JP2002131407A - Thin film magnetic field sensor - Google Patents

Thin film magnetic field sensor

Info

Publication number
JP2002131407A
JP2002131407A JP2000367822A JP2000367822A JP2002131407A JP 2002131407 A JP2002131407 A JP 2002131407A JP 2000367822 A JP2000367822 A JP 2000367822A JP 2000367822 A JP2000367822 A JP 2000367822A JP 2002131407 A JP2002131407 A JP 2002131407A
Authority
JP
Japan
Prior art keywords
thin film
gap
magnetic field
soft magnetic
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000367822A
Other languages
Japanese (ja)
Other versions
JP2002131407A5 (en
JP4023997B2 (en
Inventor
Nobukiyo Kobayashi
伸聖 小林
Takeshi Yano
健 矢野
Shigehiro Onuma
繁弘 大沼
Takeshi Masumoto
健 増本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Institute of Electric and Magnetic Alloys
Research Institute for Electromagnetic Materials
Original Assignee
Research Institute of Electric and Magnetic Alloys
Research Institute for Electromagnetic Materials
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2000367822A priority Critical patent/JP4023997B2/en
Application filed by Research Institute of Electric and Magnetic Alloys, Research Institute for Electromagnetic Materials filed Critical Research Institute of Electric and Magnetic Alloys
Priority to CNB018032648A priority patent/CN100403048C/en
Priority to AT01978911T priority patent/ATE434192T1/en
Priority to DE60139017T priority patent/DE60139017D1/en
Priority to TW090126413A priority patent/TW550394B/en
Priority to KR1020027008326A priority patent/KR100687513B1/en
Priority to PCT/JP2001/009385 priority patent/WO2002037131A1/en
Priority to EP01978911A priority patent/EP1329735B1/en
Publication of JP2002131407A publication Critical patent/JP2002131407A/en
Priority to US10/225,794 priority patent/US6642714B2/en
Publication of JP2002131407A5 publication Critical patent/JP2002131407A5/ja
Application granted granted Critical
Publication of JP4023997B2 publication Critical patent/JP4023997B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Magnetic Heads (AREA)
  • Hall/Mr Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a magnetic field sensor having a simple constitution and high magnetic field detection sensitivity and no error due to temperature variation and capable of detecting the absolute value of impressed magnetic field intensity. SOLUTION: A conductive film 6 is arranged on both sides of a large magnetic field resistance thin film, an element 10 provided with electric terminals 8 and 9 is introduced and a bridge circuit consisting of an element 5 and the element 10 as two arms is formed. Although the sensitivity for a magnetic field of electric value of the element 10 is practically zero in a small magnetic field, electric resistance value variation due to a cause other than magnetic field impression is equal to the element 5. The output voltage of the bridge is proportional to the difference of the electric resistance values of the element 5 and 10 and so variation causes other than those of magnetic field impression such as temperature variation of the large magnetic resistance thin film are cancelled from the output voltage of the bridge. Thus an exact impressed magnetic field value can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、空間中の磁界を測定す
る薄膜磁界センサに関し、巨大磁気抵抗薄膜、例えばナ
ノグラニュラー巨大磁気抵抗効果薄膜を用いて、磁界を
精密に測定するための薄膜磁界センサに関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film magnetic field sensor for measuring a magnetic field in a space, and more particularly to a thin film magnetic field sensor for accurately measuring a magnetic field using a giant magnetoresistive thin film, for example, a nanogranular giant magnetoresistive thin film. It is about.

【0002】[0002]

【従来の技術】図1は、特開平11−87804号公報
および特開平11−274599に記載された磁界セン
サを示す。図中、巨大磁気抵抗薄膜と書かれた部分は、
10kOeの磁界の印加に対して、約10%の電気抵抗
変化を示す金属−絶縁体ナノグラニュラー巨大磁気抵抗
薄膜である。この例のように、巨大磁気抵抗薄膜の場合
には、一般の磁気抵抗効果材料に比して電気抵抗値の変
化幅は大であるが、前記の通り電気抵抗変化を起こさせ
るための印加磁界は大きく、巨大磁気抵抗薄膜のみを単
独で用いる場合には、一般に磁界センサとして利用され
るような小さな磁界での電気抵抗値変化は期待できな
い。図1の構成は、それを補うものである。すなわち、
軟磁性薄膜は周辺の磁束を集める役割を担っており、適
切な軟磁性薄膜の寸法を選定することにより、原理的に
は、軟磁性薄膜周辺の磁界の大小に拘わらず、巨大磁気
抵抗薄膜部分に対して軟磁性薄膜の飽和磁束密度以内
で、いかようにも大きな磁束密度を印加することが可能
である。また、図1の構成を電気抵抗の観点から見る
と、軟磁性薄膜間の電気抵抗値は、軟磁性薄膜部分と巨
大磁気抵抗薄膜部分の電気抵抗値の和になっているが、
巨大磁気抵抗薄膜の電気比抵抗の値は、軟磁性薄膜のそ
れに比して100倍以上大きいため、実質的に軟磁性薄
膜間の電気抵抗値は巨大磁気抵抗薄膜部分の値と等し
い。つまり、軟磁性薄膜間の電気抵抗値には、巨大磁気
抵抗薄膜の電気抵抗値変化が直接現れる。図2は、この
ような図1の構成の電気抵抗変化の例を示すものであ
り、数Oeの小さな磁界において約6%の電気抵抗値変
化を実現している。
2. Description of the Related Art FIG. 1 shows a magnetic field sensor described in JP-A-11-87804 and JP-A-11-274599. In the figure, the part written as giant magnetoresistive thin film is
This is a metal-insulator nanogranular giant magnetoresistive thin film that exhibits a change in electric resistance of about 10% when a magnetic field of 10 kOe is applied. As in this example, in the case of a giant magnetoresistive thin film, the change width of the electric resistance value is larger than that of a general magnetoresistive material, but as described above, the applied magnetic field for causing the electric resistance change is generated. When only a giant magnetoresistive thin film is used alone, a change in electric resistance value in a small magnetic field generally used as a magnetic field sensor cannot be expected. The configuration of FIG. 1 complements this. That is,
The soft magnetic thin film plays a role of collecting the magnetic flux around it, and by selecting appropriate dimensions of the soft magnetic thin film, in principle, regardless of the magnitude of the magnetic field around the soft magnetic thin film, the giant magnetoresistive thin film part However, it is possible to apply an extremely large magnetic flux density within the saturation magnetic flux density of the soft magnetic thin film. In addition, from the viewpoint of electric resistance, the electric resistance between the soft magnetic thin films is the sum of the electric resistance of the soft magnetic thin film portion and the giant magnetoresistive thin film portion.
Since the electric resistivity of the giant magnetoresistive thin film is 100 times or more larger than that of the soft magnetic thin film, the electric resistance between the soft magnetic thin films is substantially equal to the value of the giant magnetoresistive thin film portion. That is, a change in the electric resistance of the giant magnetoresistive thin film directly appears in the electric resistance between the soft magnetic thin films. FIG. 2 shows an example of such a change in the electric resistance of the configuration shown in FIG. 1. A change in electric resistance of about 6% is realized in a small magnetic field of several Oe.

【0003】[0003]

【発明が解決しようとする課題】しかし、本発明が目的
とする、巨大磁気抵抗薄膜の電気抵抗測定値をもとにし
て、印加された磁界の絶対値を計測する磁界センサを実
現する場合には、図1の構成では、大きな問題があるこ
とが判明した。それは、巨大磁気抵抗薄膜の温度による
電気抵抗値変化の問題である。前記の通り、図1の構成
の場合には検出したい磁界の大小に対しては選択の余地
がある。しかし、いかに感度を高めたとしても、それは
感動する磁界に対する選択であり、巨大磁気抵抗薄膜の
持つ電気抵抗変化以上の変化幅を得ることは、原理的に
できない。現実に図1の構成の場合の電気抵抗変化幅
は、他の要因を含めて更に圧縮されてほぼ6%程度とな
っている。この6%の電気抵抗値変化に対して、巨大磁
気抵抗薄膜の温度による変化があれば、その電気抵抗値
変化分だけは印加された磁界を推定する場合の不確定要
素となる。図3は温度特性の実例を示している。この図
から明らかな通り、巨大磁気抵抗薄膜の温度による抵抗
値変化は、磁界印加による抵抗変化よりむしろ大であ
り、図1の構成のままでは、磁界の絶対値を計測する磁
界センサとしては利用が難しい。
However, the present invention aims at realizing a magnetic field sensor for measuring an absolute value of an applied magnetic field based on a measured electric resistance of a giant magnetoresistive thin film. It has been found that the configuration of FIG. 1 has a serious problem. This is a problem of a change in electric resistance value of the giant magnetoresistive thin film depending on the temperature. As described above, in the case of the configuration shown in FIG. 1, there is room to select the magnitude of the magnetic field to be detected. However, no matter how high the sensitivity is, it is a choice for the magnetic field to be impressed, and in principle, it is impossible to obtain a variation width larger than the electrical resistance variation of the giant magnetoresistive thin film. Actually, the electric resistance change width in the case of the configuration of FIG. 1 is further reduced to about 6% including other factors. If there is a change due to the temperature of the giant magnetoresistive thin film with respect to the electric resistance change of 6%, only the electric resistance change becomes an uncertain factor in estimating the applied magnetic field. FIG. 3 shows an example of the temperature characteristic. As is clear from this figure, the resistance change of the giant magnetoresistive thin film due to the temperature is larger than the resistance change caused by the application of the magnetic field, and the structure shown in FIG. Is difficult.

【課題を解決するための手段】[Means for Solving the Problems]

【0004】本発明の特徴とするところは、下記の点に
ある。第1発明は、所定の空隙長を持つ空隙によって2
分割され、所定の膜厚および空隙に接する所定の幅を持
つ軟磁性薄膜1、その空隙を埋めるように形成された巨
大磁気抵抗薄膜2、2分割された軟磁性薄膜1の各々に
電気的に接続された端子3および端子4、前記空隙長と
実質的に等しい空隙長を持つ空隙によって2分割され、
前記膜厚と実質的に等しい膜厚、および前記空隙に接す
る幅と実質的に等しい幅を持つ導体膜6、その空隙を埋
めるように形成された巨大磁気抵抗薄膜7、および2分
割された導体膜6の各々に電気的に接続された端子8お
よび端子9からなり、端子3および端子4と端子8およ
び端子9は、各々ブリッジ回路の2つのアームを形成す
ることを特徴とする薄膜磁界センサに関する。
The features of the present invention are as follows. According to the first invention, a gap having a predetermined gap length has
The divided soft magnetic thin film 1 having a predetermined thickness and a predetermined width in contact with a gap, a giant magnetoresistive thin film 2 formed so as to fill the gap, and a soft magnetic thin film 1 divided into two sections are electrically connected to each other. The connected terminals 3 and 4 are divided into two by a gap having a gap length substantially equal to the gap length,
A conductor film 6 having a thickness substantially equal to the film thickness and a width substantially equal to the width in contact with the gap, a giant magnetoresistive thin film 7 formed so as to fill the gap, and two divided conductors A thin-film magnetic field sensor comprising a terminal 8 and a terminal 9 electrically connected to each of the membranes 6, wherein the terminals 3 and 4 and the terminals 8 and 9 each form two arms of a bridge circuit. About.

【0005】第2発明は、所定の空隙長を持つ空隙によ
って2分割され、所定の膜厚および空隙に接する所定の
幅を持つ軟磁性薄膜1、その空隙を埋めるように形成さ
れた巨大磁気抵抗薄膜2、2分割された軟磁性薄膜1の
各々に電気的に接続された端子3および端子4、前記空
隙長と実質的に等しい空隙長を持つ空隙によって2分割
され、前記膜厚と実質的に等しい膜厚および前記空隙に
接する幅と実質的に等しい幅を持つ導体膜6、その空隙
を埋めるように形成された巨大磁気抵抗薄膜7、2分割
された導体膜6の各々に電気的に接続された端子8およ
び端子9、前記空隙長と実質的に等しい空隙長を持つ空
隙によって2分割され、前記膜厚と実質的に等しい膜厚
および前記空隙に接する幅と実質的に等しい幅を持つ軟
磁性薄膜21、その空隙を埋めるように形成された巨大
磁気抵抗薄膜22、2分割された軟磁性薄膜21の各々
に電気的に接続された端子23および端子24、前記空
隙長と実質的に等しい空隙長を持つ空隙によって2分割
され、前記膜厚と実質的に等しい膜厚および前記空隙に
接する幅と実質的に等しい幅を持つ導体膜26、その空
隙を埋めるように形成された巨大磁気抵抗薄膜27、お
よび2分割された導体膜26の各々に電気的に接続され
た端子28および端子29からなり、端子3および端子
4、端子8および端子9、端子23および端子24、端
子28および端子29は、各々ブリッジ回路の4つのア
ームを形成することを特徴とする薄膜磁界センサに関す
る。
The second invention is a soft magnetic thin film 1 divided into two by a gap having a predetermined gap length, having a predetermined thickness and a predetermined width in contact with the gap, and a giant magnetoresistance formed to fill the gap. The thin film 2, the terminal 3 and the terminal 4 electrically connected to each of the divided soft magnetic thin film 1, and a gap having a gap length substantially equal to the gap length are divided into two, and the thickness is substantially equal to the film thickness. A conductive film 6 having a thickness equal to that of the conductive film 6 and a width substantially equal to the width in contact with the gap, a giant magnetoresistive thin film 7 formed so as to fill the gap, and electrically connected to each of the two divided conductive films 6. The connected terminals 8 and 9 are divided into two by a gap having a gap length substantially equal to the gap length, and have a thickness substantially equal to the film thickness and a width substantially equal to the width in contact with the gap. Soft magnetic thin film 21 A giant magnetoresistive thin film 22 formed to fill the gap, terminals 23 and 24 electrically connected to each of the two divided soft magnetic thin films 21, and a gap having a gap length substantially equal to the gap length. A conductive film 26 having a thickness substantially equal to the film thickness and a width substantially equal to the width in contact with the gap, a giant magnetoresistive thin film 27 formed to fill the gap, and 2 A terminal 28 and a terminal 29 are electrically connected to each of the divided conductor films 26, and the terminals 3 and 4, the terminals 8 and 9, the terminals 23 and 24, the terminals 28 and 29 The invention relates to a thin-film magnetic field sensor characterized by forming four arms of a circuit.

【0006】第3発明は、所定の空隙長を持つ空隙によ
って2分割され、所定の膜厚および空隙に接する所定の
幅を持つ軟磁性薄膜1、その空隙を埋めるように形成さ
れた巨大磁気抵抗薄膜2、2分割された軟磁性薄膜1の
各々に電気的に接続された端子3および端子4、前記空
隙長と実質的に等しい空隙長を持つ空隙によって2分割
され、前記膜厚と実質的に等しい膜厚、および前記空隙
に接する幅と実質的に等しい幅を持つ軟磁性薄膜31、
その空隙を埋めるように形成された巨大磁気抵抗薄膜3
2、および2分割された軟磁性薄膜31の各々に電気的
に接続された端子33および端子34からなり、端子3
および端子4、端子33および端子34は、各々ブリッ
ジ回路の2つのアームを形成し、且つまた軟磁性薄膜3
1の平面上の面積は、軟磁性薄膜1の平面上の面積に比
して1/10以下であることを特徴とする薄膜磁界セン
サに関する。
A third invention is a soft magnetic thin film 1 divided into two by a gap having a predetermined gap length, having a predetermined thickness and a predetermined width in contact with the gap, and a giant magnetoresistance formed to fill the gap. The thin film 2, the terminal 3 and the terminal 4 electrically connected to each of the divided soft magnetic thin film 1, and a gap having a gap length substantially equal to the gap length are divided into two, and the thickness is substantially equal to the film thickness. A soft magnetic thin film 31 having a thickness equal to and a width substantially equal to the width in contact with the gap;
Giant magnetoresistive thin film 3 formed to fill the void
A terminal 33 and a terminal 34 electrically connected to each of the two and the two divided soft magnetic thin films 31;
And terminal 4, terminal 33 and terminal 34 each form two arms of a bridge circuit, and
1 relates to a thin-film magnetic field sensor characterized in that the area on the plane is 1/10 or less of the area on the plane of the soft magnetic thin film 1.

【0007】第4発明は、空隙に接する線と並行な線に
沿って測った軟磁性薄膜1の幅寸法の少なくとも一部
は、その軟磁性薄膜1が空隙に接する線の幅よりも大で
あることを特徴とする第1発明ないし第3発明のいずれ
かに記載の薄膜磁界センサに関する。
According to a fourth aspect of the present invention, at least a part of the width dimension of the soft magnetic thin film 1 measured along a line parallel to the line contacting the gap is larger than the width of the line where the soft magnetic thin film 1 contacts the gap. The present invention relates to a thin-film magnetic field sensor according to any one of the first to third inventions.

【0008】第5本発明は、軟磁性薄膜1の磁気特性は
一軸異方性であって、その磁化容易軸方向は、実質的
に、空隙に接する線と並行な方向であることを特徴とす
る第1発明ないし第3発明のいずれかに記載の薄膜磁界
センサに関する。
According to a fifth aspect of the present invention, the magnetic properties of the soft magnetic thin film 1 are uniaxially anisotropic, and the direction of the axis of easy magnetization is substantially parallel to a line in contact with the air gap. The present invention relates to a thin-film magnetic field sensor according to any one of the first to third inventions.

【作用】[Action]

【0009】本発明の作用は下記の通りである。第一発
明の構成は、巨大磁気抵抗薄膜の持つ電気抵抗値変化の
中で、温度、湿度および経時的な原因による変化を除外
し、磁界による変化のみを抽出することによって、精度
の高い磁界センサを実現するものである。すなわち、巨
大磁気抵抗薄膜および構造を同一とする2系統の素子に
よるブリッジを形成し、その中の一方の素子は巨大磁気
抵抗薄膜の両側に軟磁性薄膜を配置することによって磁
界に対する感度を高め、他方の素子は巨大磁気抵抗薄膜
をそのまま用いることにより磁界に対する感度を実質的
に零としている。ブリッジの出力電圧はこれら素子の電
気抵抗値の差に比例するものであるから、結果的に、巨
大磁気抵抗薄膜の持つ温度変化を始めその他の湿度、経
時変化等の変動要因は出力電圧より除外され、磁界によ
る電気抵抗値変化のみが出力に現れる。そのため磁界の
絶対値の検出が精度良く実現可能になり、また同時に極
めて小さな磁界の検出も可能になる。
The operation of the present invention is as follows. The configuration of the first invention is a high-precision magnetic field sensor by extracting only changes due to a magnetic field, excluding changes due to temperature, humidity, and time-dependent factors in changes in electric resistance of a giant magnetoresistive thin film. Is realized. In other words, a bridge is formed by a giant magnetoresistive thin film and two systems of elements having the same structure, and one of the two elements is arranged with soft magnetic thin films on both sides of the giant magnetoresistive thin film to increase sensitivity to a magnetic field. The other element has a sensitivity to a magnetic field of substantially zero by using a giant magnetoresistive thin film as it is. Since the output voltage of the bridge is proportional to the difference in the electrical resistance of these elements, consequently the temperature change of the giant magnetoresistive thin film, as well as other factors such as humidity and aging, are excluded from the output voltage. As a result, only a change in the electric resistance due to the magnetic field appears in the output. Therefore, the absolute value of the magnetic field can be accurately detected, and at the same time, an extremely small magnetic field can be detected.

【0010】第2発明の構成は、さらに精度が高く、且
つ磁界感度の高い薄膜磁界センサを実現するものであ
る。すなわち、巨大磁気抵抗薄膜の両側に軟磁性薄膜を
配置した素子と、巨大磁気抵抗薄膜の両側に導体膜を配
置した素子を、各々2個用いてブリッジ回路を構成する
ことによって、ブリッジ出力電圧は、第1発明の構成よ
りも更に2倍大きくすることが可能となり、より精度が
高く、且つより磁界感度の高い薄膜磁界センサが実現可
能となる。
The structure of the second invention realizes a thin film magnetic field sensor having higher accuracy and higher magnetic field sensitivity. In other words, the bridge output voltage can be reduced by forming a bridge circuit using two elements each having a soft magnetic thin film disposed on both sides of the giant magnetoresistive thin film and two elements each having a conductor film disposed on both sides of the giant magnetoresistive thin film. Therefore, the thickness can be made twice as large as that of the configuration of the first invention, and a thin-film magnetic field sensor with higher accuracy and higher magnetic field sensitivity can be realized.

【0011】第3発明の構成は、利用する材料の観点か
ら、薄膜磁界センサの精度を更に高めるものである。す
なわち、ブリッジを構成する素子中の巨大磁気抵抗薄膜
部分の材質・構造が全く同じでも、巨大磁気抵抗薄膜を
挟んでいる材料が異なる場合には、接触電位差、あるい
は熱起電力等により微小な電気抵抗値の違いが出る場合
がある。第3発明の構成によれば、これ等の問題を含め
て、2つの構造の磁界印加による抵抗変化以外の要因に
よる巨大磁気抵抗薄膜の電気抵抗値変化を、厳密な意味
で相殺することができ、これにより更に精度の高い薄膜
磁界センサが実現できる。
The structure of the third invention is to further enhance the accuracy of the thin-film magnetic field sensor from the viewpoint of the material used. In other words, even if the material and structure of the giant magnetoresistive thin film part in the elements constituting the bridge are exactly the same, if the material sandwiching the giant magnetoresistive thin film is different, the minute electric potential due to the contact potential difference or the thermoelectromotive force etc. There may be differences in resistance values. According to the configuration of the third invention, it is possible to strictly cancel the electric resistance change of the giant magnetoresistive thin film due to factors other than the resistance change due to the application of the magnetic field of the two structures, including these problems. Thus, a more accurate thin-film magnetic field sensor can be realized.

【0012】第4発明の構成は、構造の面から、より小
型で高精度の薄膜磁界センサを実現するものである。磁
界センサとしての感度を高く、しかも、形状的に小型化
するためには、巨大磁気抵抗薄膜の両側に軟磁性薄膜を
配置した構造において、軟磁性薄膜の有効面積を一定と
した上で、軟磁性薄膜部分の小型化を計る必要がある。
第4発明の構成により、感度が高く、また形状的により
小型の磁界センサの実現が可能になる。
The structure of the fourth invention realizes a smaller and more accurate thin film magnetic field sensor in terms of structure. In order to increase the sensitivity as a magnetic field sensor and reduce the size, the soft magnetic thin film is arranged on both sides of the giant magnetoresistive thin film. It is necessary to reduce the size of the magnetic thin film portion.
According to the configuration of the fourth invention, it is possible to realize a magnetic field sensor having high sensitivity and a smaller shape.

【0013】第5発明の構成は、残留磁化の面から薄膜
磁界センサの精度を、さらに高めるものである。つま
り、印加された磁界の計測を完了し、外部磁界が取り去
られた後で、軟磁性薄膜中に磁化が残留する場合には、
この残留磁化は、巨大磁気抵抗薄膜に対して外部磁界印
加と同様の作用を及ぼすことになり、磁界の検出精度の
低下を来たす。このため、第5発明の構成では、軟磁性
薄膜を巨大磁気抵抗薄膜の検出磁界と直交する方向に磁
化させることにより、軟磁性薄膜中の残留磁化を減らし
て、より高精度に磁界を計測することができる。
A fifth aspect of the present invention is to further enhance the accuracy of the thin-film magnetic field sensor in view of the residual magnetization. In other words, after the measurement of the applied magnetic field is completed and the magnetization remains in the soft magnetic thin film after the external magnetic field is removed,
The remanent magnetization has the same effect on the giant magnetoresistive thin film as the application of an external magnetic field, resulting in a decrease in magnetic field detection accuracy. For this reason, in the configuration of the fifth invention, the soft magnetic thin film is magnetized in a direction orthogonal to the detection magnetic field of the giant magnetoresistive thin film, thereby reducing the residual magnetization in the soft magnetic thin film and measuring the magnetic field with higher accuracy. be able to.

【0014】[0014]

【実施例】以下、図面に基づき、本発明の種々の実施形
態につき説明する。尚、各図において同一の要素は同じ
番号を付してあり、説明の重複を避けている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Various embodiments of the present invention will be described below with reference to the drawings. In each of the drawings, the same elements are denoted by the same reference numerals, to avoid duplication of description.

【0015】[実施例1]図4は、本発明の第1の実施
例を示す。この図および以降の図では、理解を助けるた
め、巨大磁気抵抗薄膜の部分を点々の印、軟磁性薄膜の
部分を斜め線、導体薄膜部分を白ぬき、として区別して
いる。5は、軟磁性薄膜1、巨大磁気抵抗薄膜2および
電気端子3、4を含めた素子を表しており、公知技術で
ある図1の構成と同一である。素子5の作用についての
記述は本文中の
[First Embodiment] FIG. 4 shows a first embodiment of the present invention. In this figure and the following figures, the giant magnetoresistive thin film portion is distinguished by dots, the soft magnetic thin film portion is indicated by oblique lines, and the conductor thin film portion is blanked out for easy understanding. Reference numeral 5 denotes an element including the soft magnetic thin film 1, the giant magnetoresistive thin film 2, and the electric terminals 3 and 4, which is the same as the configuration shown in FIG. A description of the operation of element 5 is given in the text.

【0002】に述べたので、ここでは重複を避けて本発
明の具体内容の記述のみを行う。1は軟磁性薄膜で、1
5kG以上の高い飽和磁束密度と、0.5Oe以下の低
い保磁力を持つパーマロイである。その他の材料を含め
て、軟磁性薄膜1の具体的な材料名およびその代表特性
は表1に示す。
As described above, only the specific contents of the present invention will be described here without duplication. 1 is a soft magnetic thin film
It is a permalloy having a high saturation magnetic flux density of 5 kG or more and a low coercive force of 0.5 Oe or less. Table 1 shows specific material names and typical characteristics of the soft magnetic thin film 1 including other materials.

【0016】[0016]

【表1】 [Table 1]

【0017】軟磁性薄膜1の厚さはt=1μmである。
軟磁性薄膜1には、空隙長gで示した空隙が形成されて
いる。空隙長gの寸法はg=1μmである。空隙に接す
る軟磁性薄膜1の幅wの寸法はw=100μmである。
その軟磁性薄膜1の空隙を埋めるように巨大磁気抵抗薄
膜2が形成されている。巨大磁気抵抗薄膜2の材質は、
Co391447である。この材料を含め、巨大磁
気抵抗薄膜2として可能な材料名およびその代表特性は
表2に示す。
The thickness of the soft magnetic thin film 1 is t = 1 μm.
In the soft magnetic thin film 1, a gap indicated by a gap length g is formed. The dimension of the gap length g is g = 1 μm. The dimension of the width w of the soft magnetic thin film 1 in contact with the gap is w = 100 μm.
A giant magnetoresistive thin film 2 is formed so as to fill the gap of the soft magnetic thin film 1. The material of the giant magnetoresistive thin film 2 is
Co 39 Y 14 O 47 . Table 2 shows the names of materials that can be used as the giant magnetoresistive thin film 2 including these materials and their typical characteristics.

【0018】[0018]

【表2】 [Table 2]

【0019】ここでの軟磁性薄膜1の厚さt、空隙長g
および空隙に接する軟磁性薄膜1の幅wの寸法について
は、磁気的な条件と電気的な条件の両面からの要求され
る特性を満たすように選択する必要があるが、本発明の
特徴は広い範囲に亙って目的とする性能を得る事にあ
る。すなわち、寸法の選択範囲は大変広い。磁気的な条
件としては、空隙長gが広すぎる場合、例えば軟磁性薄
膜の厚さtの数倍以上の場合には、軟磁性薄膜1が周辺
の磁束を集めて空隙部分に磁束を十分に集中させる事が
出来ない。一方、軟磁性薄膜の厚さtについては、機能
上はいかに厚くても本発明の機能を発揮するが、軟磁性
薄膜を形成する装置の持つ単位時間当たりの堆積能力、
あるいは軟磁性薄膜が基板に形成された場合の応力によ
り、軟磁性薄膜が基板から剥離するなど、現実的な制約
条件で厚さの限界は決まってくる。逆に軟磁性薄膜の厚
さtが10nm以下の場合には、軟磁性薄膜の磁気特性
が劣化するので、実質的に10nmが厚さの下限であ
る。電気的な条件としては、軟磁性薄膜1の幅wは、磁
気センサの小型化および電気抵抗の絶対値として周辺回
路が扱いやすい値、例えば数10kΩから数100MΩ
の範囲となることを勘案して設定する必要がある。電気
抵抗の絶対値は、巨大磁気抵抗薄膜の電気比抵抗および
空隙長gに比例し、軟磁性薄膜の幅wおよび軟磁性薄膜
の厚さtに反比例するので、比較的設計での自由度は大
であり、具体的な軟磁性薄膜の幅gは、最大数mmから
最小数μmの広い範囲での実現の可能性がある。
Here, the thickness t of the soft magnetic thin film 1 and the gap length g
The dimension of the width w of the soft magnetic thin film 1 in contact with the gap needs to be selected so as to satisfy the required characteristics from both the magnetic and electrical conditions, but the features of the present invention are wide. The objective is to obtain the desired performance over a range. That is, the range of dimension selection is very wide. As a magnetic condition, when the air gap length g is too wide, for example, when the thickness t of the soft magnetic thin film is several times or more, the soft magnetic thin film 1 collects the magnetic flux around and sufficiently supplies the magnetic flux to the air gap. I can't concentrate. On the other hand, as for the thickness t of the soft magnetic thin film, the function of the present invention is exhibited no matter how thick the function is, but the deposition capability per unit time possessed by the apparatus for forming the soft magnetic thin film,
Alternatively, the thickness of the soft magnetic thin film is formed on the substrate, and the thickness of the soft magnetic thin film is separated from the substrate. Conversely, if the thickness t of the soft magnetic thin film is 10 nm or less, the magnetic properties of the soft magnetic thin film deteriorate, so that the lower limit of the thickness is substantially 10 nm. As the electrical conditions, the width w of the soft magnetic thin film 1 is a value that is easy to handle by peripheral circuits as the absolute value of the miniaturization of the magnetic sensor and the electric resistance, for example, several tens kΩ to several hundreds MΩ
It is necessary to set in consideration of the range. The absolute value of the electric resistance is proportional to the electric resistivity and the gap length g of the giant magnetoresistive thin film, and is inversely proportional to the width w of the soft magnetic thin film and the thickness t of the soft magnetic thin film. The width g of the soft magnetic thin film is large, and there is a possibility that the width g can be realized in a wide range from a maximum of several mm to a minimum of several μm.

【0020】空隙を挟んで2分割された両側の軟磁性薄
膜1には、各々Cuによる電気端子3および4が接続さ
れている。この電気端子部分の材質は、磁気的には大き
な影響を持たないので、電気的な導通性を中心として決
定して良く、軟磁性薄膜の材質を共通に利用することも
可能であり、また実際に外部との接続に供せられる部分
にのみ、表面にCu膜を形成すること等も可能である。
5は軟磁性薄膜1、巨大磁気抵抗薄膜2、ならびに電気
端子3および4を含めた素子を表している。電気端子3
と4の間の電気抵抗値をRaと表す。図5は、軟磁性薄
膜1の長さ寸法Lをパラメータとして、素子5の印加磁
界と電気抵抗値変化の関係の一例を示したものであり、
長さ寸法Lを大きくすることにより、より小さな磁界に
おいて感動させることが可能であることが分かる。図6
は素子5の温度による抵抗値変化を示したものである。
図5の印加磁界と電気抵抗値との関係は、印加磁界の絶
対値を取れば、ある大きさの磁界まではほぼリニアな変
化になっている。また、図6の温度と電気抵抗値の変化
について、室温付近でリニアな関係とみなす。そこで、
印加磁界零で、且つ温度22℃の場合の抵抗値をR
し、印加磁界の絶対値をH、温度をTとすれば、抵抗値
Raは式1のように表現できる。
Electric terminals 3 and 4 made of Cu are connected to the soft magnetic thin films 1 on both sides which are divided into two with a gap therebetween. Since the material of the electric terminal portion does not have a large magnetic effect, the material may be determined based on electrical conductivity, and the material of the soft magnetic thin film can be commonly used. It is also possible to form a Cu film on the surface only in a portion provided for connection with the outside.
Reference numeral 5 denotes an element including the soft magnetic thin film 1, the giant magnetoresistive thin film 2, and the electric terminals 3 and 4. Electric terminal 3
The electric resistance value between and 4 is denoted by Ra. FIG. 5 shows an example of the relationship between the applied magnetic field of the element 5 and the change in the electric resistance value, using the length dimension L of the soft magnetic thin film 1 as a parameter.
It can be seen that by increasing the length L, it is possible to impress with a smaller magnetic field. FIG.
Shows a change in resistance value of the element 5 depending on the temperature.
The relationship between the applied magnetic field and the electric resistance value in FIG. 5 shows that the absolute value of the applied magnetic field changes almost linearly up to a magnetic field of a certain magnitude. The change in the electric resistance value with the temperature in FIG. 6 is regarded as a linear relationship near room temperature. Therefore,
If the resistance value when the applied magnetic field is zero and the temperature is 22 ° C. is R 0 , the absolute value of the applied magnetic field is H, and the temperature is T, the resistance value Ra can be expressed as Expression 1.

【0021】[0021]

【数1】 Ra=R(1+rH+r(T−25)) (1) ここに、rは電気抵抗値の印加磁界による変化の微係
数、rは電気抵抗値の温度係数である。表3は、軟磁
性薄膜の各長さ寸法Lについてrの値および式1が成
立する磁界Hの範囲、およびrの値を示している。
Ra = R 0 (1 + r M H + r T (T−25)) (1) where r M is a differential coefficient of a change in electric resistance due to an applied magnetic field, and r T is a temperature coefficient of the electric resistance. is there. Table 3 shows the value of r M , the range of the magnetic field H where Expression 1 is satisfied, and the value of r T for each length L of the soft magnetic thin film.

【0022】[0022]

【表3】 [Table 3]

【0023】6は、軟磁性薄膜1と実質的に同じ厚さ
t′を持った導体膜である。導体膜6の材料はCuであ
る。Cu材料は、極く弱い反磁性を示すがほとんど磁気
的には透明とみなされる。導体膜6には軟磁性薄膜1の
空隙長gと実質的に等しい寸法の空隙長g′が形成され
ている。空隙に接する導体膜6の幅w′は、実質的に空
隙に接する軟磁性薄膜1の幅wと同一である。素子5の
Lに対応する長さ寸法は任意である。その導体膜6の空
隙を埋めるように、巨大磁気抵抗薄膜7が形成されてい
る。巨大磁気抵抗薄膜7の材質は、巨大磁気抵抗薄膜2
と同一である。空隙を挟んで2分割された両側の導体膜
6には、各々電気端子8および9が接続されている。1
0は、導体膜6、巨大磁気抵抗薄膜7、および電気端子
8、9を含めた素子を表している。電気端子8、9間の
電気抵抗をRbと表す。
Reference numeral 6 denotes a conductor film having substantially the same thickness t 'as the soft magnetic thin film 1. The material of the conductor film 6 is Cu. The Cu material shows extremely weak diamagnetism, but is almost magnetically regarded as transparent. The conductor film 6 has a gap length g ′ substantially equal to the gap length g of the soft magnetic thin film 1. The width w 'of the conductor film 6 in contact with the gap is substantially the same as the width w of the soft magnetic thin film 1 in contact with the gap. The length dimension corresponding to L of the element 5 is arbitrary. A giant magnetoresistive thin film 7 is formed so as to fill the voids in the conductor film 6. The material of the giant magnetoresistive thin film 7 is the giant magnetoresistive thin film 2
Is the same as Electrical terminals 8 and 9 are respectively connected to the conductor films 6 on both sides which are divided into two with the gap therebetween. 1
0 represents an element including the conductor film 6, the giant magnetoresistive thin film 7, and the electric terminals 8 and 9. The electric resistance between the electric terminals 8 and 9 is represented by Rb.

【0024】素子10については、導体膜6が磁気的な
作用を持たないため、巨大磁気抵抗薄膜7に印加される
磁束密度は、巨大磁気抵抗薄膜7の置かれる環境の磁束
密度そのものである。図7は、印加磁界によるRbの変
化を示すもので、実質的に印加磁界による電気抵抗値変
化は零とみなされる。一方、温度に対する変化として
は、図6に示す温度係数と同じ温度係数を示す。従っ
て、式1に対応して素子10の場合の抵抗値Rbの式を
示すと、式2のようになる。
In the element 10, since the conductor film 6 has no magnetic effect, the magnetic flux density applied to the giant magnetoresistive thin film 7 is the magnetic flux density of the environment where the giant magnetoresistive thin film 7 is placed. FIG. 7 shows the change in Rb due to the applied magnetic field, and the change in the electric resistance value due to the applied magnetic field is regarded as substantially zero. On the other hand, as the change with respect to the temperature, the same temperature coefficient as that shown in FIG. 6 is shown. Therefore, the expression of the resistance value Rb in the case of the element 10 corresponding to Expression 1 is as shown in Expression 2.

【0025】[0025]

【数2】 Rb=R(1+r(T−25)) (2)Rb = R 0 (1 + r T (T−25)) (2)

【0026】11は抵抗値Rcを持つ第1の抵抗器であ
り、第1の抵抗器11には電気端子12および13が接
続されている。14は抵抗値Rdを持つ第2の抵抗器で
ある。第2の抵抗器14には、電気端子15および16
が接続されている。第1の抵抗器と第2の抵抗器につい
ては、それ等の間で抵抗値およびその温度係数は、精密
に一致したものを利用する。式1、2と同様にして、抵
抗の温度係数をr′とすれば、式3および4を得る。
Reference numeral 11 denotes a first resistor having a resistance value Rc. The first resistor 11 is connected to electric terminals 12 and 13. Reference numeral 14 denotes a second resistor having a resistance value Rd. The second resistor 14 has electrical terminals 15 and 16
Is connected. As for the first resistor and the second resistor, those having a precisely matched resistance value and temperature coefficient between them are used. Assuming that the temperature coefficient of the resistance is r T ′ in the same manner as in Expressions 1 and 2, Expressions 3 and 4 are obtained.

【0027】[0027]

【数3】 Rc=R(1+r′(T−25)) (3)Rc = R 0 (1 + r T ′ (T−25)) (3)

【0028】[0028]

【数4】 Rd=R(1+r′(T−25)) (4)Equation 4] Rd = R 0 (1 + r T '(T-25)) (4)

【0029】端子4、8および20間、端子3、12お
よび17間、端子9、16および18間、端子13、1
5および19間は電気的に相互接続されている。図8
は、図4の構成を電気的等価回路として表したものであ
り、全体として一つのブリッジ回路を形成している。素
子5および素子10は、ブリッジ回路の2つのアームを
形成している。端子17と18間には駆動電圧が印加さ
れ、端子19、20間にはブリッジの出力電圧が現れ
る。図8の回路において、端子17、18間に電圧V
を印加した場合に、端子19、20間に現れる電圧V
は、式5で表される。
Between terminals 4, 8 and 20, between terminals 3, 12 and 17, between terminals 9, 16 and 18, terminals 13, 1
5 and 19 are electrically interconnected. FIG.
Represents the configuration of FIG. 4 as an electrical equivalent circuit, and forms one bridge circuit as a whole. Element 5 and element 10 form the two arms of the bridge circuit. A drive voltage is applied between the terminals 17 and 18, and an output voltage of the bridge appears between the terminals 19 and 20. In the circuit of FIG. 8, the voltage V 0 is applied between the terminals 17 and 18.
Is applied, the voltage V 2 that appears between the terminals 19 and 20
Is represented by Expression 5.

【0030】[0030]

【数5】 V=(RaRd−RbRc)V/((Ra+Rb)・(Rc+Rd)) (5)V 2 = (RaRd−RbRc) V 0 / ((Ra + Rb) · (Rc + Rd)) (5)

【0031】式5のRa、Rb、Rc、Rdに各々式
1、2、3、4を代入し、2次の微小量を省略すれば、
の温度に関係する項はすべて相殺され、式6を得
る。
By substituting Equations 1, 2, 3, and 4 for Ra, Rb, Rc, and Rd in Equation 5, respectively, and omitting the second-order minute amount,
Term relating to the temperature of the V 2 are all offset to obtain Equation 6.

【0032】[0032]

【数6】 V=rHV/4 (6)[6] V 2 = r T HV 0/ 4 (6)

【0033】ここに、V、r、Rはあらかじめ決
定できる定数であり、Vの測定値を得れば、目的とす
る磁界は式7のように決定できる。
Here, V 0 , r T , and R 0 are constants that can be determined in advance. If a measured value of V 2 is obtained, the target magnetic field can be determined as shown in Expression 7.

【0034】[0034]

【数7】 H=4V/(V) (7)H = 4V 2 / (V 0 r T ) (7)

【0035】ブリッジ回路出力Vとして、Vに対し
てどの程度のレベルまで安定に検出可能かは、ブリッジ
回路出力電圧の増幅器の安定性等で決定されるが、一般
にV/V=1x10−5は容易に実現可能である。
従って、式7において、V/V=1x10−5およ
び表3のrの値を代入すれば、本発明によって可能な
磁界の分解能を得る。結果は表4の通りである。
The level to which the bridge circuit output V 2 can be stably detected with respect to V 0 is determined by the stability of the amplifier of the bridge circuit output voltage, etc. In general, V 2 / V 0 = 1 × 10 −5 is easily feasible.
Therefore, in Expression 7, if V 2 / V 0 = 1 × 10 −5 and the value of r T in Table 3 are substituted, the resolution of the magnetic field possible by the present invention is obtained. Table 4 shows the results.

【0036】[0036]

【表4】 [Table 4]

【0037】表4の分解能は、従来技術のFluxGa
teセンサの分解能に匹敵する。このFluxGate
センサは、磁性材料の飽和特性を利用するもので、セン
サ構造としてもまた周辺回路の構成としてもかなり複雑
でまた大型のものである。本発明の構成は、これらの磁
界センサに比して極めて簡単、且つ小型軽量であり、本
発明の効用は極めて高い。
The resolution shown in Table 4 is based on the flux Ga of the prior art.
Comparable with the resolution of the te sensor. This FluxGate
The sensor uses the saturation characteristics of a magnetic material, and is considerably complicated and large in both the sensor structure and the configuration of the peripheral circuit. The configuration of the present invention is extremely simple, small, and lightweight as compared with these magnetic field sensors, and the utility of the present invention is extremely high.

【0038】[実施例2−1]図9は、本発明の第2の
実施例の一つを示す。図中、各々、素子25は、図4で
述べた素子5と、素子30は素子10と同等の素子であ
る。全体の回路としては、素子25が第1の抵抗器を、
素子30が第2の抵抗器をそれぞれ置き換えた形になっ
ている。図9を等価回路として表せば、全体として図8
に示した回路と同じ回路となるが、図9の場合は、Rd
=RaおよびRc=Rbが成立している。式6と同じく
式5に、式1、2を代入すれば、式8を得る。
[Embodiment 2-1] FIG. 9 shows a second embodiment of the present invention. In the drawing, the element 25 is an element equivalent to the element 5 described in FIG. 4, and the element 30 is an element equivalent to the element 10. As a whole circuit, the element 25 is a first resistor,
The element 30 is in the form of replacing each of the second resistors. If FIG. 9 is expressed as an equivalent circuit, FIG.
The circuit shown in FIG. 9 is the same as that shown in FIG.
= Ra and Rc = Rb hold. Equation 8 is obtained by substituting Equations 1 and 2 into Equation 5 as in Equation 6.

【0039】[0039]

【数8】 V=rHV/2 (8)[Equation 8] V 2 = r T HV 0/ 2 (8)

【0040】ここに式8の値は式6の2倍になってい
る。従って、図9の構成によれば、図4の構成に比して
より正確な磁界の大きさの推定が可能であり、また検出
可能な磁界の分解能も更に1/2まで高めることができ
る。
Here, the value of equation (8) is twice that of equation (6). Therefore, according to the configuration of FIG. 9, it is possible to more accurately estimate the magnitude of the magnetic field as compared with the configuration of FIG. 4, and it is possible to further increase the resolution of the detectable magnetic field to half.

【0041】[実施例2−2]図10は、本発明の第2
の実施例の他の一つを示す。図10では、素子5および
素子25を並行して配置し、それ等の間に素子10およ
び素子30を配置することにより、全体として占有面積
の有効利用を計っている。また、端子4と端子8、端子
24と端子28、および端子3と端子9、端子23と端
子29は各々共通になっており、これ等の端子間の接続
を省略して構造の簡単化を計っている。外部回路への接
続端子である17、18、19、20については、端子
3と9、端子23と29および端子4と8、端子24お
よび28に直接接続はされていないが、素子5および素
子25を通して電気的に接続されており、電気機能的に
は図6と同様の機能を持っている。図10の場合には、
巨大磁気抵抗薄膜の置かれている角度が、素子5と素子
10および素子25と素子30とで直交している。素子
10および素子30については、図7に示した通り、磁
界に対する感度はほとんど零であるが、図10のように
配置することにより、素子5の長手方向に加えられた磁
界に対して更に厳密に素子10および素子30の電気抵
抗変化を零とすることができる。
Embodiment 2-2 FIG. 10 shows a second embodiment of the present invention.
Another embodiment of the present invention is shown. In FIG. 10, the element 5 and the element 25 are arranged in parallel, and the element 10 and the element 30 are arranged between them to effectively use the occupied area as a whole. Further, the terminals 4 and 8, the terminal 24 and the terminal 28, the terminal 3 and the terminal 9, and the terminal 23 and the terminal 29 are common, and the connection between these terminals is omitted to simplify the structure. I'm measuring. Regarding the connection terminals 17, 18, 19, and 20 to the external circuit, terminals 3 and 9, terminals 23 and 29, terminals 4 and 8, and terminals 24 and 28 are not directly connected. 25, and has the same electrical function as that of FIG. In the case of FIG.
The angle at which the giant magnetoresistive thin film is placed is orthogonal to the element 5 and the element 10 and the element 25 and the element 30. As shown in FIG. 7, the sensitivity to the magnetic field of the element 10 and the element 30 is almost zero, but the arrangement as shown in FIG. Thus, the change in electric resistance of the element 10 and the element 30 can be made zero.

【0042】[実施例3]図11は、本発明の第3の実
施例を示す。この実施例の第1実施例との違いは、図4
で示した6の導体膜として1の軟磁性薄膜と共通の材料
を使用している事である。図4では、素子5および素子
10の持つ電気抵抗変化の中で、磁界による変化以外の
ものをできるだけ等しくし、ブリッジ回路において相殺
させることが必要である。このためには、先ず、巨大磁
気抵抗薄膜そのものの材質、構造を共通化することであ
るが、巨大磁気抵抗薄膜そのものが全く同じであって
も、それに接触する材料によっては微細な電気抵抗値の
違いが出る可能性がある。その原因となるのは、接触電
位差、あるいは熱起電力等である。図11に示す実施例
3では、巨大磁気抵抗薄膜に接触させる材質を、素子5
と素子35で共通の軟磁性薄膜とすることにより、この
問題を回避している。しかし、素子35の軟磁性薄膜3
1の寸法を大きくすると、必然的に巨大磁気抵抗薄膜3
2に加わる磁束密度も大きくなり、素子5と素子32の
抵抗値の差としての磁界センサの感度を低下させてしま
う。実施例3では、素子35の軟磁性薄膜31の面積
を、素子5の軟磁性薄膜1の面積の1/10以下とする
ことで、この問題を回避している。この構成によれば、
素子35の導体部分が非磁性体である場合のブリッジ出
力電圧に対し、少なくとも90%以上の出力電圧を確保
でき、しかも磁界印加以外の要因による抵抗の変化を、
素子5と素子35で厳密に相殺することができ、高精度
の薄膜磁界センサの実現が可能になる。
Embodiment 3 FIG. 11 shows a third embodiment of the present invention. The difference between this embodiment and the first embodiment is that FIG.
The same material as that of the soft magnetic thin film 1 is used as the conductive film 6 indicated by. In FIG. 4, it is necessary to equalize as much as possible the change in electric resistance of the element 5 and the element 10 other than the change due to the magnetic field, and to cancel them out in the bridge circuit. To achieve this, first, the material and structure of the giant magnetoresistive thin film itself must be shared, but even if the giant magnetoresistive thin film itself is exactly the same, a minute electrical resistance value may be reduced depending on the material in contact with it. There may be differences. The cause is a contact potential difference or a thermoelectromotive force. In Example 3 shown in FIG. 11, the material to be brought into contact with the giant magnetoresistive thin film is the element 5
This problem is avoided by using a common soft magnetic thin film for the element 35 and the element 35. However, the soft magnetic thin film 3 of the element 35
When the size of 1 is increased, the giant magnetoresistive thin film 3
The magnetic flux density applied to the element 2 also increases, and the sensitivity of the magnetic field sensor as a difference between the resistance values of the element 5 and the element 32 decreases. In the third embodiment, this problem is avoided by setting the area of the soft magnetic thin film 31 of the element 35 to 1/10 or less of the area of the soft magnetic thin film 1 of the element 5. According to this configuration,
An output voltage of at least 90% or more of the bridge output voltage when the conductor portion of the element 35 is a non-magnetic material can be secured.
The elements 5 and 35 can exactly cancel each other, and a highly accurate thin-film magnetic field sensor can be realized.

【0043】[実施例4]図12は、本発明の第4の実
施例を示す。実施例1において、素子5については、軟
磁性薄膜のL寸法を大きくすることにより、感動する磁
界の感度を高められることを述べた。軟磁性薄膜1の持
つ機能は、周辺の磁束を集めて巨大磁気抵抗薄膜部分に
集中させることであるが、周辺の磁束を集める機能は、
ほぼ軟磁性薄膜の面積に比例する。従って、図4に示す
構成の場合には、小さな磁界での感度を持たせるために
は、どうしてもL寸法を大きくする必要があり、磁界セ
ンサの全体の寸法が大きくなってしまうことは避けられ
ない。図12の構成によれば、軟磁性薄膜が巨大磁気抵
抗薄膜と接する幅wに比して大きなwxの幅の部分を設
けることにより、軟磁性薄膜の占有面積の有効利用を計
り、全体として小型でしかも磁界感度の高い磁気センサ
が実現できる。
[Embodiment 4] FIG. 12 shows a fourth embodiment of the present invention. In the first embodiment, it has been described that the sensitivity of the impressed magnetic field can be increased by increasing the L dimension of the soft magnetic thin film for the element 5. The function of the soft magnetic thin film 1 is to collect the peripheral magnetic flux and concentrate it on the giant magnetoresistive thin film portion.
It is almost proportional to the area of the soft magnetic thin film. Therefore, in the case of the configuration shown in FIG. 4, in order to provide sensitivity with a small magnetic field, it is necessary to increase the L dimension, and it is inevitable that the overall dimension of the magnetic field sensor will increase. . According to the configuration of FIG. 12, by providing a portion having a width of wx larger than the width w of the soft magnetic thin film in contact with the giant magnetoresistive thin film, effective use of the occupation area of the soft magnetic thin film is achieved, and the overall size is reduced. In addition, a magnetic sensor having high magnetic field sensitivity can be realized.

【0044】[実施例5]図13は本発明の第5の実施
例である。軟磁性薄膜では、外部磁界が加わっても、外
部磁界を除いた後は磁化が残留し難いが、保磁力Hcの
範囲で、磁化が残留してしまう可能性がある。この残留
磁化は、検出する磁界の直接誤差となるものであるか
ら、可及的に残留磁化のない材料が望ましい。表1に示
した通りCo77FeSi材料は、パーマロイ
に比しても1/6程度の低いHcを有し、この値は磁化
困難軸方向に励磁した場合に得られる。一般的に、一軸
異方性を有する磁性材料の困難軸方向の磁化過程は磁化
回転によるため、ヒステリシスは発生せず、Hcはほぼ
零となる。したがって、困難軸方向では残留磁化は発生
しない。本発明の第5の構成によれば、一軸異方性を有
する材料の困難軸方向を磁界検出方向とするため、外部
から印加された磁界が取り去られた後も軟磁性薄膜中に
残留磁化が少なく、従って、正確な磁界の計測が可能に
なる。
Embodiment 5 FIG. 13 shows a fifth embodiment of the present invention. In a soft magnetic thin film, even when an external magnetic field is applied, magnetization is unlikely to remain after the external magnetic field is removed, but magnetization may remain within the range of the coercive force Hc. Since this residual magnetization is a direct error of the magnetic field to be detected, a material having no residual magnetization is desirable. As shown in Table 1, the Co 77 Fe 5 Si 9 B 8 material has a low Hc of about 1/6 as compared with Permalloy, and this value is obtained when excited in the direction of the hard magnetization axis. Generally, the magnetization process in the hard axis direction of a magnetic material having uniaxial anisotropy is caused by magnetization rotation, so that no hysteresis occurs and Hc becomes almost zero. Therefore, no residual magnetization occurs in the hard axis direction. According to the fifth aspect of the present invention, since the hard axis direction of the material having uniaxial anisotropy is used as the magnetic field detection direction, the residual magnetization remains in the soft magnetic thin film even after the externally applied magnetic field is removed. Therefore, accurate measurement of the magnetic field becomes possible.

【0045】[0045]

【発明の効果】以上の説明の通り、本発明によれば次の
ような効果が得られる。
As described above, according to the present invention, the following effects can be obtained.

【0046】巨大磁気抵抗薄膜の有する電気抵抗値の温
度変化等、磁界印加による電気抵抗値変化以外は、すべ
てブリッジ回路の中で相殺されてブリッジ出力としては
出ないため、従来技術では問題であった巨大磁気抵抗薄
膜の温度等による電気抵抗値変化が除外されて、純粋に
磁界の印加による変化分が検出可能である。
All changes other than the change in the electric resistance due to the application of the magnetic field, such as the change in the electric resistance of the giant magnetoresistive thin film due to the temperature change, are canceled out in the bridge circuit and are not output as the bridge output. The change in electric resistance due to the temperature or the like of the giant magnetoresistive thin film is excluded, and the change due to the application of a magnetic field can be detected purely.

【0047】ブリッジ回路の持つ微小な電気抵抗値変化
の検出機能が利用出来るため、極めて小さな変化に対応
する、高い分解能での磁界検出が可能である。
Since the function of detecting a minute change in electric resistance value of the bridge circuit can be used, it is possible to detect a magnetic field with a high resolution corresponding to an extremely small change.

【0048】2つの巨大磁気抵抗薄膜の両側に配置され
た材料の違いによって生じる微小な抵抗値の違いを避け
るため、2つの巨大磁気抵抗薄膜の両側に配置する材料
を同一とすることにより、磁界以外の要因による電気抵
抗値変化は、更に厳密に相殺される。
In order to avoid a minute difference in resistance value caused by a difference in the materials arranged on both sides of the two giant magnetoresistive thin films, the same material is arranged on both sides of the two giant magnetoresistive thin films, thereby reducing the magnetic field. Changes in electrical resistance due to factors other than the above are more strictly offset.

【0049】巨大磁気抵抗薄膜の両側に配置する軟磁性
薄膜の長さを減らし、その代わりに幅を広く取ることに
より、磁界センサの感度を低下させることなく、磁界セ
ンサ全体としての小型化が可能である。
By reducing the length of the soft magnetic thin film disposed on both sides of the giant magnetoresistive thin film and, instead, increasing the width thereof, it is possible to reduce the size of the magnetic field sensor as a whole without lowering the sensitivity of the magnetic field sensor. It is.

【0050】巨大磁気抵抗薄膜の両側に配置する軟磁性
薄膜として、残留磁化が少ない一軸異方性を持った材料
を適用することにより、検出すべき磁界を除いた後の残
留磁化による磁界検出精度の低下を防止することができ
る。
By applying a material having uniaxial anisotropy with little residual magnetization as the soft magnetic thin film disposed on both sides of the giant magnetoresistive thin film, the accuracy of magnetic field detection by residual magnetization after excluding the magnetic field to be detected Can be prevented from decreasing.

【0051】本発明の薄膜磁界センサは、構造が単純で
小型化が可能であり、また優れた磁界感度を有するの
で、次世代の高性能磁界センサーとして、その工業的意
義は極めて大きい。
The thin-film magnetic field sensor of the present invention has a simple structure, can be miniaturized, and has excellent magnetic field sensitivity. Therefore, it has a great industrial significance as a next-generation high-performance magnetic field sensor.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 従来技術による薄膜磁界センサFIG. 1 shows a conventional thin film magnetic field sensor.

【図2】 同上の磁界印加による抵抗値の変化FIG. 2 Changes in resistance value due to application of a magnetic field

【図3】 同上の抵抗値の温度特性FIG. 3 is a temperature characteristic of the same resistance value.

【図4】 本発明の第1の実施例FIG. 4 shows a first embodiment of the present invention.

【図5】 本発明の第1の実施例の素子5の磁界と抵抗
変化との関係
FIG. 5 shows a relationship between a magnetic field and a change in resistance of the element 5 according to the first embodiment of the present invention.

【図6】 本発明の第1の実施例の素子5および素子1
0の抵抗値温度特性
FIG. 6 shows elements 5 and 1 according to the first embodiment of the present invention.
Resistance temperature characteristics of 0

【図7】 本発明の第1の実施例の素子10の磁界と抵
抗変化との関係
FIG. 7 shows a relationship between a magnetic field and a resistance change of the element 10 according to the first embodiment of the present invention.

【図8】 同上の電気的等価回路FIG. 8 is an electrical equivalent circuit of the above.

【図9】 本発明の第2の実施例の1FIG. 9 shows a second embodiment of the present invention.

【図10】 本発明の第2の実施例の2FIG. 10 shows a second embodiment of the present invention.

【図11】 本発明の第3の実施例FIG. 11 shows a third embodiment of the present invention.

【図12】 本発明の第4の実施例FIG. 12 shows a fourth embodiment of the present invention.

【図13】 本発明の第5の実施例FIG. 13 shows a fifth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1: 第1の軟磁性薄膜 2: 第1の巨大磁気抵抗薄膜 3: 第1の軟磁性薄膜に接続される電気端子の1つ 4: 第1の軟磁性薄膜に接続される他の電気端子 5: 上記1〜4を含めた素子 6: 第1の導体膜 7: 第2の巨大磁気抵抗薄膜 8: 第1の導体膜に接続される電気端子の1つ 9: 第1の導体膜に接続される他の電気端子 10: 上記6〜9を含めた素子 11: 第1の抵抗器 12: 第1の抵抗器に接続される電気端子の1つ 13: 第1の抵抗器に接続される他の電気端子 14: 第2の抵抗器 15: 第2の抵抗器に接続される電気端子の1つ 16: 第2の抵抗器に接続される他の電気端子 17: 駆動電圧を与えられる電気端子の1つ 18: 駆動電圧を与えられる他の電気端子 19: ブリッジ出力の電気端子の1つ 20: ブリッジ出力の他の電気端子 21: 第2の軟磁性薄膜 22: 第3の巨大磁気抵抗薄膜 23: 第2の軟磁性薄膜に接続される電気端子の1つ 24: 第2の軟磁性薄膜に接続される他の電気端子 25: 上記21〜24を含めた素子 26: 第2の導体膜 27: 第4の巨大磁気抵抗薄膜 28: 第2の導体膜に接続される電気端子の1つ 29: 第2の導体膜に接続される他の電気端子 30: 上記26〜29を含めた素子 31: 第3の軟磁性薄膜 32: 第5の巨大磁気抵抗膜 33: 第3の軟磁性薄膜に接続される電気端子の1つ 34: 第3の軟磁性薄膜に接続される他の電気端子 35: 上記31〜34を含めた素子 1: First soft magnetic thin film 2: First giant magnetoresistive thin film 3: One of the electric terminals connected to the first soft magnetic thin film 4: Other electric terminal connected to the first soft magnetic thin film 5: Element including above 1 to 4 6: First conductive film 7: Second giant magnetoresistive thin film 8: One of the electric terminals connected to the first conductive film 9: On the first conductive film Other electrical terminals to be connected 10: Elements including the above 6 to 9 11: First resistor 12: One of the electrical terminals connected to the first resistor 13: Connected to the first resistor Other electrical terminals 14: Second resistor 15: One of the electrical terminals connected to the second resistor 16: Other electrical terminal connected to the second resistor 17: Drive voltage is given One of the electric terminals 18: Another electric terminal to which a driving voltage is applied 19: One of the electric terminals of the bridge output 20: Other electrical terminals of ridge output 21: second soft magnetic thin film 22: third giant magnetoresistive thin film 23: one of electrical terminals connected to second soft magnetic thin film 24: second soft magnetic thin film Other electrical terminals to be connected 25: Elements including the above 21 to 24 26: Second conductive film 27: Fourth giant magnetoresistive thin film 28: One of the electrical terminals connected to the second conductive film 29 : Other electrical terminals connected to the second conductor film 30: Elements including the above 26 to 29 31: Third soft magnetic thin film 32: Fifth giant magnetoresistive film 33: Third soft magnetic thin film One of the electric terminals to be connected 34: Another electric terminal to be connected to the third soft magnetic thin film 35: An element including the above 31 to 34

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】所定の空隙長を持つ空隙によって2分割さ
れ、所定の膜厚および空隙に接する所定の幅を持つ軟磁
性薄膜1、その空隙を埋めるように形成された巨大磁気
抵抗薄膜2、2分割された軟磁性薄膜1の各々に電気的
に接続された端子3および端子4、前記空隙長と実質的
に等しい空隙長を持つ空隙によって2分割され、前記膜
厚と実質的に等しい膜厚、および前記空隙に接する幅と
実質的に等しい幅を持つ導体膜6、その空隙を埋めるよ
うに形成された巨大磁気抵抗薄膜7、および2分割され
た導体膜6の各々に電気的に接続された端子8および端
子9からなり、端子3および端子4と端子8および端子
9は、各々ブリッジ回路の2つのアームを形成すること
を特徴とする薄膜磁界センサ。
A soft magnetic thin film having a predetermined thickness and a predetermined width in contact with the gap, a giant magnetoresistive thin film formed to fill the gap, Terminals 3 and 4 electrically connected to each of the two divided soft magnetic thin films 1, a film divided into two by a gap having a gap length substantially equal to the gap length, and substantially equal to the film thickness A conductive film 6 having a thickness and a width substantially equal to the width in contact with the space, a giant magnetoresistive thin film 7 formed so as to fill the space, and electrically connected to each of the two divided conductive films 6 The thin-film magnetic field sensor comprises terminals 8 and 9, wherein the terminals 3 and 4 and the terminals 8 and 9 each form two arms of a bridge circuit.
【請求項2】所定の空隙長を持つ空隙によって2分割さ
れ、所定の膜厚および空隙に接する所定の幅を持つ軟磁
性薄膜1、その空隙を埋めるように形成された巨大磁気
抵抗薄膜2、2分割された軟磁性薄膜1の各々に電気的
に接続された端子3および端子4、前記空隙長と実質的
に等しい空隙長を持つ空隙によって2分割され、前記膜
厚と実質的に等しい膜厚および前記空隙に接する幅と実
質的に等しい幅を持つ導体膜6、その空隙を埋めるよう
に形成された巨大磁気抵抗薄膜7、2分割された導体膜
6の各々に電気的に接続された端子8および端子9、前
記空隙長と実質的に等しい空隙長を持つ空隙によって2
分割され、前記膜厚と実質的に等しい膜厚および前記空
隙に接する幅と実質的に等しい幅を持つ軟磁性薄膜2
1、その空隙を埋めるように形成された巨大磁気抵抗薄
膜22、2分割された軟磁性薄膜21の各々に電気的に
接続された端子23および端子24、前記空隙長と実質
的に等しい空隙長を持つ空隙によって2分割され、前記
膜厚と実質的に等しい膜厚および前記空隙に接する幅と
実質的に等しい幅を持つ導体膜26、その空隙を埋める
ように形成された巨大磁気抵抗薄膜27、および2分割
された導体膜26の各々に電気的に接続された端子28
および端子29からなり、端子3および端子4、端子8
および端子9、端子23および端子24、端子28およ
び端子29は、各々ブリッジ回路の4つのアームを形成
することを特徴とする薄膜磁界センサ。
2. A soft magnetic thin film 1 divided into two by a gap having a predetermined gap length and having a predetermined thickness and a predetermined width in contact with the gap, a giant magnetoresistive thin film 2 formed so as to fill the gap, Terminals 3 and 4 electrically connected to each of the two divided soft magnetic thin films 1, a film divided into two by a gap having a gap length substantially equal to the gap length, and substantially equal to the film thickness A conductive film having a thickness and a width substantially equal to a width in contact with the gap, a giant magnetoresistive thin film formed to fill the gap, and electrically connected to each of the two divided conductive films; Terminals 8 and 9, two gaps having a gap length substantially equal to the gap length
A soft magnetic thin film 2 having a thickness substantially equal to the thickness and a width substantially equal to the width in contact with the gap;
1, a giant magnetoresistive thin film 22 formed so as to fill the gap, terminals 23 and 24 electrically connected to each of the divided soft magnetic thin films 21, and a gap length substantially equal to the gap length. A conductive film 26 having a thickness substantially equal to the film thickness and a width substantially equal to the width in contact with the gap, and a giant magnetoresistive thin film 27 formed so as to fill the gap , And a terminal 28 electrically connected to each of the two divided conductive films 26
And terminal 29, and terminals 3, 4 and 8
And a terminal 9, a terminal 23 and a terminal 24, a terminal 28 and a terminal 29 each form four arms of a bridge circuit.
【請求項3】所定の空隙長を持つ空隙によって2分割さ
れ、所定の膜厚および空隙に接する所定の幅を持つ軟磁
性薄膜1、その空隙を埋めるように形成された巨大磁気
抵抗薄膜2、2分割された軟磁性薄膜1の各々に電気的
に接続された端子3および端子4、前記空隙長と実質的
に等しい空隙長を持つ空隙によって2分割され、前記膜
厚と実質的に等しい膜厚、および前記空隙に接する幅と
実質的に等しい幅を持つ軟磁性薄膜31、その空隙を埋
めるように形成された巨大磁気抵抗薄膜32、および2
分割された軟磁性薄膜31の各々に電気的に接続された
端子33および端子34からなり、端子3および端子
4、端子33および端子34は、各々ブリッジ回路の2
つのアームを形成し、且つまた軟磁性薄膜31の平面上
の面積は、軟磁性薄膜1の平面上の面積に比して1/1
0以下であることを特徴とする薄膜磁界センサ。
3. A soft magnetic thin film 1 divided into two by a gap having a predetermined gap length and having a predetermined thickness and a predetermined width in contact with the gap, a giant magnetoresistive thin film 2 formed so as to fill the gap, Terminals 3 and 4 electrically connected to each of the two divided soft magnetic thin films 1, a film divided into two by a gap having a gap length substantially equal to the gap length, and substantially equal to the film thickness A soft magnetic thin film 31 having a thickness and a width substantially equal to the width in contact with the gap, a giant magnetoresistive thin film 32 formed to fill the gap, and 2
Each of the divided soft magnetic thin films 31 is composed of a terminal 33 and a terminal 34 electrically connected thereto, and the terminals 3 and 4, the terminals 33 and 34 are connected to the bridge circuit 2 respectively.
And the area of the soft magnetic thin film 31 on the plane is 1/1 of the area of the soft magnetic thin film 1 on the plane.
A thin film magnetic field sensor characterized by being 0 or less.
【請求項4】空隙に接する線と並行な線に沿って測った
軟磁性薄膜1の幅寸法の少なくとも一部は、その軟磁性
薄膜1が空隙に接する線の幅よりも大であることを特徴
とする請求項1ないし請求項3のいずれか1項に記載の
薄膜磁界センサ。
4. At least a part of the width dimension of the soft magnetic thin film 1 measured along a line parallel to a line contacting the gap is larger than the width of the soft magnetic thin film 1 in contact with the gap. The thin-film magnetic field sensor according to claim 1, wherein:
【請求項5】軟磁性薄膜1の磁気特性は一軸異方性であ
って、その磁化容易軸方向は、実質的に、空隙に接する
線と並行な方向であることを特徴とする請求項1ないし
請求項3のいずれか1項に記載の薄膜磁界センサ。
5. The magnetic property of the soft magnetic thin film 1 is uniaxial anisotropy, and the direction of the axis of easy magnetization is substantially parallel to a line in contact with the gap. The thin-film magnetic field sensor according to claim 3.
JP2000367822A 2000-10-26 2000-10-26 Thin film magnetic field sensor Expired - Fee Related JP4023997B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2000367822A JP4023997B2 (en) 2000-10-26 2000-10-26 Thin film magnetic field sensor
EP01978911A EP1329735B1 (en) 2000-10-26 2001-10-25 Thin-film magnetic field sensor
DE60139017T DE60139017D1 (en) 2000-10-26 2001-10-25 THIN FILM MAGNETIC SENSOR
TW090126413A TW550394B (en) 2000-10-26 2001-10-25 Thin-film magnetic field sensor
KR1020027008326A KR100687513B1 (en) 2000-10-26 2001-10-25 Thin-film magnetic field sensor
PCT/JP2001/009385 WO2002037131A1 (en) 2000-10-26 2001-10-25 Thin-film magnetic field sensor
CNB018032648A CN100403048C (en) 2000-10-26 2001-10-25 Thin-film magnetic field sensor
AT01978911T ATE434192T1 (en) 2000-10-26 2001-10-25 THIN FILM MAGNETIC FIELD SENSOR
US10/225,794 US6642714B2 (en) 2000-10-26 2002-08-22 Thin-film magnetic field sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000367822A JP4023997B2 (en) 2000-10-26 2000-10-26 Thin film magnetic field sensor

Publications (3)

Publication Number Publication Date
JP2002131407A true JP2002131407A (en) 2002-05-09
JP2002131407A5 JP2002131407A5 (en) 2005-03-17
JP4023997B2 JP4023997B2 (en) 2007-12-19

Family

ID=18838177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000367822A Expired - Fee Related JP4023997B2 (en) 2000-10-26 2000-10-26 Thin film magnetic field sensor

Country Status (1)

Country Link
JP (1) JP4023997B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004354181A (en) * 2003-05-28 2004-12-16 Res Inst Electric Magnetic Alloys Thin-film magnetic sensor
JP2004354182A (en) * 2003-05-28 2004-12-16 Res Inst Electric Magnetic Alloys Thin-film magnetic sensor and manufacturing method thereof
JP2008209224A (en) * 2007-02-26 2008-09-11 Daido Steel Co Ltd Magnetic sensor
CN103558467A (en) * 2013-10-29 2014-02-05 中国南方电网有限责任公司超高压输电公司 Capacitive equipment on-line monitoring device based on anisotropy magnetic resistance bridge
CN104808158A (en) * 2015-05-07 2015-07-29 李川 Ferroxcube detector
CN107037381A (en) * 2015-12-29 2017-08-11 爱盛科技股份有限公司 Magnetic field sensing device and sensing method thereof
JP2018151332A (en) * 2017-03-14 2018-09-27 大同特殊鋼株式会社 Thin-film magnetic sensor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6083690B2 (en) * 2012-05-11 2017-02-22 公立大学法人大阪市立大学 Power factor measuring device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11274599A (en) * 1998-03-18 1999-10-08 Res Inst Electric Magnetic Alloys Thin film magnetic reluctance element
JP2000180207A (en) * 1998-12-16 2000-06-30 Yazaki Corp Magnetism sensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11274599A (en) * 1998-03-18 1999-10-08 Res Inst Electric Magnetic Alloys Thin film magnetic reluctance element
JP2000180207A (en) * 1998-12-16 2000-06-30 Yazaki Corp Magnetism sensor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004354181A (en) * 2003-05-28 2004-12-16 Res Inst Electric Magnetic Alloys Thin-film magnetic sensor
JP2004354182A (en) * 2003-05-28 2004-12-16 Res Inst Electric Magnetic Alloys Thin-film magnetic sensor and manufacturing method thereof
JP2008209224A (en) * 2007-02-26 2008-09-11 Daido Steel Co Ltd Magnetic sensor
CN103558467A (en) * 2013-10-29 2014-02-05 中国南方电网有限责任公司超高压输电公司 Capacitive equipment on-line monitoring device based on anisotropy magnetic resistance bridge
CN104808158A (en) * 2015-05-07 2015-07-29 李川 Ferroxcube detector
CN107037381A (en) * 2015-12-29 2017-08-11 爱盛科技股份有限公司 Magnetic field sensing device and sensing method thereof
JP2018151332A (en) * 2017-03-14 2018-09-27 大同特殊鋼株式会社 Thin-film magnetic sensor

Also Published As

Publication number Publication date
JP4023997B2 (en) 2007-12-19

Similar Documents

Publication Publication Date Title
KR100687513B1 (en) Thin-film magnetic field sensor
US6640652B2 (en) Rotation angle sensor capable of accurately detecting rotation angle
JP5151551B2 (en) Thin film magnetic sensor
US6069476A (en) Magnetic field sensor having a magnetoresistance bridge with a pair of magnetoresistive elements featuring a plateau effect in their resistance-magnetic field response
JP4131869B2 (en) Current sensor
US6191581B1 (en) Planar thin-film magnetic field sensor for determining directional magnetic fields
US20070188946A1 (en) Magnetic sensor and current sensor
JP3596600B2 (en) Magnetic sensor and method of manufacturing the same
JPH0897488A (en) Magnetism detector
JP2017072375A (en) Magnetic sensor
US11249116B2 (en) Magnetic sensor and current sensor
JP4285695B2 (en) Thin film magnetic sensor and rotation sensor
JP2002131407A (en) Thin film magnetic field sensor
JP2002131407A5 (en)
JP2000180524A (en) Magnetic field sensor
US11002806B2 (en) Magnetic field detection device
JP4953569B2 (en) Thin film magnetoresistive element and magnetic sensor using thin film magnetoresistive element
JP3035838B2 (en) Magnetoresistance composite element
JP2008003072A (en) Thin-film magnetoresistive element and thin-film magnetic sensor
WO2015125699A1 (en) Magnetic sensor
JP3969002B2 (en) Magnetic sensor
JP3449160B2 (en) Magnetoresistive element and rotation sensor using the same
JPH09231517A (en) Magnetic reluctance sensor
JP4204775B2 (en) Thin film magnetic field sensor
JP2015194389A (en) Magnetic field detection device and multi piece substrate

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040415

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040415

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070918

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071002

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4023997

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131012

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees