WO2006057379A1 - Thin film magnetic resistor element and method for manufacturing it, and magnetic sensor using thin film magnetic resistor element - Google Patents

Thin film magnetic resistor element and method for manufacturing it, and magnetic sensor using thin film magnetic resistor element Download PDF

Info

Publication number
WO2006057379A1
WO2006057379A1 PCT/JP2005/021767 JP2005021767W WO2006057379A1 WO 2006057379 A1 WO2006057379 A1 WO 2006057379A1 JP 2005021767 W JP2005021767 W JP 2005021767W WO 2006057379 A1 WO2006057379 A1 WO 2006057379A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
soft magnetic
thin film
giant magnetoresistive
magnetic film
Prior art date
Application number
PCT/JP2005/021767
Other languages
French (fr)
Japanese (ja)
Inventor
Yuko Takahashi
Hirofumi Fukui
Takafumi Hatanai
Takuo Ito
Nobukiyo Kobayashi
Kiwamu Shirakawa
Susumu Murakami
Original Assignee
Alps Electric Co., Ltd.
The Research Institute For Electric And Magnetic Materials
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co., Ltd., The Research Institute For Electric And Magnetic Materials filed Critical Alps Electric Co., Ltd.
Publication of WO2006057379A1 publication Critical patent/WO2006057379A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices

Definitions

  • Thin film magnetoresistive element manufacturing method thereof, and magnetic sensor using thin film magnetoresistive element
  • the present invention relates to a thin film magnetoresistive element comprising a giant magnetoresistive thin film in a gap portion of a soft magnetic film, a method of manufacturing the same, and a magnetic sensor using the thin film magnetoresistive element.
  • the two soft magnetic films 101 and 102 are disposed opposite to each other with the required gap 103, and in the gap 103 and on a part of the upper surface of the soft magnetic film 101 and 102 following this, for example, a nano-Dara-ura alloy thin film etc. It is proposed that the giant magnetoresistive thin film 104 of the above is formed (see, for example, Patent Document 1).
  • This thin film magnetoresistive element has a gap length Lg of not more than 20 times the film thickness of the soft magnetic films 101 and 102 so that when the soft magnetic films 101 and 102 are magnetized, they enter the gap 103. Since a magnetic field corresponding to the magnetic field of the soft magnetic films 101 and 102 can be applied to the giant magnetoresistance thin film 104 disposed, the magnetoresistance effect (MR ratio) of the giant magnetoresistance thin film 104 can be reduced with a small external magnetic field. It can be saturated and the magnetic field sensitivity can be significantly increased.
  • a magnetic head which enables high speed and high density recording magnetic recording
  • It can be applied to magnetic sensors (MR sensors) in servo motors or rotary encoders that enable high-resolution signal detection.
  • Patent Document 1 Patent No. 3466470
  • this giant magnetoresistive thin film Electrical resistance of 104 is sufficiently larger than the electrical resistance of the soft magnetic film 101, 102 (1 X 1 0 4 ⁇ ⁇ ' «11 ⁇ 1 10 9 ⁇ ' cm) , the current of this device, the gap It flows through the giant magnetoresistance thin film 104 between 103. Therefore, it is necessary to effectively apply a magnetic field to the giant magnetoresistive thin film 104 in the gap 103.
  • the giant magnetoresistive thin film 104 is formed not only in the gap 103 but also on a part of the upper surface of the soft magnetic films 101 and 102. Therefore, the electric path and magnetic path from the soft magnetic film 101 to the soft magnetic film 102 through the giant magnetoresistive thin film 104 are formed in the gap 103 as well as the end face force of the soft magnetic film 101 as shown in FIG. The path to the end face of the soft magnetic film 102 through the resistive thin film 104 and the upper surface force of the soft magnetic film 101 also to the top surface of the soft magnetic film 102 through the giant magnetoresistive thin film 104 formed outside the gap 103 Distributed to
  • the thin film magnetoresistive element having the above-described configuration has a single magnetic flux path, as the magnetic flux density of the magnetic flux passing through the giant magnetoresistive thin film 104 decreases and its path length becomes nonuniform.
  • the magnetic field sensitivity is reduced compared to
  • the magnetic field sensitivity of the thin film magnetoresistive element is a combined value of the local magnetic field sensitivity in each path, the linearity of the magnetic field sensitivity is deteriorated as compared with the thin film magnetoresistive element having a single magnetic flux path. Therefore, since the magnetic field does not effectively apply to the gap 103 through which most of the current flows, the degree of the MR effect particularly in the case of a weak magnetic field is reduced.
  • the present invention has been made to solve the problems of the prior art, and an object thereof is to provide a thin film magnetoresistive element having high magnetic field sensitivity and good linearity. And providing a method for inexpensively and easily manufacturing such a thin film magnetoresistive element, and providing a practical magnetic sensor using the thin film magnetoresistive element.
  • the present invention provides a giant magnetoresistive thin film, and first and second soft magnetic films whose one ends are electrically and magnetically connected via the giant magnetoresistive thin film.
  • the electric path and magnetic path extending from the first soft magnetic film to the second soft magnetic film through the large magnetoresistance thin film are located at positions where the contact area with the soft magnetic film facing the resistive thin film is narrowed.
  • the first and second soft magnetic films are regulated in one direction, and terminal portions for signal detection are provided.
  • the nonmagnetic insulating film is interposed in the required portion between the first and second soft magnetic films and the giant magnetoresistive thin film, and from the first soft magnetic film through the giant magnetoresistive thin film
  • By restricting the electric path and the magnetic path leading to the second soft magnetic film in one direction it is possible to suppress the dispersion of the magnetic flux and the non-uniformity of the magnetic flux path length, thereby improving the sensitivity of the magnetic field and its linearity. it can.
  • the path of the magnetic flux and the path of the current coincide with each other, the MR effect can be effectively exhibited even in a weak magnetic field.
  • the end faces of the first and second soft magnetic films are disposed opposite to each other through a required gap, and the first and second soft magnetic films are provided.
  • a nonmagnetic insulating film is formed on the upper surface of the soft magnetic film, and the giant magnetoresistive thin film is formed in and around the gap, and the nonmagnetic insulating film causes the giant magnetoresistive thin film to pass through the giant magnetoresistive thin film.
  • An electric path and a magnetic path from the (1) soft magnetic film to the second soft magnetic film are restricted only in the arrangement direction of the first soft magnetic film and the second soft magnetic film.
  • the nonmagnetic insulating film is formed on the upper surface of the first and second soft magnetic films, respectively, so that the upper surface of the first soft magnetic film and the giant magnetoresistive thin film are interposed. Since the electric path and magnetic path leading to the upper surface of the second soft magnetic film can be cut off, the electric path and magnetic path extending from the first soft magnetic film to the second soft magnetic film via the giant magnetoresistive thin film It can be regulated only in the alignment direction of the film and the second soft magnetic film.
  • the nonmagnetic insulating film is stacked on the giant magnetoresistive thin film with its end faces aligned, and the first soft magnetic film is one of the above.
  • the second soft magnetic film is formed so as to cover the end face and a part of the nonmagnetic insulating film, and the second soft magnetic film is formed so as to cover the other end face and a part of the nonmagnetic insulating film.
  • an electric path and a magnetic path extending from the first soft magnetic film to the second soft magnetic film via the giant magnetoresistive thin film are formed by the nonmagnetic insulating film stacked on the giant magnetoresistive thin film. It can be regulated only in the direction of the end face of the giant magnetoresistive thin film.
  • the nonmagnetic insulating film is formed on the upper surface of the first soft magnetic film, and the upper surface and end surface of the nonmagnetic insulating film;
  • the giant magnetoresistive thin film is formed on the end face of the soft magnetic film, and one end is in contact with the end of the nonmagnetic insulating film and the giant magnetoresistive thin film formed on the end face of the first soft magnetic film.
  • a second soft magnetic film is formed, and an electric path and a magnetic path from the first soft magnetic film to the second soft magnetic film via the giant magnetic resistance thin film by the nonmagnetic insulating film are referred to as the first soft magnetic film.
  • the second soft magnetic film is regulated only in the arrangement direction.
  • the nonmagnetic insulating film is formed on the upper surface of the first soft magnetic film
  • the second soft magnetic film is formed on the end face side of the first soft magnetic film via the giant magnetic resistance thin film.
  • the second soft magnetic film is stacked on the nonmagnetic insulating film formed such that one end thereof is in contact with the giant magnetoresistive thin film.
  • the end surface of the first soft magnetic film and the end surface of the second soft magnetic film are made of the giant magnetoresistive thin film.
  • the electric path and magnetic path from the first soft magnetic film to the second soft magnetic film via the giant magnetoresistive thin film can be restricted only in the film thickness direction of the giant magnetoresistive thin film. it can.
  • the giant magnetoresistive thin film is formed on a part of the upper surface of the first soft magnetic film, and the upper surface and the end surface of the first soft magnetic film
  • the nonmagnetic insulating film is formed on the outer peripheral portion and the end face of the upper surface of the giant magnetoresistive thin film.
  • one end of the second soft magnetic film is stacked on the upper surface of the first soft magnetic film via the giant magnetoresistive thin film, and the end face of the first soft magnetic film and the second soft magnetic film
  • the end face force of the first soft magnetic film Since the electric path and magnetic path leading to the end face of the second soft magnetic film can be cut off via the upper surface of the first soft magnetic film and the giant magnetoresistance thin film on the electric path and magnetic path alignment leading to the end face, The electrical path and magnetic path from the magnetic film to the second soft magnetic film via the giant magnetoresistive thin film can be restricted only in the film thickness direction of the giant magnetoresistive thin film.
  • the giant magnetoresistive thin film is formed to have a magnetic nonmagnetic film formed by dispersing ferromagnetic fine particles in an insulator matrix. Was configured.
  • the Dara-Yura magnetic film has a much larger MR ratio than a giant magnetoresistance thin film of an alloy such as Permalloy alloy, the use of the Dara-Yura magnetic film as the giant magnetoresistance thin film
  • the output signal strength of the magnetic head and the magnetic sensor can be increased.
  • a large MR ratio can be obtained with a single layer of a magnetic film with a single layer, the manufacture of a thin film magnetoresistive element can be facilitated as compared with the case of using a giant magnetoresistive thin film having a multilayer structure.
  • the thickness of the giant magnetoresistive thin film formed between the first soft magnetic film and the second soft magnetic film is 0. It was configured to be more than 05 ⁇ m and less than 1.0 m.
  • a gap is formed in the soft magnetic film formed on the substrate by ion beam etching or the like, and then, the giant magnetic resistance thin film is sputtered in the formed gap.
  • the gap length is 1 m or less, the wraparound of the giant magnetoresistive thin film into the gap becomes insufficient, and uniform giant magnetoresistive thin film is formed. Will be difficult.
  • the gap length is not limited in manufacturing.
  • the thickness of the giant magnetic resistance thin film formed between the first soft magnetic film and the second soft magnetic film can be formed to be not less than 0.05 m and not more than 1.0 m. Therefore, the gap length of the thin film magnetoresistive element can be substantially reduced, and the magnetic field sensitivity of the thin film magnetoresistive element can be enhanced.
  • the present invention adopts the following configurations as a method of manufacturing a thin film magnetoresistive element.
  • a thin film magnetoresistive element is manufactured by the steps of: forming a nonmagnetic insulating film on the upper surface of the magnetic film; and forming a giant magnetoresistive thin film on the upper surface and end face of the nonmagnetic insulating film in the gap. Thereby, the thin film magnetoresistive element according to claim 2 is obtained.
  • the thin film magnetoresistive element according to claim 4 is obtained.
  • the present invention relates to a giant magnetic sensor for a magnetic sensor.
  • a resistive thin film, first and second soft magnetic films electrically and magnetically connected at one end via the giant magnetoresistive thin film, at least a surface of the first soft magnetic film, and the second soft magnetic film A nonmagnetic insulating film which is formed on any one of the surfaces of the first magnetic film and which extends from the first soft magnetic film to the second soft magnetic film via the giant magnetoresistive thin film in one direction.
  • a bridge comprising: two thin film magnetoresistive elements having terminal portions for signal detection on the first and second soft magnetic films on two opposing sides and a fixed resistive element on the other two opposing sides It was also configured to be circuit power.
  • a thin film magnetoresistive element in which the electric path and the magnetic path from the first soft magnetic film to the second soft magnetic film via the giant magnetoresistive thin film are regulated by the nonmagnetic insulating film in the ⁇ direction is provided. Since magnetic flux dispersion and magnetic flux path length unevenness can be suppressed, a magnetic sensor having high magnetic field sensitivity and excellent linearity can be obtained.
  • the thin film magnetoresistive element is formed by the null method. The fluctuation of the acting magnetic field can be detected, and the influence of the fluctuation of the power supply voltage and the input impedance and non-linearity of the detector can be eliminated, so that the magnetic field can be detected with high accuracy. Effect of the invention
  • a nonmagnetic insulating film is interposed in a required portion between the first and second soft magnetic films and the giant magnetoresistive thin film, and the second magnetoresistive thin film is interposed between the first and second soft magnetic films.
  • a thin film magnetoresistive element of the present invention between the first soft magnetic film and the giant magnetoresistive thin film, between the second soft magnetic film and the giant magnetoresistive thin film, and the first soft magnetic film Since the step of forming the nonmagnetic insulating film in the required part between the second soft magnetic film and the second soft magnetic film is included, the electric path and the magnetic path from the first soft magnetic film to the second soft magnetic film through the giant magnetoresistive thin film The thin film magnetoresistive element regulated in the direction can be manufactured.
  • the magnetic sensor according to the present invention is characterized in that the first soft magnetic film is formed of the nonmagnetic insulating film via the giant magnetoresistive thin film. Since the electric path and magnetic path from the magnetic film to the second soft magnetic film are provided with the thin film magnetoresistive element in which the magnetic path is restricted in the ⁇ direction, dispersion of magnetic flux and unevenness of magnetic flux path length can be suppressed. A magnetic sensor having high linearity and excellent linearity can be obtained.
  • the thin film magnetoresistive element acts on the thin film magnetoresistive element by the null method. The magnetic field fluctuation can be detected, and the influence of the fluctuation of the power supply voltage and the input impedance and nonlinearity of the detector can be removed, so that the magnetic field can be detected with high accuracy.
  • FIG. 1 is a plan view of a thin film magnetoresistive element according to the first embodiment
  • FIG. 2 is a sectional view taken along the line A-A of FIG.
  • the thin film magnetoresistive element 1A of this example is formed on the insulating substrate 2 and the insulating substrate 2, and one end is opposed via the required gap g.
  • the first soft magnetic film 3 and the strip-like first soft magnetic film 3 and the second soft magnetic film 4 disposed near the gap g of the upper surface of the second soft magnetic film 4
  • Insulating substrate 2 is formed in a desired shape and size with a high rigidity nonmagnetic insulator such as an inorganic dielectric, plastic or nonmagnetic ceramic.
  • the first soft magnetic film 3 has a narrow width portion 3 a having a required gap width Wg, a wide width portion 3 b wider than the gap width Wg, and both of these portions 3 a, It consists of the taper part 3c which connects 3b.
  • the second soft magnetic film 4 has a narrow portion 4a having a required gap width Wg, a wide portion 4b wider than the gap width Wg, and both portions 4a, It consists of the taper part 4c which connects 4b.
  • These first and second soft magnetic films 3 and 4 are made of Co Fe Si
  • Soft magnetic materials with high saturation magnetic flux density such as B alloy and Permalloy alloy (Fe Ni) as insulating base
  • the first and second soft magnetic films 3, 4 are formed by sputtering on the plate 2. Between the four, gap g of gap length force SLg is provided.
  • the end faces of the narrow portions 3a and 4a may be formed perpendicular to the insulating substrate 2, but the formation of the giant magnetoresistive thin film 6 having a uniform thickness with respect to the end faces is facilitated and the end faces are formed on the end faces.
  • the nonmagnetic insulating film 5 electrically insulates between the upper surface of the first soft magnetic film 3 and the giant magnetoresistive thin film 6 and between the second soft magnetic film 4 and the giant magnetoresistive thin film 6.
  • the giant magnetoresistive thin film 6 has a significantly larger MR ratio than a giant magnetoresistive thin film of an alloy system such as a permalloy alloy, and a large MR ratio can be obtained in one layer, the insulator matrix can be obtained.
  • a magnetic film is formed by dispersing ferromagnetic particles therein. For example, 32 vol% of CoFe-MgF or Co Y ⁇ ⁇ was cited as the magnetic film.
  • the giant magnetoresistive thin film 6 is formed on the insulating substrate 2 in the gap g, and the end faces of the first and second soft magnetic films 3 and 4 facing the gap g, and subsequent thereto. It is formed on a part of the end face and the top face of the nonmagnetic insulating film 5, but it is sufficient if it is formed on the end faces of at least the first soft magnetic film 3 and the second soft magnetic film 4.
  • the giant magnetoresistive thin film 6 may be formed first, the gap g may be opened, and then the nonmagnetic insulating film 5 and the first and second soft magnetic films 3 and 4 may be formed.
  • the thin film magnetoresistive element 1 A of this example has the nonmagnetic insulating film 5 of the wide portion 3 b of the first soft magnetic film 3 and the wide portion 4 b of the second soft magnetic film 4.
  • the end portion that does not form a terminal for signal detection, and detects a magnetic signal in the direction from the first soft magnetic film 3 to the second soft magnetic film 4 via the giant magnetoresistive thin film 6 or in the opposite direction.
  • the nonmagnetic insulating film 5 is formed on the upper surfaces of the first and second soft magnetic films 3 and 4, respectively.
  • the electric path and magnetic path leading to the upper surface of the second soft magnetic film 4 can be blocked via the giant magnetoresistive thin film 6, and as shown by the arrows in FIG.
  • the electric path and magnetic path leading to the second soft magnetic film 4 via the resistive thin film 6 can be regulated only in the direction in which the first soft magnetic film 3 and the second soft magnetic film 4 are arranged. Therefore, the dispersion of the magnetic flux and the nonuniformity of the magnetic flux path length can be suppressed.
  • the magnetic field sensitivity can be improved and the linearity thereof can be improved.
  • the nonmagnetic insulating film 5 is formed on the giant magnetoresistive thin film 6. Also in this case, as shown by the arrows in the figure, the electric path and the magnetic path are restricted, and the same effect can be obtained.
  • FIG. 3 is a flow chart showing the manufacturing procedure of the thin film magnetoresistive element 1A.
  • a soft magnetic film which is the basis of the first soft magnetic film 3 and the second soft magnetic film 4, is formed to a uniform thickness on one surface of the insulating substrate 2 by plating or sputtering (procedure Sl) .
  • a photoresist layer is uniformly formed on the soft magnetic film, and a mask for forming a first soft magnetic film and a second soft magnetic film is formed through an exposure step and a development step (step S2).
  • the portion covered with the photoresist layer of the soft magnetic film is removed by etching, ion milling or the like, and thereafter, the remaining photoresist layer is removed (procedure S3).
  • the first soft magnetic film 3 and the second soft magnetic film 4 are formed on one side of the insulating substrate 2 with one end facing the other through the required gap g.
  • the nonmagnetic insulating film 5 is formed by sputtering (Step S4), and the photoresist layer is uniformly formed again on the entire top surface of the insulating substrate 2 including the top surfaces of the first soft magnetic film 3 and the second soft magnetic film 4
  • a mask for forming a nonmagnetic insulating film is formed (step S5).
  • the oxide film in the portion not covered with the photoresist layer is removed by etching or ion milling, and then the remaining photoresist layer is removed (procedure S6).
  • the nonmagnetic insulating film 5 is laminated on the upper surface of the first soft magnetic film 3 and the upper surface of the second soft magnetic film 4 respectively.
  • a giant magnetoresistive thin film 6 is deposited by sputtering (procedure S7), and after a photoresist layer is uniformly formed on the giant magnetoresistive thin film 6, the giant magnetoresistive thin film 6 is subjected to an exposure step and a development step. Form a mask (step S8).
  • the oxide film in the portion not covered with the photoresist layer is removed by etching or ion milling, and thereafter, the remaining photoresist layer is removed (procedure S9).
  • the thin film magnetoresistive element 1A according to the first embodiment shown in FIGS. 1 and 2 having the giant magnetoresistive thin film 6 in the gap g is obtained.
  • nonmagnetic insulation is provided between the upper surface of the first soft magnetic film 3 and the giant magnetoresistive thin film 6 and between the upper surface of the second soft magnetic film 4 and the giant magnetoresistive thin film 6. Since the process of forming the film 5 is included, the electric path and magnetic path between the upper surface of the first soft magnetic film 3 and the giant magnetoresistive thin film 6 And the electric path and magnetic path between the upper surface of the second soft magnetic film 4 and the giant magnetoresistive thin film 6 are cut off, and the first soft magnetic film 3 to the second soft magnetic film 4 via the giant magnetoresistive thin film 6 It is possible to manufacture a thin film magnetoresistive element 1A in which the electric path and the magnetic path to be reached are restricted only in the arrangement direction of the first soft magnetic film 3 and the second soft magnetic film 4.
  • FIG. 4 is a plan view of a thin film magnetoresistive element according to the second embodiment
  • FIG. 5 (a) is a cross sectional view taken along the line B-B in FIG. 4
  • FIG. 6 is a cross sectional view of a thin film magnetoresistive element according to a comparative example
  • FIG. 8 is a table showing the specifications of the thin film magnetoresistive element according to the second embodiment and the thin film magnetoresistive element according to the comparative example
  • FIG. 8 is a comparative example of the effects of the thin film magnetoresistive element according to the second embodiment.
  • FIG. 6 is a graph showing comparison with FIG.
  • the thin film magnetoresistive element 1B of this example includes an insulating substrate 2 and a strip-shaped first soft magnetic film 3 formed on the insulating substrate 2.
  • the nonmagnetic insulating film 5 formed on the upper surface of the first soft magnetic film 3 and the end surface of the nonmagnetic insulating film 5 and the first soft magnetic film 3 A giant magnetoresistive thin film 6 formed on a part of the upper surface of the insulating substrate 1 passing through one end face, and a giant magnetoresistance having one end in the longitudinal direction formed on one end face of the first soft magnetic film 3 And a belt-like second soft magnetic film 4 formed to be in contact with the thin film 6.
  • the film thickness tg of the giant magnetoresistive thin film 6 is equivalent to the gap length Lg of the thin film magnetoresistive element 1A according to the first embodiment, and a force that can be set to any size as needed.
  • the gap length Lg force by making .0. 05 111 or more and less than 1.
  • 05 ⁇ A thin film magnetoresistive element IB of less than 0 m can be realized.
  • FIG. 1 A thin film magnetoresistive element IB of less than 0 m can be realized.
  • the large magnetoresistive thin film 6 passes from a part of the top surface of the nonmagnetic insulating film 5 through one end face of the nonmagnetic insulating film 5 and the first soft magnetic film 3 to the top surface of the insulating substrate 2 It is sufficient if the force is formed at least on the end face of the first soft magnetic film 3.
  • the second soft magnetic film 4 is formed by sputtering a soft magnetic material of the same quality as the first soft magnetic film 3.
  • the other parts are the same as those of the thin film magnetoresistive element 1A according to the first embodiment, and therefore the corresponding parts are denoted by the same reference numerals and the description thereof will be omitted.
  • the nonmagnetic insulating film 5 is formed on the upper surface of the first soft magnetic film 3, and on the end face side of the first soft magnetic film 3 via the giant magnetoresistive thin film 6.
  • the electric path and magnetic path leading to the second soft magnetic film 4 can be cut off via the giant magnetoresistive thin film 6 on the upper surface of the first soft magnetic film 3 It may only regulate the electrical path and the magnetic path leading to the second soft magnetic film 4 via the first soft magnetic film 3 from giant magnetoresistive thin film 6 on the first soft magnetic film 3 the arrangement direction of the second soft magnetic film 4 it can. Therefore, the dispersion of the magnetic flux and the nonuniformity of the magnetic flux path length can be suppressed, and the sensitivity of the magnetic field can be improved and the linearity thereof can be improved.
  • the giant magnetoresistive thin film is sufficiently thin as compared with the soft magnetic film, for example, 1 Z5 or less, as shown in FIG. 5 (b), the first soft magnetic film 3 and the second soft magnetic film 4 are Similar effects can be obtained even if the heights of the end faces do not match.
  • the thin-film magnetoresistive element 1 B of this example has a wide portion formed on one end of the wide portion 3 b formed on the first soft magnetic film 3 and the second soft magnetic film 4.
  • a terminal portion for signal detection is provided at one end of the portion 6b, and a magnetic signal in a direction crossing the giant magnetoresistive thin film 6 in the thickness direction is detected.
  • the thin film magnetoresistive element 1B of this example can regulate the gap length Lg between the first soft magnetic film 3 and the second soft magnetic film 4 with the film thickness tg of the giant magnetoresistive thin film 6, As in the case of forming a giant magnetoresistive thin film in the slit-like gap portion formed on the soft magnetic film, it is possible to improve the magnetic field sensitivity due to the reduction of the gap length in which the manufacturing length is not limited.
  • the thin-film magnetoresistive element 200 (the thin-film magnetoresistive element according to the comparative example) in which the giant magnetoresistive thin film 204 is formed by sputtering in the gap portion 203 also has the inside of the gap portion 202 even when the sputtering conditions are optimized. It is difficult to reduce the gap length to less than 0.5 m because the formation of a homogeneous giant magnetoresistive thin film 203 becomes difficult.
  • the thin film magnetoresistive element 1 B of this example regulates the gap length Lg between the first soft magnetic film 3 and the second soft magnetic film 4 with the film thickness tg of the giant magnetoresistive thin film 6.
  • the film thickness tg of the giant magnetoresistance thin film 6 a thin film magnetoresistance element having a gap length of 0.5 m or less can be manufactured. Therefore, as shown in FIG. 7, the inventors of the present invention have compared the thin-film magnetoresistive element according to the comparative example in which the film thickness tg of the giant magnetoresistive thin film 203 is 0.25 m and the gap length Lg is 0.5 m.
  • a thin-film magnetoresistive element 1B according to the second embodiment having a thickness tg of 0.25 m and a gap length Lg of 0.1 m for the giant magnetoresistive thin film 5 is fabricated, and the respective magnetic field sensitivities are Compared.
  • the other specifications are the same.
  • the gap length Lg is regulated by the film thickness tg of the giant magnetoresistive thin film 6 as described above, the microfabrication technique is applied as a means for forming the gap portion.
  • the manufacturing process of the thin film magnetoresistive element which does not require it can be simplified, and the thin film magnetoresistive element can be manufactured at low cost.
  • FIG. 9 is a flow chart showing a manufacturing procedure of the thin film magnetoresistive element 1B.
  • a soft magnetic film to be the origin of the first soft magnetic film 3 is formed on one surface of the insulating substrate 2 to a uniform thickness by sputtering or the like (step Sll).
  • a photoresist layer is uniformly formed on the soft magnetic film, and through a light exposure step and a development step, a mask for forming a first soft magnetic film is formed (step S12).
  • the portion covered with the photoresist layer of the soft magnetic film is removed by etching or ion milling, and then the remaining photoresist layer is removed (step S13). As a result, the required first soft magnetic film 3 is formed on one side of the insulating substrate 2.
  • the nonmagnetic insulating film 5 is formed by sputtering (step S14), and a photoresist layer is uniformly formed again over the entire top surface of the insulating substrate 2 including the top surface of the first soft magnetic film 3 Then, a mask for nonmagnetic insulating film formation is formed (step S15). Next, the oxide film of the portion not covered with the photoresist layer is removed by etching or ion milling, and thereafter, the remaining photoresist layer is removed (Procedure S 16). Thus, the nonmagnetic insulating film 5 is stacked on the top surface of the first soft magnetic film 3.
  • a giant magnetoresistive thin film 6 is deposited by sputtering (procedure S17), and then a photoresist layer is uniformly formed on the giant magnetoresistive thin film 6, and then through an exposure step and a developing step, a giant magnetoresistive resistor is formed.
  • Form a mask for thin film 6 step S18.
  • the portion not covered with the photoresist layer is removed by etching or ion milling, and thereafter, the remaining photoresist layer is removed (procedure S19).
  • the giant magnetoresistive thin film 6 is formed on the end face of the first soft magnetic film 3 and the end face of the nonmagnetic insulating film 5.
  • the nonmagnetic insulating film 7 is formed by sputtering on the insulating substrate 2 (step S20), and the oxide film of the portion not covered with the photoresist layer is removed by etching or ion milling, and then remaining. Remove the photoresist layer (Step S21). As a result, the nonmagnetic insulating film 7 is stacked on the insulating substrate 2 in a portion in contact with the end face of the giant magnetoresistive thin film 6. Next, a soft magnetic film to be the origin of the second soft magnetic film 3 is formed on the nonmagnetic insulating film 7 by plating or sputtering to a uniform thickness (step S22), and a photoresist layer is formed on the soft magnetic film.
  • a mask for forming a second soft magnetic film is formed (step S23).
  • the portion covered with the photoresist layer of the soft magnetic film is removed by etching, ion milling or the like, and thereafter, the remaining photoresist layer is removed (procedure S24).
  • the thin film magnetoresistive element 1B according to the second embodiment shown in FIGS. 4 and 5 is obtained.
  • the step of forming nonmagnetic insulating film 5 between the upper surface of first soft magnetic film 3 and giant magnetoresistive thin film 6 is included, the upper surface of first soft magnetic film 3 is formed. Also, the electric path and magnetic path leading to the second soft magnetic film 4 are interrupted through the giant magnetoresistive thin film 6, and the electric path extending from the first soft magnetic film 3 to the second soft magnetic film 4 through the giant magnetoresistive thin film 6 A thin film magnetoresistive element 1 B in which the magnetic path is restricted only in the direction of arrangement of the first soft magnetic film 3 and the second soft magnetic film 4 can be manufactured.
  • FIG. 10 is a plan view of a thin film magnetoresistive element according to a third embodiment
  • FIG. 11 is a cross-sectional view taken along the line CC in FIG.
  • the thin film magnetoresistive element 1 C of this example includes an insulating substrate 2, a strip-shaped first soft magnetic film 3 formed on the insulating substrate 2, and a first soft magnetic film.
  • the nonmagnetic insulating film 5 formed on the outer peripheral portion and the end face of the upper surface and the end face of the first soft magnetic film 3 and the upper face and the lower surface of the one end portion Is formed of a band-like second soft magnetic film 4 formed to be in contact with the giant magnetoresistive thin film 6 exposed from the nonmagnetic insulating film 5.
  • each part is the same as that of the thin film magnetoresistive element 1 B according to the second embodiment except for the laminated structure of each of the films 3 to 6, so the corresponding parts are denoted by the same reference numerals. I will omit the explanation.
  • the giant magnetoresistive thin film 6 is formed on the upper surface of the first soft magnetic film 3, and the end face of the first soft magnetic film 3 and the end face of the second soft magnetic film 4 Since the nonmagnetic insulating film 5 is interposed between them, the electric path and the magnetic path leading to the end face of the first soft magnetic film 3 and the end face of the second soft magnetic film 4 can be cut off.
  • the electric path and magnetic path from the film 3 to the second soft magnetic film 4 via the giant magnetoresistive thin film 6 can be regulated only in the film thickness direction of the giant magnetoresistive thin film 6.
  • the giant magnetoresistive thin film 6 is formed on the upper surface of the first soft magnetic film 3 in the thin film magnetoresistive element 1 C of this example, the giant magnetoresistive thin film 6 is formed on the end face of the first soft magnetic film 3. In comparison, the control of the film thickness of the giant magnetic resistance thin film 6 becomes easy, and from this point as well, the magnetic field sensitivity can be improved.
  • the thin film magnetoresistive element 1C of this example can regulate the gap length Lg between the first soft magnetic film 3 and the second soft magnetic film 4 with the film thickness tg of the giant magnetoresistive thin film 6 Therefore, as in the case of forming a giant magnetoresistive thin film in the slit-like gap portion formed in the soft magnetic film, the magnetic field sensitivity can be improved by reducing the gap length without any limitation on the gap length. Can.
  • FIG. 12 is a flow chart showing a manufacturing procedure of the thin film magnetoresistive element 1C.
  • the insulating substrate 2 on which one side of the soft magnetic film to be the origin of the first soft magnetic film 3 is formed to a uniform thickness by plating or the like is prepared (step S 21).
  • a photoresist layer is uniformly formed on the soft magnetic film, and a mask for forming a first soft magnetic film is formed through an exposure step and a development step (step S22).
  • the portion not covered with the photoresist layer of the soft magnetic film The portion is removed by etching, ion milling or the like, and then the remaining photoresist layer is removed (step S23). Thereby, the required first soft magnetic film 3 is formed on one side of the insulating substrate 2.
  • a giant magnetoresistive thin film 6 is deposited by sputtering (procedure S24), and then a photoresist layer is uniformly formed on the giant magnetoresistive thin film 6, and then through an exposure step and a development step, a giant magnetoresistance is produced.
  • Form a mask of the thin film 6 step S25.
  • the portion covered with the photoresist layer is removed by etching or ion milling, and thereafter, the remaining photoresist layer is removed (procedure S26). Thereby, the giant magnetoresistive thin film 6 is stacked on the top surface of the first soft magnetic film 3.
  • a photoresist layer is uniformly formed on the entire upper surface of the insulating substrate 2 including the upper surface of the first soft magnetic film 3 and the upper surface of the giant magnetoresistive thin film 6, and through the exposure step and the developing step, the giant magnetoresistive thin film
  • the outer peripheral portion of the upper surface of the sixth part Force is the end of the giant magnetoresistive thin film 6 and the partial array of the upper surface of the first soft magnetic film 3
  • the opening is only in the part facing the end surface of the first soft magnetic film 3
  • the formed nonmagnetic insulating film forming mask is formed (step S 27).
  • the nonmagnetic insulating film 5 is formed by sputtering in the opening of the photoresist layer (step S28), and after force is applied, the remaining photoresist layer is removed (step S29). As a result, the nonmagnetic insulating film 5 is formed on the required portions of the first soft magnetic film 3 and the giant magnetoresistive thin film 6 and the insulating substrate 2.
  • the second soft magnetic film 4 is formed by sputtering (step S30), and after applying force, the soft magnetic film is removed by ion milling, etching or the like, and the remaining photoresist layer is removed (step S31).
  • a photoresist layer is uniformly formed, and a mask for a second soft magnetic film is formed through an exposure step and a development step (step S32).
  • a thin film magnetoresistive element 1C according to the third embodiment shown in FIGS. 10 and 11 is obtained.
  • the nonmagnetic state between the upper surface of the giant magnetoresistive thin film 6 and the lower surface of the second soft magnetic film 4 and between the end surface of the first soft magnetic film 3 and the end surface of the second soft magnetic film 4 Since the step of forming the insulating film 5 is included, the electric path and magnetic path leading to the second soft magnetic film 4 via the giant magnetoresistive thin film 6 on the upper surface of the first soft magnetic film 3 and the first soft magnetic film 3 The electric path and magnetic path leading to the second soft magnetic film 4 are cut off directly, and the electric path and magnetic path from the first soft magnetic film 3 to the second soft magnetic film 4 via the giant magnetoresistive thin film 6 are huge.
  • FIG. 13 shows a thin film magnetoresistive element ID according to a fourth embodiment of the present invention.
  • FIG. 13 is a cross-sectional view of main parts of a thin-film magnetoresistive element 1D according to the fourth embodiment.
  • the first and second soft magnetic films 3 and 4 are formed on the insulating substrate 2 with the required gap g therebetween,
  • the nonmagnetic insulating film 5 is laminated on the upper surfaces of the first and second soft magnetic films 3 and 4 respectively, and the end faces of the first and second soft magnetic films 3 and 4 and the end faces of the nonmagnetic insulating film 5 are giant magnetic films.
  • a third soft magnetic film 11 is formed via the resistance thin film 6.
  • the same configuration as that of the thin film magnetoresistive element 1A according to the first embodiment can also be achieved by the above-described configuration.
  • a hard magnetic film is formed instead of the third soft magnetic film 11, a noise effect can be expected.
  • FIG. 14 shows a thin film magnetoresistive element 1E according to a fifth embodiment of the present invention.
  • FIG. 14 is a plan view of the main part of a thin film magnetoresistive element 1E according to the fifth embodiment.
  • the second soft magnetic film 5 is formed in a cross shape, and the giant magnetic films are giant magnetism in the direction orthogonal to each other with the second soft magnetic film 5 as a center.
  • a resistive thin film 6 (not shown), a nonmagnetic insulating film 5 and a first soft magnetic film 3 (not shown) are formed.
  • the laminated structure of the first soft magnetic film 3, the nonmagnetic insulating film 5, the giant magnetoresistive thin film 6, and the second soft magnetic film 4 is the thin film magnetoresistive element 1A according to the first to third embodiments. Same as either IB or 1C.
  • the thin film magnetoresistive element 1E of this example can simultaneously detect magnetic fields in two orthogonal directions, so it can be used not only as a general magnetic sensor but also as a magnetic sensor for special purposes such as a compass. It can be used.
  • FIG. 15 is a plan view of the magnetic sensor according to the embodiment
  • FIG. 16 is a cross-sectional view of the main part of the fixed resistance element applied to the magnetic sensor according to the embodiment
  • FIG. 17 is equivalent to the magnetic sensor according to the embodiment. It is a circuit diagram.
  • the magnetic sensor 21 of the present example is provided with the thin film magnetic resistance element 1A according to the first embodiment example on the two opposing sides and the fixed resistance on the other opposing two sides.
  • a bridge circuit including an element 22 is formed on the end of each of the soft magnetic films 3 and 4 constituting the thin film magnetoresistive element 1A.
  • a terminal 23 is formed.
  • the fixed resistance element 22 is, as shown in FIG. 16, an insulating substrate 24, a strip-shaped first nonmagnetic metal film 25 formed on the insulating substrate 24, and one end of the first nonmagnetic metal film 25.
  • the nonmagnetic insulating film 26 formed on the upper surface of the substrate 24 and part of the upper surface of the nonmagnetic insulating film 26 pass through one end surface of the first nonmagnetic metal film 25 and the nonmagnetic insulating film 26 to form the substrate 24.
  • a giant magnetoresistive thin film 27 formed on a part of the upper surface, and a strip formed so that one end in the lengthwise direction covers the giant magnetoresistive thin film 27 and does not contact the first nonmagnetic metal film 25 And a second nonmagnetic metal film 28.
  • the magnetic sensor 21 of this example uses the thin film magnetoresistance element 1A according to the first embodiment as the thin film magnetoresistance element, so the magnetic field sensitivity is high and the linearity is excellent. Further, the magnetic sensor 21 of the present example is configured by forming a bridge circuit by two thin film magnetoresistive elements 1A provided on two opposing sides and fixed resistance elements 22 provided on the other two opposing sides. Therefore, it is possible to perform high-precision magnetic field detection by the null method which does not depend on the fluctuation of the power supply voltage and the input impedance and nonlinearity of the detector.
  • the resistance values of the two thin film magnetoresistive elements 1 A are R and R respectively.
  • the output voltage Vout for is expressed by the following equation.
  • V. ut VV
  • the output voltage Vout of the bridge circuit is determined only by the resistance values R, R, R, R of each element and the input voltage Vin, and in the equilibrium state, the output voltage
  • the thin film magnetoresistive element 1A according to the first embodiment is used as the thin film magnetoresistive element in the above embodiment
  • a thin film magnetic resistance according to the second embodiment may be used instead.
  • the element IB or the thin film magnetoresistive element 1C according to the third embodiment can also be used.
  • one having the first nonmagnetic metal film 25, the nonmagnetic insulating film 26, the giant magnetoresistive thin film 27 and the second nonmagnetic metal film 28 is used as the fixed resistance element 21.
  • Other fixed resistance elements can also be used.
  • FIG. 1 A plan view of a thin film magnetoresistive element according to a first embodiment.
  • FIG. 2 is a cross-sectional view taken along the line A-A in FIG.
  • FIG. 3 is a flow chart showing a method of manufacturing a thin film magnetoresistive element according to the first embodiment.
  • FIG. 4 is a plan view of a thin film magnetoresistive element according to a second embodiment example.
  • FIG. 5 is a cross-sectional view of a thin film magnetoresistive element according to a second embodiment example.
  • FIG. 6 is a cross-sectional view of a thin film magnetoresistive element according to a comparative example.
  • FIG. 7 is a table showing the specifications of a thin film magnetoresistive element according to a second embodiment and a thin film magnetoresistive element according to a comparative example.
  • FIG. 8 is a graph showing the effect of the thin film magnetoresistive element according to the second embodiment in comparison with a comparative example.
  • FIG. 9 is a flow chart showing a method of manufacturing a thin film magnetoresistive element according to a second embodiment example.
  • FIG. 10 is a plan view of a thin film magnetoresistive element according to a third embodiment.
  • FIG. 11 It is CC sectional drawing of FIG.
  • FIG. 12 is a flow chart showing a method of manufacturing a thin film magnetoresistive element according to a third embodiment.
  • FIG. 13 is a cross-sectional view of main parts of a thin-film magnetoresistive element according to a fourth embodiment
  • FIG. 14 is a cross-sectional view of main parts of a thin-film magnetoresistive element according to a fifth embodiment
  • FIG. 15 is a plan view of a magnetic sensor according to an embodiment.
  • FIG. 16 is a cross-sectional view of main parts of a fixed resistance element applied to a magnetic sensor according to an embodiment example.
  • FIG. 17 is an equivalent circuit diagram of a magnetic sensor according to an embodiment example.
  • FIG. 18 is a cross-sectional view of main parts of a thin-film magnetoresistive element according to a conventional example.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Hall/Mr Elements (AREA)
  • Measuring Magnetic Variables (AREA)
  • Magnetic Heads (AREA)
  • Thin Magnetic Films (AREA)

Abstract

[PROBLEMS] To provide a thin film magnetic resistor element having high magnetic field sensitivity and excellent linearity, to provide a method for manufacturing the thin film magnetic resistor element at low cost and easily, and to provide a practical magnetic sensor using the thin film magnetic resistor element. [MEANS FOR SOLVING PROBLEMS] The thin film magnetic resistor element (1A) is composed of an insulating board (2); strip-shaped first soft magnetic film (3) and second soft magnetic film (4), which are formed on the insulating board (2) with their one edge arranged to face each other through a prescribed gap (g); nonmagnetic insulating films (5) formed on a portion close to the gap (g) on an upper lane of the first soft magnetic film (3), and on a portion close to the gap (g) on an upper plane of the second soft magnetic film (4), respectively; and a huge magnetic resistor thin film (6) formed on the insulating board (2) in the gap (g), on the edge planes of the first and second soft magnetic films (3, 4) facing the gap (g), and on the edge plane of the nonmagnetic insulating films (5) continued from the soft magnetic film edge planes and on a part of an upper lane of the nonmagnetic insulating film.

Description

薄膜磁気抵抗素子及びその製造方法並びに薄膜磁気抵抗素子を用い た磁気センサ  Thin film magnetoresistive element, manufacturing method thereof, and magnetic sensor using thin film magnetoresistive element
技術分野  Technical field
[0001] 本発明は、軟磁性膜のギャップ部に巨大磁気抵抗薄膜を備えてなる薄膜磁気抵抗 素子及びその製造方法並びに薄膜磁気抵抗素子を用いた磁気センサに関する。 背景技術  The present invention relates to a thin film magnetoresistive element comprising a giant magnetoresistive thin film in a gap portion of a soft magnetic film, a method of manufacturing the same, and a magnetic sensor using the thin film magnetoresistive element. Background art
[0002] 従来より、パーマロイ合金等を用いたものよりも格段に大きな磁気抵抗効果を有し 且つ磁界感度が高い薄膜磁気抵抗素子として、図 18に示すように、同一平面内に 第 1及び第 2の軟磁性膜 101, 102が所要のギャップ 103を介して対向に配置され、 当該ギャップ 103内及びこれに続く軟磁性膜 101, 102の上面の一部に例えばナノ ダラ-ユラ一合金薄膜等の巨大磁気抵抗薄膜 104を形成したものが提案されている (例えば、特許文献 1参照。)。  Conventionally, as a thin film magnetoresistive element having a magnetoresistance effect much higher than that using a permalloy alloy etc. and having a high magnetic field sensitivity, as shown in FIG. The two soft magnetic films 101 and 102 are disposed opposite to each other with the required gap 103, and in the gap 103 and on a part of the upper surface of the soft magnetic film 101 and 102 following this, for example, a nano-Dara-ura alloy thin film etc. It is proposed that the giant magnetoresistive thin film 104 of the above is formed (see, for example, Patent Document 1).
[0003] この薄膜磁気抵抗素子は、ギャップ長 Lgを軟磁性膜 101, 102の膜厚の 20倍以 下にすることにより、軟磁性膜 101, 102が磁ィ匕したときにギャップ 103内に配置され た巨大磁気抵抗薄膜 104に軟磁性膜 101, 102の磁ィ匕に相当する磁界を作用させ ることができるので、巨大磁気抵抗薄膜 104の磁気抵抗効果 (MR比)を小さな外部 磁界で飽和させることができ、磁界感度を著しく大きくすることができる。  This thin film magnetoresistive element has a gap length Lg of not more than 20 times the film thickness of the soft magnetic films 101 and 102 so that when the soft magnetic films 101 and 102 are magnetized, they enter the gap 103. Since a magnetic field corresponding to the magnetic field of the soft magnetic films 101 and 102 can be applied to the giant magnetoresistance thin film 104 disposed, the magnetoresistance effect (MR ratio) of the giant magnetoresistance thin film 104 can be reduced with a small external magnetic field. It can be saturated and the magnetic field sensitivity can be significantly increased.
[0004] かように、この薄膜磁気抵抗素子は、 MR比のみならず磁界感度を非常に大きくす ることができるので、高速 ·高密度記録の磁気記録を可能にする磁気ヘッド (MRへッ ド)や、高分解能の信号検出を可能にするサーボモータ又はロータリエンコーダ等に おける磁気センサ(MRセンサ)に応用することができる。  [0004] As described above, since this thin film magnetoresistive element can extremely increase not only the MR ratio but also the magnetic field sensitivity, a magnetic head (MR head which enables high speed and high density recording magnetic recording) It can be applied to magnetic sensors (MR sensors) in servo motors or rotary encoders that enable high-resolution signal detection.
特許文献 1:特許第 3466470号公報  Patent Document 1: Patent No. 3466470
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problem that invention tries to solve
[0005] ところで、上記のような効果を得るには、軟磁性膜 101, 102から流れる磁界を、巨 大磁気抵抗薄膜 104に有効に作用させる必要がある。即ち、この巨大磁気抵抗薄膜 104の電気抵抗は、軟磁性膜 101 , 102の電気抵抗と比較して十分に大きい(1 X 1 04 μ Ω ' «11〜1 109 Ω ' cm)ため、この素子の電流は、ギャップ 103間の巨大磁 気抵抗薄膜 104を流れる。したがって、ギャップ 103間の巨大磁気抵抗薄膜 104に、 有効に磁界を作用させる必要がある。 By the way, in order to obtain the above-described effects, it is necessary to cause the large magnetoresistive thin film 104 to effectively act on the magnetic field flowing from the soft magnetic films 101 and 102. That is, this giant magnetoresistive thin film Electrical resistance of 104 is sufficiently larger than the electrical resistance of the soft magnetic film 101, 102 (1 X 1 0 4 μ Ω ' «11~1 10 9 Ω' cm) , the current of this device, the gap It flows through the giant magnetoresistance thin film 104 between 103. Therefore, it is necessary to effectively apply a magnetic field to the giant magnetoresistive thin film 104 in the gap 103.
[0006] しカゝしながら、前記構成の薄膜磁気抵抗素子は、巨大磁気抵抗薄膜 104が、ギヤッ プ 103内のみならず、軟磁性膜 101 , 102の上面の一部にまで形成されているので 、巨大磁気抵抗薄膜 104を介して軟磁性膜 101から軟磁性膜 102に至る電路及び 磁路が、図 12に示すように、軟磁性膜 101の端面力もギャップ 103内に形成された 巨大磁気抵抗薄膜 104を通って軟磁性膜 102の端面に至る経路と、軟磁性膜 101 の上面力もギャップ 103外に形成された巨大磁気抵抗薄膜 104を通って軟磁性膜 1 02の上面に至る経路とに分散される。  Incidentally, in the thin film magnetoresistive element having the above configuration, the giant magnetoresistive thin film 104 is formed not only in the gap 103 but also on a part of the upper surface of the soft magnetic films 101 and 102. Therefore, the electric path and magnetic path from the soft magnetic film 101 to the soft magnetic film 102 through the giant magnetoresistive thin film 104 are formed in the gap 103 as well as the end face force of the soft magnetic film 101 as shown in FIG. The path to the end face of the soft magnetic film 102 through the resistive thin film 104 and the upper surface force of the soft magnetic film 101 also to the top surface of the soft magnetic film 102 through the giant magnetoresistive thin film 104 formed outside the gap 103 Distributed to
[0007] このため、前記構成の薄膜磁気抵抗素子は、巨大磁気抵抗薄膜 104を通る磁束の 磁束密度が低下すると共にその経路長が不均一になり、単一の磁束経路を有する 薄膜磁気抵抗素子に比べて磁界感度が低下する。また、薄膜磁気抵抗素子の磁界 感度が、各経路における局部的な磁界感度の合成値になるので、単一の磁束経路 を有する薄膜磁気抵抗素子に比べて磁界感度の直線性が劣化する。したがって、電 流の大部分が流れるギャップ 103に有効に磁界が掛カもないため、特に弱い磁界の 時の MR効果の度合 、が低下する。  For this reason, the thin film magnetoresistive element having the above-described configuration has a single magnetic flux path, as the magnetic flux density of the magnetic flux passing through the giant magnetoresistive thin film 104 decreases and its path length becomes nonuniform. The magnetic field sensitivity is reduced compared to In addition, since the magnetic field sensitivity of the thin film magnetoresistive element is a combined value of the local magnetic field sensitivity in each path, the linearity of the magnetic field sensitivity is deteriorated as compared with the thin film magnetoresistive element having a single magnetic flux path. Therefore, since the magnetic field does not effectively apply to the gap 103 through which most of the current flows, the degree of the MR effect particularly in the case of a weak magnetic field is reduced.
[0008] 本発明は、力かる従来技術の問題点を解決するためになされたものであって、その 目的は、高い磁界感度を有し、かつその直線性が良好な薄膜磁気抵抗素子を提供 すること、及びかかる薄膜磁気抵抗素子を安価且つ容易に製造する方法を提供する こと、並びに前記薄膜磁気抵抗素子を用いた実用的な磁気センサを提供すること〖こ ある。 The present invention has been made to solve the problems of the prior art, and an object thereof is to provide a thin film magnetoresistive element having high magnetic field sensitivity and good linearity. And providing a method for inexpensively and easily manufacturing such a thin film magnetoresistive element, and providing a practical magnetic sensor using the thin film magnetoresistive element.
課題を解決するための手段  Means to solve the problem
[0009] 本発明は、前記の課題を解決するため、巨大磁気抵抗薄膜と、当該巨大磁気抵抗 薄膜を介して一端が電気的及び磁気的に接続された第 1及び第 2の軟磁性膜と、前 記第 1軟磁性膜及び前記第 2軟磁性膜のうちの少なくとも一方と前記巨大磁気抵抗 薄膜との間に介在する非磁性絶縁膜とを有し、前記非磁性絶縁膜は、前記巨大磁 気抵抗薄膜と対面する前記軟磁性膜との接触面積を狭める位置にあって、前記巨 大磁気抵抗薄膜を介して前記第 1軟磁性膜から前記第 2軟磁性膜に至る電路及び 磁路を一方向に規制しており、前記第 1及び第 2の軟磁性膜に信号検出用の端子部 を有するという構成にした。 In order to solve the above-mentioned problems, the present invention provides a giant magnetoresistive thin film, and first and second soft magnetic films whose one ends are electrically and magnetically connected via the giant magnetoresistive thin film. A nonmagnetic insulating film interposed between at least one of the first soft magnetic film and the second soft magnetic film and the giant magnetoresistive thin film, the nonmagnetic insulating film being the giant nonmagnetic insulating film Magnetism The electric path and magnetic path extending from the first soft magnetic film to the second soft magnetic film through the large magnetoresistance thin film are located at positions where the contact area with the soft magnetic film facing the resistive thin film is narrowed. The first and second soft magnetic films are regulated in one direction, and terminal portions for signal detection are provided.
[0010] このように、第 1及び第 2の軟磁性膜と巨大磁気抵抗薄膜との間の所要の部分に非 磁性絶縁膜を介在させ、巨大磁気抵抗薄膜を介して第 1軟磁性膜から第 2軟磁性膜 に至る電路及び磁路を一方向に規制すると、磁束の分散及び磁束経路長の不均一 を抑制することができるので、磁界感度の向上及びその直線性の向上を図ることがで きる。また、磁束の経路と電流の経路が一致するため、弱い磁界においても MR効果 を有効に発現させることができる。  Thus, the nonmagnetic insulating film is interposed in the required portion between the first and second soft magnetic films and the giant magnetoresistive thin film, and from the first soft magnetic film through the giant magnetoresistive thin film By restricting the electric path and the magnetic path leading to the second soft magnetic film in one direction, it is possible to suppress the dispersion of the magnetic flux and the non-uniformity of the magnetic flux path length, thereby improving the sensitivity of the magnetic field and its linearity. it can. In addition, since the path of the magnetic flux and the path of the current coincide with each other, the MR effect can be effectively exhibited even in a weak magnetic field.
[0011] また、本発明は、前記構成の薄膜磁気抵抗素子において、前記第 1及び第 2の軟 磁性膜の端面を所要のギャップを介して対向に配置し、かつ前記第 1及び第 2の軟 磁性膜の上面にそれぞれ非磁性絶縁膜を形成すると共に、前記ギャップ内及びその 周辺部分に前記巨大磁気抵抗薄膜を形成し、前記非磁性絶縁膜により前記巨大磁 気抵抗薄膜を介して前記第 1軟磁性膜から前記第 2軟磁性膜に至る電路及び磁路 を前記第 1軟磁性膜と前記第 2軟磁性膜の配列方向にのみ規制すると 、う構成にし た。  Further, according to the present invention, in the thin film magnetoresistive element having the above configuration, the end faces of the first and second soft magnetic films are disposed opposite to each other through a required gap, and the first and second soft magnetic films are provided. A nonmagnetic insulating film is formed on the upper surface of the soft magnetic film, and the giant magnetoresistive thin film is formed in and around the gap, and the nonmagnetic insulating film causes the giant magnetoresistive thin film to pass through the giant magnetoresistive thin film. An electric path and a magnetic path from the (1) soft magnetic film to the second soft magnetic film are restricted only in the arrangement direction of the first soft magnetic film and the second soft magnetic film.
[0012] カゝかる構成によると、第 1及び第 2の軟磁性膜の上面にそれぞれ非磁性絶縁膜を 形成することにより、第 1軟磁性膜の上面カゝら巨大磁気抵抗薄膜を介して第 2軟磁性 膜の上面に至る電路及び磁路を遮断することができるので、第 1軟磁性膜から巨大 磁気抵抗薄膜を介して第2軟磁性膜に至る電路及び磁路を第 1軟磁性膜と第2軟磁 性膜の配列方向にのみ規制することができる。 According to the configuration, the nonmagnetic insulating film is formed on the upper surface of the first and second soft magnetic films, respectively, so that the upper surface of the first soft magnetic film and the giant magnetoresistive thin film are interposed. Since the electric path and magnetic path leading to the upper surface of the second soft magnetic film can be cut off, the electric path and magnetic path extending from the first soft magnetic film to the second soft magnetic film via the giant magnetoresistive thin film It can be regulated only in the alignment direction of the film and the second soft magnetic film.
[0013] また、本発明は、前記構成の薄膜磁気抵抗素子において、前記巨大磁気抵抗薄 膜上に前記非磁性絶縁膜が端面を揃えて積層され、前記第 1軟磁性膜が一方の前 記端面と前記非磁性絶縁膜の一部を覆って形成され、前記第 2軟磁性膜が他方の 前記端面と前記非磁性絶縁膜の一部を覆って形成され、前記非磁性絶縁膜により、 前記巨大磁気抵抗薄膜を介して前記第 1軟磁性膜から前記第 2軟磁性膜に至る電 路及び磁路を、前記巨大磁気抵抗薄膜の積層面方向にのみ規制するという構成に した。 Further, according to the present invention, in the thin film magnetoresistive element having the above configuration, the nonmagnetic insulating film is stacked on the giant magnetoresistive thin film with its end faces aligned, and the first soft magnetic film is one of the above. The second soft magnetic film is formed so as to cover the end face and a part of the nonmagnetic insulating film, and the second soft magnetic film is formed so as to cover the other end face and a part of the nonmagnetic insulating film. An electric path and a magnetic path from the first soft magnetic film to the second soft magnetic film via the giant magnetoresistive thin film are restricted only in the stacking surface direction of the giant magnetoresistive thin film. did.
[0014] カゝかる構成によっても、巨大磁気抵抗薄膜上に積層された非磁性絶縁膜により、第 1軟磁性膜から巨大磁気抵抗薄膜を介して第 2軟磁性膜に至る電路及び磁路を巨 大磁気抵抗薄膜の端面方向にのみ規制することができる。  [0014] Also according to the configuration, an electric path and a magnetic path extending from the first soft magnetic film to the second soft magnetic film via the giant magnetoresistive thin film are formed by the nonmagnetic insulating film stacked on the giant magnetoresistive thin film. It can be regulated only in the direction of the end face of the giant magnetoresistive thin film.
[0015] また、本発明は、前記構成の薄膜磁気抵抗素子において、前記第 1軟磁性膜の上 面に前記非磁性絶縁膜を形成し、当該非磁性絶縁膜の上面及び端面並びに前記 第 1軟磁性膜の端面に前記巨大磁気抵抗薄膜を形成すると共に、一端が前記非磁 性絶縁膜の端面及び前記第 1軟磁性膜の端面に形成された前記巨大磁気抵抗薄 膜と接するように前記第 2軟磁性膜を形成し、前記非磁性絶縁膜により前記巨大磁 気抵抗薄膜を介して前記第 1軟磁性膜から前記第 2軟磁性膜に至る電路及び磁路 を前記第 1軟磁性膜と前記第 2軟磁性膜の配列方向にのみ規制すると 、う構成にし た。  Further, in the thin film magnetoresistive element having the above configuration according to the present invention, the nonmagnetic insulating film is formed on the upper surface of the first soft magnetic film, and the upper surface and end surface of the nonmagnetic insulating film; The giant magnetoresistive thin film is formed on the end face of the soft magnetic film, and one end is in contact with the end of the nonmagnetic insulating film and the giant magnetoresistive thin film formed on the end face of the first soft magnetic film. A second soft magnetic film is formed, and an electric path and a magnetic path from the first soft magnetic film to the second soft magnetic film via the giant magnetic resistance thin film by the nonmagnetic insulating film are referred to as the first soft magnetic film. And the second soft magnetic film is regulated only in the arrangement direction.
[0016] カゝかる構成によると、第 1軟磁性膜の上面に非磁性絶縁膜を形成し、かつ巨大磁 気抵抗薄膜を介して第 1軟磁性膜の端面側に第 2軟磁性膜を形成することにより、第 1軟磁性膜の上面カゝら巨大磁気抵抗薄膜を介して第 2軟磁性膜に至る電路及び磁 路を遮断することができるので、第 1軟磁性膜から巨大磁気抵抗薄膜を介して第 2軟 磁性膜に至る電路及び磁路を第 1軟磁性膜と第 2軟磁性膜の配列方向にのみ規制 することができる。  According to the configuration, the nonmagnetic insulating film is formed on the upper surface of the first soft magnetic film, and the second soft magnetic film is formed on the end face side of the first soft magnetic film via the giant magnetic resistance thin film. By forming the first soft magnetic film, the electric path and magnetic path leading to the second soft magnetic film can be cut off through the upper surface of the first soft magnetic film and the giant magnetoresistive thin film. The electric path and magnetic path leading to the second soft magnetic film via the thin film can be regulated only in the arrangement direction of the first soft magnetic film and the second soft magnetic film.
[0017] また、本発明は、前記構成の薄膜磁気抵抗素子において、前記第 2軟磁性膜が、 一端が前記巨大磁気抵抗薄膜に接するように形成された前記非磁性絶縁膜の上に 積層されているという構成にした。  Further, according to the present invention, in the thin film magnetoresistive element having the above configuration, the second soft magnetic film is stacked on the nonmagnetic insulating film formed such that one end thereof is in contact with the giant magnetoresistive thin film. Was configured.
[0018] カゝかる構成によると、第 2軟磁性膜を非磁性絶縁膜の上に積層することにより、第 1 軟磁性膜の端面と第 2軟磁性膜の端面とを巨大磁気抵抗薄膜を介して対向に配置 することができるので、第 1軟磁性膜から巨大磁気抵抗薄膜を介して第 2軟磁性膜に 至る電路及び磁路を巨大磁気抵抗薄膜の膜厚方向にのみ規制することができる。  According to the configuration as described above, by laminating the second soft magnetic film on the nonmagnetic insulating film, the end surface of the first soft magnetic film and the end surface of the second soft magnetic film are made of the giant magnetoresistive thin film. The electric path and magnetic path from the first soft magnetic film to the second soft magnetic film via the giant magnetoresistive thin film can be restricted only in the film thickness direction of the giant magnetoresistive thin film. it can.
[0019] また、本発明は、前記構成の薄膜磁気抵抗素子において、前記第 1軟磁性膜の上 面の一部に前記巨大磁気抵抗薄膜を形成し、前記第 1軟磁性膜の上面及び端面並 びに前記巨大磁気抵抗薄膜の上面の外周部分及び端面に前記非磁性絶縁膜を形 成すると共に、一端部の下面が前記非磁性絶縁膜より露出された前記巨大磁気抵 抗薄膜と接するように前記第 2軟磁性膜を形成し、前記非磁性絶縁膜により前記巨 大磁気抵抗薄膜を介して前記第 1軟磁性膜から前記第 2軟磁性膜に至る電路及び 磁路を前記巨大磁気抵抗薄膜の膜厚方向にのみ規制するという構成にした。 Further, according to the present invention, in the thin film magnetoresistive element having the above configuration, the giant magnetoresistive thin film is formed on a part of the upper surface of the first soft magnetic film, and the upper surface and the end surface of the first soft magnetic film In addition, the nonmagnetic insulating film is formed on the outer peripheral portion and the end face of the upper surface of the giant magnetoresistive thin film. Forming the second soft magnetic film so that the lower surface of one end portion is in contact with the giant magnetic resistance thin film exposed from the nonmagnetic insulating film, and the nonmagnetic insulating film forms the giant magnetoresistive thin film An electric path and a magnetic path from the first soft magnetic film to the second soft magnetic film via the first magnetic film are restricted only in the film thickness direction of the giant magnetoresistive thin film.
[0020] カゝかる構成によると、第 1軟磁性膜の上面に巨大磁気抵抗薄膜を介して第 2軟磁性 膜の一端部を積層し、かつ第 1軟磁性膜の端面と第 2軟磁性膜の端面との間及び巨 大磁気抵抗薄膜の端面と第 2軟磁性膜の端面との間に非磁性絶縁膜を介在させる ことにより、第 1軟磁性膜の端面力 第 2軟磁性膜の端面に至る電路及び磁路並び に第 1軟磁性膜の上面カゝら巨大磁気抵抗薄膜を介して第 2軟磁性膜の端面に至る 電路及び磁路を遮断することができるので、第 1軟磁性膜から巨大磁気抵抗薄膜を 介して第 2軟磁性膜に至る電路及び磁路を巨大磁気抵抗薄膜の膜厚方向にのみ規 ff¾することができる。 According to the configuration, one end of the second soft magnetic film is stacked on the upper surface of the first soft magnetic film via the giant magnetoresistive thin film, and the end face of the first soft magnetic film and the second soft magnetic film By interposing a nonmagnetic insulating film between the end face of the film and between the end face of the giant magnetoresistive thin film and the end face of the second soft magnetic film, the end face force of the first soft magnetic film Since the electric path and magnetic path leading to the end face of the second soft magnetic film can be cut off via the upper surface of the first soft magnetic film and the giant magnetoresistance thin film on the electric path and magnetic path alignment leading to the end face, The electrical path and magnetic path from the magnetic film to the second soft magnetic film via the giant magnetoresistive thin film can be restricted only in the film thickness direction of the giant magnetoresistive thin film.
[0021] また、本発明は、前記構成の薄膜磁気抵抗素子において、前記巨大磁気抵抗薄 膜が、絶縁体マトリクス中に強磁性微粒子を分散してなるダラ-ユラ一磁性膜をもつ て形成されているという構成にした。  Further, according to the present invention, in the thin film magnetoresistive element having the above-described configuration, the giant magnetoresistive thin film is formed to have a magnetic nonmagnetic film formed by dispersing ferromagnetic fine particles in an insulator matrix. Was configured.
[0022] ダラ-ユラ一磁性膜は、パーマロイ合金等の合金系の巨大磁気抵抗薄膜に比べて 格段に大きな MR比を有するので、巨大磁気抵抗薄膜としてダラ-ユラ一磁性膜を用 いることによって、磁気ヘッド及び磁気センサの出力信号強度を高めることができる。 また、ダラ-ユラ一磁性膜は、 1層で大きな MR比が得られるので、多層構造の巨大 磁気抵抗薄膜を用いる場合に比べて、薄膜磁気抵抗素子の製造を容易化すること ができる。  Since the Dara-Yura magnetic film has a much larger MR ratio than a giant magnetoresistance thin film of an alloy such as Permalloy alloy, the use of the Dara-Yura magnetic film as the giant magnetoresistance thin film The output signal strength of the magnetic head and the magnetic sensor can be increased. In addition, since a large MR ratio can be obtained with a single layer of a magnetic film with a single layer, the manufacture of a thin film magnetoresistive element can be facilitated as compared with the case of using a giant magnetoresistive thin film having a multilayer structure.
[0023] また、本発明は、前記構成の薄膜磁気抵抗素子において、前記第 1軟磁性膜と前 記第 2軟磁性膜との間に形成される前記巨大磁気抵抗薄膜の膜厚が 0. 05 μ m以 上 1. 0 m未満であるという構成にした。  Further, in the thin film magnetoresistive element having the above configuration according to the present invention, the thickness of the giant magnetoresistive thin film formed between the first soft magnetic film and the second soft magnetic film is 0. It was configured to be more than 05 μm and less than 1.0 m.
[0024] 本願発明者等の研究によると、基板上に形成された軟磁性膜にイオンビームエツ チング等によってギャップを形成し、しかる後に、形成されたギャップ内に巨大磁気抵 抗薄膜をスパッタリングする場合、ギャップ長が 1 m以下になると、ギャップ内への 巨大磁気抵抗薄膜の回り込みが不十分になって、均一な巨大磁気抵抗薄膜の成膜 が困難になる。これに対して、薄膜磁気抵抗素子を、第 1及び第 2の軟磁性膜と巨大 磁気抵抗薄膜と非磁性絶縁膜との積層体をもって構成する場合には、ギャップ長に 製造上の制限がなく、第 1軟磁性膜と第 2軟磁性膜との間に形成される巨大磁気抵 抗薄膜の膜厚を 0. 05 m以上 1. 0 m未満に形成することができる。したがって、 薄膜磁気抵抗素子のギャップ長を実質的に小さくすることができ、薄膜磁気抵抗素 子の磁界感度を高めることができる。 According to the research of the inventors of the present invention, a gap is formed in the soft magnetic film formed on the substrate by ion beam etching or the like, and then, the giant magnetic resistance thin film is sputtered in the formed gap. In the case where the gap length is 1 m or less, the wraparound of the giant magnetoresistive thin film into the gap becomes insufficient, and uniform giant magnetoresistive thin film is formed. Will be difficult. On the other hand, when the thin film magnetoresistive element is formed of a laminate of the first and second soft magnetic films, the giant magnetoresistive thin film, and the nonmagnetic insulating film, the gap length is not limited in manufacturing. The thickness of the giant magnetic resistance thin film formed between the first soft magnetic film and the second soft magnetic film can be formed to be not less than 0.05 m and not more than 1.0 m. Therefore, the gap length of the thin film magnetoresistive element can be substantially reduced, and the magnetic field sensitivity of the thin film magnetoresistive element can be enhanced.
[0025] また、本発明は、前記の課題を解決するため、薄膜磁気抵抗素子の製造方法につ いては、以下の各構成にした。  Further, in order to solve the above-mentioned problems, the present invention adopts the following configurations as a method of manufacturing a thin film magnetoresistive element.
[0026] (1)絶縁基板上に第 1軟磁性膜と第 2軟磁性膜とを所要のギャップを介して対向に形 成する工程と、前記第 1軟磁性膜の上面及び前記第 2軟磁性膜の上面にそれぞれ 非磁性絶縁膜を形成する工程と、前記ギャップ内並びに前記非磁性絶縁膜の上面 及び端面に巨大磁気抵抗薄膜を形成する工程とを含んで薄膜磁気抵抗素子を製造 する。これにより、請求項 2に係る薄膜磁気抵抗素子が得られる。  (1) A step of forming a first soft magnetic film and a second soft magnetic film opposite to each other through a required gap on an insulating substrate, an upper surface of the first soft magnetic film, and the second soft. A thin film magnetoresistive element is manufactured by the steps of: forming a nonmagnetic insulating film on the upper surface of the magnetic film; and forming a giant magnetoresistive thin film on the upper surface and end face of the nonmagnetic insulating film in the gap. Thereby, the thin film magnetoresistive element according to claim 2 is obtained.
[0027] (2)絶縁基板上に第 1軟磁性膜を形成する工程と、前記第 1軟磁性膜の上面に非磁 性絶縁膜を形成する工程と、前記第 1軟磁性膜の一端面並びにこれに続く前記非磁 性絶縁膜の一端面及び上面並びに前記第 1軟磁性膜の一端面に続く前記絶縁基 板上に巨大磁気抵抗薄膜を形成する工程と、前記絶縁基板上に一端が前記非磁性 絶縁膜の端面及び前記第 1軟磁性膜の端面並びに前記絶縁基板上に形成された 前記巨大磁気抵抗薄膜と接する第 2軟磁性膜を形成する工程とを含んで薄膜磁気 抵抗素子を製造する。これにより、請求項 3に係る薄膜磁気抵抗素子が得られる。  (2) A step of forming a first soft magnetic film on an insulating substrate, a step of forming a nonmagnetic insulating film on the upper surface of the first soft magnetic film, and one end face of the first soft magnetic film And a step of forming a giant magnetoresistive thin film on the insulating substrate following the one end surface and the upper surface of the nonmagnetic insulating film and the one end surface of the first soft magnetic film, and one end on the insulating substrate Forming a second soft magnetic film in contact with the end surface of the nonmagnetic insulating film, the end surface of the first soft magnetic film, and the giant magnetoresistive thin film formed on the insulating substrate; Manufacture. Thereby, a thin film magnetoresistive element according to claim 3 is obtained.
[0028] (3)絶縁基板上に第 1軟磁性膜を形成する工程と、前記第 1軟磁性膜の上面の一端 寄りに巨大磁気抵抗薄膜を形成する工程と、前記第 1軟磁性膜の上面並びにこれに 続く前記巨大磁気抵抗薄膜の端面及び上面の一部並びに前記第 1軟磁性膜の一 端面に非磁性絶縁膜を形成する工程と、前記絶縁基板上に一端が前記非磁性絶縁 膜より露出された前記巨大磁気抵抗薄膜と接する第 2軟磁性膜を形成する工程とを 含んで薄膜磁気抵抗素子を製造する。これにより、請求項 4に係る薄膜磁気抵抗素 子が得られる。  (3) A step of forming a first soft magnetic film on an insulating substrate, a step of forming a giant magnetoresistive thin film near one end of the upper surface of the first soft magnetic film, and a step of forming the first soft magnetic film Forming a nonmagnetic insulating film on the upper surface and the end surface and part of the upper surface of the giant magnetoresistive thin film following it, and one end surface of the first soft magnetic film, and one end of the nonmagnetic insulating film on the insulating substrate Forming a second soft magnetic film in contact with the more exposed giant magnetoresistive thin film, thereby manufacturing a thin film magnetoresistive element. Thereby, the thin film magnetoresistive element according to claim 4 is obtained.
[0029] また、本発明は、前記の課題を解決するため、磁気センサについては、巨大磁気 抵抗薄膜と、当該巨大磁気抵抗薄膜を介して一端が電気的及び磁気的に接続され た第 1及び第 2の軟磁性膜と、少なくとも前記第 1軟磁性膜の表面及び前記第 2軟磁 性膜の表面のいずれか一方に形成され、前記巨大磁気抵抗薄膜を介して前記第 1 軟磁性膜から前記第 2軟磁性膜に至る電路及び磁路を一方向に規制する非磁性絶 縁膜とを備え、前記第 1及び第 2の軟磁性膜に信号検出用の端子部を有する 2個の 薄膜磁気抵抗素子を対向する 2辺に備え、他の対向する 2辺に固定抵抗素子を備え たブリッジ回路力もなるという構成にした。 Further, in order to solve the above problems, the present invention relates to a giant magnetic sensor for a magnetic sensor. A resistive thin film, first and second soft magnetic films electrically and magnetically connected at one end via the giant magnetoresistive thin film, at least a surface of the first soft magnetic film, and the second soft magnetic film A nonmagnetic insulating film which is formed on any one of the surfaces of the first magnetic film and which extends from the first soft magnetic film to the second soft magnetic film via the giant magnetoresistive thin film in one direction. A bridge comprising: two thin film magnetoresistive elements having terminal portions for signal detection on the first and second soft magnetic films on two opposing sides and a fixed resistive element on the other two opposing sides It was also configured to be circuit power.
[0030] このように、非磁性絶縁膜により巨大磁気抵抗薄膜を介して第 1軟磁性膜から第 2 軟磁性膜に至る電路及び磁路がー方向に規制された薄膜磁気抵抗素子を備えると 、磁束の分散及び磁束経路長の不均一を抑制することができるので、磁界感度が高 ぐかつその直線性に優れた磁気センサが得られる。また、 2個の薄膜磁気抵抗素子 を対向する 2辺に備え、他の対向する 2辺に固定抵抗素子を備えたブリッジ回路をも つて磁気センサを構成すると、零位法によって薄膜磁気抵抗素子に作用する磁界の 変動を検出することができ、電源電圧の変動それに検出器の入力インピーダンスや 非直線性などの影響を除去できるので、高精度の磁界検出を行うことができる。 発明の効果 As described above, a thin film magnetoresistive element in which the electric path and the magnetic path from the first soft magnetic film to the second soft magnetic film via the giant magnetoresistive thin film are regulated by the nonmagnetic insulating film in the − direction is provided. Since magnetic flux dispersion and magnetic flux path length unevenness can be suppressed, a magnetic sensor having high magnetic field sensitivity and excellent linearity can be obtained. In addition, when a magnetic sensor is configured to have a bridge circuit having two thin film magnetoresistive elements on two opposing sides and a fixed resistance element on the other two opposing sides, the thin film magnetoresistive element is formed by the null method. The fluctuation of the acting magnetic field can be detected, and the influence of the fluctuation of the power supply voltage and the input impedance and non-linearity of the detector can be eliminated, so that the magnetic field can be detected with high accuracy. Effect of the invention
[0031] 本発明の薄膜磁気抵抗素子は、第 1及び第 2の軟磁性膜と巨大磁気抵抗薄膜との 間の所要の部分に非磁性絶縁膜を介在させ、巨大磁気抵抗薄膜を介して第 1軟磁 性膜から第 2軟磁性膜に至る電路及び磁路を一方向に規制するので、磁束の分散 及び磁束経路長の不均一を抑制することができ、磁界感度及びその直線性を高める ことができる。また、磁束の経路と電流の経路が一致するため、弱い磁界においても MR効果を有効に発現させることができる。  In the thin film magnetoresistive element of the present invention, a nonmagnetic insulating film is interposed in a required portion between the first and second soft magnetic films and the giant magnetoresistive thin film, and the second magnetoresistive thin film is interposed between the first and second soft magnetic films. (1) By restricting the electric path and magnetic path from the soft magnetic film to the second soft magnetic film in one direction, it is possible to suppress the dispersion of the magnetic flux and the nonuniformity of the magnetic flux path length, and improve the magnetic field sensitivity and its linearity. Can. In addition, since the path of the magnetic flux and the path of the current coincide with each other, the MR effect can be effectively exhibited even in a weak magnetic field.
[0032] 本発明の薄膜磁気抵抗素子の製造方法は、第 1軟磁性膜と巨大磁気抵抗薄膜と の間、第 2軟磁性膜と巨大磁気抵抗薄膜との間、及び第 1軟磁性膜と第 2軟磁性膜と の間の所要の部分に非磁性絶縁膜を形成する工程を含むので、巨大磁気抵抗薄膜 を介して第 1軟磁性膜から第 2軟磁性膜に至る電路及び磁路がー方向に規制された 薄膜磁気抵抗素子を製造することができる。  According to the method of manufacturing a thin film magnetoresistive element of the present invention, between the first soft magnetic film and the giant magnetoresistive thin film, between the second soft magnetic film and the giant magnetoresistive thin film, and the first soft magnetic film Since the step of forming the nonmagnetic insulating film in the required part between the second soft magnetic film and the second soft magnetic film is included, the electric path and the magnetic path from the first soft magnetic film to the second soft magnetic film through the giant magnetoresistive thin film The thin film magnetoresistive element regulated in the direction can be manufactured.
[0033] 本発明の磁気センサは、非磁性絶縁膜により巨大磁気抵抗薄膜を介して第 1軟磁 性膜から第 2軟磁性膜に至る電路及び磁路がー方向に規制された薄膜磁気抵抗素 子を備えるので、磁束の分散及び磁束経路長の不均一を抑制することができ、磁界 感度が高ぐかつその直線性に優れた磁気センサが得られる。また、 2個の薄膜磁気 抵抗素子を対向する 2辺に備え、他の対向する 2辺に固定抵抗素子を備えたブリッジ 回路をもって磁気センサを構成すると、零位法によって薄膜磁気抵抗素子に作用す る磁界の変動を検出することができ、電源電圧の変動それに検出器の入力インピー ダンスや非直線性などの影響を除去できるので、高精度の磁界検出を行うことができ る。 The magnetic sensor according to the present invention is characterized in that the first soft magnetic film is formed of the nonmagnetic insulating film via the giant magnetoresistive thin film. Since the electric path and magnetic path from the magnetic film to the second soft magnetic film are provided with the thin film magnetoresistive element in which the magnetic path is restricted in the − direction, dispersion of magnetic flux and unevenness of magnetic flux path length can be suppressed. A magnetic sensor having high linearity and excellent linearity can be obtained. In addition, when a magnetic sensor is configured with a bridge circuit having two thin film magnetoresistive elements on two opposing sides and a fixed resistance element on the other two opposing sides, the thin film magnetoresistive element acts on the thin film magnetoresistive element by the null method. The magnetic field fluctuation can be detected, and the influence of the fluctuation of the power supply voltage and the input impedance and nonlinearity of the detector can be removed, so that the magnetic field can be detected with high accuracy.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0034] 本発明に係る薄膜磁気抵抗素子の第 1実施形態例を図 1及び図 2に基づいて説明 する。図 1は第 1実施形態例に係る薄膜磁気抵抗素子の平面図、図 2は図 1の A— A 断面図である。 A first embodiment of a thin film magnetoresistive element according to the present invention will be described based on FIGS. 1 and 2. FIG. FIG. 1 is a plan view of a thin film magnetoresistive element according to the first embodiment, and FIG. 2 is a sectional view taken along the line A-A of FIG.
[0035] 図 1及び図 2 (a)に示すように、本例の薄膜磁気抵抗素子 1Aは、絶縁基板 2と、絶 縁基板 2上に形成され、一端が所要のギャップ gを介して対向に配置された帯状の第 1軟磁性膜 3及び第 2軟磁性膜 4と、第 1軟磁性膜 3の上面のギャップ g寄りの部分及 び第 2軟磁性膜 4の上面のギャップ g寄りの部分にそれぞれ形成された非磁性絶縁 膜 5と、ギャップ g内の絶縁基板 2上、ギャップ gを臨む第 1及び第 2の軟磁性膜 3, 4 の端面、並びにこれに続く非磁性絶縁膜 5の端面と上面の一部に形成された巨大磁 気抵抗薄膜 6とから構成されて 、る。  As shown in FIG. 1 and FIG. 2 (a), the thin film magnetoresistive element 1A of this example is formed on the insulating substrate 2 and the insulating substrate 2, and one end is opposed via the required gap g. Of the upper surface of the first soft magnetic film 3 and the strip-like first soft magnetic film 3 and the second soft magnetic film 4 disposed near the gap g of the upper surface of the second soft magnetic film 4 The nonmagnetic insulating film 5 formed in each portion, the end faces of the first and second soft magnetic films 3 and 4 facing the gap g on the insulating substrate 2 in the gap g, and the nonmagnetic insulating film 5 subsequent thereto It is composed of a giant magnetoresistance thin film 6 formed on the end face and part of the top surface.
[0036] 絶縁基板 2は、無機誘電体、プラスチックス又は非磁性セラミクスなどの高剛性非磁 性絶縁体をもって所要の形状及びサイズに形成される。  Insulating substrate 2 is formed in a desired shape and size with a high rigidity nonmagnetic insulator such as an inorganic dielectric, plastic or nonmagnetic ceramic.
[0037] 第 1軟磁性膜 3は、図 1に示すように、所要のギャップ幅 Wgを有する細幅部 3aと、 当該ギャップ幅 Wgよりも幅広の幅広部 3bと、これらの両部 3a, 3bをつなぐテーパ部 3cとからなる。また、第 2軟磁性膜 4は、図 1に示すように、所要のギャップ幅 Wgを有 する細幅部 4aと、当該ギャップ幅 Wgよりも幅広の幅広部 4bと、これらの両部 4a, 4b をつなぐテーパ部 4cとからなる。これら第 1及び第 2の軟磁性膜 3, 4は、 Co Fe Si  As shown in FIG. 1, the first soft magnetic film 3 has a narrow width portion 3 a having a required gap width Wg, a wide width portion 3 b wider than the gap width Wg, and both of these portions 3 a, It consists of the taper part 3c which connects 3b. In addition, as shown in FIG. 1, the second soft magnetic film 4 has a narrow portion 4a having a required gap width Wg, a wide portion 4b wider than the gap width Wg, and both portions 4a, It consists of the taper part 4c which connects 4b. These first and second soft magnetic films 3 and 4 are made of Co Fe Si
77 5 9 77 5 9
B合金やパーマロイ合金 (Fe Ni )などの飽和磁束密度が高い軟磁性体を絶縁基Soft magnetic materials with high saturation magnetic flux density such as B alloy and Permalloy alloy (Fe Ni) as insulating base
8 65 35 8 65 35
板 2上にスパッタリングすることによって形成され、これら第 1及び第 2の軟磁性膜 3, 4の間には、ギャップ長力 SLgのギャップ gが設けられる。なお、前記細幅部 3a, 4aの 端面は、絶縁基板 2に対して垂直に形成することもできるが、当該端面に対する均一 厚みの巨大磁気抵抗薄膜 6の形成を容易にし、かつ当該端面に形成される巨大磁 気抵抗薄膜 6の特性変化を抑制するため、絶縁基板 2に立てられた垂線 Mに対して 20度乃至 45度の傾斜角 Θ tで傾斜させることが望ましい。 The first and second soft magnetic films 3, 4 are formed by sputtering on the plate 2. Between the four, gap g of gap length force SLg is provided. The end faces of the narrow portions 3a and 4a may be formed perpendicular to the insulating substrate 2, but the formation of the giant magnetoresistive thin film 6 having a uniform thickness with respect to the end faces is facilitated and the end faces are formed on the end faces. In order to suppress the characteristic change of the giant magnetoresistance thin film 6, it is desirable to incline it at an inclination angle Θ t of 20 ° to 45 ° with respect to the perpendicular M made to the insulating substrate 2.
[0038] 非磁性絶縁膜 5は、第 1軟磁性膜 3の上面と巨大磁気抵抗薄膜 6との間及び第 2軟 磁性膜 4と巨大磁気抵抗薄膜 6との間を電気的に絶縁するものであって、 SiOや A1 The nonmagnetic insulating film 5 electrically insulates between the upper surface of the first soft magnetic film 3 and the giant magnetoresistive thin film 6 and between the second soft magnetic film 4 and the giant magnetoresistive thin film 6. And SiO or A1
2 2 twenty two
Oなどの無機誘電体を第 1軟磁性膜 3上にスパッタリングすることにより形成される。 It is formed by sputtering an inorganic dielectric such as O onto the first soft magnetic film 3.
3  3
[0039] 巨大磁気抵抗薄膜 6としては、パーマロイ合金等の合金系の巨大磁気抵抗薄膜に 比べて格段に大きな MR比を有し、かつ 1層で大きな MR比が得られることから、絶縁 体マトリクス中に強磁性微粒子を分散してなるダラ-ユラ一磁性膜が形成される。ダラ 二ユラ一磁性膜としては、 32vol%の CoFe— MgFや Co Y Ο などを挙げ  As the giant magnetoresistive thin film 6 has a significantly larger MR ratio than a giant magnetoresistive thin film of an alloy system such as a permalloy alloy, and a large MR ratio can be obtained in one layer, the insulator matrix can be obtained. A magnetic film is formed by dispersing ferromagnetic particles therein. For example, 32 vol% of CoFe-MgF or Co Y 挙 げ was cited as the magnetic film.
2 38. 6 14. 0 47. 4  2 38. 6 14. 0 47. 4
ることができる。なお、図 2 (a)の例では、巨大磁気抵抗薄膜 6が、ギャップ g内の絶縁 基板 2上、ギャップ gを臨む第 1及び第 2の軟磁性膜 3, 4の端面、並びにこれに続く 非磁性絶縁膜 5の端面と上面の一部に形成されているが、少なくとも第 1軟磁性膜 3 及び第 2軟磁性膜 4の端面に形成されていれば足りる。また、巨大磁気抵抗薄膜 6を 最初に形成し、ギャップ gを開け、しカゝる後に非磁性絶縁膜 5と第 1及び第 2の軟磁性 膜 3, 4を形成しても良い。  Can be In the example shown in FIG. 2A, the giant magnetoresistive thin film 6 is formed on the insulating substrate 2 in the gap g, and the end faces of the first and second soft magnetic films 3 and 4 facing the gap g, and subsequent thereto. It is formed on a part of the end face and the top face of the nonmagnetic insulating film 5, but it is sufficient if it is formed on the end faces of at least the first soft magnetic film 3 and the second soft magnetic film 4. Alternatively, the giant magnetoresistive thin film 6 may be formed first, the gap g may be opened, and then the nonmagnetic insulating film 5 and the first and second soft magnetic films 3 and 4 may be formed.
[0040] 本例の薄膜磁気抵抗素子 1Aは、図 1に示すように、第 1軟磁性膜 3の幅広部 3b及 び第 2軟磁性膜 4の幅広部 4bの非磁性絶縁膜 5を有しない端部が信号検出用の端 子部となっており、巨大磁気抵抗薄膜 6を介して第 1軟磁性膜 3から第 2軟磁性膜 4 に至る方向、又はその逆方向の磁気信号を検出する。  As shown in FIG. 1, the thin film magnetoresistive element 1 A of this example has the nonmagnetic insulating film 5 of the wide portion 3 b of the first soft magnetic film 3 and the wide portion 4 b of the second soft magnetic film 4. The end portion that does not form a terminal for signal detection, and detects a magnetic signal in the direction from the first soft magnetic film 3 to the second soft magnetic film 4 via the giant magnetoresistive thin film 6 or in the opposite direction. Do.
[0041] 本例の薄膜磁気抵抗素子 1Aは、第 1及び第 2の軟磁性膜 3, 4の上面にそれぞれ 非磁性絶縁膜 5を形成したので、第 1軟磁性膜 3の上面カゝら巨大磁気抵抗薄膜 6を 介して第 2軟磁性膜 4の上面に至る電路及び磁路を遮断することができ、図 2 (a)に 矢印で示すように、第 1軟磁性膜 3から巨大磁気抵抗薄膜 6を介して第 2軟磁性膜 4 に至る電路及び磁路を第 1軟磁性膜 3と第 2軟磁性膜 4の配列方向にのみ規制する ことができる。よって、磁束の分散及び磁束経路長の不均一を抑制することができ、 磁界感度の向上及びその直線性の向上を図ることができる。また、図 2 (b)の形態は 、巨大磁気抵抗薄膜 6上に非磁性絶縁膜 5を形成したものである。この場合も、図中 に矢印で示すように、電路及び磁路が規制され、同様の効果を得ることができる。 In the thin film magnetoresistive element 1 A of this example, the nonmagnetic insulating film 5 is formed on the upper surfaces of the first and second soft magnetic films 3 and 4, respectively. The electric path and magnetic path leading to the upper surface of the second soft magnetic film 4 can be blocked via the giant magnetoresistive thin film 6, and as shown by the arrows in FIG. The electric path and magnetic path leading to the second soft magnetic film 4 via the resistive thin film 6 can be regulated only in the direction in which the first soft magnetic film 3 and the second soft magnetic film 4 are arranged. Therefore, the dispersion of the magnetic flux and the nonuniformity of the magnetic flux path length can be suppressed. The magnetic field sensitivity can be improved and the linearity thereof can be improved. Further, in the mode of FIG. 2B, the nonmagnetic insulating film 5 is formed on the giant magnetoresistive thin film 6. Also in this case, as shown by the arrows in the figure, the electric path and the magnetic path are restricted, and the same effect can be obtained.
[0042] 以下、第 1実施形態例に係る薄膜磁気抵抗素子 1Aの製造方法を図 3に基づいて 説明する。図 3は薄膜磁気抵抗素子 1Aの製造手順を示すフロー図である。  Hereinafter, a method of manufacturing the thin film magnetoresistive element 1A according to the first embodiment will be described based on FIG. FIG. 3 is a flow chart showing the manufacturing procedure of the thin film magnetoresistive element 1A.
[0043] まず、絶縁基板 2の片面に、第 1軟磁性膜 3及び第 2軟磁性膜 4の元になる軟磁性 膜をめつきやスパッタリングなどによって均一な厚さに形成する(手順 Sl)。次いで、 軟磁性膜上にフォトレジスト層を均一に形成し、露光工程及び現像工程を経て、第 1 軟磁性膜及び第 2軟磁性膜形成用のマスクを形成する(手順 S2)。次いで、軟磁性 膜のフォトレジスト層にて覆われて ヽな 、部分をエッチングやイオンミリングなどによつ て除去し、しかる後に、残存フォトレジスト層を除去する(手順 S3)。これにより、絶縁 基板 2の片面に所要のギャップ gを介して一端が対向に配置された第 1軟磁性膜 3及 び第 2軟磁性膜 4が形成される。次いで、非磁性絶縁膜 5をスパッタリングにより形成 し (手順 S4)、第 1軟磁性膜 3及び第 2軟磁性膜 4の上面を含む絶縁基板 2の上面全 体に再度フォトレジスト層を均一に形成し、露光工程及び現像工程を経て、非磁性 絶縁膜形成用のマスクを形成する(手順 S 5)。次いで、フォトレジスト層で覆われてい ない部分の酸ィ匕膜をエッチングもしくはイオンミリングで除去し、しかる後に、残存フォ トレジスト層を除去する(手順 S6)。これにより、第 1軟磁性膜 3の上面及び第 2軟磁性 膜 4の上面にそれぞれ非磁性絶縁膜 5が積層される。次いで、巨大磁気抵抗薄膜 6 をスパッタリングにより成膜し (手順 S7)、次いで当該巨大磁気抵抗薄膜 6上にフォト レジスト層を均一に形成した後、露光工程及び現像工程を経て、巨大磁気抵抗薄膜 6のマスクを形成する(手順 S8)。次いで、フォトレジスト層で覆われていない部分の 酸ィ匕膜をエッチングもしくはイオンミリングで除去し、しかる後に、残存フォトレジスト層 を除去する(手順 S9)。これにより、ギャップ gに巨大磁気抵抗薄膜 6を有する図 1及 び図 2に示した第 1実施形態例に係る薄膜磁気抵抗素子 1Aが得られる。  First, a soft magnetic film, which is the basis of the first soft magnetic film 3 and the second soft magnetic film 4, is formed to a uniform thickness on one surface of the insulating substrate 2 by plating or sputtering (procedure Sl) . Next, a photoresist layer is uniformly formed on the soft magnetic film, and a mask for forming a first soft magnetic film and a second soft magnetic film is formed through an exposure step and a development step (step S2). Next, the portion covered with the photoresist layer of the soft magnetic film is removed by etching, ion milling or the like, and thereafter, the remaining photoresist layer is removed (procedure S3). As a result, the first soft magnetic film 3 and the second soft magnetic film 4 are formed on one side of the insulating substrate 2 with one end facing the other through the required gap g. Next, the nonmagnetic insulating film 5 is formed by sputtering (Step S4), and the photoresist layer is uniformly formed again on the entire top surface of the insulating substrate 2 including the top surfaces of the first soft magnetic film 3 and the second soft magnetic film 4 After the exposure step and the development step, a mask for forming a nonmagnetic insulating film is formed (step S5). Next, the oxide film in the portion not covered with the photoresist layer is removed by etching or ion milling, and then the remaining photoresist layer is removed (procedure S6). Thereby, the nonmagnetic insulating film 5 is laminated on the upper surface of the first soft magnetic film 3 and the upper surface of the second soft magnetic film 4 respectively. Then, a giant magnetoresistive thin film 6 is deposited by sputtering (procedure S7), and after a photoresist layer is uniformly formed on the giant magnetoresistive thin film 6, the giant magnetoresistive thin film 6 is subjected to an exposure step and a development step. Form a mask (step S8). Next, the oxide film in the portion not covered with the photoresist layer is removed by etching or ion milling, and thereafter, the remaining photoresist layer is removed (procedure S9). Thereby, the thin film magnetoresistive element 1A according to the first embodiment shown in FIGS. 1 and 2 having the giant magnetoresistive thin film 6 in the gap g is obtained.
[0044] 本例の製造方法によると、第 1軟磁性膜 3の上面と巨大磁気抵抗薄膜 6との間及び 第 2軟磁性膜 4の上面と巨大磁気抵抗薄膜 6との間に非磁性絶縁膜 5を形成するェ 程を含むので、第 1軟磁性膜 3の上面と巨大磁気抵抗薄膜 6との間の電路及び磁路 並びに第 2軟磁性膜 4の上面と巨大磁気抵抗薄膜 6との間の電路及び磁路が遮断さ れ、巨大磁気抵抗薄膜 6を介して第 1軟磁性膜 3から第 2軟磁性膜 4に至る電路及び 磁路が第 1軟磁性膜 3と第 2軟磁性膜 4の配列方向にのみ規制された薄膜磁気抵抗 素子 1 Aを製造することができる。 According to the manufacturing method of this example, nonmagnetic insulation is provided between the upper surface of the first soft magnetic film 3 and the giant magnetoresistive thin film 6 and between the upper surface of the second soft magnetic film 4 and the giant magnetoresistive thin film 6. Since the process of forming the film 5 is included, the electric path and magnetic path between the upper surface of the first soft magnetic film 3 and the giant magnetoresistive thin film 6 And the electric path and magnetic path between the upper surface of the second soft magnetic film 4 and the giant magnetoresistive thin film 6 are cut off, and the first soft magnetic film 3 to the second soft magnetic film 4 via the giant magnetoresistive thin film 6 It is possible to manufacture a thin film magnetoresistive element 1A in which the electric path and the magnetic path to be reached are restricted only in the arrangement direction of the first soft magnetic film 3 and the second soft magnetic film 4.
[0045] 次に、本発明に係る薄膜磁気抵抗素子の第 2実施形態例を図 4乃至図 8に基づい て説明する。図 4は第 2実施形態例に係る薄膜磁気抵抗素子の平面図、図 5 (a)は 図 4の B— B断面図、図 6は比較例に係る薄膜磁気抵抗素子の断面図、図 7は第 2実 施形態例に係る薄膜磁気抵抗素子と比較例に係る薄膜磁気抵抗素子の諸元を示 す表図、図 8は第 2実施形態例に係る薄膜磁気抵抗素子の効果を比較例との比較 で示すグラフ図である。 Next, a second embodiment of the thin film magnetoresistive element according to the present invention will be described based on FIG. 4 to FIG. 4 is a plan view of a thin film magnetoresistive element according to the second embodiment, FIG. 5 (a) is a cross sectional view taken along the line B-B in FIG. 4, and FIG. 6 is a cross sectional view of a thin film magnetoresistive element according to a comparative example. FIG. 8 is a table showing the specifications of the thin film magnetoresistive element according to the second embodiment and the thin film magnetoresistive element according to the comparative example, and FIG. 8 is a comparative example of the effects of the thin film magnetoresistive element according to the second embodiment. FIG. 6 is a graph showing comparison with FIG.
[0046] 図 4及び図 5 (a)に示すように、本例の薄膜磁気抵抗素子 1Bは、絶縁基板 2と、絶 縁基板 2上に形成された帯状の第 1軟磁性膜 3と、第 1軟磁性膜 3の一端寄りの上面 に形成された非磁性絶縁膜 5と、非磁性絶縁膜 5の上面の一部力ゝら非磁性絶縁膜 5 の一端面及び第 1軟磁性膜 3の一端面を通って絶縁基板 1の上面の一部にわたる部 分に形成された巨大磁気抵抗薄膜 6と、長さ方向の一端が第 1軟磁性膜 3の一端面 に形成された巨大磁気抵抗薄膜 6と接するように形成された帯状の第 2軟磁性膜 4と から構成されている。  As shown in FIG. 4 and FIG. 5 (a), the thin film magnetoresistive element 1B of this example includes an insulating substrate 2 and a strip-shaped first soft magnetic film 3 formed on the insulating substrate 2. The nonmagnetic insulating film 5 formed on the upper surface of the first soft magnetic film 3 and the end surface of the nonmagnetic insulating film 5 and the first soft magnetic film 3 A giant magnetoresistive thin film 6 formed on a part of the upper surface of the insulating substrate 1 passing through one end face, and a giant magnetoresistance having one end in the longitudinal direction formed on one end face of the first soft magnetic film 3 And a belt-like second soft magnetic film 4 formed to be in contact with the thin film 6.
[0047] 巨大磁気抵抗薄膜 6の膜厚 tgは、第 1実施形態例に係る薄膜磁気抵抗素子 1Aの ギャップ長 Lgと等価であり、必要に応じて任意の大きさにすることができる力 特に、 0. 05 111以上1. 未満とすることにより、ギャップ長 Lg力^). 05 μ
Figure imgf000013_0001
0 m未満の薄膜磁気抵抗素子 IBを実現することができる。なお、図 5の例では、巨 大磁気抵抗薄膜 6が、非磁性絶縁膜 5の上面の一部から非磁性絶縁膜 5及び第 1軟 磁性膜 3の一端面を通って絶縁基板 2の上面の一部にわたる部分に形成されている 力 少なくとも第 1軟磁性膜 3の端面に形成されていれば足りる。
The film thickness tg of the giant magnetoresistive thin film 6 is equivalent to the gap length Lg of the thin film magnetoresistive element 1A according to the first embodiment, and a force that can be set to any size as needed. The gap length Lg force by making .0. 05 111 or more and less than 1. 05 μ
Figure imgf000013_0001
A thin film magnetoresistive element IB of less than 0 m can be realized. In the example of FIG. 5, the large magnetoresistive thin film 6 passes from a part of the top surface of the nonmagnetic insulating film 5 through one end face of the nonmagnetic insulating film 5 and the first soft magnetic film 3 to the top surface of the insulating substrate 2 It is sufficient if the force is formed at least on the end face of the first soft magnetic film 3.
[0048] 第 2軟磁性膜 4は、第 1軟磁性膜 3と同質の軟磁性体をスパッタリングすることによつ て形成される。  The second soft magnetic film 4 is formed by sputtering a soft magnetic material of the same quality as the first soft magnetic film 3.
[0049] その他については、第 1実施形態例に係る薄膜磁気抵抗素子 1Aと同じであるので 、対応する部分に同一の符号を付して説明を省略する。 [0050] 本例の薄膜磁気抵抗素子 IBは、第 1軟磁性膜 3の上面に非磁性絶縁膜 5を形成 すると共に、巨大磁気抵抗薄膜 6を介して第 1軟磁性膜 3の端面側に第 2軟磁性膜 4 を形成したので、第 1軟磁性膜 3の上面カゝら巨大磁気抵抗薄膜 6を介して第 2軟磁性 膜 4に至る電路及び磁路を遮断することができ、第 1軟磁性膜 3から巨大磁気抵抗薄 膜6を介して第2軟磁性膜 4に至る電路及び磁路を第 1軟磁性膜 3と第2軟磁性膜 4 の配列方向にのみ規制することができる。したがって、磁束の分散及び磁束経路長 の不均一を抑制することができ、磁界感度の向上及びその直線性の向上を図ること ができる。また、巨大磁気抵抗薄膜が軟磁性膜に比べて十分に薄い場合、例えば 1 Z5以下である場合、図 5 (b)に示すように、第 1軟磁性膜 3と第 2軟磁性膜 4の端面 の高さが一致していなくても、同様の効果が得られる。 The other parts are the same as those of the thin film magnetoresistive element 1A according to the first embodiment, and therefore the corresponding parts are denoted by the same reference numerals and the description thereof will be omitted. In the thin film magnetoresistive element IB of this example, the nonmagnetic insulating film 5 is formed on the upper surface of the first soft magnetic film 3, and on the end face side of the first soft magnetic film 3 via the giant magnetoresistive thin film 6. Since the second soft magnetic film 4 is formed, the electric path and magnetic path leading to the second soft magnetic film 4 can be cut off via the giant magnetoresistive thin film 6 on the upper surface of the first soft magnetic film 3 It may only regulate the electrical path and the magnetic path leading to the second soft magnetic film 4 via the first soft magnetic film 3 from giant magnetoresistive thin film 6 on the first soft magnetic film 3 the arrangement direction of the second soft magnetic film 4 it can. Therefore, the dispersion of the magnetic flux and the nonuniformity of the magnetic flux path length can be suppressed, and the sensitivity of the magnetic field can be improved and the linearity thereof can be improved. When the giant magnetoresistive thin film is sufficiently thin as compared with the soft magnetic film, for example, 1 Z5 or less, as shown in FIG. 5 (b), the first soft magnetic film 3 and the second soft magnetic film 4 are Similar effects can be obtained even if the heights of the end faces do not match.
[0051] また、本例の薄膜磁気抵抗素子 1Bは、図 5に示すように、第 1軟磁性膜 3に形成さ れた幅広部 3bの一端及び第 2軟磁性膜 4に形成された幅広部 6bの一端に信号検 出用の端子部を有しており、巨大磁気抵抗薄膜 6を厚み方向に横断する方向の磁気 信号を検出する。したがって、本例の薄膜磁気抵抗素子 1Bは、巨大磁気抵抗薄膜 6 の膜厚 tgをもって第 1軟磁性膜 3と第 2軟磁性膜 4との間のギャップ長 Lgを規制する ことができるので、軟磁性膜に形成されたスリット状のギャップ部内に巨大磁気抵抗 薄膜を成膜する場合のようにギャップ長に製造上の制限がなぐギャップ長の減少に よる磁界感度の向上を図ることができる。  Further, as shown in FIG. 5, the thin-film magnetoresistive element 1 B of this example has a wide portion formed on one end of the wide portion 3 b formed on the first soft magnetic film 3 and the second soft magnetic film 4. A terminal portion for signal detection is provided at one end of the portion 6b, and a magnetic signal in a direction crossing the giant magnetoresistive thin film 6 in the thickness direction is detected. Therefore, since the thin film magnetoresistive element 1B of this example can regulate the gap length Lg between the first soft magnetic film 3 and the second soft magnetic film 4 with the film thickness tg of the giant magnetoresistive thin film 6, As in the case of forming a giant magnetoresistive thin film in the slit-like gap portion formed on the soft magnetic film, it is possible to improve the magnetic field sensitivity due to the reduction of the gap length in which the manufacturing length is not limited.
[0052] 即ち、図 6に示すように、基板 201上に形成された軟磁性膜 202の中央部にイオン ビームエッチングなどの微細加工技術を応用してスリット状のギャップ部 203を形成し た後、当該ギャップ部 203内に巨大磁気抵抗薄膜 204がスパッタリングにより形成さ れる薄膜磁気抵抗素子 200 (比較例に係る薄膜磁気抵抗素子)は、スパッタリング条 件を最適化した場合にも、ギャップ部 202内への均質な巨大磁気抵抗薄膜 203の形 成が困難になるため、ギャップ長を 0. 5 m以下にすることが困難である。これに対 して、本例の薄膜磁気抵抗素子 1Bは、巨大磁気抵抗薄膜 6の膜厚 tgをもって第 1軟 磁性膜 3と第 2軟磁性膜 4との間のギャップ長 Lgを規制することができるので、巨大磁 気抵抗薄膜 6の膜厚 tgを制御することによって、 0. 5 m以下のギャップ長を有する 薄膜磁気抵抗素子を製造することができる。 [0053] そこで、本願発明者等は、図 7に示すように、巨大磁気抵抗薄膜 203の膜厚 tgが 0 . 25 mでギャップ長 Lgが 0. 5 mの比較例に係る薄膜磁気抵抗素子 200と、巨 大磁気抵抗薄膜 5の膜厚 tgが 0. 25 mでギャップ長 Lgが 0. 1 mの第 2実施形態 例に係る薄膜磁気抵抗素子 1Bとを作製し、それぞれの磁界感度を比較した。なお、 図 7から明らかなように、他の諸元については同一とした。 That is, as shown in FIG. 6, after a slit-like gap portion 203 is formed at the central portion of the soft magnetic film 202 formed on the substrate 201 by applying a microfabrication technique such as ion beam etching. The thin-film magnetoresistive element 200 (the thin-film magnetoresistive element according to the comparative example) in which the giant magnetoresistive thin film 204 is formed by sputtering in the gap portion 203 also has the inside of the gap portion 202 even when the sputtering conditions are optimized. It is difficult to reduce the gap length to less than 0.5 m because the formation of a homogeneous giant magnetoresistive thin film 203 becomes difficult. On the other hand, the thin film magnetoresistive element 1 B of this example regulates the gap length Lg between the first soft magnetic film 3 and the second soft magnetic film 4 with the film thickness tg of the giant magnetoresistive thin film 6. Thus, by controlling the film thickness tg of the giant magnetoresistance thin film 6, a thin film magnetoresistance element having a gap length of 0.5 m or less can be manufactured. Therefore, as shown in FIG. 7, the inventors of the present invention have compared the thin-film magnetoresistive element according to the comparative example in which the film thickness tg of the giant magnetoresistive thin film 203 is 0.25 m and the gap length Lg is 0.5 m. A thin-film magnetoresistive element 1B according to the second embodiment having a thickness tg of 0.25 m and a gap length Lg of 0.1 m for the giant magnetoresistive thin film 5 is fabricated, and the respective magnetic field sensitivities are Compared. As is clear from Figure 7, the other specifications are the same.
[0054] 外部磁界 Hexの大きさを種々変更しつつギャップ中心部における磁場の強度を測 定したところ、図 8に示すように、第 2実施形態例に係る薄膜磁気抵抗素子 1Bの外部 磁界 Hexの変化に対するギャップ中心部における磁場の強度の変化率は、比較例 に係る薄膜磁気抵抗素子 200の 2倍近くになっており、第 2実施形態例に係る薄膜 磁気抵抗素子 1Bの磁界感度が上昇していることが実証された。  When the strength of the magnetic field at the center of the gap was measured while variously changing the magnitude of the external magnetic field Hex, as shown in FIG. 8, the external magnetic field Hex of the thin film magnetoresistive element 1 B according to the second embodiment example. The rate of change of the strength of the magnetic field at the center of the gap with respect to the change in the gap is nearly twice that of the thin film magnetoresistive device 200 according to the comparative example, and the magnetic field sensitivity of the thin film It has been demonstrated that
[0055] また、本例の薄膜磁気抵抗素子 1Bは、前述のように巨大磁気抵抗薄膜 6の膜厚 tg をもってギャップ長 Lgが規制されるので、ギャップ部の形成手段として微細加工技術 を適用する必要がなぐ薄膜磁気抵抗素子の製造工程を簡略ィ匕できて、薄膜磁気抵 抗素子の低コストィ匕を図ることができる。  Further, in the thin film magnetoresistive element 1 B of this example, since the gap length Lg is regulated by the film thickness tg of the giant magnetoresistive thin film 6 as described above, the microfabrication technique is applied as a means for forming the gap portion. The manufacturing process of the thin film magnetoresistive element which does not require it can be simplified, and the thin film magnetoresistive element can be manufactured at low cost.
[0056] 以下、第 2実施形態例中の図 5 (a)に係る薄膜磁気抵抗素子 IBの製造方法を図 9 に基づいて説明する。図 9は薄膜磁気抵抗素子 1Bの製造手順を示すフロー図であ る。  Hereinafter, a method of manufacturing the thin film magnetoresistive element IB according to FIG. 5 (a) in the second embodiment will be described based on FIG. FIG. 9 is a flow chart showing a manufacturing procedure of the thin film magnetoresistive element 1B.
[0057] まず、絶縁基板 2の片面に、第 1軟磁性膜 3の元になる軟磁性膜をめつきゃスパッタ リングなどによって均一な厚さに形成する(手順 Sl l)。次いで、軟磁性膜上にフォト レジスト層を均一に形成し、露光工程及び現像工程を経て、第 1軟磁性膜形成用の マスクを形成する(手順 S 12)。次 、で、軟磁性膜のフォトレジスト層にて覆われて!/ヽ ない部分をエッチングやイオンミリングなどによって除去し、しかる後に、残存フオトレ ジスト層を除去する(手順 S13)。これにより、絶縁基板 2の片面に所要の第 1軟磁性 膜 3が形成される。次いで、非磁性絶縁膜 5をスパッタリングにより形成し (手順 S14) 、第 1軟磁性膜 3の上面を含む絶縁基板 2の上面全体に再度フォトレジスト層を均一 に形成し、露光工程及び現像工程を経て、非磁性絶縁膜形成用のマスクを形成する (手順 S15)。次いで、フォトレジスト層で覆われていない部分の酸ィ匕膜をエッチング もしくはイオンミリングで除去し、しかる後に、残存フォトレジスト層を除去する(手順 S 16)。これにより、第 1軟磁性膜 3の上面に非磁性絶縁膜 5が積層される。次いで、巨 大磁気抵抗薄膜 6をスパッタリングにより成膜し (手順 S17)、次いで当該巨大磁気抵 抗薄膜 6上にフォトレジスト層を均一に形成した後、露光工程及び現像工程を経て、 巨大磁気抵抗薄膜 6のマスクを形成する(手順 S 18)。次いで、フォトレジスト層で覆 われていない部分をエッチングもしくはイオンミリングで除去し、しかる後に、残存フォ トレジスト層を除去する(手順 S19)。これにより、第 1軟磁性膜 3の端面及び非磁性絶 縁膜 5の端面に巨大磁気抵抗薄膜 6が形成される。次いで、絶縁基板 2上に非磁性 絶縁膜 7をスパッタリングにより形成し (手順 S 20)、フォトレジスト層で覆われていない 部分の酸ィ匕膜をエッチングもしくはイオンミリングで除去し、しかる後に、残存フォトレ ジスト層を除去する(手順 S21)。これにより、絶縁基板 2上の巨大磁気抵抗薄膜 6の 端面と接する部分に非磁性絶縁膜 7が積層される。次いで、非磁性絶縁膜 7上に第 2 軟磁性膜 3の元になる軟磁性膜をめつきやスパッタリングなどによって均一な厚さに 形成し (手順 S22)、当該軟磁性膜上にフォトレジスト層を均一に形成し、露光工程及 び現像工程を経て、第 2軟磁性膜形成用のマスクを形成する(手順 S23)。次いで、 軟磁性膜のフォトレジスト層にて覆われて!/ヽな 、部分をエッチングやイオンミリングな どによって除去し、しかる後に、残存フォトレジスト層を除去する(手順 S24)。これに より、図 4及び図 5に示した第 2実施形態例に係る薄膜磁気抵抗素子 1Bが得られる。 First, a soft magnetic film to be the origin of the first soft magnetic film 3 is formed on one surface of the insulating substrate 2 to a uniform thickness by sputtering or the like (step Sll). Next, a photoresist layer is uniformly formed on the soft magnetic film, and through a light exposure step and a development step, a mask for forming a first soft magnetic film is formed (step S12). Next, the portion covered with the photoresist layer of the soft magnetic film is removed by etching or ion milling, and then the remaining photoresist layer is removed (step S13). As a result, the required first soft magnetic film 3 is formed on one side of the insulating substrate 2. Next, the nonmagnetic insulating film 5 is formed by sputtering (step S14), and a photoresist layer is uniformly formed again over the entire top surface of the insulating substrate 2 including the top surface of the first soft magnetic film 3 Then, a mask for nonmagnetic insulating film formation is formed (step S15). Next, the oxide film of the portion not covered with the photoresist layer is removed by etching or ion milling, and thereafter, the remaining photoresist layer is removed (Procedure S 16). Thus, the nonmagnetic insulating film 5 is stacked on the top surface of the first soft magnetic film 3. Next, a giant magnetoresistive thin film 6 is deposited by sputtering (procedure S17), and then a photoresist layer is uniformly formed on the giant magnetoresistive thin film 6, and then through an exposure step and a developing step, a giant magnetoresistive resistor is formed. Form a mask for thin film 6 (step S18). Next, the portion not covered with the photoresist layer is removed by etching or ion milling, and thereafter, the remaining photoresist layer is removed (procedure S19). Thus, the giant magnetoresistive thin film 6 is formed on the end face of the first soft magnetic film 3 and the end face of the nonmagnetic insulating film 5. Next, the nonmagnetic insulating film 7 is formed by sputtering on the insulating substrate 2 (step S20), and the oxide film of the portion not covered with the photoresist layer is removed by etching or ion milling, and then remaining. Remove the photoresist layer (Step S21). As a result, the nonmagnetic insulating film 7 is stacked on the insulating substrate 2 in a portion in contact with the end face of the giant magnetoresistive thin film 6. Next, a soft magnetic film to be the origin of the second soft magnetic film 3 is formed on the nonmagnetic insulating film 7 by plating or sputtering to a uniform thickness (step S22), and a photoresist layer is formed on the soft magnetic film. Are uniformly formed, and through a light exposure step and a development step, a mask for forming a second soft magnetic film is formed (step S23). Next, the portion covered with the photoresist layer of the soft magnetic film is removed by etching, ion milling or the like, and thereafter, the remaining photoresist layer is removed (procedure S24). Thus, the thin film magnetoresistive element 1B according to the second embodiment shown in FIGS. 4 and 5 is obtained.
[0058] 本例の製造方法によると、第 1軟磁性膜 3の上面と巨大磁気抵抗薄膜 6との間に非 磁性絶縁膜 5を形成する工程を含むので、第 1軟磁性膜 3の上面力も巨大磁気抵抗 薄膜 6を介して第 2軟磁性膜 4に至る電路及び磁路が遮断され、巨大磁気抵抗薄膜 6を介して第 1軟磁性膜 3から第 2軟磁性膜 4に至る電路及び磁路が第 1軟磁性膜 3 と第 2軟磁性膜 4の配列方向にのみ規制された薄膜磁気抵抗素子 1Bを製造すること ができる。 According to the manufacturing method of this example, since the step of forming nonmagnetic insulating film 5 between the upper surface of first soft magnetic film 3 and giant magnetoresistive thin film 6 is included, the upper surface of first soft magnetic film 3 is formed. Also, the electric path and magnetic path leading to the second soft magnetic film 4 are interrupted through the giant magnetoresistive thin film 6, and the electric path extending from the first soft magnetic film 3 to the second soft magnetic film 4 through the giant magnetoresistive thin film 6 A thin film magnetoresistive element 1 B in which the magnetic path is restricted only in the direction of arrangement of the first soft magnetic film 3 and the second soft magnetic film 4 can be manufactured.
[0059] 次に、本発明に係る薄膜磁気抵抗素子の第 3実施形態例を図 10乃至図 11に基づ いて説明する。図 10は第 3実施形態例に係る薄膜磁気抵抗素子の平面図、図 11は 図 10の C C断面図である。  Next, a third embodiment of the thin film magnetoresistive element according to the present invention will be described based on FIG. 10 to FIG. FIG. 10 is a plan view of a thin film magnetoresistive element according to a third embodiment, and FIG. 11 is a cross-sectional view taken along the line CC in FIG.
[0060] 図 10及び図 11に示すように、本例の薄膜磁気抵抗素子 1Cは、絶縁基板 2と、絶 縁基板 2上に形成された帯状の第 1軟磁性膜 3と、第 1軟磁性膜 3の一端寄りの上面 に形成された巨大磁気抵抗薄膜 6と、第 1軟磁性膜 3の上面及び端面並びに巨大磁 気抵抗薄膜 6の上面の外周部分及び端面に形成された非磁性絶縁膜 5と、一端部 の下面が非磁性絶縁膜 5より露出された巨大磁気抵抗薄膜 6と接するように形成され た帯状の第 2軟磁性膜 4とから構成されて 、る。 As shown in FIG. 10 and FIG. 11, the thin film magnetoresistive element 1 C of this example includes an insulating substrate 2, a strip-shaped first soft magnetic film 3 formed on the insulating substrate 2, and a first soft magnetic film. Upper surface of magnetic film 3 near one end And the nonmagnetic insulating film 5 formed on the outer peripheral portion and the end face of the upper surface and the end face of the first soft magnetic film 3 and the upper face and the lower surface of the one end portion Is formed of a band-like second soft magnetic film 4 formed to be in contact with the giant magnetoresistive thin film 6 exposed from the nonmagnetic insulating film 5.
[0061] 各部の構成については、各膜 3〜6の積層構造を除いて第 2実施形態例に係る薄 膜磁気抵抗素子 1Bと同じであるので、対応する部分に同一の符号を付して説明を 省略する。 The configuration of each part is the same as that of the thin film magnetoresistive element 1 B according to the second embodiment except for the laminated structure of each of the films 3 to 6, so the corresponding parts are denoted by the same reference numerals. I will omit the explanation.
[0062] 本例の薄膜磁気抵抗素子 1Cは、第 1軟磁性膜 3の上面に巨大磁気抵抗薄膜 6を 形成すると共に、第 1軟磁性膜 3の端面と第 2軟磁性膜 4の端面との間に非磁性絶縁 膜 5を介在させたので、第 1軟磁性膜 3の端面力ゝら第 2軟磁性膜 4の端面に至る電路 及び磁路を遮断することができ、第 1軟磁性膜 3から巨大磁気抵抗薄膜 6を介して第 2軟磁性膜 4に至る電路及び磁路を巨大磁気抵抗薄膜 6の膜厚方向にのみ規制す ることができる。したがって、磁束の分散及び磁束経路長の不均一を抑制することが でき、磁界感度の向上及びその直線性の向上を図ることができる。また、本例の薄膜 磁気抵抗素子 1Cは、第 1軟磁性膜 3の上面に巨大磁気抵抗薄膜 6を形成するので 、第 1軟磁性膜 3の端面に巨大磁気抵抗薄膜 6を形成する場合に比べて巨大磁気抵 抗薄膜 6の膜厚の制御が容易になり、この点からも磁界感度の向上を図ることができ る。さら〖こ、本例の薄膜磁気抵抗素子 1Cは、巨大磁気抵抗薄膜 6の膜厚 tgをもって 第 1軟磁性膜 3と第 2軟磁性膜 4との間のギャップ長 Lgを規制することができるので、 軟磁性膜に形成されたスリット状のギャップ部内に巨大磁気抵抗薄膜を成膜する場 合のようにギャップ長に製造上の制限がなぐギャップ長の減少による磁界感度の向 上を図ることができる。  In the thin film magnetoresistive element 1 C of this example, the giant magnetoresistive thin film 6 is formed on the upper surface of the first soft magnetic film 3, and the end face of the first soft magnetic film 3 and the end face of the second soft magnetic film 4 Since the nonmagnetic insulating film 5 is interposed between them, the electric path and the magnetic path leading to the end face of the first soft magnetic film 3 and the end face of the second soft magnetic film 4 can be cut off. The electric path and magnetic path from the film 3 to the second soft magnetic film 4 via the giant magnetoresistive thin film 6 can be regulated only in the film thickness direction of the giant magnetoresistive thin film 6. Therefore, it is possible to suppress the dispersion of the magnetic flux and the nonuniformity of the magnetic flux path length, and it is possible to improve the sensitivity of the magnetic field and the linearity thereof. Further, since the giant magnetoresistive thin film 6 is formed on the upper surface of the first soft magnetic film 3 in the thin film magnetoresistive element 1 C of this example, the giant magnetoresistive thin film 6 is formed on the end face of the first soft magnetic film 3. In comparison, the control of the film thickness of the giant magnetic resistance thin film 6 becomes easy, and from this point as well, the magnetic field sensitivity can be improved. Furthermore, the thin film magnetoresistive element 1C of this example can regulate the gap length Lg between the first soft magnetic film 3 and the second soft magnetic film 4 with the film thickness tg of the giant magnetoresistive thin film 6 Therefore, as in the case of forming a giant magnetoresistive thin film in the slit-like gap portion formed in the soft magnetic film, the magnetic field sensitivity can be improved by reducing the gap length without any limitation on the gap length. Can.
[0063] 以下、第 3実施形態例に係る薄膜磁気抵抗素子 1Cの製造方法を図 12に基づいて 説明する。図 12は薄膜磁気抵抗素子 1Cの製造手順を示すフロー図である。  Hereinafter, a method of manufacturing the thin film magnetoresistive element 1C according to the third embodiment will be described based on FIG. FIG. 12 is a flow chart showing a manufacturing procedure of the thin film magnetoresistive element 1C.
[0064] まず、片面に第 1軟磁性膜 3の元になる軟磁性膜がめっきなどによって均一な厚さ に形成された絶縁基板 2を用意する(手順 S21)。次いで、軟磁性膜上にフォトレジス ト層を均一に形成し、露光工程及び現像工程を経て、第 1軟磁性膜形成用のマスク を形成する(手順 S22)。次いで、軟磁性膜のフォトレジスト層にて覆われていない部 分をエッチングやイオンミリングなどによって除去し、しかる後に、残存フォトレジスト 層を除去する(手順 S23)。これにより、絶縁基板 2の片面に所要の第 1軟磁性膜 3が 形成される。次いで、巨大磁気抵抗薄膜 6をスパッタリングにより成膜し (手順 S 24)、 次いで当該巨大磁気抵抗薄膜 6上にフォトレジスト層を均一に形成した後、露光ェ 程及び現像工程を経て、巨大磁気抵抗薄膜 6のマスクを形成する(手順 S25)。次い で、フォトレジスト層で覆われて 、な 、部分をエッチングもしくはイオンミリングで除去 し、しかる後に、残存フォトレジスト層を除去する(手順 S26)。これにより、第 1軟磁性 膜 3の上面に巨大磁気抵抗薄膜 6が積層される。次いで、第 1軟磁性膜 3の上面及 び巨大磁気抵抗薄膜 6の上面を含む絶縁基板 2の上面全体にフォトレジスト層を均 一に形成し、露光工程及び現像工程を経て、巨大磁気抵抗薄膜 6の上面の外周部 分力 これに続く巨大磁気抵抗薄膜 6の端面及び第 1軟磁性膜 3の上面の一部並び に第 1軟磁性膜 3の端面部分と対向する部分にのみ開口部が形成された非磁性絶 縁膜形成用のマスクを形成する(手順 S 27)。次いで、フォトレジスト層の開口部に非 磁性絶縁膜 5をスパッタリングにより成膜し (手順 S28)、し力る後に、残存フォトレジス ト層を除去する (手順 S29)。これにより、第 1軟磁性膜 3及び巨大磁気抵抗薄膜 6並 びに絶縁基板 2の所要の部分に非磁性絶縁膜 5が形成される。次いで、第 2軟磁性 膜 4をスパッタリングにより成膜し (手順 S30)、し力る後に、イオンミリングやエッチング 等で軟磁性膜を除去し、残存フォトレジスト層を除去する(手順 S31)。次いで、フォト レジスト層を均一に形成し、露光工程及び現像工程を経て、第 2軟磁性膜用のマスク を形成する(手順 S32)。これにより、図 10及び図 11に示した第 3実施形態例に係る 薄膜磁気抵抗素子 1Cが得られる。 First, the insulating substrate 2 on which one side of the soft magnetic film to be the origin of the first soft magnetic film 3 is formed to a uniform thickness by plating or the like is prepared (step S 21). Next, a photoresist layer is uniformly formed on the soft magnetic film, and a mask for forming a first soft magnetic film is formed through an exposure step and a development step (step S22). Next, the portion not covered with the photoresist layer of the soft magnetic film The portion is removed by etching, ion milling or the like, and then the remaining photoresist layer is removed (step S23). Thereby, the required first soft magnetic film 3 is formed on one side of the insulating substrate 2. Next, a giant magnetoresistive thin film 6 is deposited by sputtering (procedure S24), and then a photoresist layer is uniformly formed on the giant magnetoresistive thin film 6, and then through an exposure step and a development step, a giant magnetoresistance is produced. Form a mask of the thin film 6 (step S25). Next, the portion covered with the photoresist layer is removed by etching or ion milling, and thereafter, the remaining photoresist layer is removed (procedure S26). Thereby, the giant magnetoresistive thin film 6 is stacked on the top surface of the first soft magnetic film 3. Then, a photoresist layer is uniformly formed on the entire upper surface of the insulating substrate 2 including the upper surface of the first soft magnetic film 3 and the upper surface of the giant magnetoresistive thin film 6, and through the exposure step and the developing step, the giant magnetoresistive thin film The outer peripheral portion of the upper surface of the sixth part Force is the end of the giant magnetoresistive thin film 6 and the partial array of the upper surface of the first soft magnetic film 3 The opening is only in the part facing the end surface of the first soft magnetic film 3 The formed nonmagnetic insulating film forming mask is formed (step S 27). Next, the nonmagnetic insulating film 5 is formed by sputtering in the opening of the photoresist layer (step S28), and after force is applied, the remaining photoresist layer is removed (step S29). As a result, the nonmagnetic insulating film 5 is formed on the required portions of the first soft magnetic film 3 and the giant magnetoresistive thin film 6 and the insulating substrate 2. Next, the second soft magnetic film 4 is formed by sputtering (step S30), and after applying force, the soft magnetic film is removed by ion milling, etching or the like, and the remaining photoresist layer is removed (step S31). Next, a photoresist layer is uniformly formed, and a mask for a second soft magnetic film is formed through an exposure step and a development step (step S32). Thereby, a thin film magnetoresistive element 1C according to the third embodiment shown in FIGS. 10 and 11 is obtained.
本例の製造方法によると、巨大磁気抵抗薄膜 6の上面と第 2軟磁性膜 4の下面との 間及び第 1軟磁性膜 3の端面と第 2軟磁性膜 4の端面の間に非磁性絶縁膜 5を形成 する工程を含むので、第 1軟磁性膜 3の上面カゝら巨大磁気抵抗薄膜 6を介して第 2軟 磁性膜 4に至る電路及び磁路並びに第 1軟磁性膜 3の端面カゝら直接第 2軟磁性膜 4 に至る電路及び磁路が遮断され、巨大磁気抵抗薄膜 6を介して第 1軟磁性膜 3から 第 2軟磁性膜 4に至る電路及び磁路が巨大磁気抵抗薄膜 6の膜厚方向にのみ規制 された薄膜磁気抵抗素子 1Cを製造することができる。 [0066] 図 13に本発明の第 4実施形態例に係る薄膜磁気抵抗素子 IDを示す。図 13は第 4 実施形態例に係る薄膜磁気抵抗素子 1Dの要部断面図である。 According to the manufacturing method of the present example, the nonmagnetic state between the upper surface of the giant magnetoresistive thin film 6 and the lower surface of the second soft magnetic film 4 and between the end surface of the first soft magnetic film 3 and the end surface of the second soft magnetic film 4 Since the step of forming the insulating film 5 is included, the electric path and magnetic path leading to the second soft magnetic film 4 via the giant magnetoresistive thin film 6 on the upper surface of the first soft magnetic film 3 and the first soft magnetic film 3 The electric path and magnetic path leading to the second soft magnetic film 4 are cut off directly, and the electric path and magnetic path from the first soft magnetic film 3 to the second soft magnetic film 4 via the giant magnetoresistive thin film 6 are huge. A thin film magnetoresistive element 1 C regulated only in the film thickness direction of the magnetoresistive thin film 6 can be manufactured. FIG. 13 shows a thin film magnetoresistive element ID according to a fourth embodiment of the present invention. FIG. 13 is a cross-sectional view of main parts of a thin-film magnetoresistive element 1D according to the fourth embodiment.
[0067] 図 13に示すように、本例の薄膜磁気抵抗素子 1Dは、第 1及び第 2の軟磁性膜 3, 4を所要のギャップ gを隔てて絶縁基板 2上に形成すると共に、第 1及び第 2の軟磁性 膜 3, 4の上面にそれぞれ非磁性絶縁膜 5を積層し、これら第 1及び第 2の軟磁性膜 3 , 4の端面及び非磁性絶縁膜 5の端面に巨大磁気抵抗薄膜 6を介して第 3の軟磁性 膜 11を形成したことを特徴とする。  As shown in FIG. 13, in the thin film magnetoresistive element 1 D of this example, the first and second soft magnetic films 3 and 4 are formed on the insulating substrate 2 with the required gap g therebetween, The nonmagnetic insulating film 5 is laminated on the upper surfaces of the first and second soft magnetic films 3 and 4 respectively, and the end faces of the first and second soft magnetic films 3 and 4 and the end faces of the nonmagnetic insulating film 5 are giant magnetic films. A third soft magnetic film 11 is formed via the resistance thin film 6.
[0068] カゝかる構成によっても、第 1実施形態例に係る薄膜磁気抵抗素子 1Aと同様の効果 を発揮することができる。また、第 3の軟磁性膜 11に代えて硬磁性膜を形成すれば、 ノ ィァス効果を期待することもできる。  The same configuration as that of the thin film magnetoresistive element 1A according to the first embodiment can also be achieved by the above-described configuration. In addition, if a hard magnetic film is formed instead of the third soft magnetic film 11, a noise effect can be expected.
[0069] 図 14に本発明の第 5実施形態例に係る薄膜磁気抵抗素子 1Eを示す。図 14は第 5 実施形態例に係る薄膜磁気抵抗素子 1Eの要部平面図である。  FIG. 14 shows a thin film magnetoresistive element 1E according to a fifth embodiment of the present invention. FIG. 14 is a plan view of the main part of a thin film magnetoresistive element 1E according to the fifth embodiment.
[0070] 図 14に示すように、本例の薄膜磁気抵抗素子 1Eは、第 2軟磁性膜 5を十文字状に 形成し、当該第 2軟磁性膜 5を中心として互いに直交する方向に巨大磁気抵抗薄膜 6 (図示省略)と非磁性絶縁膜 5と第 1軟磁性膜 3 (図示省略)とを形成したことを特徴 とする。なお、第 1軟磁性膜 3、非磁性絶縁膜 5、巨大磁気抵抗薄膜 6及び第 2軟磁 性膜 4の積層構造については、第 1乃至第 3実施形態例に係る薄膜磁気抵抗素子 1 A, IB, 1Cのいずれかと同じである。  As shown in FIG. 14, in the thin film magnetoresistive element 1E of this example, the second soft magnetic film 5 is formed in a cross shape, and the giant magnetic films are giant magnetism in the direction orthogonal to each other with the second soft magnetic film 5 as a center. A resistive thin film 6 (not shown), a nonmagnetic insulating film 5 and a first soft magnetic film 3 (not shown) are formed. The laminated structure of the first soft magnetic film 3, the nonmagnetic insulating film 5, the giant magnetoresistive thin film 6, and the second soft magnetic film 4 is the thin film magnetoresistive element 1A according to the first to third embodiments. Same as either IB or 1C.
[0071] 本例の薄膜磁気抵抗素子 1Eは、直交する 2方向の磁場を同時に検出することがで きるので、一般的な磁気センサとして利用できるほか、コンパスなどの特殊用途の磁 気センサとしても利用することができる。  The thin film magnetoresistive element 1E of this example can simultaneously detect magnetic fields in two orthogonal directions, so it can be used not only as a general magnetic sensor but also as a magnetic sensor for special purposes such as a compass. It can be used.
[0072] 以下、本発明に係る磁気センサの一実施形態例を図 15乃至図 17に基づいて説明 する。図 15は実施形態例に係る磁気センサの平面図、図 16は実施形態例に係る磁 気センサに適用される固定抵抗素子の要部断面図、図 17は実施形態例に係る磁気 センサの等価回路図である。  Hereinafter, an embodiment of the magnetic sensor according to the present invention will be described based on FIG. 15 to FIG. FIG. 15 is a plan view of the magnetic sensor according to the embodiment, FIG. 16 is a cross-sectional view of the main part of the fixed resistance element applied to the magnetic sensor according to the embodiment, and FIG. 17 is equivalent to the magnetic sensor according to the embodiment. It is a circuit diagram.
[0073] 図 15に示すように、本例の磁気センサ 21は、 2つの第 1実施形態例に係る薄膜磁 気抵抗素子 1Aを対向する 2辺に備え、他の対向する 2辺に固定抵抗素子 22を備え たブリッジ回路カゝらなり、薄膜磁気抵抗素子 1Aを構成する各軟磁性膜 3, 4の端部に 端子 23を形成したことを特徴とする。 As shown in FIG. 15, the magnetic sensor 21 of the present example is provided with the thin film magnetic resistance element 1A according to the first embodiment example on the two opposing sides and the fixed resistance on the other opposing two sides. A bridge circuit including an element 22 is formed on the end of each of the soft magnetic films 3 and 4 constituting the thin film magnetoresistive element 1A. A terminal 23 is formed.
[0074] 固定抵抗素子 22は、図 16に示すように、絶縁基板 24と、絶縁基板 24上に形成さ れた帯状の第 1非磁性金属膜 25と、第 1非磁性金属膜 25の一端寄りの上面に形成 された非磁性絶縁膜 26と、非磁性絶縁膜 26の上面の一部力ゝら第 1非磁性金属膜 2 5及び非磁性絶縁膜 26の一端面を通って基板 24の上面の一部にわたる部分に形 成された巨大磁気抵抗薄膜 27と、長さ方向の一端が巨大磁気抵抗薄膜 27を覆い且 つ第 1非磁性金属膜 25と接触しないように形成された帯状の第 2非磁性金属膜 28と からなる。 The fixed resistance element 22 is, as shown in FIG. 16, an insulating substrate 24, a strip-shaped first nonmagnetic metal film 25 formed on the insulating substrate 24, and one end of the first nonmagnetic metal film 25. The nonmagnetic insulating film 26 formed on the upper surface of the substrate 24 and part of the upper surface of the nonmagnetic insulating film 26 pass through one end surface of the first nonmagnetic metal film 25 and the nonmagnetic insulating film 26 to form the substrate 24. A giant magnetoresistive thin film 27 formed on a part of the upper surface, and a strip formed so that one end in the lengthwise direction covers the giant magnetoresistive thin film 27 and does not contact the first nonmagnetic metal film 25 And a second nonmagnetic metal film 28.
[0075] 本例の磁気センサ 21は、薄膜磁気抵抗素子として第 1実施形態例に係る薄膜磁 気抵抗素子 1Aを用いたので、磁界感度が高ぐかつその直線性に優れる。また、本 例の磁気センサ 21は、対向する 2辺に備えられた 2個の薄膜磁気抵抗素子 1Aと他 の対向する 2辺に備えられた固定抵抗素子 22とをもってブリッジ回路を構成してなる ので、電源電圧の変動それに検出器の入力インピーダンスや非直線性などに依存し ない零位法による高精度の磁界検出を行うことができる。  The magnetic sensor 21 of this example uses the thin film magnetoresistance element 1A according to the first embodiment as the thin film magnetoresistance element, so the magnetic field sensitivity is high and the linearity is excellent. Further, the magnetic sensor 21 of the present example is configured by forming a bridge circuit by two thin film magnetoresistive elements 1A provided on two opposing sides and fixed resistance elements 22 provided on the other two opposing sides. Therefore, it is possible to perform high-precision magnetic field detection by the null method which does not depend on the fluctuation of the power supply voltage and the input impedance and nonlinearity of the detector.
[0076] 即ち、図 17に示すように、 2つの薄膜磁気抵抗素子 1 Aの抵抗値をそれぞれ R , R  That is, as shown in FIG. 17, the resistance values of the two thin film magnetoresistive elements 1 A are R and R respectively.
1 3 とし、 2つの固定抵抗素子 22の抵抗値をそれぞれ R , Rとした場合、入力電圧 Vin  Assuming that the resistances of the two fixed resistance elements 22 are R and R respectively, the input voltage Vin
2 4  twenty four
に対する出力電圧 Voutは、下式で表される。  The output voltage Vout for is expressed by the following equation.
[数 1]  [Number 1]
V。u t = V VV. ut = VV
Figure imgf000020_0001
Figure imgf000020_0001
[0077] この式から明らかなように、ブリッジ回路の出力電圧 Voutは、各素子の抵抗値 R , R , R , Rと入力電圧 Vinとによってのみ定まり、且つ平衡状態においては出力電As is clear from this equation, the output voltage Vout of the bridge circuit is determined only by the resistance values R, R, R, R of each element and the input voltage Vin, and in the equilibrium state, the output voltage
2 3 4 2 3 4
圧 Voutが零になるので、電源電圧の変動それに検出器の入力インピーダンスや非 直線性などに依存しない高精度の磁界検出が可能になり、実用性の高い磁気セン サとすることができる。  Since the voltage Vout becomes zero, a highly accurate magnetic field detection independent of the fluctuation of the power supply voltage and the input impedance or nonlinearity of the detector becomes possible, and a highly practical magnetic sensor can be realized.
[0078] なお、前記実施例においては、薄膜磁気抵抗素子として第 1実施形態例に係る薄 膜磁気抵抗素子 1Aを用いたが、これに代えて、第 2実施形態例に係る薄膜磁気抵 抗素子 IB又は第 3実施形態例に係る薄膜磁気抵抗素子 1Cを用いることもできる。ま た、前記実施形態例においては、固定抵抗素子 21として第 1非磁性金属膜 25、非 磁性絶縁膜 26、巨大磁気抵抗薄膜 27及び第 2非磁性金属膜 28とを有するものを用 いたが、他の構成の固定抵抗素子を用いることもできる。 Although the thin film magnetoresistive element 1A according to the first embodiment is used as the thin film magnetoresistive element in the above embodiment, a thin film magnetic resistance according to the second embodiment may be used instead. The element IB or the thin film magnetoresistive element 1C according to the third embodiment can also be used. Further, in the embodiment described above, one having the first nonmagnetic metal film 25, the nonmagnetic insulating film 26, the giant magnetoresistive thin film 27 and the second nonmagnetic metal film 28 is used as the fixed resistance element 21. Other fixed resistance elements can also be used.
図面の簡単な説明  Brief description of the drawings
[0079] [図 1]第 1実施形態例に係る薄膜磁気抵抗素子の平面図である。 [FIG. 1] A plan view of a thin film magnetoresistive element according to a first embodiment.
[図 2]図 1の A— A断面図である。  FIG. 2 is a cross-sectional view taken along the line A-A in FIG.
[図 3]第 1実施形態例に係る薄膜磁気抵抗素子の製造方法を示すフロー図である。  FIG. 3 is a flow chart showing a method of manufacturing a thin film magnetoresistive element according to the first embodiment.
[図 4]第 2実施形態例に係る薄膜磁気抵抗素子の平面図である。  FIG. 4 is a plan view of a thin film magnetoresistive element according to a second embodiment example.
[図 5]第 2実施形態例に係る薄膜磁気抵抗素子の断面図である。  FIG. 5 is a cross-sectional view of a thin film magnetoresistive element according to a second embodiment example.
[図 6]比較例に係る薄膜磁気抵抗素子の断面図である。  FIG. 6 is a cross-sectional view of a thin film magnetoresistive element according to a comparative example.
[図 7]第 2実施形態例に係る薄膜磁気抵抗素子と比較例に係る薄膜磁気抵抗素子の 諸元を示す表図である。  FIG. 7 is a table showing the specifications of a thin film magnetoresistive element according to a second embodiment and a thin film magnetoresistive element according to a comparative example.
[図 8]第 2実施形態例に係る薄膜磁気抵抗素子の効果を比較例との比較で示すダラ フ図である。  FIG. 8 is a graph showing the effect of the thin film magnetoresistive element according to the second embodiment in comparison with a comparative example.
[図 9]第 2実施形態例に係る薄膜磁気抵抗素子の製造方法を示すフロー図である。  FIG. 9 is a flow chart showing a method of manufacturing a thin film magnetoresistive element according to a second embodiment example.
[図 10]第 3実施形態例に係る薄膜磁気抵抗素子の平面図である。  FIG. 10 is a plan view of a thin film magnetoresistive element according to a third embodiment.
[図 11]図 10の C C断面図である。  [FIG. 11] It is CC sectional drawing of FIG.
[図 12]第 3実施形態例に係る薄膜磁気抵抗素子の製造方法を示すフロー図である。  FIG. 12 is a flow chart showing a method of manufacturing a thin film magnetoresistive element according to a third embodiment.
[図 13]第 4実施形態例に係る薄膜磁気抵抗素子の要部断面図である。  FIG. 13 is a cross-sectional view of main parts of a thin-film magnetoresistive element according to a fourth embodiment;
[図 14]第 5実施形態例に係る薄膜磁気抵抗素子の要部断面図である。  FIG. 14 is a cross-sectional view of main parts of a thin-film magnetoresistive element according to a fifth embodiment;
[図 15]実施形態例に係る磁気センサの平面図である。  FIG. 15 is a plan view of a magnetic sensor according to an embodiment.
[図 16]実施形態例に係る磁気センサに適用される固定抵抗素子の要部断面図であ る。  FIG. 16 is a cross-sectional view of main parts of a fixed resistance element applied to a magnetic sensor according to an embodiment example.
[図 17]実施形態例に係る磁気センサの等価回路図である。  FIG. 17 is an equivalent circuit diagram of a magnetic sensor according to an embodiment example.
[図 18]従来例に係る薄膜磁気抵抗素子の要部断面図である。  FIG. 18 is a cross-sectional view of main parts of a thin-film magnetoresistive element according to a conventional example.
符号の説明  Explanation of sign
[0080] 1A〜: LE 薄膜磁気抵抗素子 絶縁基板 第 1軟磁性膜 第 1軟磁性膜 非磁性絶縁膜 巨大磁気抵抗薄膜 第 3の軟磁性膜 磁気センサ 固定抵抗素子 端子 [0080] 1A-: LE thin film magnetoresistive element Insulating substrate First soft magnetic film First soft magnetic film Nonmagnetic insulating film Giant magnetoresistive thin film Third soft magnetic film Magnetic sensor Fixed resistance element terminal

Claims

請求の範囲 The scope of the claims
[1] 巨大磁気抵抗薄膜と、当該巨大磁気抵抗薄膜を介して一端が電気的及び磁気的に 接続された第 1及び第 2の軟磁性膜と、前記第 1軟磁性膜及び前記第 2軟磁性膜の うちの少なくとも一方と前記巨大磁気抵抗薄膜との間に介在する非磁性絶縁膜とを 有し、前記非磁性絶縁膜は、前記巨大磁気抵抗薄膜と対面する前記軟磁性膜との 接触面積を狭める位置にあって、前記巨大磁気抵抗薄膜を介して前記第 1軟磁性 膜から前記第 2軟磁性膜に至る電路及び磁路を一方向に規制しており、前記第 1及 び第 2の軟磁性膜に信号検出用の端子部を有することを特徴とする薄膜磁気抵抗素 子。  [1] A giant magnetoresistive thin film, first and second soft magnetic films electrically and magnetically connected at one end via the giant magnetoresistive thin film, the first soft magnetic film, and the second soft magnetic film A nonmagnetic insulating film interposed between at least one of the magnetic films and the giant magnetoresistive thin film, the nonmagnetic insulating film being in contact with the soft magnetic film facing the giant magnetoresistive thin film The electric path and the magnetic path from the first soft magnetic film to the second soft magnetic film are regulated in one direction through the giant magnetoresistive thin film at a position where the area is narrowed, A thin film magnetoresistive element characterized in that the soft magnetic film of No. 2 has a terminal portion for signal detection.
[2] 前記第 1及び第 2の軟磁性膜の端面を所要のギャップを介して対向に配置し、かつ 前記第 1及び第 2の軟磁性膜の上面にそれぞれ非磁性絶縁膜を形成すると共に、前 記ギャップ内及びその周辺部分に前記巨大磁気抵抗薄膜を形成し、前記非磁性絶 縁膜により前記巨大磁気抵抗薄膜を介して前記第 1軟磁性膜から前記第 2軟磁性膜 に至る電路及び磁路を前記第 1軟磁性膜と前記第 2軟磁性膜の配列方向にのみ規 制したことを特徴とする請求項 1に記載の薄膜磁気抵抗素子。  [2] The end faces of the first and second soft magnetic films are disposed opposite to each other via a required gap, and a nonmagnetic insulating film is formed on the upper surfaces of the first and second soft magnetic films, respectively. Forming the giant magnetoresistive thin film in the gap and the periphery thereof, and connecting the first soft magnetic film to the second soft magnetic film through the giant magnetoresistive thin film by the nonmagnetic insulating film The thin film magnetoresistive element according to claim 1, wherein the magnetic path is restricted only in the arrangement direction of the first soft magnetic film and the second soft magnetic film.
[3] 前記巨大磁気抵抗薄膜上に前記非磁性絶縁膜が端面を揃えて積層され、前記第 1 軟磁性膜が一方の前記端面と前記非磁性絶縁膜の一部を覆って形成され、前記第 2軟磁性膜が他方の前記端面と前記非磁性絶縁膜の一部を覆って形成され、前記 非磁性絶縁膜により、前記巨大磁気抵抗薄膜を介して前記第 1軟磁性膜から前記第 2軟磁性膜に至る電路及び磁路を、前記巨大磁気抵抗薄膜の積層面方向にのみ規 制したことを特徴とする請求項 1に記載の薄膜磁気抵抗素子。  [3] The nonmagnetic insulating film is stacked on the giant magnetoresistive thin film with its end faces aligned, and the first soft magnetic film is formed to cover one of the end faces and a part of the nonmagnetic insulating film, A second soft magnetic film is formed covering the other end face and a part of the nonmagnetic insulating film, and the nonmagnetic insulating film allows the first soft magnetic film to be formed from the first soft magnetic film through the giant magnetoresistive thin film. 2. The thin film magnetoresistive element according to claim 1, wherein the electric path and the magnetic path leading to the soft magnetic film are restricted only in the direction of the lamination surface of the giant magnetoresistive thin film.
[4] 前記第 1軟磁性膜の上面に前記非磁性絶縁膜を形成し、当該非磁性絶縁膜の上面 及び端面並びに前記第 1軟磁性膜の端面に前記巨大磁気抵抗薄膜を形成すると共 に、一端が前記非磁性絶縁膜の端面及び前記第 1軟磁性膜の端面に形成された前 記巨大磁気抵抗薄膜と接するように前記第 2軟磁性膜を形成し、前記非磁性絶縁膜 により前記巨大磁気抵抗薄膜を介して前記第 1軟磁性膜から前記第 2軟磁性膜に至 る電路及び磁路を前記第 1軟磁性膜と前記第 2軟磁性膜の配列方向にのみ規制し たことを特徴とする請求項 1に記載の薄膜磁気抵抗素子。 [4] The nonmagnetic insulating film is formed on the upper surface of the first soft magnetic film, and the giant magnetoresistive thin film is formed on the upper surface and the end surface of the nonmagnetic insulating film and the end surface of the first soft magnetic film. Forming the second soft magnetic film such that one end thereof is in contact with the giant magnetoresistive thin film formed on the end face of the nonmagnetic insulating film and the end face of the first soft magnetic film, and the nonmagnetic insulating film The electric path and magnetic path from the first soft magnetic film to the second soft magnetic film through the giant magnetoresistive thin film are restricted only in the direction in which the first soft magnetic film and the second soft magnetic film are arranged. The thin film magnetoresistive element according to claim 1, characterized in that
[5] 前記第 2軟磁性膜が、一端が前記巨大磁気抵抗薄膜に接するように形成された前記 非磁性絶縁膜の上に積層されていることを特徴とする請求項 4に記載の薄膜磁気抵 抗素子。 [5] The thin film magnetism according to claim 4, wherein the second soft magnetic film is laminated on the nonmagnetic insulating film formed such that one end thereof is in contact with the giant magnetoresistive thin film. Resistance element.
[6] 前記第 1軟磁性膜の上面の一部に前記巨大磁気抵抗薄膜を形成し、前記第 1軟磁 性膜の上面及び端面並びに前記巨大磁気抵抗薄膜の上面の外周部分及び端面に 前記非磁性絶縁膜を形成すると共に、一端部の下面が前記非磁性絶縁膜より露出 された前記巨大磁気抵抗薄膜と接するように前記第 2軟磁性膜を形成し、前記非磁 性絶縁膜により前記巨大磁気抵抗薄膜を介して前記第 1軟磁性膜から前記第 2軟磁 性膜に至る電路及び磁路を前記巨大磁気抵抗薄膜の膜厚方向にのみ規制したこと を特徴とする請求項 1に記載の薄膜磁気抵抗素子。  [6] The giant magnetoresistive thin film is formed on a portion of the top surface of the first soft magnetic film, and the non-upper surface and the end surface of the first soft magnetic film and the outer peripheral portion and the edge of the top surface of the giant magnetoresistive thin film A magnetic insulating film is formed, and the second soft magnetic film is formed such that the lower surface of one end portion is in contact with the giant magnetoresistive thin film exposed from the nonmagnetic insulating film, and the nonmagnetic insulating film forms the giant The electric path and magnetic path from the first soft magnetic film to the second soft magnetic film through the magnetoresistive thin film are restricted only in the film thickness direction of the giant magnetoresistive thin film. Thin film magnetoresistive element.
[7] 前記巨大磁気抵抗薄膜が、絶縁体マトリクス中に強磁性微粒子を分散してなるダラ 二ユラ一磁性膜をもって形成されていることを特徴とする請求項 1乃至請求項 4のい ずれか 1項に記載の薄膜磁気抵抗素子。  7. The giant magnetoresistive thin film according to any one of claims 1 to 4, wherein the giant magnetoresistive thin film is formed of a magnetic nonmagnetic film formed by dispersing ferromagnetic fine particles in an insulator matrix. The thin film magnetoresistive element according to item 1.
[8] 前記第 1軟磁性膜と前記第 2軟磁性膜との間に形成される前記巨大磁気抵抗薄膜 の膜厚が 0. 05 m以上 1. 0 m未満であることを特徴とする薄膜磁気抵抗素子。  [8] A thin film characterized in that the film thickness of the giant magnetoresistive thin film formed between the first soft magnetic film and the second soft magnetic film is not less than 0. 05 m and not more than 1.0 m. Magnetoresistance element.
[9] 絶縁基板上に第 1軟磁性膜と第 2軟磁性膜とを所要のギャップを介して対向に形成 する工程と、  [9] A step of forming a first soft magnetic film and a second soft magnetic film opposite to each other through a required gap on an insulating substrate,
前記第 1軟磁性膜の上面及び前記第 2軟磁性膜の上面にそれぞれ非磁性絶縁膜 を形成する工程と、  Forming a nonmagnetic insulating film on the upper surface of the first soft magnetic film and the upper surface of the second soft magnetic film;
前記ギャップ内並びに前記非磁性絶縁膜の上面及び端面に巨大磁気抵抗薄膜を 形成する工程とを含むことを特徴とする薄膜磁気抵抗素子の製造方法。  Forming a giant magnetoresistive thin film in the gap and on the upper surface and the end surface of the nonmagnetic insulating film.
[10] 絶縁基板上に第 1軟磁性膜を形成する工程と、 [10] forming a first soft magnetic film on an insulating substrate;
前記第 1軟磁性膜の上面に非磁性絶縁膜を形成する工程と、  Forming a nonmagnetic insulating film on the top surface of the first soft magnetic film;
前記第 1軟磁性膜の一端面並びにこれに続く前記非磁性絶縁膜の一端面及び上 面並びに前記第 1軟磁性膜の一端面に続く前記絶縁基板上に巨大磁気抵抗薄膜を 形成する工程と、  Forming a giant magnetoresistive thin film on the insulating substrate following the one end surface of the first soft magnetic film, the one end surface and the upper surface of the nonmagnetic insulating film following it, and the one end surface of the first soft magnetic film; ,
前記絶縁基板上に、一端が前記非磁性絶縁膜の端面及び前記第 1軟磁性膜の端 面並びに前記絶縁基板上に形成された前記巨大磁気抵抗薄膜と接する第 2軟磁性 膜を形成する工程とを含むことを特徴とする薄膜磁気抵抗素子の製造方法。 A second soft magnetic film, one end of which is in contact with the end surface of the nonmagnetic insulating film, the end surface of the first soft magnetic film, and the giant magnetoresistive thin film formed on the insulating substrate, on the insulating substrate. And (e) forming a film.
[11] 絶縁基板上に第 1軟磁性膜を形成する工程と、 [11] forming a first soft magnetic film on an insulating substrate;
前記第 1軟磁性膜の上面の一端寄りに巨大磁気抵抗薄膜を形成する工程と、 前記第 1軟磁性膜の上面並びにこれに続く前記巨大磁気抵抗薄膜の端面及び上 面の一部並びに前記第 1軟磁性膜の一端面に非磁性絶縁膜を形成する工程と、 前記絶縁基板上に、一端が前記非磁性絶縁膜より露出された前記巨大磁気抵抗 薄膜と接する第 2軟磁性膜を形成する工程とを含むことを特徴とする薄膜磁気抵抗 素子の製造方法。  Forming a giant magnetoresistive thin film near one end of the top surface of the first soft magnetic film; a top surface of the first soft magnetic film and a part of an end surface and a top surface of the giant magnetoresistive thin film following the first soft magnetic film; (1) forming a nonmagnetic insulating film on one end face of the soft magnetic film, and forming a second soft magnetic film on the insulating substrate in contact with the giant magnetoresistive thin film whose one end is exposed from the nonmagnetic insulating film. And a process for producing the thin film magnetoresistive element.
[12] 巨大磁気抵抗薄膜と、当該巨大磁気抵抗薄膜を介して一端が電気的及び磁気的に 接続された第 1及び第 2の軟磁性膜と、少なくとも前記第 1軟磁性膜の表面及び前記 第 2軟磁性膜の表面の ヽずれか一方に形成され、前記巨大磁気抵抗薄膜を介して 前記第 1軟磁性膜から前記第 2軟磁性膜に至る電路及び磁路を一方向に規制する 非磁性絶縁膜とを備え、前記第 1及び第 2の軟磁性膜に信号検出用の端子部を有 する 2個の薄膜磁気抵抗素子を対向する 2辺に備え、他の対向する 2辺に固定抵抗 素子を備えたブリッジ回路カゝらなることを特徴とする薄膜磁気抵抗素子を用いた磁気 センサ。  [12] A giant magnetoresistive thin film, first and second soft magnetic films electrically and magnetically connected at one end via the giant magnetoresistive thin film, a surface of at least the first soft magnetic film, and It is formed on one side of the surface of the second soft magnetic film and restricts the electric path and magnetic path from the first soft magnetic film to the second soft magnetic film through the giant magnetoresistive thin film in one direction. Two thin film magnetoresistive elements having a magnetic insulating film and having terminal portions for signal detection on the first and second soft magnetic films are provided on two opposing sides and fixed on the other opposing two sides What is claimed is: 1. A magnetic sensor using a thin film magnetoresistive element, characterized in that it comprises a bridge circuit with a resistive element.
PCT/JP2005/021767 2004-11-29 2005-11-28 Thin film magnetic resistor element and method for manufacturing it, and magnetic sensor using thin film magnetic resistor element WO2006057379A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-344430 2004-11-29
JP2004344430A JP4953569B2 (en) 2004-11-29 2004-11-29 Thin film magnetoresistive element and magnetic sensor using thin film magnetoresistive element

Publications (1)

Publication Number Publication Date
WO2006057379A1 true WO2006057379A1 (en) 2006-06-01

Family

ID=36498112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/021767 WO2006057379A1 (en) 2004-11-29 2005-11-28 Thin film magnetic resistor element and method for manufacturing it, and magnetic sensor using thin film magnetic resistor element

Country Status (2)

Country Link
JP (1) JP4953569B2 (en)
WO (1) WO2006057379A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8963544B2 (en) 2008-09-29 2015-02-24 The Research Institute For Electric And Magnetic Materials Signal transmission device
US20180275216A1 (en) * 2017-03-27 2018-09-27 Tdk Corporation Magnetic field detection device
US11782104B2 (en) 2017-03-27 2023-10-10 Tdk Corporation Magnetic field detection device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008108387A1 (en) * 2007-03-06 2008-09-12 Alps Electric Co., Ltd. Magnetic sensor device having multiple sensing axes
JP5066576B2 (en) * 2007-10-11 2012-11-07 アルプス電気株式会社 Magnetic detector
WO2011089978A1 (en) * 2010-01-20 2011-07-28 アルプス電気株式会社 Magnetic sensor
JP2020118469A (en) * 2019-01-18 2020-08-06 艾礼富▲電▼子(深▲セン▼)有限公司Aleph Electronics(Shenzhen)Co.,Ltd Magnetic field detecting device using hall element or hall ic and proximity sensor using magnetic field detecting device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03263385A (en) * 1990-03-13 1991-11-22 Sankyo Seiki Mfg Co Ltd Magnetic sensor
JPH1187804A (en) * 1997-09-04 1999-03-30 Res Inst Electric Magnetic Alloys Thin-film magnetic field sensor
JP2001155314A (en) * 2000-09-29 2001-06-08 Hitachi Ltd Magneto-resistive effect thin film magnetic head
JP2002245607A (en) * 2000-12-14 2002-08-30 Hitachi Ltd Magneto-resistance effect head
JP2002359412A (en) * 2001-05-30 2002-12-13 Sony Corp Magnetoresistive effect element, magnetoresistive effect type magnetic sensor, magnetoresistive effect type magnetic head, and magnetic memory
JP2003060258A (en) * 2001-08-10 2003-02-28 Fujitsu Ltd Magnetic sensor and magnetic head
JP2003179283A (en) * 2001-12-12 2003-06-27 Tokai Rika Co Ltd Magnetic sensor
JP2003198000A (en) * 2001-12-21 2003-07-11 Tdk Corp Magnetoresistive effect element, thin film magnetic head, magnetic head unit, and magnetic recording and reproducing unit

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3455055B2 (en) * 1997-05-09 2003-10-06 株式会社東芝 Magnetic element, magnetic head and magnetic storage device using the same
JP3466470B2 (en) * 1998-03-18 2003-11-10 財団法人電気磁気材料研究所 Thin film magnetoresistive element
JP3697369B2 (en) * 1998-09-14 2005-09-21 株式会社東芝 Magnetic element, magnetic memory device, magnetoresistive head, magnetic head gimbal assembly, and magnetic recording system
JP2001101626A (en) * 1999-09-29 2001-04-13 Sony Corp Magneto-resistance effect element and its manufacturing method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03263385A (en) * 1990-03-13 1991-11-22 Sankyo Seiki Mfg Co Ltd Magnetic sensor
JPH1187804A (en) * 1997-09-04 1999-03-30 Res Inst Electric Magnetic Alloys Thin-film magnetic field sensor
JP2001155314A (en) * 2000-09-29 2001-06-08 Hitachi Ltd Magneto-resistive effect thin film magnetic head
JP2002245607A (en) * 2000-12-14 2002-08-30 Hitachi Ltd Magneto-resistance effect head
JP2002359412A (en) * 2001-05-30 2002-12-13 Sony Corp Magnetoresistive effect element, magnetoresistive effect type magnetic sensor, magnetoresistive effect type magnetic head, and magnetic memory
JP2003060258A (en) * 2001-08-10 2003-02-28 Fujitsu Ltd Magnetic sensor and magnetic head
JP2003179283A (en) * 2001-12-12 2003-06-27 Tokai Rika Co Ltd Magnetic sensor
JP2003198000A (en) * 2001-12-21 2003-07-11 Tdk Corp Magnetoresistive effect element, thin film magnetic head, magnetic head unit, and magnetic recording and reproducing unit

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8963544B2 (en) 2008-09-29 2015-02-24 The Research Institute For Electric And Magnetic Materials Signal transmission device
US20180275216A1 (en) * 2017-03-27 2018-09-27 Tdk Corporation Magnetic field detection device
CN108663638A (en) * 2017-03-27 2018-10-16 Tdk株式会社 Detector for magnetic field
JP2018163115A (en) * 2017-03-27 2018-10-18 Tdk株式会社 Magnetic field detection device
US11054490B2 (en) 2017-03-27 2021-07-06 Tdk Corporation Magnetic field detection device
CN108663638B (en) * 2017-03-27 2022-02-08 Tdk株式会社 Magnetic field detection device
CN114325512A (en) * 2017-03-27 2022-04-12 Tdk株式会社 Magnetic field detection device
US11782104B2 (en) 2017-03-27 2023-10-10 Tdk Corporation Magnetic field detection device
CN114325512B (en) * 2017-03-27 2024-05-28 Tdk株式会社 Magnetic field detection device

Also Published As

Publication number Publication date
JP4953569B2 (en) 2012-06-13
JP2006156661A (en) 2006-06-15

Similar Documents

Publication Publication Date Title
KR100687513B1 (en) Thin-film magnetic field sensor
JP3596600B2 (en) Magnetic sensor and method of manufacturing the same
US20030070497A1 (en) Rotation angle sensor capable of accurately detecting rotation angle
WO2006057379A1 (en) Thin film magnetic resistor element and method for manufacturing it, and magnetic sensor using thin film magnetic resistor element
JP2008197089A (en) Magnetic sensor element and method for manufacturing the same
KR20020062852A (en) Magnetic sensor and method of producing the same
US6819101B2 (en) Magnetic detector
JP3260921B2 (en) Movable body displacement detection device
US7400143B2 (en) Magnetic bias film and magnetic sensor using the same
JPH06130088A (en) Current sensor
US11002806B2 (en) Magnetic field detection device
JP2000180524A (en) Magnetic field sensor
JPS63187159A (en) Current detector
US20040248327A1 (en) Direction sensor and its production method
JP2002131407A (en) Thin film magnetic field sensor
JP2004117367A (en) Magnetic sensor and method of manufacturing the same
JPH06275887A (en) Magnetoresistance element
JP4890401B2 (en) Origin detection device
KR100792350B1 (en) Magnetic sensor and method of manufacturing thereof
KR100203612B1 (en) Magnetoresistive effect head and method of manufacturing the same
JP2586680B2 (en) Magnetoresistive element and manufacturing method thereof
JP2806549B2 (en) Magnetoresistance effect element
JPH04255276A (en) Magnetoresistive element
JPH08249617A (en) Spin valve magnetoresistance effect element
JP2000088941A (en) Magnetic field sensor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05809649

Country of ref document: EP

Kind code of ref document: A1