28078号、特公昭 56-6499号)、イノシトールまたは 酢酸を要求する変異株 (特開昭 55-9784号、特開昭 56-8692号)、又はォキサリジン、 リジンハイドロキサメート、 S- (2—アミノエチル) システィン、 γ—メチルリジン、 (X クロロカプロラタタム、 DL- a アミノー ε一力プロラタタム、 a アミノーラウリノレ ラタタム、ァスパラギン酸一アナログ、スルファ剤、キノイド、又は N ラウロイルロイシ ンに耐性を有する変異株として育種することができる。
[0043] また、 L—アルギニン生産菌は、サルファ剤、 2 チアゾールァラニン又は α—アミ ノ— βーヒドロキシ吉草酸等の薬剤に耐性を有する変異株; 2—チアゾールァラニン 而'性にカロえて、 L—ヒスチジン、 L—プロリン、 Lースレオニン、 L—イソロイシン、 Lーメ チォニンまたは L トリブトファン要求性を有する変異株 (特開昭 54— 44096号);ケ トマロン酸、フルォロマロン酸又はモノフルォロ酢酸に耐性を有する変異株 (特開昭 5 7— 18989号);アルギ-ノールに耐性を有する変異株 (特開昭 62— 24075号);Χ グァニジン (Xは脂肪酸又は脂肪鎖の誘導体)に耐性を有する変異株 (特開平 2— 186995号)、 5 ァザゥラシノレ、 6 ァザゥラシル、 2 チォゥラシル、 5 フノレオロウ ラシル、 5—ブロモウラシル、 5—ァザシトシン、 6—ァザシトシン等に耐性な変異株、 アルギニンヒドロキサメート、 2—チォゥラシルに耐性な変異株、アルギニンヒドロキサ メート及び 6 ァザゥラシルに耐性な変異株 (特開昭 57-150381号参照)、ヒスチジン アナログ又はトリブトファンアナログに耐性な変異株 (特開昭 52-114092号参照)、メチ 二オン、ヒスチジン、スレオニン、プロリン、イソ口イシイン、リジン、アデニン、グァニン またはゥラシル (またはゥラシル前駆体)の少なくとも一つに要求性を有する変異株( 特開昭 52-99289号参照)、アルギニンヒドロキサメートに耐性な変異株 (特公昭 51-67 54号参照)、コハク酸要求性又は核酸塩基アナログに耐性な変異株 (特開昭 58-969 2号)、アルギニン分解能を欠損し、アルギニンのアンタゴニスト及びカナバニンに耐 性を有し、リジンを要求する変異株 (特開昭 52-8729号参照)、アルギニン、アルギ- ンヒドロキサメート、ホモアルギニン、 D—アルギニン、カナバニン而性、アルギニンヒ ドロキサメート及び 6 ァザゥラシル耐性の変異株 (特開昭 53-143288号参照)、及び 、カナバニン耐性の変異株 (特開昭 53-3586号参照)として育種することができる。
[0044] 次に、 L—リジン又は L—アルギニン生合成系酵素遺伝子の増強によって Lーリジ ン又は L アルギニン生産能を付与又は増強する方法を、以下に例示する。
[0045] L—リジン生産能は、例えば、ジヒドロジピコリン酸合成酵素活性及びァスノ ルトキ ナーゼ活性を増強することによって付与することができる。
メタノール資化性細菌のジヒドロジピコリン酸合成酵素活性及びァスパルトキナーゼ 活性を増強するには、ジヒドロジピコリン酸合成酵素をコードする遺伝子断片及びァ スバルトキナーゼをコードする遺伝子断片を、メタノール資化性細菌で機能するべク ター、好ましくはマルチコピー型ベクターと連結して組み換え DNAを作製し、これを メチロフイラス属細菌の宿主に導入して形質転換すればょ ヽ。形質転換株の細胞内 のジヒドロジピコリン酸合成酵素をコードする遺伝子及びァスバルトキナーゼをコード する遺伝子のコピー数が上昇する結果、これらの酵素の活性が増強される。以下、ジ ヒドロジピコリン酸合成酵素を DDPS、ァスバルトキナーゼを AK、ァスパルトキナーゼ II Iを ΑΚΠΙと略すことがある。
[0046] DDPSをコードする遺伝子及び AKをコードする遺伝子の供与微生物としては、メタノ 一ル資化性細菌に属する微生物中で DDPS活性及び AK活性を発現することができ る微生物であれば、いかなる微生物でも使用できる。微生物は、野生株及びそれか ら誘導した変異株のいずれでもよい。具体的には E. coli (ェシエリヒア'コリ (Escherichi a coli)) K- 12株及びメチロフィラス'メチロトロファス AS1株(NCIMB10515)等が挙げら れる。ェシエリヒア属細菌由来の DDPSをコードする遺伝子(dapA、 Richaud, F. et al. J . BacterioL, 297(1986))及び AKIIIをコードする遺伝子(lysC、 Cassan, M., Parsot, C. , Cohen, G.N. and Patte, J.C., J. Biol. Chem., 261, 1052(1986))は、いずれも塩基 配列が明らかにされているので、これらの遺伝子の塩基配列に基づいてプライマー を合成し、 E. coli K- 12等の微生物の染色体 DNAを铸型とする PCR法により、これら の遺伝子を取得することが可能である。以下、 E. col油来の dapA及び lysCを例として 説明するが、本発明に用いる遺伝子は、これらに限定されるものではない。
[0047] L リジン生産能を紆余するために用いる DDPS及び AKは、 L リジンによるフィー ドバック阻害を受けないものであることが好ましい。 E. coli由来の野生型 DDPSは L リジンによるフィードバック阻害を受けることが知られており、 E. coli由来の野生型 AKI IIは L リジンによる抑制及びフィードバック阻害を受けることが知られている。したが つて、メチロフイラス属細菌などのメタノール資化性細菌に導入する dapA及び lysCは 、それぞれ L リジンによるフィードバック阻害が解除される変異を有する DDPS及び ΑΚΠΙをコードするものであることが好ましい。以下、 L—リジンによるフィードバック阻 害が解除される変異を有する DDPSを「変異型 DDPS」、変異型 DDPSをコードする DN Aを「変異型 dapA、又は dapA*」と呼ぶことがある。また、 L リジンによるフィードバッ ク阻害が解除される変異を有する E. coli由来の ΑΚΠΙを「変異型 ΑΚΠΙ」、変異型 ΑΚΠΙ をコードする DNAを「変異型 lysC」と呼ぶことがある。
[0048] 尚、本発明にお 、ては、 DDPS及び AKは必ずしも変異型である必要はな 、。例え ば、コリネバタテリゥム属細菌由来の DDPSはもともと L リジンによるフィードバック阻 害を受けな 、ことが知られて 、る。
[0049] L—リジンによるフィードバック阻害を受けない変異型 DDPSをコードする DNAとし ては、配列番号 13に示すアミノ酸配列において 118位のヒスチジン残基がチロシン残 基に置換された配列を有する DDPSをコードする DNAが挙げられる。また、 L—リジン によるフィードバック阻害を受けな 、変異型 ΑΚΠΙをコードする DNAとしては、配列番 号 15に示すアミノ酸配列において 352位のスレオニン残基がイソロイシン残基に置換 された配列を有する ΑΚΠΙをコードする DNAが挙げられる。 [0050] これらの遺伝子のクローユングに使用されるプラスミドとしては、ェシエリア属細菌等 の微生物において複製可能なものであればよぐ具体的には、 pBR322、 pTWV228、 pMW119、 pUC19等が挙げられる。
[0051] また、これらの遺伝子をメタノール資化性細菌に導入するためのベクターとしては、 例えばメチロフイラス属細菌、メチロバチルス属細菌で自律複製出来るプラスミドであ る。具体的には、広宿主域ベクターである RSF1010及びその誘導体、例えば pAYC32 (Chistorerdov, A.Y., Tsygankov, Y.D. Plasmid, 1986, 16, 161—167)、あるいは pMF Y42 (gene, 44, 53(1990))、 pRP301、 pTB70 (Nature, 287, 396, (1980))等が挙げられ る。
[0052] dapA及び lysCとメチロフイラス属細菌で機能するベクターを連結して組み換え DN Aを調製するには、 dapA及び lysCを含む DNA断片の末端に合うような制限酵素で ベクターを切断する。連結は、 T4 DNAリガーゼ等のリガーゼを用いて行うのが普通 である。 dapA及び lysCは、それぞれ別個のベクターに搭載してもよぐ同一のベクタ 一に搭載してもよい。
[0053] 変異型 DDPSをコードする変異型 dapA及び変異型 ΑΚΠΙをコードする変異型 lysCを 含むプラスミドとして、広宿主域プラスミド RSFD80が知られている(WO95/16042号)。 同プラスミドで形質転換された E. coli JM109株は、 AJ12396と命名され、同株は 1993 年 10月 28日に通産省工業技術院生命工学工業技術研究所 (現独立行政法人産 業技術総合研究所特許生物寄託センター)に受託番号 FERM P-13936として寄託さ れ、 1994年 11月 1日にブダペスト条約に基づく国際寄託に移管され、 FERM BP-4859 の受託番号のもとで寄託されている。 RSFD80は、 AJ12396株から、公知の方法によつ て取得することができる。
[0054] RSFD80に含まれている変異型 dapAは、配列番号 12に示す野生型 dapAの塩基配 列において塩基番号 598の Cが Tに変化した配列を有し、それによつて、コードされる 変異型 DDPSは、配列番号 13に示すアミノ酸配列において 118位のヒスチジン残基が チロシン残基に置換された配列を有する。また、 RSFD80に含まれている変異型 lysC は、配列番号 14に示す野生型 lysCの塩基配列において塩基番号 1055の Cが T変化 した配列を有し、それによつて、コードされる変異型 ΑΚΠΙは、配列番号 15に示すアミ ノ酸配列において 352位のスレオニン残基力 ソロイシン残基に置換された配列を有 する。
[0055] 上記のように調製した組換え DNAをメチロフイラス属細菌に導入するには、十分な 形質転換効率が得られる方法ならば、いかなる方法を用いてもよいが、例えば、エレ タトロポレーシヨン法(Canadian Journal of Microbiology, 43. 197(1997))が挙げられる
[0056] DDPS活性及び AK活性の増強は、 dapA及び lysCをメチロフイラス属細菌の染色体 DNA上に多コピー存在させることによつても達成できる。メチロフイラス属細菌の染色 体 DNA上に dapA及び lysCを多コピーで導入するには、染色体 DNA上に多コピー 存在する配列を標的に利用して相同組換えにより行う。染色体 DNA上に多コピー存 在する配列としては、レぺッティブ DNA、転移因子の端部に存在するインバーティッ ド 'リピートが利用できる。あるいは、特開平 2-109985号公報に開示されているように 、 dapA及び Z又は lysCをトランスポゾンに搭載してこれを転移させて染色体 DNA上 に多コピー導入することも可能である。いずれの方法によっても形質転換株内の dap A及 lysCのコピー数が上昇する結果、 DDPS活性及び AK活性が増幅される。
[0057] DDPS活性及び AK活性の増幅は、上記の遺伝子増幅による以外に、 dapA及 lysC のプロモーター等の発現調節配列を強力なものに置換することによつても達成される
(特開平 1-215280号公報参照)。たとえば、 lacプロモーター、 trpプロモーター、 trc プロモーター、 tacプロモーター、ラムダファージの PRプロモーター、 PLプロモータ 一、 tetプロモーター、 amyEプロモーター、 spacプロモーター等が強力なプロモータ 一として知られている。これらのプロモーターへの置換により、 dapA及 lysCの発現が 強化されることによって DDPS活性及び AK活性が増幅される。発現調節配列の増強 は、 dapA及 lysCのコピー数を高めることと組み合わせてもよ!/、。
[0058] 遺伝子断片とベクターを連結して組換え DNAを調製するには、遺伝子断片の末端 に合うような制限酵素でベクターを切断する。連結は、 T4DNAリガーゼ等のリガ一 ゼを用いて行うのが普通である。 DNAの切断、連結、その他、染色体 DNAの調製、 PCR、プラスミド DNAの調製、形質転換、プライマーとして用いるオリゴヌクレオチド の設定等の方法は、当業者によく知られている通常の方法を採用することができる。 これらの方法は、 Sambrook, J., Frits ch, E. F., and Maniatis, T., "Molecular Cloning A Laboratory Manual, Second Edition", Cold pring Harbor Laboratory Press, (198 9)等に記載されている。
[0059] L リジン生産能を付与するために、 DDPS及び AKの増強にカ卩えて、他の L リジ ン生合成に関与する酵素を増強してもよい。そのような酵素としては、ジヒドロジピコリ ン酸レダクターゼ、ジアミノピメリン酸脱炭酸酵素、ジアミノピメリン酸デヒドロゲナーゼ (以上、 WO96/40934号参照)、ホスホェノールピルビン酸カルボキシラーゼ(特開昭 60-87788号)、ァスパラギン酸アミノトランスフェラーゼ(特公平 6-102028号)、ジァミノ ピメリン酸ェピメラーゼ遺伝子、ァスパラギン酸セミアルデヒド脱水素酵素等のジァミノ ピメリン酸経路の酵素、あるいはホモアコニット酸ヒドラターゼ遺伝子等のアミノアジピ ン酸経路の酵素等が挙げられる。
[0060] さらに、本発明のメタノール資化性細菌は、 L リジン生産能を高めるために、 Lーリ ジンの生合成経路から分岐して L リジン以外の化合物を生成する反応を触媒する 酵素の活性が低下または欠損して 、てもよ 、。 L リジンの生合成経路力 分岐して L リジン以外の化合物を生成する反応を触媒する酵素としては、ホモセリンデヒドロ ゲナーゼ、リジンデカルボキシラーゼがある(WO 95/23864、特開 2004-254544号参 照)。
[0061] 上記の L—リジン生合成に関与する酵素の活性を増強する手法は、 L—アルギニン についても同様に適用することができる。
すなわち、 L—アルギニン生産能は、例えば、ァセチルオル-チンデァセチラーゼ 活性、 N ァセチルグルタミン酸— γ—セミアルデヒドデヒドロゲナーゼ活性、 Ν ァ セチルダルタモキナーゼ活性、及びアルギニノサクシナーゼ活性を増強することによ つて付与することができる(特公平 5— 23750号)。また、 Ν ァセチルグルタミン酸 合成酵素の L アルギニンによるフィードバック阻害を解除することによって付与する ことが出来る。 (特開 2002-253268号)
[0062] また、グルタミン酸デヒドロゲナーゼ(ΕΡ 1 057 893 A1)、アルギ-ノコハク酸シンタ ーゼ(ΕΡ 0 999 267 A1)、力ルバモイルリン酸シンセターゼ(ΕΡ 1 026 247 A1)、もし くは Ν ァセチルグルタミン酸シンターゼ (特開昭 57-5693号参照)の活性を増強する こと、又は、アルギニンリプレッサーをコードする遺伝子(argR)を破壊することによつ て、 L—アルギニン生産能を向上させることができる。(欧州特許 1154020号公報) [0063] < 3 >L—リジン又は L—アルギニンの製造
上記にょうにして得られる本発明の DNAが導入され、かっし リジン又は L アル ギニン生産能を有するメタノール資化性細菌を培地に培養し、培養物 (培地または菌 体内)中に L リジン又は L アルギニンを生産蓄積させ、該培養物力も L リジン又 はし アルギニンを採取することにより、 L リジン又は L アルギニンを製造すること ができる。
[0064] 本発明で用いられる微生物は、通常メタノール資化性微生物の培養に用いられる 方法で培養することができる。本発明で用いられる培地は、炭素源、窒素源、無機ィ オン及び必要に応じてその他の有機微量成分を含む培地であれば、天然培地、合 成培地の ヽずれでも用いられる。
[0065] メタノールを主たる炭素源として用いると、 L リジン又は L アルギニンを安価に製 造することができる。メタノールは、主たる炭素源として用いる場合は、培地中に 0.001 〜30%添加する。窒素源としては硫酸アンモ-ゥムなどを培地に添カ卩して用いる。これ らの他に、通常、リン酸カリウム、リン酸ナトリウム、硫酸マグネシウム、硫酸第一鉄、硫 酸マンガンなどの微量成分が少量添加される。
[0066] 培養は、振とう培養又は通気撹拌培養などの好気条件下、 pH5〜9、温度 20〜45°C に保持して行われ、通常 24〜120時間で終了する。
培養物力 の L—リジン又は L—アルギニンの採取は、通常イオン交換榭脂法、沈 殿法、その他の公知の方法を組み合わせることにより実施できる。
実施例
[0067] 以下、本発明を実施例によりさらに具体的に説明する。
試薬は、特記しない限り和光純薬、又はナカライテスタ社製のものを用いた。各実 施例で用いる培地の組成は以下に示すとおりである。いずれの培地も pHは NaOHま たは HC1で調整した。
[0068] (LB培地)
トリプトン 'ペプトン (ディフコ社製) 10g/L 酵母エキス (ディフコ社製) 5g/L
NaCl 10g/L
pH7.0
[120°C、 20分間蒸気滅菌を行った。 ]
[0069] (LB寒天培地)
LB培地
パクトァガー 15g/L
[120°C、 20分間蒸気滅菌を行った。 ]
[0070] (SEII培地)
K HPO 1.9g/L
2 4
NaH PO 1.56g/L
2 4
MgSO · 7Η O 0.2g/L
4 2
(NH ) SO 5g/L
4 2 4
CuSO -5H O 5 /z g/L
4 2
nSO -5H O 25 ^ g/L
4 2
ZnSO - 7H O 23 ^ g/L
4 2
CaCl -2H O 72mg/L
2 2
FeCl -6H O 9.7mg/L
3 2
CaCO (関東化学製) 30g/L
3
メタノーノレ 2%(vol/vol)
pH7.0
[メタノール以外は 121°C、 15分間蒸気滅菌を行った。良くさめてからメタノールを添カロ した。]
[0071] (SEII寒天培地)
K HPO 1.9g/L
2 4
NaH PO 1.56g/L
2 4
MgSO · 7Η O 0.2g/L
4 2
(NH ) SO 5g/L CuSO ·5Η O 5 g/し
4 2
MnSO -5H O 25 μ g/L
4 2
ZnSO - 7H O 23 μ g/L
4 2
CaCl -2H O 72mg/L
2 2
FeCl -6H O 9.7mg/L
メタノーノレ 0.5% (vol/vol)
pH7.0
ノ クトァガー (ディフコ社製) 15g/L
[メタノール以外は 121°C、 15分間蒸気滅菌を行った。良くさめてからメタノールを添カロ した。]
[0072] [実施例 1]
< 1 >改良型 lysE24遺伝子の取得
メチロフイラス属細菌で L—リジンの排出を促進することが知られている lysE24遺伝 子に改良をカ卩えた改良型 lysE遺伝子 (lysE24m5;配列番号 3)をクローユングし、メチ ロフイラス属細菌での発現を試みた。
[0073] (l) pRSlysE24m5の構築
メチロフイラス属細菌に lysE24m5を導入するために、 lysE24遺伝子が搭載されてい る pRSlysE24 (特開 2004— 166594参照)を用いて、 lysE24m5発現用プラスミド pRSly sE24m5を構築した。プラスミド pRSlysE24は pRSから構築されており、プラスミド pRSは、 RSF1010の誘導体である広宿主域ベクタープラスミド pAYC32 (Chistorerdov, A.Y., T sygankov, Y.D. Plasmid, 1986, 16, 161- 167)に由来する pVIC40プラスミド(国際公開 WO90/04636パンフレット、特表平 3-501682号公報)より、同プラスミドが持つスレオ ニンオペロンをコードする DNA領域を削除してベクター部分のみを持つプラスミドで ある。
pRSlysE24で形質転換された E.coli JM109株は AJ13830と命名され、同株は 2001年 6月 4日に、独立行政法人産業技術総合研究所特許生物寄託センター(干 305-54 66 日本国茨城県つくば巿東 1丁目 1番地 1中央第 6)に受託番号 FERM P-18369と して寄託され、平成 14年 5月 13日にブダペスト条約に基づく国際寄託に移管され、 F ERM BP-8040の受託番号のもとで寄託されている。
[0074] まず、プラスミド pRSlysE24より、 lysE24領域を欠失させて lysE24m5を搭載するため のベクターとした。 pRSlysE24を制限酵素 Sse8387Iおよび Saplで消化し、フエノール'ク ロロホルム溶液を加えて混合し、反応を停止させた。反応液を遠心分離した後、上層 を回収し、エタノール沈殿にて DNAを回収後、 0.8%ァガロースゲルにて分離し、約 8キ 口ベースペア(以下、「kbp」と記載)の DNA断片を EASY TRAP Ver.2 (DNA回収キット 、宝酒造社製)を用いて回収した。
一方、 lysE24m5遺伝子断片は以下の方法で作成した。まず、 lysE24m5遺伝子の 5' 側断片を、 pRSlysE24プラスミドを铸型とし、配列番号 6および 7に示すプライマーを用 いて PCRにより増幅した(変性 94°C-20秒、アニーリング 55°C-30秒、伸長反応 72°C-3 0秒のサイクルを 30サイクル行った)。 PCR反応には Pyrobest DNA polymerase (宝酒 造社製)を使用した。増幅された lysE24m5遺伝子の 5,側 DNA断片を PCRprep (Prome ga社製)にて精製した。次に lysE24m5遺伝子の 3'側断片を同様にして PCR増幅した 。ただしプライマーは配列番号 8および 9に示すプライマーを用いた。なお、配列番 号 7及び 8のプライマーには 3種類の読み枠の終止コドンを導入するための配列が含 まれている。次に、上記のようにして得た、 5'側断片と 3'側断片を 0.8%ァガロースゲ ルにて分離し、それぞれ約 0.5kbp、約 0.3kbpの DNA断片を EASY TRAP Ver.2を用い て回収した。回収した断片を混合し、これを铸型としてプライマーは配列番号 7およ び 10を用いて lysE24m5遺伝子断片を PCRにより増幅した(変性 94°C- 20秒、ァニーリ ング 60°C-30秒、伸長反応 72°C- 60秒のサイクルを 30サイクル行った)。上記のように して得た lysE24m5遺伝子断片を 0.8%ァガロースゲルにて分離し、約 0.8kbpの DNA断 片を EASY TRAP Ver.2を用いて回収した。
[0075] 上記のように調製した lysE24遺伝子断片を欠失させた pRSlysE24ベクター消化物と 、 lysE24m5断片を、 DNA Ligation Kit Ver.2 (宝酒造製)を用いて連結させた。この連 結反応溶液でェシエリヒア'コリ(E.coli JM109 competent cells,宝酒造製)を形質転 換し、 20mg/Lのストレプトマイシンを含む LB寒天培地に塗布し、 37°Cでー晚保温し た。寒天培地上に出現したコロニーを 20mg/Lのストレプトマイシンを含む LB液体培 地に接種し、 37°Cで 8時間振盪培養した。アルカリ— SDS法にて各培養液カゝらプラスミ ド DNAを抽出し、制限酵素で消化して構造を確認し、 pRSlysE24m5を得た。
[0076] (2)メチロフイラス属細菌への pRSlysE24m5の導入
上記のようにして得られた pRSlysE24m5を、エレクト口ポレーシヨン法(Canadian Jour nal of Microbiology, 43. 197 (1997))によりメチロフィラス'メチロトロファス ASl株(NCI
MB10515)に導入した。なお、対照として、 pRSおよび pRSlysE24を pRSlySE24m5と同 様に AS1株に導入した。
[0077] プラスミド導入株について、培養上清に含まれる L リジンおよび L アルギニン濃 度をアミノ酸分析計(日本分光製、高速液体クロマトグラフィー)で定量した。測定した 結果を、表 1に示す。
[0078] [表 1] 菌株 L-リジンの生産量 (g/L) L-アルギニンの生産量 (g/L)
ASl/pRS <0. 01 <0. 01
ASl/pRSlysE24 0. 1 0. 05
ASl/pRSlysE24m5 0. 15 0. 07
[0079] その結果、終止コドンが 3つ導入された lysE24m5変異遺伝子を導入したメチロフイラ ス属細菌は、 L-リジン、 L-アルギニン収率とも上昇することが明らかになった。
産業上の利用の可能性
[0080] 本発明により、メタノール資化性細菌の L アミノ酸生産性、特に L リジン及び L —アルギニンの生産性を向上させることができる。

Claims

請求の範囲
[1] ループ領域と、 6個の疎水性へリックスとを有するコリネ型細菌の LysEタンパクをコー ドする塩基配列において、前記ループ領域をコードする領域が、終止コドンが 3種類 の翻訳の読み枠全てに存在するように改変された塩基配列を有し、かつメタノール資 化性細菌に発現可能な状態で導入されたときに該細菌による L リジンもしくはし アルギニン又はこれらの両方の L アミノ酸の細胞外への排出を促進する DNA。
[2] 前記終止コドンが TGA,TAG,及び TAA力 選択される請求項 1に記載の DNA。
[3] 前記終止コドンが、配列番号 1における塩基番号 354〜393の領域に導入されたこと を特徴とする請求項 1に記載の DNA。
[4] 前記メタノール資化性細菌がメチロフイラス属細菌、又はメチロバチルス属細菌であ る請求項 1〜3のいずれか一項に記載の DNA。
[5] 前記 DNA力 下記(a)又は(b)に示す DNAである、請求項 1〜4のいずれか一項に 記載の DNA。
(a)配列番号 3に記載の塩基配列を含む DNA、
(b)配列番号 3に記載の塩基配列又は同塩基配列力 調製され得るプローブとストリ ンジヱントな条件下でハイブリダィズする DNAであって、配列番号 3の塩基番号 373 〜383の配列を含み、かつ、メタノール資化性細菌に発現可能な状態で導入された ときに該細菌による L リジンもしくはし アルギニン又はこれらの両方の L アミノ酸 の細胞外への排出を促進する DNA。
[6] 請求項 1〜5のいずれか一項に記載の DNA力 発現可能な状態で導入され、かつ、 L リジン又は L アルギニン生産能を有するメタノール資化性細菌。
[7] メチロフイラス属細菌、又はメチロバチルス属細菌である、請求項 6に記載のメタノー ル資化性細菌。
[8] 請求項 6又は 7に記載のメタノール資化性細菌を培地に培養し、培養物中に Lーリジ ン又は L アルギニンを生産蓄積させ、該培養物から L リジン又は L アルギニン 酸を採取することを特徴とする L リジン又は L アルギニンの製造法。
[9] 前記培地力 タノールを主たる炭素源とすることを特徴とする請求項 8記載の Lーリジ ン又は L ァノレギニンの製造法。
PCT/JP2005/022180 2004-12-03 2005-12-02 メタノール資化性細菌を用いたl-リジン及びl-アルギニンの製造法 WO2006059715A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-351119 2004-12-03
JP2004351119A JP2008043201A (ja) 2004-12-03 2004-12-03 メタノール資化性細菌を用いたl−リジン又はl−アルギニンの製造法

Publications (1)

Publication Number Publication Date
WO2006059715A1 true WO2006059715A1 (ja) 2006-06-08

Family

ID=36565147

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/022180 WO2006059715A1 (ja) 2004-12-03 2005-12-02 メタノール資化性細菌を用いたl-リジン及びl-アルギニンの製造法

Country Status (2)

Country Link
JP (1) JP2008043201A (ja)
WO (1) WO2006059715A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007114465A1 (ja) 2006-03-30 2007-10-11 Ajinomoto Co., Inc. メタノール資化性細菌を用いたカルボン酸の製造法
US8017363B2 (en) 2006-02-02 2011-09-13 Ajinomoto Co., Inc. Method for production of L-lysine using methanol-utilizing bacterium

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014150747A (ja) * 2013-02-06 2014-08-25 Sekisui Chem Co Ltd 変異微生物、並びに、コハク酸の生産方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004166594A (ja) * 2002-11-20 2004-06-17 Ajinomoto Co Inc メタノール資化性菌を用いたl−リジンまたはl−アルギニンの製造法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004166594A (ja) * 2002-11-20 2004-06-17 Ajinomoto Co Inc メタノール資化性菌を用いたl−リジンまたはl−アルギニンの製造法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FORMAN B M ET AL: "pEXPRESS: a family of expression vectors containing a single transcription unit active in prokaryotes, eukaryotes and in vitro.", GENE., vol. 105, no. 1, 1991, pages 9 - 15, XP002995237 *
PETTERSSON R F ET AL: "Chemical synthesis and molecular cloning of a STOP oligonucleotide encoding an UGA translation terminator in all three reading frames.", GENE., vol. 24, no. 1, 1983, pages 15 - 27, XP000905050 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8017363B2 (en) 2006-02-02 2011-09-13 Ajinomoto Co., Inc. Method for production of L-lysine using methanol-utilizing bacterium
WO2007114465A1 (ja) 2006-03-30 2007-10-11 Ajinomoto Co., Inc. メタノール資化性細菌を用いたカルボン酸の製造法

Also Published As

Publication number Publication date
JP2008043201A (ja) 2008-02-28

Similar Documents

Publication Publication Date Title
US7993885B2 (en) Method for producing L-lysine or L-arginine by using methanol assimilating bacterium
US7211416B2 (en) Method for producing L-lysine using methanol-utilizing bacterium
US7439038B2 (en) Method for producing L-amino acid using methylotroph
US7217543B2 (en) Method for producing L-amino acid using methylotroph
EP3597738B1 (en) Modified homoserine dehydrogenase, and method for producing homoserine or homoserine-derived l-amino acid using same
US7335506B2 (en) Method for producing L-lysine or L-arginine by using methanol-assimilating bacterium
WO2000061723A1 (fr) Bacteries produisant du l-amino acide et procede de production de l-amino acide
CN106574237B (zh) 生产o-乙酰高丝氨酸的微生物和使用其生产o-乙酰高丝氨酸的方法
KR102078732B1 (ko) 변형된 막 투과성
WO2007088970A1 (ja) メタノール資化性細菌を用いたl-リジンの製造法
WO2001098472A1 (fr) Nouvelle glucose-6-phosphate deshydrogenase
DK2430152T3 (en) A microorganism with increased L-lysine productivity and method for producing L-lysine using the same
WO2006059715A1 (ja) メタノール資化性細菌を用いたl-リジン及びl-アルギニンの製造法
KR101851452B1 (ko) O-아세틸-호모세린을 생산하는 미생물 및 이를 이용하여 o-아세틸-호모세린을 생산하는 방법
JP4120269B2 (ja) メタノール資化性菌を用いたl−リジン又はl−アルギニンの製造法
CN117321193A (zh) 新型支链氨基酸转氨酶变体及使用其生产异亮氨酸的方法
CN111471631A (zh) 发酵产生l-赖氨酸的方法
CN116555251A (zh) 一种生产苏氨酸的重组微生物及其应用
JP2004248669A (ja) メタノール資化性細菌を用いたl−リジンの製造法
CN116555135A (zh) 高产苏氨酸基因工程菌的构建方法
CN116555136A (zh) 一种修饰的棒状杆菌属微生物及其构建方法与应用
CN116555134A (zh) 产苏氨酸菌株的构建方法
CN117165565A (zh) 苏氨酸脱水酶突变体、产支链氨基酸的重组微生物及其应用
CN117247914A (zh) 乙酰羟酸合酶突变体及其应用
CN116555132A (zh) 一种修饰的棒状杆菌属微生物及其生产苏氨酸的应用和构建方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05811610

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP