JP2008003072A - Thin-film magnetoresistive element and thin-film magnetic sensor - Google Patents

Thin-film magnetoresistive element and thin-film magnetic sensor Download PDF

Info

Publication number
JP2008003072A
JP2008003072A JP2006285049A JP2006285049A JP2008003072A JP 2008003072 A JP2008003072 A JP 2008003072A JP 2006285049 A JP2006285049 A JP 2006285049A JP 2006285049 A JP2006285049 A JP 2006285049A JP 2008003072 A JP2008003072 A JP 2008003072A
Authority
JP
Japan
Prior art keywords
film
soft magnetic
magnetic film
magnetoresistive element
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006285049A
Other languages
Japanese (ja)
Inventor
Hiroko Takahashi
裕子 高橋
Takashi Hatauchi
隆史 畑内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2006285049A priority Critical patent/JP2008003072A/en
Publication of JP2008003072A publication Critical patent/JP2008003072A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide thin-film magnetoresistive element which shows high isotropic response to in-plane directional magnetic field and is available as a switching device, and also practical thin film magnetic sensor using this element. <P>SOLUTION: The thin-film magnetoresistive element is designed that it has inside soft magnetic film 2 formed on an insulating substrate 1, outside soft magnetic film 3, thin-film magnetoresistive element 4 and required wiring 5, in which magnetoresistive effect film 4 is formed in regularly-spaced clearance 6 formed between outer edge section of the inside soft magnetic film 2 and the inner edge section of the outside soft magnetic film 3. The thin-film magnetic sensor is designed to build bridge circuit allowing this thin-film magnetoresistive element to be variable resistor. Radially-extending slit-shaped notch section 8 can also be formed on the outside soft magnetic film 3. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、薄膜磁気抵抗素子及び薄膜磁気センサに係り、特に、面内におけるいかなる方向の外部磁場に対しても応答を示し、かつスイッチ素子として利用可能な薄膜磁気抵抗素子とこれを用いた薄膜磁気センサとに関する。   The present invention relates to a thin film magnetoresistive element and a thin film magnetic sensor, and in particular, a thin film magnetoresistive element that exhibits a response to an external magnetic field in any direction in a plane and can be used as a switch element, and a thin film using the same The present invention relates to a magnetic sensor.

従来より、スイッチ動作を行う磁気センサとしては、ホールIC及びMR素子が広く用いられている。ホールICは、ホール素子とホール素子の出力を整形する回路とを一体にパッケージングしたものであり、位置検出などに適用される。一方、MR素子は、同一平面内に所要の間隙を介して第1及び第2の軟磁性膜の端面を対向に配置し、これら第1及び第2の軟磁性膜の端面間の間隙内にナノグラニュラー合金薄膜などの磁気抵抗効果膜を形成したものであり、磁気ヘッドやサーボモータ又はロータリエンコーダ等における磁気センサなどに適用される。   Conventionally, Hall ICs and MR elements have been widely used as magnetic sensors that perform switching operations. The Hall IC is a package in which a Hall element and a circuit that shapes the output of the Hall element are integrally packaged, and is applied to position detection or the like. On the other hand, in the MR element, the end surfaces of the first and second soft magnetic films are arranged opposite to each other with a required gap in the same plane, and the MR element is in the gap between the end surfaces of the first and second soft magnetic films. A magnetoresistive film such as a nanogranular alloy thin film is formed, and is applied to a magnetic sensor in a magnetic head, a servo motor, a rotary encoder, or the like.

上述のように、ホールICは、ホール素子とホール素子の出力を整形する回路とからなるので、センサモジュールが大形かつ高価であり、しかも感度の異方性が高いという特質を有する。これに対して、MR素子は、出力整形用の回路を備える必要がないので小型かつ安価に実施できるが、感度の異方性が高いという点においてはホールICと同様であり、従来より、面内におけるいかなる方向の磁場に対しても応答を示すMR素子の開発が求められている。   As described above, the Hall IC includes a Hall element and a circuit that shapes the output of the Hall element. Therefore, the sensor module is large and expensive, and has high sensitivity anisotropy. On the other hand, the MR element does not need an output shaping circuit and can be implemented in a small size and at a low cost. However, the MR element is similar to the Hall IC in that the anisotropy of sensitivity is high. There is a need to develop an MR element that exhibits a response to a magnetic field in any direction.

本発明は、かかる技術的な課題を解決するためになされたものであり、その目的は、面内におけるいかなる方向の磁場に対しても応答を示し、かつスイッチ素子として利用可能な薄膜磁気抵抗素子を提供すること、及びこれを用いた実用的な薄膜磁気センサを提供することにある。   The present invention has been made to solve such a technical problem, and an object of the present invention is to provide a thin film magnetoresistive element that exhibits a response to a magnetic field in any direction in the plane and can be used as a switching element. And a practical thin film magnetic sensor using the same.

本発明は、前記の課題を解決するため、薄膜磁気抵抗素子については、第1に、絶縁基板と、当該絶縁基板に形成された内側軟磁性膜、外側軟磁性膜、磁気抵抗効果膜及び前記磁気抵抗効果膜の抵抗値を検出するための配線とを有し、前記外側軟磁性膜は前記内側軟磁性膜の外周を全周にわたって取り囲むか、又は前記内側軟磁性膜の外周を大部分にわたって取り囲むように形成されており、前記内側軟磁性膜の外縁部と前記外側軟磁性膜の内縁部との間には一定間隔の間隙が設けられていて、当該間隙内に前記磁気抵抗効果膜が形成されているという構成にした。   In order to solve the above-mentioned problems, the present invention relates to a thin film magnetoresistive element, firstly, an insulating substrate, an inner soft magnetic film formed on the insulating substrate, an outer soft magnetic film, a magnetoresistive film, and the aforementioned Wiring for detecting the resistance value of the magnetoresistive effect film, and the outer soft magnetic film surrounds the outer periphery of the inner soft magnetic film over the entire circumference, or the outer periphery of the inner soft magnetic film is covered over the most part. A gap is formed between the outer edge of the inner soft magnetic film and the inner edge of the outer soft magnetic film, and the magnetoresistive film is formed in the gap. It was configured to be formed.

内側軟磁性膜及び磁気抵抗効果膜の外周全体にわたって外側軟磁性膜を配置すると、外部磁場の印加方向によらず外側軟磁性膜の飽和磁束密度を一定にすることができるので、面内のいかなる方向に印加された外部磁場についても同等の応答を示す無指向性の薄膜磁気抵抗素子となる。内側軟磁性膜及び磁気抵抗効果膜の外周の大部分を外側軟磁性膜にて取り囲み、一部に外側軟磁性膜を有しない部分を形成した場合にも、全周にわたって外部磁場の印加方向に応じた外側軟磁性膜の飽和磁束密度をもたせることができるので、面内におけるいかなる方向の外部磁場に対しても応答を示す薄膜磁気抵抗素子となる。なお、この場合には、外部磁場の印加方向に応じて外側軟磁性膜の飽和磁束密度が変化するので、MR比の変化特性については外部磁場の印加方向に応じて変化する。   If the outer soft magnetic film is arranged over the entire outer periphery of the inner soft magnetic film and the magnetoresistive effect film, the saturation magnetic flux density of the outer soft magnetic film can be made constant regardless of the application direction of the external magnetic field. An omnidirectional thin film magnetoresistive element exhibiting an equivalent response with respect to an external magnetic field applied in the direction is obtained. Even when the outer soft magnetic film surrounds most of the outer peripheries of the inner soft magnetic film and magnetoresistive effect film, and a part that does not have the outer soft magnetic film is formed in part, the external magnetic field is applied in the entire direction. Since the saturation magnetic flux density of the corresponding outer soft magnetic film can be provided, the thin film magnetoresistive element showing a response to an external magnetic field in any direction in the plane is obtained. In this case, since the saturation magnetic flux density of the outer soft magnetic film changes according to the application direction of the external magnetic field, the MR ratio change characteristic changes according to the application direction of the external magnetic field.

また本発明は、第2に、前記第1の構成の薄膜磁気抵抗素子において、前記外側軟磁性膜は、径方向に延びるスリット状の切欠部によって2分割されているという構成にした。かかる構成によると、面内のいかなる方向に作用する外部磁場についても応答を示し、かつ切欠部と平行な方向の外部磁界に対する抵抗変化率特性と切欠部と垂直な方向の外部磁界に対する抵抗変化率特性との差が大きい薄膜磁気抵抗素子となる。   According to the present invention, secondly, in the thin film magnetoresistive element of the first configuration, the outer soft magnetic film is divided into two by a slit-like cutout portion extending in a radial direction. According to this configuration, the external magnetic field acting in any direction in the plane shows a response, and the resistance change rate characteristic with respect to the external magnetic field in the direction parallel to the notch and the resistance change rate with respect to the external magnetic field in the direction perpendicular to the notch A thin film magnetoresistive element having a large difference from the characteristics is obtained.

また本発明は、第3に、前記第1の構成の薄膜磁気抵抗素子において、前記外側軟磁性膜は、その一部に内縁部まで達しないスリット状の切欠部を有しているという構成にした。かかる構成によると、面内のいかなる方向に作用する外部磁場についても応答を示し、かつ切欠部と平行な方向の外部磁界に対する抵抗変化率特性と切欠部と垂直な方向の外部磁界に対する抵抗変化率特性とが異なる薄膜磁気抵抗素子となる。   According to a third aspect of the present invention, in the thin film magnetoresistive element of the first configuration, the outer soft magnetic film has a slit-shaped cutout part that does not reach the inner edge part. did. According to this configuration, the external magnetic field acting in any direction in the plane shows a response, and the resistance change rate characteristic with respect to the external magnetic field in the direction parallel to the notch and the resistance change rate with respect to the external magnetic field in the direction perpendicular to the notch A thin film magnetoresistive element having different characteristics is obtained.

また本発明は、第4に、前記第1の構成の薄膜磁気抵抗素子において、前記内側軟磁性膜の外縁部が円形で、前記外側軟磁性膜の内縁部及び外縁部が円形又は円弧形であるという構成にした。外側軟磁性膜の内縁部及び外縁部を円形に形成すると、全周にわたって外側軟磁性膜の幅を一定にできるので、外部磁場の印加方向の変化に対する応答の均等性を最も高めることができる。また、外側軟磁性膜の内縁部及び外縁部を円弧形に形成した場合にも、外側軟磁性膜の幅を一定にできるので、外部磁場に対する応答の均等性を高めることができる。   According to a fourth aspect of the present invention, in the thin film magnetoresistive element of the first configuration, the outer edge portion of the inner soft magnetic film is circular, and the inner edge portion and outer edge portion of the outer soft magnetic film are circular or arc-shaped. It was configured to be. If the inner edge portion and the outer edge portion of the outer soft magnetic film are formed in a circular shape, the width of the outer soft magnetic film can be made constant over the entire circumference, so that the uniformity of response to changes in the application direction of the external magnetic field can be maximized. Further, even when the inner and outer edges of the outer soft magnetic film are formed in an arc shape, the width of the outer soft magnetic film can be made constant, so that the uniformity of the response to the external magnetic field can be improved.

また本発明は、第5に、前記第1の構成の薄膜磁気抵抗素子において、前記内側軟磁性膜の外縁部と前記外側軟磁性膜の内縁部とが角形であるという構成にした。かかる構成によっても、全周にわたって外部磁場の印加方向に応じた外側軟磁性膜の飽和磁束密度をもたせることができるので、面内におけるいかなる方向の外部磁場に対しても応答を示す薄膜磁気抵抗素子とすることができる。   According to the present invention, fifthly, in the thin film magnetoresistive element of the first configuration, the outer edge portion of the inner soft magnetic film and the inner edge portion of the outer soft magnetic film are square. Even with such a configuration, the saturation magnetic flux density of the outer soft magnetic film according to the direction in which the external magnetic field is applied can be provided over the entire circumference, so that the thin film magnetoresistive element exhibits a response to the external magnetic field in any direction in the plane. It can be.

一方、本発明は、薄膜磁気センサに関しては、絶縁基板と、当該絶縁基板に形成された内側軟磁性膜、外側軟磁性膜、磁気抵抗効果膜及び前記磁気抵抗効果膜の抵抗値を検出するための配線とを有し、前記外側軟磁性膜は前記内側軟磁性膜の外周を全周にわたって取り囲むか、又は前記内側軟磁性膜の外周を大部分にわたって取り囲むように形成されており、前記内側軟磁性膜の外縁部と前記外側軟磁性膜の内縁部との間には一定間隔の間隙が設けられていて、当該間隙内に前記磁気抵抗効果膜が形成された第1薄膜磁気抵抗素子を可変抵抗とし、絶縁基板と、当該絶縁基板に形成された内側非磁性金属膜、外側軟磁性膜、磁気抵抗効果膜及び前記磁気抵抗効果膜の抵抗値を検出するための配線とを有し、前記外側軟磁性膜は前記内側非磁性金属膜の外周を全周にわたって取り囲むか、又は前記内側非磁性金属膜の外周を大部分にわたって取り囲むように形成されており、前記内側非磁性金属膜の外縁部と前記外側軟磁性膜の内縁部との間には一定間隔の間隙が設けられていて、当該間隙内に前記磁気抵抗効果膜が形成された第2薄膜磁気抵抗素子を固定抵抗とし、前記可変抵抗部の外側軟磁性膜と前記固定抵抗部の外側軟磁性膜とが離間して設けられたブリッジ回路からなるという構成にした。   On the other hand, the present invention relates to a thin film magnetic sensor for detecting resistance values of an insulating substrate, an inner soft magnetic film, an outer soft magnetic film, a magnetoresistive film, and the magnetoresistive film formed on the insulating substrate. And the outer soft magnetic film is formed so as to surround the outer periphery of the inner soft magnetic film over the entire circumference, or to surround the outer periphery of the inner soft magnetic film over most of the outer soft magnetic film. A gap is provided between the outer edge of the magnetic film and the inner edge of the outer soft magnetic film, and the first thin film magnetoresistive element having the magnetoresistive film formed in the gap is variable. A resistance, and an insulating substrate, and an inner nonmagnetic metal film, an outer soft magnetic film, a magnetoresistive film, and a wiring for detecting a resistance value of the magnetoresistive film formed on the insulating substrate, The outer soft magnetic film is the inner non-magnetic film. Surrounding the outer circumference of the metal film over the entire circumference, or so as to surround the outer circumference of the inner nonmagnetic metal film over the most part, the outer edge of the inner nonmagnetic metal film and the inner edge of the outer soft magnetic film Is provided with a fixed gap, and the second thin film magnetoresistive element in which the magnetoresistive film is formed in the gap is used as a fixed resistor, and the outer soft magnetic film of the variable resistance portion and the A configuration is adopted in which a bridge circuit is provided so as to be separated from the outer soft magnetic film of the fixed resistance portion.

第1薄膜磁気抵抗素子は、その外側軟磁性膜に作用する磁場が飽和磁束密度に達したとき、磁気抵抗効果膜を介して外側軟磁性膜から内側軟磁性膜に磁束が流れるので、磁気抵抗効果膜の抵抗値の変化を可変抵抗として利用できる。これに対して、第2薄膜磁気抵抗素子は、外側軟磁性膜及び磁気抵抗効果膜の内側に軟磁性膜ではなく非磁性金属膜が形成されており、その外側軟磁性膜に作用する磁場が飽和磁束密度に達した後も、磁気抵抗効果(MR効果)が緩やかに発現されるので、固定抵抗として利用できる。よって、これらの可変抵抗及び固定抵抗を用いてブリッジ回路を構成すると、印加される磁場の方向によらずに印加される磁場の大きさを検出可能な薄膜磁気センサとすることができる。また、ブリッジ回路を構成することから、零位法によって磁気抵抗効果膜に作用する磁場の変動を検出できると共に、電源電圧の変動や検出器の入力インピーダンス若しくは膜由来の特性変化などの影響を除去することができ、高精度な薄膜磁気センサとすることができる。   In the first thin film magnetoresistive element, when the magnetic field acting on the outer soft magnetic film reaches the saturation magnetic flux density, magnetic flux flows from the outer soft magnetic film to the inner soft magnetic film via the magnetoresistive effect film. The change in the resistance value of the effect film can be used as a variable resistance. On the other hand, the second thin film magnetoresistive element has a nonmagnetic metal film, not a soft magnetic film, formed inside the outer soft magnetic film and the magnetoresistive film, and the magnetic field acting on the outer soft magnetic film is reduced. Even after reaching the saturation magnetic flux density, the magnetoresistive effect (MR effect) is gently expressed, so that it can be used as a fixed resistance. Therefore, when a bridge circuit is configured using these variable resistors and fixed resistors, a thin film magnetic sensor capable of detecting the magnitude of the applied magnetic field regardless of the direction of the applied magnetic field can be obtained. In addition, the bridge circuit makes it possible to detect changes in the magnetic field acting on the magnetoresistive effect film by the null method, and to eliminate influences such as fluctuations in power supply voltage, detector input impedance, or changes in film-derived characteristics. Therefore, a highly accurate thin film magnetic sensor can be obtained.

本発明の薄膜磁気抵抗素子は、内側軟磁性膜の外周を全周にわたって取り囲むか、又は内側軟磁性膜の外周を大部分にわたって取り囲むように外側軟磁性膜を形成したので、面内におけるあらゆる方向の外部磁場に対して応答するスイッチ素子として利用することができる。特に、内側軟磁性膜の外周全体に外側軟磁性膜を配置したものは、印加される外部磁場の方向によらず外部磁場の大きさのみによってスイッチング動作する無指向性の薄膜磁気抵抗素子とすることができる。   In the thin film magnetoresistive element of the present invention, the outer soft magnetic film is formed so as to surround the outer periphery of the inner soft magnetic film over the entire circumference, or to surround the outer periphery of the inner soft magnetic film over the most part. It can be used as a switching element that responds to an external magnetic field. In particular, the one in which the outer soft magnetic film is arranged on the entire outer periphery of the inner soft magnetic film is a non-directional thin film magnetoresistive element that performs switching operation only by the magnitude of the external magnetic field regardless of the direction of the applied external magnetic field. be able to.

本発明の薄膜磁気センサは、内側軟磁性膜の外周を全周にわたって取り囲むか、又は内側軟磁性膜の外周を大部分にわたって取り囲むように外側軟磁性膜が形成された第1薄膜磁気抵抗素子を可変抵抗として用い、当該第1薄膜磁気抵抗素子の内側軟磁性膜に代えて内側非磁性金属膜を備えた第2薄膜磁気抵抗素子を固定抵抗とするブリッジ回路をもって薄膜磁気センサとするので、面内におけるあらゆる方向の外部磁場を検出可能で、高精度な薄膜磁気センサとすることができる。   The thin film magnetic sensor of the present invention includes a first thin film magnetoresistive element in which an outer soft magnetic film is formed so as to surround the outer circumference of the inner soft magnetic film over the entire circumference or to surround the outer circumference of the inner soft magnetic film over most of the circumference. Since it is used as a variable resistor, a thin film magnetic sensor having a bridge circuit having a fixed resistance of a second thin film magnetoresistive element having an inner nonmagnetic metal film instead of the inner soft magnetic film of the first thin film magnetoresistive element is provided. An external magnetic field in any direction can be detected, and a highly accurate thin film magnetic sensor can be obtained.

〈第1実施形態〉
以下、本発明に係る薄膜磁気抵抗素子の一例を、図1乃至図3に基づいて説明する。図1は第1実施形態に係る薄膜磁気抵抗素子の平面図、図2は図1のA−A部拡大断面図、図3は第1実施形態に係る薄膜磁気抵抗素子の外部磁場に対するMR比の変化を示すグラフ図である。
<First Embodiment>
Hereinafter, an example of a thin film magnetoresistive element according to the present invention will be described with reference to FIGS. FIG. 1 is a plan view of a thin film magnetoresistive element according to the first embodiment, FIG. 2 is an enlarged cross-sectional view of the AA portion of FIG. 1, and FIG. 3 is an MR ratio of the thin film magnetoresistive element according to the first embodiment to an external magnetic field. It is a graph which shows the change of.

図1及び図2に示すように、本例の薄膜磁気抵抗素子は、絶縁基板1と、当該絶縁基板1に形成された内側軟磁性膜2、外側軟磁性膜3、磁気抵抗効果膜4及び磁気抵抗効果膜4の抵抗値を検出するための配線5とから主に構成されている。   As shown in FIGS. 1 and 2, the thin film magnetoresistive element of this example includes an insulating substrate 1, an inner soft magnetic film 2, an outer soft magnetic film 3, a magnetoresistive effect film 4 formed on the insulating substrate 1, and It is mainly composed of wiring 5 for detecting the resistance value of the magnetoresistive effect film 4.

絶縁基板1は、無機誘電体、プラスチックス又は非磁性セラミックスなどの高剛性の非磁性絶縁体をもって所要の形状及びサイズに形成される。   The insulating substrate 1 is formed into a required shape and size with a highly rigid nonmagnetic insulator such as an inorganic dielectric, plastics, or nonmagnetic ceramics.

内側軟磁性膜2及び外側軟磁性膜3は、例えばCo77FeSi合金やパーマロイ合金(Fe65Ni35)などの飽和磁束密度が高い軟磁性体をもって形成される。これら内側軟磁性膜2及び外側軟磁性膜3の形成方法としては、スパッタリングを用いることができる。図1に示すように、内側軟磁性膜2は平面形状が円形に形成されており、外側軟磁性膜3は平面形状が内側軟磁性膜2の外径よりも大きな内径と外径とを有する円環状に形成されており、互いに同心に配置されている。したがって、内側軟磁性膜2の外縁部と外側軟磁性膜3の内縁部との間には、一定幅の円環状の間隙6が形成される。 The inner soft magnetic film 2 and the outer soft magnetic film 3 are formed of a soft magnetic material having a high saturation magnetic flux density, such as a Co 77 Fe 5 Si 9 B 8 alloy or a permalloy alloy (Fe 65 Ni 35 ). As a method of forming the inner soft magnetic film 2 and the outer soft magnetic film 3, sputtering can be used. As shown in FIG. 1, the inner soft magnetic film 2 has a circular planar shape, and the outer soft magnetic film 3 has an inner diameter and an outer diameter larger than the outer diameter of the inner soft magnetic film 2. They are formed in an annular shape and are arranged concentrically with each other. Therefore, an annular gap 6 having a constant width is formed between the outer edge portion of the inner soft magnetic film 2 and the inner edge portion of the outer soft magnetic film 3.

磁気抵抗効果膜4としては、パーマロイ合金系の磁気抵抗効果膜に比べて格段に大きなMR比を有し、かつ1層で大きなMR比が得られることから、絶縁体マトリクス中に強磁性微粒子を分散してなるグラニュラー磁性膜が形成される。グラニュラー磁性膜としては、32vol%のCoFe−MgFやCoYOなどを挙げることができる。この磁気抵抗効果膜4は、図2に示すように、内側軟磁性膜2の外縁部と外側軟磁性膜3の内縁部との間の間隙6内にスパッタリングなどにより形成される。なお、図2の例では、内側軟磁性膜2の外縁部と外側軟磁性膜3の内縁部とが絶縁基板1に対して傾斜する形状に形成されているが、これは磁気抵抗効果膜4をスパッタリングにて形成する場合に、間隙6内への磁気抵抗効果膜4の形成を容易にするためであり、例えばスパッタリング時の条件などを工夫することにより間隙6内に磁気抵抗効果膜4を密に形成できる場合には、各縁部を絶縁基板1に対して垂直に形成することもできる。 The magnetoresistive film 4 has a remarkably large MR ratio as compared to a permalloy alloy-type magnetoresistive film, and a large MR ratio can be obtained in one layer. A dispersed granular magnetic film is formed. Examples of the granular magnetic film include 32 vol% CoFe—MgF 2 and CoYO. As shown in FIG. 2, the magnetoresistive film 4 is formed in the gap 6 between the outer edge portion of the inner soft magnetic film 2 and the inner edge portion of the outer soft magnetic film 3 by sputtering or the like. In the example of FIG. 2, the outer edge portion of the inner soft magnetic film 2 and the inner edge portion of the outer soft magnetic film 3 are formed so as to be inclined with respect to the insulating substrate 1. In order to facilitate the formation of the magnetoresistive film 4 in the gap 6, the magnetoresistive film 4 is formed in the gap 6 by devising the conditions during sputtering, for example. If densely formed, each edge can be formed perpendicular to the insulating substrate 1.

配線5は、銅やアルミニウムなどの導電性に優れた金属材料にて形成される。この配線5の形成方法としても、スパッタリングを用いることができる。   The wiring 5 is formed of a metal material having excellent conductivity such as copper or aluminum. Sputtering can also be used as a method for forming the wiring 5.

図3に、本実施形態に係る薄膜磁気抵抗素子の試験例を示す。試料は、以下の4例である。   FIG. 3 shows a test example of the thin film magnetoresistive element according to this embodiment. The samples are the following four examples.

試料(1):外側軟磁性膜3の外径φ1が150μm、内側軟磁性膜2の外径φ2が40μm、間隙6の大きさLgが2μm、内側軟磁性膜2及び外側軟磁性膜3の厚みtsofが1.5μm
試料(2):外側軟磁性膜3の外径φ1が150μm、内側軟磁性膜2の外径φ2が20μm、間隙6の大きさLgが2μm、内側軟磁性膜2及び外側軟磁性膜3の厚みtsofが1.5μm
試料(3):外側軟磁性膜3の外径φ1が75μm、内側軟磁性膜2の外径φ2が20μm、間隙6の大きさLgが2μm、内側軟磁性膜2及び外側軟磁性膜3の厚みtsofが1.5μm
試料(4):外側軟磁性膜3の外径φ1が150μm、内側軟磁性膜2の外径φ2が40μm、間隙6の大きさLgが2μm、内側軟磁性膜2及び外側軟磁性膜3の厚みtsofが2μm。
Sample (1): The outer diameter φ1 of the outer soft magnetic film 3 is 150 μm, the outer diameter φ2 of the inner soft magnetic film 2 is 40 μm, the size Lg of the gap 6 is 2 μm, the inner soft magnetic film 2 and the outer soft magnetic film 3 Thickness tsof is 1.5 μm
Sample (2): The outer diameter φ1 of the outer soft magnetic film 3 is 150 μm, the outer diameter φ2 of the inner soft magnetic film 2 is 20 μm, the size Lg of the gap 6 is 2 μm, the inner soft magnetic film 2 and the outer soft magnetic film 3 Thickness tsof is 1.5 μm
Sample (3): The outer diameter φ1 of the outer soft magnetic film 3 is 75 μm, the outer diameter φ2 of the inner soft magnetic film 2 is 20 μm, the size Lg of the gap 6 is 2 μm, the inner soft magnetic film 2 and the outer soft magnetic film 3 Thickness tsof is 1.5 μm
Sample (4): The outer diameter φ1 of the outer soft magnetic film 3 is 150 μm, the outer diameter φ2 of the inner soft magnetic film 2 is 40 μm, the size Lg of the gap 6 is 2 μm, the inner soft magnetic film 2 and the outer soft magnetic film 3 Thickness tsof is 2 μm.

外部磁場Hexを変更しながら試料(1)〜(4)に係る薄膜磁気抵抗素子のMR比の変化を測定したところ、図3に示す結果が得られた。この図から明らかなように、試料(1)〜(4)に係る薄膜磁気抵抗素子は、MR比が急激に変化する外部磁場Hexをもつ特性を有しており、スイッチ素子として利用することができる。   When the change in the MR ratio of the thin film magnetoresistive elements according to the samples (1) to (4) was measured while changing the external magnetic field Hex, the results shown in FIG. 3 were obtained. As is clear from this figure, the thin film magnetoresistive elements according to the samples (1) to (4) have the characteristic of having an external magnetic field Hex whose MR ratio changes abruptly, and can be used as a switch element. it can.

本例の薄膜磁気抵抗素子は、円形に形成された内側軟磁性膜2の外周全体に円環状の外側軟磁性膜3を同心に配置したので、印加される外部磁場の方向によらず外側軟磁性膜3が飽和するまでの磁束密度が外側軟磁性膜3の周方向に関して一定になり、外部磁場に対する応答の等方性が最良のものとなる。   In the thin-film magnetoresistive element of this example, the annular outer soft magnetic film 3 is concentrically disposed on the entire outer periphery of the inner soft magnetic film 2 formed in a circle, so that the outer soft magnetic film 3 is not affected by the direction of the applied external magnetic field. The magnetic flux density until the magnetic film 3 is saturated becomes constant in the circumferential direction of the outer soft magnetic film 3, and the isotropic response to the external magnetic field is the best.

〈第2実施形態〉
本例の薄膜磁気抵抗素子は、図4に示すように、内側軟磁性膜2を四角形に形成すると共に外側軟磁性膜3を角形の枠状に形成したことを特徴とする。本例の薄膜磁気抵抗素子は、外部磁場の印加方向によって外側軟磁性膜3の飽和磁束密度が異なるため、外部磁場の印加方向に応じたMR比の変化特性が異なるが、内側軟磁性膜2の外周の全周にわたって外側軟磁性膜3が形成されているため、外部磁場の印加方向によらず全周にわたって外部磁場に対する応答を示す。よって、本例の薄膜磁気抵抗素子によれば、面内におけるいかなる方向の外部磁場に対しても応答を示し、かつ外部磁場の印加方向をも特定可能な薄膜磁気抵抗素子とすることができる。
Second Embodiment
As shown in FIG. 4, the thin film magnetoresistive element of this example is characterized in that the inner soft magnetic film 2 is formed in a square shape and the outer soft magnetic film 3 is formed in a rectangular frame shape. In the thin-film magnetoresistive element of this example, the saturation magnetic flux density of the outer soft magnetic film 3 differs depending on the application direction of the external magnetic field. Since the outer soft magnetic film 3 is formed over the entire circumference of the outer periphery, the response to the external magnetic field is shown over the entire circumference regardless of the direction in which the external magnetic field is applied. Therefore, according to the thin film magnetoresistive element of this example, it is possible to provide a thin film magnetoresistive element that shows a response to an external magnetic field in any direction in the plane and that can specify the application direction of the external magnetic field.

〈第3実施形態〉
本例の薄膜磁気抵抗素子は、図5に示すように、磁気抵抗効果膜4の内端側の上面と外端側の上面とにそれぞれ内側軟磁性膜2の外端部及び外側軟磁性膜3の内端部が重なるようにこれらの各膜2,3,4を形成したことを特徴とする。かかる構成によっても、第1実施形態に係る薄膜磁気抵抗素子と同様の効果を奏することができる。
<Third Embodiment>
As shown in FIG. 5, the thin-film magnetoresistive element of this example has an outer end portion and an outer soft magnetic film of the inner soft magnetic film 2 on the upper surface on the inner end side and the upper surface on the outer end side, respectively. Each of these films 2, 3, 4 is formed so that the inner end portions of 3 overlap each other. With this configuration, the same effect as the thin film magnetoresistive element according to the first embodiment can be obtained.

〈第4実施形態〉
本例の薄膜磁気抵抗素子は、図6(a),(b)及び図7に示すように、外側軟磁性膜3にスリット状の切欠部8a,8b,8cを形成したことを特徴とする。図6(a)は、外側軟磁性膜3の外周縁部から外側軟磁性膜3の半径方向に向けて、外側軟磁性膜3の幅(外径と内径の差分)の1/2の長さの切欠部8aを外側軟磁性膜3の中心(内側軟磁性膜2の中心及び磁気抵抗効果膜4の中心)Oを介してその両側に設けた例であり、図6(b)は、外側軟磁性膜3の外周縁部から外側軟磁性膜3の半径方向に向けて、外側軟磁性膜3の幅の3/4の長さの切欠部8bを外側軟磁性膜3の中心を介してその両側に設けた例である。また、図7は、外周縁部から内周縁部まで達するスリット状の切欠部8cを外側軟磁性膜3の半径方向に形成し、外側軟磁性膜3を半円形の2つの部分に分割した例である。図6(a)の薄膜磁気抵抗素子を試料(5)、図6(b)の薄膜磁気抵抗素子を試料(6)、図7の薄膜磁気抵抗素子を試料(7)とする。切欠部以外のサイズについては、前出の試料(1)と同じとした。
<Fourth embodiment>
The thin film magnetoresistive element of this example is characterized in that slit-shaped notches 8a, 8b, and 8c are formed in the outer soft magnetic film 3, as shown in FIGS. 6 (a), 6 (b), and 7. FIG. . FIG. 6A shows a length that is ½ of the width of the outer soft magnetic film 3 (difference between outer diameter and inner diameter) from the outer peripheral edge of the outer soft magnetic film 3 in the radial direction of the outer soft magnetic film 3. This is an example in which the notch portions 8a are provided on both sides of the outer soft magnetic film 3 through the center (the center of the inner soft magnetic film 2 and the center of the magnetoresistive effect film 4) O. FIG. From the outer peripheral edge of the outer soft magnetic film 3 toward the radial direction of the outer soft magnetic film 3, a notch 8b having a length of 3/4 of the width of the outer soft magnetic film 3 is interposed through the center of the outer soft magnetic film 3. This is an example provided on both sides of the lever. FIG. 7 shows an example in which slit-shaped notches 8c extending from the outer peripheral edge to the inner peripheral edge are formed in the radial direction of the outer soft magnetic film 3, and the outer soft magnetic film 3 is divided into two semicircular parts. It is. The thin film magnetoresistive element in FIG. 6A is referred to as a sample (5), the thin film magnetoresistive element in FIG. 6B as a sample (6), and the thin film magnetoresistive element in FIG. 7 as a sample (7). The size other than the notch was the same as the sample (1) described above.

外部磁場Hexを変更しながら試料(1),(5)、(6)、(7)に係る薄膜磁気抵抗素子のMR比の変化を測定したところ、図8に示す結果が得られた。なお、外部磁場Hexの印加方向は図6及び図7のx方向であり、試料(5)、(6)、(7)について図6及び図7のy方向に外部磁場Hexを印加した場合のMR比の変化は、図8における試料(1)の結果とほぼ同一であった。   When the change in the MR ratio of the thin film magnetoresistive element according to samples (1), (5), (6), and (7) was measured while changing the external magnetic field Hex, the results shown in FIG. 8 were obtained. The application direction of the external magnetic field Hex is the x direction in FIGS. 6 and 7, and when the external magnetic field Hex is applied in the y direction in FIGS. 6 and 7 for the samples (5), (6), and (7). The change in MR ratio was almost the same as the result of the sample (1) in FIG.

図8から明らかなように、試料(1),(5)、(6)、(7)に係る薄膜磁気抵抗素子も、MR比が急激に変化する外部磁場Hexをもつ特性を有しており、スイッチ素子として利用することができる。また、図3と図8の比較から明らかなように、試料(1)に係る薄膜磁気抵抗素子と試料(5)、(6)、(7)に係る薄膜磁気抵抗素子とは、外部磁場Hexに対するMR比の変化特性が異なっており、かつ試料(5)、(6)、(7)に係る薄膜磁気抵抗素子は、外部磁場Hexの印加方向によって外部磁場Hexに対するMR比の変化特性がそれぞれ異なることが分かる。よって、本例の薄膜磁気抵抗素子によれば、面内におけるいかなる方向の外部磁場に対しても応答を示し、かつ外部磁場の印加方向をも特定可能な薄膜磁気抵抗素子とすることができる。   As is clear from FIG. 8, the thin film magnetoresistive elements according to the samples (1), (5), (6), and (7) also have a characteristic having an external magnetic field Hex in which the MR ratio changes abruptly. It can be used as a switch element. As is clear from comparison between FIG. 3 and FIG. 8, the thin film magnetoresistive element according to the sample (1) and the thin film magnetoresistive element according to the samples (5), (6), and (7) And the thin film magnetoresistive elements according to the samples (5), (6), and (7) have different MR ratio change characteristics with respect to the external magnetic field Hex depending on the application direction of the external magnetic field Hex. I can see that they are different. Therefore, according to the thin film magnetoresistive element of this example, it is possible to provide a thin film magnetoresistive element that shows a response to an external magnetic field in any direction in the plane and that can specify the application direction of the external magnetic field.

以下、第1実施形態に係る薄膜磁気抵抗素子を利用した薄膜磁気センサの構成を、図9至図12を用いて説明する。図9は実施形態に係る薄膜磁気センサの構成図、図10は実施形態に係る薄膜磁気センサの等価回路図、図11は実施形態に係る薄膜磁気センサにおける外部磁場に対する可変抵抗及び固定抵抗の抵抗変化率特性を示すグラフ図、図12は実施形態に係る薄膜磁気センサの外部磁場に対する中点電位変化特性を示すグラフ図である。   Hereinafter, the configuration of the thin film magnetic sensor using the thin film magnetoresistive element according to the first embodiment will be described with reference to FIGS. 9 is a configuration diagram of a thin film magnetic sensor according to the embodiment, FIG. 10 is an equivalent circuit diagram of the thin film magnetic sensor according to the embodiment, and FIG. 11 is a resistance of a variable resistor and a fixed resistor with respect to an external magnetic field in the thin film magnetic sensor according to the embodiment. FIG. 12 is a graph showing a change rate characteristic, and FIG. 12 is a graph showing a midpoint potential change characteristic with respect to an external magnetic field of the thin film magnetic sensor according to the embodiment.

図9に示すように、本例の薄膜磁気センサは、絶縁基板1と、絶縁基板1上に形成された可変抵抗11及び固定抵抗21と、これら可変抵抗11及び固定抵抗21を相互に接続して図10に示すブリッジ回路を構成する配線5とからなる。   As shown in FIG. 9, the thin film magnetic sensor of this example connects the insulating substrate 1, the variable resistor 11 and the fixed resistor 21 formed on the insulating substrate 1, and the variable resistor 11 and the fixed resistor 21 to each other. And wiring 5 constituting the bridge circuit shown in FIG.

可変抵抗11としては、図1及び図2に示した薄膜磁気抵抗素子が用いられる。これに対して、固定抵抗21としては、可変抵抗11の内側軟磁性膜2に代えて非磁性金属膜22を形成したものが用いられる。その他の部分の形状及びサイズについては、可変抵抗11と同様に形成される。   As the variable resistor 11, the thin film magnetoresistive element shown in FIGS. 1 and 2 is used. On the other hand, the fixed resistor 21 is formed by forming a nonmagnetic metal film 22 in place of the inner soft magnetic film 2 of the variable resistor 11. Other portions are formed in the same manner as the variable resistor 11 in shape and size.

可変抵抗11は、先に説明したように磁場に対して図11に実線で示す抵抗変化率特性を有する。これに対して、固定抵抗21は、非磁性金属膜22を備えているので、外側軟磁性膜3が飽和磁束密度に達したとき、磁気抵抗効果が緩やかに発現され、図11に破線で示す抵抗変化率を有する。したがって、これらの可変抵抗11及び固定抵抗21をもってブリッジ回路を構成すると、零位法によって磁気抵抗効果膜に作用する磁場の変動を検出できると共に、電源電圧の変動や検出器の入力インピーダンス若しくは非直線性などの影響を除去することができ、高精度にして実用的な薄膜磁気センサとすることができる。なお、試料としては、前出の試料(1)に係る薄膜磁気抵抗素子を可変抵抗11として用い、試料(1)に係る薄膜磁気抵抗素子と同一形状及び同一サイズで、可変抵抗11の内側軟磁性膜2に代えて非磁性金属膜22を形成したものを固定抵抗21として用いた。   As described above, the variable resistor 11 has a resistance change rate characteristic indicated by a solid line in FIG. 11 with respect to a magnetic field. On the other hand, since the fixed resistor 21 includes the nonmagnetic metal film 22, when the outer soft magnetic film 3 reaches the saturation magnetic flux density, the magnetoresistive effect is gently exhibited, and is indicated by a broken line in FIG. It has a resistance change rate. Therefore, when a bridge circuit is constituted by the variable resistor 11 and the fixed resistor 21, it is possible to detect the fluctuation of the magnetic field acting on the magnetoresistive effect film by the null method, and to change the power supply voltage, the input impedance of the detector or the non-linearity. Thus, a practical thin film magnetic sensor with high accuracy can be obtained. As the sample, the thin film magnetoresistive element according to the above-described sample (1) is used as the variable resistor 11, and has the same shape and the same size as the thin film magnetoresistive element according to the sample (1). Instead of the magnetic film 2, a non-magnetic metal film 22 is used as the fixed resistor 21.

本例の薄膜磁気センサは、薄膜磁気抵抗素子の面内におけるいかなる方向の外部磁化に対しても、図12に示す出力特性又はこれに近似する出力特性を示した。   The thin film magnetic sensor of the present example exhibited the output characteristics shown in FIG. 12 or the output characteristics approximate to the external magnetization in any direction in the plane of the thin film magnetoresistive element.

なお、可変抵抗11としては、第1実施形態に係る薄膜磁気抵抗素子に代えて、第2乃至第4実施形態に係る薄膜磁気抵抗素子を用いることもできる。勿論、これらの場合には、固定抵抗21として、可変抵抗11と同一形状及び同一サイズに形成されたものが用いられる。   As the variable resistor 11, the thin film magnetoresistive element according to the second to fourth embodiments can be used instead of the thin film magnetoresistive element according to the first embodiment. Of course, in these cases, the fixed resistor 21 having the same shape and the same size as the variable resistor 11 is used.

第1実施形態に係る薄膜磁気抵抗素子の平面図である。It is a top view of the thin film magnetoresistive element concerning a 1st embodiment. 図1のA−A部拡大断面図である。It is an AA part expanded sectional view of FIG. 第1実施形態に係る薄膜磁気抵抗素子の外部磁場に対するMR比の変化特性を示すグラフ図である。It is a graph which shows the change characteristic of MR ratio with respect to the external magnetic field of the thin film magnetoresistive element which concerns on 1st Embodiment. 第2実施形態に係る薄膜磁気抵抗素子の平面図である。It is a top view of the thin film magnetoresistive element concerning a 2nd embodiment. 第3実施形態に係る薄膜磁気抵抗素子の要部拡大断面図である。It is a principal part expanded sectional view of the thin film magnetoresistive element which concerns on 3rd Embodiment. 第4実施形態に係る薄膜磁気抵抗素子の平面図である。It is a top view of the thin film magnetoresistive element concerning a 4th embodiment. 第4実施形態に係る薄膜磁気抵抗素子の他の例を示す平面図である。It is a top view which shows the other example of the thin film magnetoresistive element which concerns on 4th Embodiment. 第4実施形態に係る薄膜磁気抵抗素子の外部磁場に対するMR比の変化特性を示すグラフ図である。It is a graph which shows the change characteristic of MR ratio with respect to the external magnetic field of the thin film magnetoresistive element concerning 4th Embodiment. 実施形態に係る薄膜磁気センサの構成図である。It is a block diagram of the thin film magnetic sensor which concerns on embodiment. 実施形態に係る薄膜磁気センサの等価回路図である。It is an equivalent circuit diagram of the thin film magnetic sensor according to the embodiment. 実施形態に係る薄膜磁気センサにおける外部磁場に対する可変抵抗及び固定抵抗の抵抗変化率特性を示すグラフ図である。It is a graph which shows the resistance change rate characteristic of the variable resistance and fixed resistance with respect to the external magnetic field in the thin film magnetic sensor which concerns on embodiment. 実施形態に係る薄膜磁気センサの外部磁場に対する中点電位変化特性を示すグラフ図である。It is a graph which shows the midpoint potential change characteristic with respect to the external magnetic field of the thin film magnetic sensor which concerns on embodiment.

符号の説明Explanation of symbols

1 絶縁基板
2 内側軟磁性膜
3 外側軟磁性膜
4 磁気抵抗効果膜
5 配線
6 間隙
8 切欠部
11 可変抵抗
21 固定抵抗
22 非磁性金属膜
DESCRIPTION OF SYMBOLS 1 Insulating substrate 2 Inner soft magnetic film 3 Outer soft magnetic film 4 Magnetoresistive film 5 Wiring 6 Gap 8 Notch 11 Variable resistance 21 Fixed resistance 22 Nonmagnetic metal film

Claims (6)

絶縁基板と、当該絶縁基板に形成された内側軟磁性膜、外側軟磁性膜、磁気抵抗効果膜及び前記磁気抵抗効果膜の抵抗値を検出するための配線とを有し、前記外側軟磁性膜は前記内側軟磁性膜の外周を全周にわたって取り囲むか、又は前記内側軟磁性膜の外周を大部分にわたって取り囲むように形成されており、前記内側軟磁性膜の外縁部と前記外側軟磁性膜の内縁部との間には一定間隔の間隙が設けられていて、当該間隙内に前記磁気抵抗効果膜が形成されていることを特徴とする薄膜磁気抵抗素子。   An insulating substrate; an inner soft magnetic film formed on the insulating substrate; an outer soft magnetic film; a magnetoresistive effect film; and a wiring for detecting a resistance value of the magnetoresistive effect film. Is formed so as to surround the outer periphery of the inner soft magnetic film over the entire circumference, or to surround the outer periphery of the inner soft magnetic film over most of the outer soft magnetic film. A thin film magnetoresistive element, wherein a gap having a constant interval is provided between the inner edge and the magnetoresistive film is formed in the gap. 前記外側軟磁性膜は、径方向に延びるスリット状の切欠部によって2分割されていることを特徴とする請求項1に記載の薄膜磁気抵抗素子。   2. The thin film magnetoresistive element according to claim 1, wherein the outer soft magnetic film is divided into two by a slit-shaped cutout portion extending in a radial direction. 前記外側軟磁性膜は、その一部に内縁部まで達しないスリット状の切欠部を有していることを特徴とする請求項1に記載の薄膜磁気抵抗素子。   2. The thin film magnetoresistive element according to claim 1, wherein the outer soft magnetic film has a slit-like cutout portion that does not reach the inner edge portion. 前記内側軟磁性膜の外縁部が円形で、前記外側軟磁性膜の内縁部及び外縁部が円形又は円弧形であることを特徴とする請求項1又は請求項2に記載の薄膜磁気抵抗素子。   3. The thin film magnetoresistive element according to claim 1, wherein an outer edge portion of the inner soft magnetic film is circular, and an inner edge portion and an outer edge portion of the outer soft magnetic film are circular or arc-shaped. . 前記内側軟磁性膜の外縁部と前記外側軟磁性膜の内縁部とが角形であることを特徴とする請求項1又は請求項2に記載の薄膜磁気抵抗素子。   The thin film magnetoresistive element according to claim 1 or 2, wherein an outer edge portion of the inner soft magnetic film and an inner edge portion of the outer soft magnetic film are square. 絶縁基板と、当該絶縁基板に形成された内側軟磁性膜、外側軟磁性膜、磁気抵抗効果膜及び前記磁気抵抗効果膜の抵抗値を検出するための配線とを有し、前記外側軟磁性膜は前記内側軟磁性膜の外周を全周にわたって取り囲むか、又は前記内側軟磁性膜の外周を大部分にわたって取り囲むように形成されており、前記内側軟磁性膜の外縁部と前記外側軟磁性膜の内縁部との間には一定間隔の間隙が設けられていて、当該間隙内に前記磁気抵抗効果膜が形成された第1薄膜磁気抵抗素子を可変抵抗とし、
絶縁基板と、当該絶縁基板に形成された内側非磁性金属膜、外側軟磁性膜、磁気抵抗効果膜及び前記磁気抵抗効果膜の抵抗値を検出するための配線とを有し、前記外側軟磁性膜は前記内側非磁性金属膜の外周を全周にわたって取り囲むか、又は前記内側非磁性金属膜の外周を大部分にわたって取り囲むように形成されており、前記内側非磁性金属膜の外縁部と前記外側軟磁性膜の内縁部との間には一定間隔の間隙が設けられていて、当該間隙内に前記磁気抵抗効果膜が形成された第2薄膜磁気抵抗素子を固定抵抗とし、
前記可変抵抗部の外側軟磁性膜と前記固定抵抗部の外側軟磁性膜とが離間して設けられたブリッジ回路からなることを特徴とする薄膜磁気センサ。
An insulating substrate; an inner soft magnetic film formed on the insulating substrate; an outer soft magnetic film; a magnetoresistive effect film; and a wiring for detecting a resistance value of the magnetoresistive effect film. Is formed so as to surround the outer periphery of the inner soft magnetic film over the entire circumference, or to surround the outer periphery of the inner soft magnetic film over most of the outer soft magnetic film. A gap having a constant interval is provided between the inner edge and the first thin film magnetoresistive element in which the magnetoresistive film is formed in the gap as a variable resistance.
An insulating substrate; an inner nonmagnetic metal film formed on the insulating substrate; an outer soft magnetic film; a magnetoresistive effect film; and a wiring for detecting a resistance value of the magnetoresistive effect film. The film is formed so as to surround the outer periphery of the inner nonmagnetic metal film over the entire circumference, or to surround the outer periphery of the inner nonmagnetic metal film over most of the outer nonmagnetic metal film. A gap having a constant interval is provided between the inner edge of the soft magnetic film, and the second thin film magnetoresistive element in which the magnetoresistive film is formed in the gap is used as a fixed resistance.
A thin film magnetic sensor comprising a bridge circuit in which an outer soft magnetic film of the variable resistance portion and an outer soft magnetic film of the fixed resistance portion are provided apart from each other.
JP2006285049A 2006-05-23 2006-10-19 Thin-film magnetoresistive element and thin-film magnetic sensor Withdrawn JP2008003072A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006285049A JP2008003072A (en) 2006-05-23 2006-10-19 Thin-film magnetoresistive element and thin-film magnetic sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006142912 2006-05-23
JP2006285049A JP2008003072A (en) 2006-05-23 2006-10-19 Thin-film magnetoresistive element and thin-film magnetic sensor

Publications (1)

Publication Number Publication Date
JP2008003072A true JP2008003072A (en) 2008-01-10

Family

ID=39007568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006285049A Withdrawn JP2008003072A (en) 2006-05-23 2006-10-19 Thin-film magnetoresistive element and thin-film magnetic sensor

Country Status (1)

Country Link
JP (1) JP2008003072A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009087987A1 (en) 2008-01-10 2009-07-16 Nutri Co., Ltd. Composition for improving nutritional status, reducing frequency of fever and/or increasing immunocompetence of elderly
WO2011024923A1 (en) * 2009-08-26 2011-03-03 パナソニック電工株式会社 Magnetic field sensor, as well as magnetic field measurement method, power measurement device, and power measurement method using the same
JP2011047730A (en) * 2009-08-26 2011-03-10 Panasonic Electric Works Co Ltd Magnetic field sensor and method of measuring magnetic field using the same
KR101083068B1 (en) * 2009-11-30 2011-11-16 주식회사 아모센스 Ring type planar hall resistance sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009087987A1 (en) 2008-01-10 2009-07-16 Nutri Co., Ltd. Composition for improving nutritional status, reducing frequency of fever and/or increasing immunocompetence of elderly
WO2011024923A1 (en) * 2009-08-26 2011-03-03 パナソニック電工株式会社 Magnetic field sensor, as well as magnetic field measurement method, power measurement device, and power measurement method using the same
JP2011047730A (en) * 2009-08-26 2011-03-10 Panasonic Electric Works Co Ltd Magnetic field sensor and method of measuring magnetic field using the same
KR101083068B1 (en) * 2009-11-30 2011-11-16 주식회사 아모센스 Ring type planar hall resistance sensor

Similar Documents

Publication Publication Date Title
KR100687513B1 (en) Thin-film magnetic field sensor
JP5151551B2 (en) Thin film magnetic sensor
US9810748B2 (en) Tunneling magneto-resistor device for sensing a magnetic field
JP2008525787A (en) Magnetic sensor with adjustable characteristics
JP2008197089A (en) Magnetic sensor element and method for manufacturing the same
JPH11194161A (en) Sensor for detecting orientation of external field through a reluctance sensor element
JP6842741B2 (en) Magnetic sensor
JP2017072375A (en) Magnetic sensor
JP2018073913A (en) Magnetic sensor and production method thereof
EP2339362A1 (en) Magnetic sensor module and piston position detector
JP4285695B2 (en) Thin film magnetic sensor and rotation sensor
JP2008003072A (en) Thin-film magnetoresistive element and thin-film magnetic sensor
JP6064656B2 (en) Magnetoresistive element for sensor and sensor circuit
JP7207671B2 (en) Magnetic sensor utilizing anomalous Hall effect, Hall sensor, and method for manufacturing Hall sensor
US11009569B2 (en) Magnetic field sensing device
JP5007916B2 (en) Magnetic sensor
JP4520353B2 (en) Thin film magnetic sensor
JP4331630B2 (en) Magnetic sensor
JP4953569B2 (en) Thin film magnetoresistive element and magnetic sensor using thin film magnetoresistive element
JP2002131407A (en) Thin film magnetic field sensor
JP2015133377A (en) Magnetic detection element and rotation detection device
JPWO2014119345A1 (en) Giant magnetoresistive effect element and current sensor using the same
JP2009145228A (en) Thin-film magnetoresistive element and thin-film magnetic sensor
WO2015125699A1 (en) Magnetic sensor
JP4984962B2 (en) Magnetic angle sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080829

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090610