JP2011047730A - Magnetic field sensor and method of measuring magnetic field using the same - Google Patents

Magnetic field sensor and method of measuring magnetic field using the same Download PDF

Info

Publication number
JP2011047730A
JP2011047730A JP2009195103A JP2009195103A JP2011047730A JP 2011047730 A JP2011047730 A JP 2011047730A JP 2009195103 A JP2009195103 A JP 2009195103A JP 2009195103 A JP2009195103 A JP 2009195103A JP 2011047730 A JP2011047730 A JP 2011047730A
Authority
JP
Japan
Prior art keywords
magnetic field
thin film
magnetic
field sensor
magnetic thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009195103A
Other languages
Japanese (ja)
Other versions
JP5620075B2 (en
Inventor
Hideki Takenaga
秀樹 武長
Eiji Iwami
英司 岩見
Tomoyuki Sawada
知行 澤田
Hiroaki Tsujimoto
浩章 辻本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Osaka University NUC
Osaka City University
Original Assignee
Panasonic Electric Works Co Ltd
Osaka University NUC
Osaka City University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2009195103A priority Critical patent/JP5620075B2/en
Application filed by Panasonic Electric Works Co Ltd, Osaka University NUC, Osaka City University filed Critical Panasonic Electric Works Co Ltd
Priority to TW099128624A priority patent/TWI480566B/en
Priority to US13/392,352 priority patent/US20120229131A1/en
Priority to CN201080038072.5A priority patent/CN102656471B/en
Priority to KR1020127004915A priority patent/KR101314365B1/en
Priority to EP10811972.8A priority patent/EP2461174A4/en
Priority to PCT/JP2010/064532 priority patent/WO2011024923A1/en
Publication of JP2011047730A publication Critical patent/JP2011047730A/en
Application granted granted Critical
Publication of JP5620075B2 publication Critical patent/JP5620075B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To detect a magnetic field with high reliability by enabling determination of positive and negative directions. <P>SOLUTION: A magnetic field sensor includes: a ferromagnetic thin film 3; power feed sections 5A, 5B including input/output terminals for supplying an element current to the ferromagnetic thin film; and detection sections 5C, 5D for detecting voltage of the ferromagnetic thin film (between end sections) in a direction orthogonal to the direction of the element current. The ferromagnetic thin film is formed symmetrically to the direction of the element current. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、磁界センサおよびこれを用いた磁界測定方法にかかり、特にオフセットがなく、高精度の磁界測定を実現するための磁界センサの電圧取り出しに関する。   The present invention relates to a magnetic field sensor and a magnetic field measurement method using the same, and more particularly to voltage extraction of the magnetic field sensor for realizing high-precision magnetic field measurement without offset.

磁界センサは、外部磁界の変化を電気信号に変換する素子であり、強磁性薄膜や半導体薄膜等の磁界検出膜をパターニングし、その磁界検出膜のパターンに電流を流し電圧変化として外部磁界の変化を電気信号に変換するものである。   A magnetic field sensor is an element that converts an external magnetic field change into an electrical signal. Patterning a magnetic field detection film, such as a ferromagnetic thin film or a semiconductor thin film, and passing a current through the magnetic field detection film pattern changes the external magnetic field as a voltage change. Is converted into an electric signal.

例えば、強磁性磁気抵抗効果センサは、強磁性体金属の電気抵抗が外部磁界により変化する現象(磁気抵抗効果)を利用して磁界強度を測定する。
例えば特許文献1では、高感度化を企図して、環状パターンの一部を開口して通電部を形成した磁界センサが提案されている。
For example, a ferromagnetic magnetoresistive sensor measures the magnetic field strength using a phenomenon (magnetoresistance effect) in which the electrical resistance of a ferromagnetic metal changes due to an external magnetic field.
For example, Patent Document 1 proposes a magnetic field sensor in which a current-carrying portion is formed by opening a part of an annular pattern in order to increase sensitivity.

特開平11−274598号公報JP 11-274598 A

例えば、図16に示すように、強磁性特性を有する磁性薄膜100にその直径方向に沿って配置された導体200に電流Iを流し、その電流によって生じる磁界をH、素子の持つ自発磁化をMとしたとき、磁界H、素子の持つ自発磁化Mを合成した磁束密度ベクトルをBM0とし、電流密度ベクトルと磁束密度ベクトルのなす角をθ、強磁性薄膜100の点A−B間の抵抗をR、磁界によって変化する点A−B間の抵抗値の最大値をΔRとすると、
点A−B間の電圧VAB
AB=I(R+ΔRcos2θ) (1)
となる。ここでIは電流密度ベクトル、BM0は磁束密度ベクトル、Iは素子電流である。
For example, as shown in FIG. 16, a current I 1 is passed through a conductor 200 disposed along the diameter direction of a magnetic thin film 100 having ferromagnetic properties, the magnetic field generated by the current is H, and the spontaneous magnetization of the element is Assuming M, the magnetic flux density vector obtained by combining the magnetic field H and the spontaneous magnetization M of the element is B M0 , the angle formed by the current density vector and the magnetic flux density vector is θ, and the resistance between the points A and B of the ferromagnetic thin film 100. Is R, and the maximum value of the resistance value between points A and B that changes due to the magnetic field is ΔR,
The voltage V AB between the points A and B is V AB = I 2 (R + ΔR cos 2θ) (1)
It becomes. Here, I is a current density vector, B M0 is a magnetic flux density vector, and I 2 is an element current.

しかしながら、上記構成では、交流磁界を印加した際の正負方向の判別ができないという問題がある。これは、上記式(1)中でcos2θが正負で同じ値をとるためである。
本発明は前記実情に鑑みてなされたもので、正負方向の判定が可能で、信頼性の高い磁界検出を可能にすることを目的とする。
However, the above configuration has a problem that the positive / negative direction cannot be determined when an alternating magnetic field is applied. This is because cos 2θ is positive and negative and takes the same value in the above equation (1).
The present invention has been made in view of the above circumstances, and an object of the present invention is to make it possible to determine a positive / negative direction and to detect a magnetic field with high reliability.

そこで本発明の磁界センサは、磁性薄膜と、前記磁性薄膜に素子電流を供給する入出力端子を備えた給電部と、前記素子電流の方向に直交する方向における前記磁性薄膜端部間の電圧を検出する検出部とを具備し、前記磁性薄膜は、前記素子電流の方向に対して対称となるように形成されたことを特徴とする。
上記構成によれば、磁性薄膜の出力取り出し方向を素子電流方向に対し直交する方向とするとともに、素子電流の方向に対して対称となるように形成することで、方向の正負を判定することができ、かつ磁界を印加しないときのオフセットがなくなるため回路構成を簡単にすることができる。
In view of this, the magnetic field sensor of the present invention provides a voltage between a magnetic thin film, a power feeding unit having an input / output terminal for supplying an element current to the magnetic thin film, and an end of the magnetic thin film in a direction orthogonal to the direction of the element current. The magnetic thin film is formed so as to be symmetric with respect to the direction of the device current.
According to the above configuration, it is possible to determine whether the direction of the direction of the magnetic thin film is positive or negative by forming the output direction of the magnetic thin film in a direction orthogonal to the element current direction and symmetric with respect to the element current direction. In addition, since there is no offset when no magnetic field is applied, the circuit configuration can be simplified.

また本発明は、上記磁界センサにおいて、前記磁性薄膜は、外形が円形であるものを含む。
この構成によれば、対称形であり、素子電流方向に対して対称となるように形成しやすく、信頼性の高い磁界センサを提供することが可能となる。
According to the present invention, in the magnetic field sensor, the magnetic thin film has a circular outer shape.
According to this configuration, it is possible to provide a highly reliable magnetic field sensor that is symmetrical and can be easily formed to be symmetric with respect to the device current direction.

また本発明は、上記磁界センサにおいて、前記磁性薄膜は、環状体であるものを含む。
この構成によれば、磁性薄膜の幅が小さくなるため、電気抵抗が増大し、素子の外形を大きくすることなく抵抗値を大きくすることができ、出力を大きくすることが可能となる。
According to the present invention, in the magnetic field sensor, the magnetic thin film is an annular body.
According to this configuration, since the width of the magnetic thin film is reduced, the electrical resistance is increased, the resistance value can be increased without increasing the outer shape of the element, and the output can be increased.

また本発明は、上記磁界センサにおいて、前記磁性薄膜は、正方形の環状体で構成され、前記正方形の対角線方向に電流が流れるように給電部が設けられたものを含む。
この構成によれば、高感度化をはかることができる。センサの出力Vmrは次式で表すことができる。
ただし、電流密度ベクトルと磁束密度ベクトルのなす角をθ1、θ2
ABとACとおよびABとADのなす角をφ、
外部磁界がない時のAC間の電圧をVAC0、AD間の電圧をVAD0
磁気抵抗効果による電圧変化の最大値をΔVrとする。
According to the present invention, in the above magnetic field sensor, the magnetic thin film includes a square annular body, and a power feeding unit is provided so that a current flows in a diagonal direction of the square.
According to this configuration, high sensitivity can be achieved. The output Vmr of the sensor can be expressed by the following equation.
However, the angle between the current density vector and the magnetic flux density vector is θ 1 , θ 2 ,
The angle between AB and AC and AB and AD is φ,
The voltage between AC when there is no external magnetic field is V AC0 , the voltage between AD is V AD0 ,
Let ΔVr be the maximum value of the voltage change due to the magnetoresistive effect.

Figure 2011047730
Figure 2011047730

丸形環状においても略同式にて表現できるが、円環状の場合、電流密度ベクトルの方向がAからC、AからDの間で変化し、出力最大となるφ=45度以外の成分も存在するためひし形に比べて出力が小さくなる。   In the circular ring, it can be expressed by substantially the same expression. However, in the case of the circular ring, the direction of the current density vector changes from A to C, and from A to D, and components other than φ = 45 degrees that have the maximum output are also included. Since it exists, the output is smaller than that of the diamond.

また本発明は、上記磁界センサにおいて、前記磁性薄膜は、環状体であり、線幅が一定である。
この構成によれば、磁界を印加しないときの電圧が等しくなり、電圧出力がゼロとなるため、後段の回路において増幅をした時にオフセットによる飽和を抑制することができ、回路構成が簡単となり、かつ高精度の磁界検出が可能となる。
In the magnetic field sensor according to the present invention, the magnetic thin film is an annular body and has a constant line width.
According to this configuration, the voltage when no magnetic field is applied becomes equal and the voltage output becomes zero, so that saturation due to offset can be suppressed when amplification is performed in the subsequent circuit, the circuit configuration is simplified, and High-precision magnetic field detection is possible.

また本発明は、上記磁界センサにおいて、前記磁性薄膜は、前記環状体の内部に、磁性膜からなる内部磁性薄膜が設けられたものを含む。
この構成により、磁性体の間に空間が形成されるため、外部磁界に対する感度が低下する。そこで電気抵抗を高めたままで、磁気的な感度のみを向上すべく、電気的に独立して内部磁性体膜を設けたことで、より高感度化を図ることができる。
According to the present invention, in the magnetic field sensor, the magnetic thin film includes an annular magnetic body provided with an internal magnetic thin film made of a magnetic film.
With this configuration, since a space is formed between the magnetic bodies, sensitivity to an external magnetic field is reduced. Therefore, the sensitivity can be further increased by providing the internal magnetic film independently independently in order to improve only the magnetic sensitivity while increasing the electrical resistance.

また本発明は、上記磁界センサにおいて、前記内部磁性薄膜は、前記磁性薄膜と同一材料からなる磁性薄膜で構成されたものを含む。
この構成によれば、製造が容易でパターンの変更のみで高感度で信頼性の高い磁界センサを提供することができる。
According to the present invention, in the magnetic field sensor, the internal magnetic thin film includes a magnetic thin film made of the same material as the magnetic thin film.
According to this configuration, it is possible to provide a magnetic field sensor that is easy to manufacture and has high sensitivity and high reliability only by changing the pattern.

また本発明は、上記磁界センサにおいて、前記内部磁性薄膜は、前記磁性薄膜と異なる磁性薄膜で構成されたものを含む。
この構成によれば、感度を調整することができ、また、多数の磁界センサを並べて配列する場合、感度をそろえるために、内部磁性薄膜の材料を調整することによっても感度の調整を図ることが可能となる。
According to the present invention, in the magnetic field sensor, the internal magnetic thin film includes a magnetic thin film different from the magnetic thin film.
According to this configuration, the sensitivity can be adjusted, and when a large number of magnetic field sensors are arranged side by side, the sensitivity can also be adjusted by adjusting the material of the internal magnetic thin film in order to align the sensitivity. It becomes possible.

また本発明の磁界測定方法は、磁性薄膜のパターンが、素子電流の方向に対して対称となるように、素子電流を供給し、前記素子電流の供給方向に直交する方向で、前記磁性薄膜端部間の電圧を検出することで磁界強度を測定する。
この構成によれば、磁性薄膜の出力取り出し方向を素子電流方向に対し直交する方向とするとともに、素子電流の方向に対して対称となるように形成することで、方向の正負を判定することができ、かつ磁界を印加しないときのオフセットがなくなるため回路構成を簡単にすることができる。
The magnetic field measuring method of the present invention supplies the element current so that the pattern of the magnetic thin film is symmetric with respect to the direction of the element current, and the magnetic thin film end in a direction orthogonal to the element current supply direction. The magnetic field strength is measured by detecting the voltage between the parts.
According to this configuration, the output direction of the magnetic thin film is set to be a direction orthogonal to the element current direction, and is formed so as to be symmetric with respect to the direction of the element current, thereby determining whether the direction is positive or negative. In addition, since there is no offset when no magnetic field is applied, the circuit configuration can be simplified.

以上説明してきたように、本発明によれば、極めて簡単な構成で、電圧を素子電流方向と直交する点から取り出すようにしているため、磁界の方向を検出でき、オフセットもなく、信頼性の高い磁界検出が可能となる。   As described above, according to the present invention, since the voltage is extracted from a point orthogonal to the element current direction with a very simple configuration, the direction of the magnetic field can be detected, there is no offset, and reliability is improved. High magnetic field detection is possible.

本発明の磁界センサの原理説明図Illustration of the principle of the magnetic field sensor of the present invention 本発明の実施の形態1の磁界センサの原理説明図FIG. 1 is a diagram illustrating the principle of a magnetic field sensor according to Embodiment 1 of the present invention. 本発明の実施の形態1の磁界センサの上面図1 is a top view of a magnetic field sensor according to a first embodiment of the present invention. 本発明の実施の形態1の磁界センサの断面図Sectional drawing of the magnetic field sensor of Embodiment 1 of this invention 本発明の実施の形態1の磁界センサの素子特性を測定するための測定装置を示す回路説明図FIG. 2 is a circuit explanatory diagram showing a measuring apparatus for measuring element characteristics of the magnetic field sensor according to Embodiment 1 of the present invention. 本発明の実施の形態1の磁界センサの素子特性の測定結果を示す図The figure which shows the measurement result of the element characteristic of the magnetic field sensor of Embodiment 1 of this invention 本発明の実施の形態1の磁界センサの素子特性の測定結果を示す図The figure which shows the measurement result of the element characteristic of the magnetic field sensor of Embodiment 1 of this invention 本発明の実施の形態1の磁界センサの電流値と出力電圧との関係を示す図The figure which shows the relationship between the electric current value and output voltage of the magnetic field sensor of Embodiment 1 of this invention. 本発明の実施の形態2の磁界センサの原理説明図FIG. 3 is a diagram illustrating the principle of a magnetic field sensor according to a second embodiment of the present invention. 本発明の実施の形態2の磁界センサの上面図The top view of the magnetic field sensor of Embodiment 2 of this invention 本発明の実施の形態2の磁界センサの断面図Sectional drawing of the magnetic field sensor of Embodiment 2 of this invention 本発明の実施の形態2の変形例の磁界センサの断面図Sectional drawing of the magnetic field sensor of the modification of Embodiment 2 of this invention 本発明の実施の形態2の変形例の磁界センサの上面図The top view of the magnetic field sensor of the modification of Embodiment 2 of this invention 本発明の実施の形態3の磁界センサの原理説明図Explanatory drawing of the principle of the magnetic field sensor of Embodiment 3 of this invention 本発明の実施の形態3の磁界センサの上面図Top view of a magnetic field sensor according to Embodiment 3 of the present invention. 従来例の磁界センサの説明図Illustration of a conventional magnetic field sensor

以下本発明の実施の形態について図面を参照しつつ詳細に説明する。
本発明の実施の形態の説明に先立ち、本発明の測定原理について説明する。
本発明では、磁性薄膜として用いる強磁性薄膜に対し、素子電流方向に対し直交する方向に出力取り出しを行うようにするとともに、出力取り出し方向に対してほぼ対称となるようにしている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
Prior to the description of the embodiments of the present invention, the measurement principle of the present invention will be described.
In the present invention, the output of the ferromagnetic thin film used as the magnetic thin film is extracted in a direction orthogonal to the element current direction, and is substantially symmetric with respect to the output extraction direction.

つまり図1に原理説明図を示すように、円形の強磁性薄膜3のパターンの中心に対して対称な位置にあり、この強磁性薄膜パターンの周縁上にある点A,Bを通電部とし、この線分ABに直交するとともに、円の中心を通る線分C,Dを出力取り出し方向としている。   That is, as shown in FIG. 1, the principle A is shown in FIG. 1, and the points A and B on the periphery of the ferromagnetic thin film pattern are symmetrical with respect to the center of the pattern of the circular ferromagnetic thin film 3. The line segments C and D that are orthogonal to the line segment AB and that pass through the center of the circle are used as the output extraction direction.

このとき、図1に示すように、強磁性薄膜3にその直径方向に沿って配置された導体200に電流Iを流し、その電流によって生じる磁界をH、素子の持つ自発磁化をMとしたとき、磁界H、素子の持つ自発磁化Mを合成した磁束密度ベクトルをBM0とするとともに電流密度ベクトルと磁束密度ベクトルのなす角をθと、強磁性薄膜3の点A−B間の抵抗をR、磁界によって変化する点A−B間の抵抗値の最大値をΔRとすると、点C−D間の電圧VCDは、電圧VACと電圧VADとの差で表すことができる。
これを数式化すると、
CD=I(ΔRsin2θ) (5)
で表すことができる。ここでIは電流密度ベクトル、BM0は磁束密度ベクトル、Iは素子電流である。
つまり交流磁界を印加した時、正負を判定することができる。
At this time, as shown in FIG. 1, a current I 1 is passed through a conductor 200 arranged along the diameter direction of the ferromagnetic thin film 3, the magnetic field generated by the current is H, and the spontaneous magnetization of the element is M. When the magnetic flux density vector obtained by combining the magnetic field H and the spontaneous magnetization M of the element is B M0 , the angle between the current density vector and the magnetic flux density vector is θ, and the resistance between points A and B of the ferromagnetic thin film 3 is When the maximum value of the resistance value between points A and B that changes due to R and the magnetic field is ΔR, the voltage V CD between the points CD can be expressed by the difference between the voltage V AC and the voltage V AD .
If you formulate this,
V CD = I 2 (ΔR sin 2θ) (5)
Can be expressed as Here, I is a current density vector, B M0 is a magnetic flux density vector, and I 2 is an element current.
That is, when an alternating magnetic field is applied, positive / negative can be determined.

また、式(1)で表した従来例の場合に比べて、磁界を印加しないときのオフセットがなく、ゼロとなるため回路構成を簡単にすることができる。
この構成によれば、強磁性薄膜3にその直径方向に沿って配置された導体200に電流Iを流し、その電流によって生じる磁界をH、素子の持つ自発磁化をMとしたとき、磁界H、素子の持つ自発磁化Mを合成した磁束密度ベクトルをBM0とするとともに電流密度ベクトルと磁束密度ベクトルのなす角をθと、強磁性薄膜3の点A−B間の抵抗をR、磁界によって変化する点A−B間の抵抗値の最大値をΔRとすると、点C−D間の電圧VCDは、電圧VACと電圧VADとの差で表すことができる。
Further, compared to the conventional example represented by the expression (1), there is no offset when no magnetic field is applied, and the circuit configuration can be simplified because the offset is zero.
According to this configuration, when the current I 1 is passed through the conductor 200 arranged along the diameter direction of the ferromagnetic thin film 3, the magnetic field generated by the current is H, and the spontaneous magnetization of the element is M, the magnetic field H The magnetic flux density vector obtained by synthesizing the spontaneous magnetization M of the element is B M0 , the angle between the current density vector and the magnetic flux density vector is θ, the resistance between points A and B of the ferromagnetic thin film 3 is R, and the magnetic field is When the maximum resistance value between the changing points A and B is ΔR, the voltage V CD between the points C and D can be expressed by the difference between the voltage V AC and the voltage V AD .

(実施の形態1)
本実施の形態1の磁界センサについて説明する。図2にこの磁界センサの原理説明図、図3に、上面図、図4に断面図を示す。この磁界センサは図3及び4に示すように、シリコンからなる基板1表面に絶縁膜2として酸化シリコン膜を形成し、この絶縁膜2上に強磁性特性を有する強磁性薄膜3からなる環状パターンを形成し、この環状パターンの直径方向に沿って給電部5A,5Bを構成する導体パターン、および、この給電部5A,5Bから供給される素子電流の方向に直交する方向に形成された検出部5C,5Dとしての導体パターンとを具備したものである。
(Embodiment 1)
The magnetic field sensor according to the first embodiment will be described. FIG. 2 is a diagram illustrating the principle of the magnetic field sensor, FIG. 3 is a top view, and FIG. 4 is a cross-sectional view. In this magnetic field sensor, as shown in FIGS. 3 and 4, a silicon oxide film is formed as an insulating film 2 on the surface of a substrate 1 made of silicon, and an annular pattern made of a ferromagnetic thin film 3 having ferromagnetic properties is formed on the insulating film 2. , And a detection pattern formed in a direction orthogonal to the direction of the element current supplied from the power supply units 5A and 5B along the diameter direction of the annular pattern. And 5C and 5D conductor patterns.

つまり図2に原理説明図を示すように、円形の強磁性薄膜3のパターンの中心に対して対称な位置にあり、この強磁性薄膜パターンの周縁上にある点A,Bを通電部とし、この線分ABに直交するとともに、円の中心を通る線分C,Dを出力取り出し方向としている。   In other words, as shown in FIG. 2, the principle explanatory diagram is shown, and the points A and B on the periphery of the ferromagnetic thin film pattern are symmetrical with respect to the center of the circular ferromagnetic thin film 3 pattern. The line segments C and D that are orthogonal to the line segment AB and that pass through the center of the circle are used as the output extraction direction.

このとき、図2に示すように、強磁性薄膜3にその直径方向に沿って配置された導体200に電流Iを流し、その電流によって生じる磁界をH、素子の持つ自発磁化をMとしたとき、磁界H、素子の持つ自発磁化Mを合成した磁束密度ベクトルをBM0とするとともに電流密度ベクトルと磁束密度ベクトルのなす角をθと、磁性薄膜3の点A−B間の抵抗をR、磁界によって変化する点A−B間の抵抗値の最大値をΔRとすると、点C−D間の電圧VCDは、電圧VACと電圧VADとの差で表すことができる。
従って前記式(5)が成り立ち、交流磁界を印加した時、正負を判定することができる。
また、磁界を印加しないときのオフセットがなく、ゼロとなるため回路構成を簡単にすることができる。
At this time, as shown in FIG. 2, a current I 1 is passed through a conductor 200 arranged along the diameter direction of the ferromagnetic thin film 3, the magnetic field generated by the current is H, and the spontaneous magnetization of the element is M. When the magnetic flux density vector obtained by combining the magnetic field H and the spontaneous magnetization M of the element is B M0 , the angle between the current density vector and the magnetic flux density vector is θ, and the resistance between points A and B of the magnetic thin film 3 is R When the maximum resistance value between points A and B that changes due to the magnetic field is ΔR, the voltage V CD between the points CD can be expressed by the difference between the voltage V AC and the voltage V AD .
Therefore, the above equation (5) holds, and when an alternating magnetic field is applied, it is possible to determine whether it is positive or negative.
In addition, there is no offset when no magnetic field is applied, and the circuit configuration can be simplified because it is zero.

ここで強磁性薄膜としては、単層構造の強磁性薄膜のほか、(強磁性体/非磁性導電体)構造のアンチフェロ(結合)型薄膜、(高保磁力強磁性体/非磁性導電体/低保磁力強磁性体)構造の誘導フェリ(非結合)型薄膜、(半強磁性体/強磁性体/非磁性導電体/強磁性体)構造のスピンバルブ型薄膜、Co/Ag系統の非固溶系グラニュラー型薄膜などから選択して形成される。
また導体パターンとしては金、銅、アルミニウムなどが用いられる。
Here, as the ferromagnetic thin film, in addition to a ferromagnetic thin film having a single layer structure, an antiferro (coupled) thin film having a (ferromagnetic / nonmagnetic conductor) structure, (high coercivity ferromagnetic / nonmagnetic conductor / Inductive ferri (non-coupled) type thin film with a low coercivity ferromagnet structure, spin valve type thin film with a (semi-ferromagnetic material / ferromagnetic material / non-magnetic conductor / ferromagnetic material) structure, non-Co / Ag family It is formed by selecting from a solid solution granular thin film.
As the conductor pattern, gold, copper, aluminum or the like is used.

次に、この磁界センサの製造工程について説明する。
基板1としてのシリコン基板表面に、絶縁膜2としての酸化シリコン膜を形成し、この上層に、スパッタリング法により、強磁性薄膜3を形成する。このとき、磁界を印加しつつスパッタリングを行い、自発磁化方向が揃うように形成する。
そして、フォトリソグラフィによりこの強磁性薄膜3をパターニングし、円環状のパターンとする。
こののち、スパッタリング法により、金などの導電体薄膜を形成し、フォトリソグラフィによりパターニングし、図3及び図4に示すような給電部5A、5Bおよび検出部5C、5Dを形成する。
そして必要に応じて保護膜を形成し、磁界センサが完成する。
Next, the manufacturing process of this magnetic field sensor will be described.
A silicon oxide film as the insulating film 2 is formed on the surface of the silicon substrate as the substrate 1, and a ferromagnetic thin film 3 is formed thereon by sputtering. At this time, sputtering is performed while applying a magnetic field so that the spontaneous magnetization directions are aligned.
Then, the ferromagnetic thin film 3 is patterned by photolithography to form an annular pattern.
After that, a conductive thin film such as gold is formed by sputtering, and patterned by photolithography to form power supply portions 5A and 5B and detection portions 5C and 5D as shown in FIGS.
And a protective film is formed as needed and a magnetic field sensor is completed.

本実施の磁界センサによれば、磁性薄膜の幅が小さくなるため、電気抵抗が増大し、出力を大きくすることができる。   According to the magnetic field sensor of the present embodiment, since the width of the magnetic thin film is reduced, the electrical resistance is increased and the output can be increased.

この磁界センサの出力特性を確認するため、図5に示すような測定装置を用いて実験を行った。図2乃至4に示した磁界センサ501の給電部ABに、交流電源507から変圧器506及び抵抗505を介して交流を供給するとともに、磁界センサ501の検出部CDにアンプ502を介して表示部としてのオシロスコープ504を接続したものである。503は安定化電源である。なおこの測定装置は鉄製のケーシング500内に収納されている。ここでは、この素子を搭載した素子基板を鉛直に配置し、素子と、測定すべき電流線との離間距離を約3mmとして測定を行った。
この測定結果を、図6および図7に示す。図6は素子電流I1を8.842Aとしたときの瞬時出力であり、図7は素子電流I1を0Aとしたときの瞬時出力である。
In order to confirm the output characteristics of this magnetic field sensor, an experiment was conducted using a measuring apparatus as shown in FIG. AC is supplied from the AC power supply 507 through the transformer 506 and the resistor 505 to the power supply unit AB of the magnetic field sensor 501 shown in FIGS. 2 to 4, and the display unit is connected to the detection unit CD of the magnetic field sensor 501 through the amplifier 502. Is connected to an oscilloscope 504. Reference numeral 503 denotes a stabilized power source. This measuring device is housed in an iron casing 500. Here, the measurement was performed with the element substrate on which this element was mounted arranged vertically, and the distance between the element and the current line to be measured was about 3 mm.
The measurement results are shown in FIGS. FIG. 6 shows the instantaneous output when the device current I1 is 8.842A, and FIG. 7 shows the instantaneous output when the device current I1 is 0A.

このようにして得られた電流値と、素子出力電圧との関係を図8に示す。ここでは、アンプによるオフセットが5.888Vとなっているが、それ以外はオフセットもなく、信頼性の高いものとなる。   FIG. 8 shows the relationship between the current value thus obtained and the element output voltage. Here, the offset by the amplifier is 5.888 V, but otherwise there is no offset and the reliability is high.

なお、前記実施の形態では、鉛直方向に配置した素子基板を用いた測定について説明したが、測定すべき電線を素子基板上に載せることによって測定を行うようにしてもよい。   In the above-described embodiment, the measurement using the element substrate arranged in the vertical direction has been described. However, the measurement may be performed by placing the electric wire to be measured on the element substrate.

また前記実施の形態において、線幅は一定とするのが望ましい。一定ではない場合は、抵抗値が対称となるように、膜厚を調整したり、補助パターンを付加するのも有効である。   In the embodiment, it is desirable that the line width is constant. If it is not constant, it is also effective to adjust the film thickness or add an auxiliary pattern so that the resistance values are symmetric.

(実施の形態2)
次に、本発明の実施の形態2について説明する。本実施の形態では、図9乃至図11に示すように、前記実施の形態1の磁界センサの環状パターンを構成する強磁性薄膜3の環の内周に沿って相似形である円状の強磁性薄膜の補助パターン4を形成したことを特徴とするものである。構成としてはこの補助パターン4が付加されただけで、他の構成については前記実施の形態1と同様であり、ここでは説明を省略する。同一部位には同一符号を付した。ここで図9はこの磁界センサの原理説明図、図10に上面図、図11に断面図を示す。この磁界センサは基本的には前記実施の形態1と同様であるが、この補助パターン4の存在により、電気抵抗は高めたままで磁気的な感度を高めるようにしたものである。外側の環状パターン(3)と内部の補助パターン4とは電気的に接触していないため、電気抵抗は前記実施の形態1の磁界センサと同様であるが、磁気的には空間部が磁性薄膜で埋められるため、より多くの磁束を導くことができ、高感度化を図ることができる。
(Embodiment 2)
Next, a second embodiment of the present invention will be described. In the present embodiment, as shown in FIGS. 9 to 11, a circular strong force that is similar to the inner periphery of the ring of the ferromagnetic thin film 3 constituting the annular pattern of the magnetic field sensor of the first embodiment. The magnetic thin film auxiliary pattern 4 is formed. As the configuration, only the auxiliary pattern 4 is added, and the other configuration is the same as that of the first embodiment, and the description is omitted here. The same symbols are assigned to the same parts. FIG. 9 is an explanatory diagram of the principle of the magnetic field sensor, FIG. 10 is a top view, and FIG. 11 is a cross-sectional view. This magnetic field sensor is basically the same as in the first embodiment, but the presence of the auxiliary pattern 4 increases the magnetic sensitivity while keeping the electrical resistance high. Since the outer annular pattern (3) and the inner auxiliary pattern 4 are not in electrical contact, the electrical resistance is the same as that of the magnetic field sensor of the first embodiment, but magnetically, the space portion is a magnetic thin film. Therefore, more magnetic flux can be guided and higher sensitivity can be achieved.

なお、素子構造としては、図12に変形例を示すように、磁性体薄膜パターンを形成後基板表面全体をポリイミド樹脂からなる保護絶縁膜16で被覆し、スルーホールを介して給電部5A,5Bおよび検出部5C,5Dを形成してもよい。この構成によれば、磁性体薄膜の劣化を防止し、信頼性の高い磁界センサを提供することが可能となる。   As an element structure, as shown in FIG. 12, the entire surface of the substrate is covered with a protective insulating film 16 made of polyimide resin after the magnetic thin film pattern is formed, and the power feeding portions 5A and 5B are formed through the through holes. Further, the detection units 5C and 5D may be formed. According to this configuration, it is possible to provide a highly reliable magnetic field sensor that prevents deterioration of the magnetic thin film.

さらにまた、環状パターンの内部に形成される補助パターンとしては、同一材料で構成してもよいし、図13に示すように別の材料からなる磁性体薄膜で補助パターン24を形成してもよい。   Furthermore, the auxiliary pattern formed inside the annular pattern may be made of the same material, or the auxiliary pattern 24 may be formed of a magnetic thin film made of another material as shown in FIG. .

なお、保護膜としては、酸化シリコン膜や酸化アルミニウムなどの無機膜の他、ポリイミド樹脂、ノボラック樹脂等の有機膜を用いることも可能である。   Note that as the protective film, an organic film such as a polyimide resin or a novolac resin can be used in addition to an inorganic film such as a silicon oxide film or aluminum oxide.

(実施の形態3)
次に、本発明の実施の形態3について説明する。本実施の形態では、図14および15に示すように、強磁性薄膜は、正方形の環状パターン33で構成され、前記正方形の対角線方向に電流が流れるように給電部5A,5Bが設けられ、これらに直交する方向に検出部5C,5Dが形成されたことを特徴とする。
本実施の形態でも、前記実施の形態1の磁界センサの環状パターン3に代えて正方形の環状パターン33を形成しただけで、他の構成については前記実施の形態1と同様であり、ここでは説明を省略する。同一部位には同一符号を付した。ここで図14はこの磁界センサの原理説明図、図15は、上面図である。
(Embodiment 3)
Next, a third embodiment of the present invention will be described. In the present embodiment, as shown in FIGS. 14 and 15, the ferromagnetic thin film is formed of a square annular pattern 33, and power supply portions 5 </ b> A and 5 </ b> B are provided so that a current flows in the diagonal direction of the square. The detection portions 5C and 5D are formed in a direction orthogonal to the above.
Also in the present embodiment, only the square annular pattern 33 is formed in place of the annular pattern 3 of the magnetic field sensor of the first embodiment, and other configurations are the same as those of the first embodiment, and will be described here. Is omitted. The same symbols are assigned to the same parts. Here, FIG. 14 is a diagram illustrating the principle of this magnetic field sensor, and FIG. 15 is a top view.

ここで磁束密度ベクトルは素子が持つ自発磁化ベクトルMと外部磁界ベクトルHの合成であり、外部磁界がない場合には磁束密度ベクトルは自発磁化ベクトル方向となる。
外部磁界が交流磁界の場合は、自発磁化ベクトルを中心に図の上下方向に振動する。
Here, the magnetic flux density vector is a combination of the spontaneous magnetization vector M and the external magnetic field vector H possessed by the element. When there is no external magnetic field, the magnetic flux density vector is in the direction of the spontaneous magnetization vector.
When the external magnetic field is an alternating magnetic field, it vibrates in the vertical direction in the figure around the spontaneous magnetization vector.

この構成によれば、センサの出力Vmrは次式で表すことができる。
ただし、電流密度ベクトルと磁束密度ベクトルのなす角をθ1、θ2
ABとACおよびABとADのなす角をφ、
外部磁界がない時のAC間の電圧をVAC0、AD間の電圧をVAD0
磁気抵抗効果による電圧変化の最大値をΔVrとする。
前述したように、
According to this configuration, the output Vmr of the sensor can be expressed by the following equation.
However, the angle between the current density vector and the magnetic flux density vector is θ 1 , θ 2 ,
The angle formed by AB and AC and AB and AD is φ,
The voltage between AC when there is no external magnetic field is V AC0 , the voltage between AD is V AD0 ,
Let ΔVr be the maximum value of the voltage change due to the magnetoresistive effect.
As previously mentioned,

Figure 2011047730
Figure 2011047730

丸形環状すなわち円環状においても略同式にて表現できるが、円環状の場合、電流密度ベクトルの方向がAからC、AからDの間で変化し、出力最大となるφ=45度以外の成分も存在するため正方形に比べて出力が小さくなる。   In the case of an annular shape, the direction of the current density vector changes from A to C, and from A to D, and the maximum output is not φ = 45 degrees. The output is smaller than that of the square.

なお、前記実施の形態では、磁性体薄膜をスパッタリング法で形成したが、スパッタリング法に限定されることなく、真空蒸着法あるいは、塗布法、浸漬法などによっても形成可能である。   In the above embodiment, the magnetic thin film is formed by the sputtering method. However, the magnetic thin film is not limited to the sputtering method, and can be formed by a vacuum deposition method, a coating method, a dipping method, or the like.

また基板についても、シリコンなどの半導体基板のほか、サファイア、ガラス、セラミック等の無機系基板あるいは、樹脂等の有機系基板などいずれを用いてもよい。これらのなかでは特に、いわゆる可撓性に優れ、薄くて軽いものを用いることが好ましく、例えば、印刷配線板等として広く使用されているプラスチックフィルムと同様の基板を使用することができる。より具体的には、プラスチックフィルム材質として公知の各種の材料、例えば、ポリイミド、ポリエチレンテレフタレート(PET)、ポリポロピレン(PP)、テフロン(登録商標)等が利用可能である。可撓性の基板を用いることにより、測定すべき電線を囲むように配置するなど、より高感度となるように配置することが可能となる。また、ハンダによる接合を考慮して、耐熱性の高いポリイミドフィルムを用いるようにしてもよい。なお基板の厚さは、特に限定されるものではないが、1〜300μm程度の厚さのものが好ましい。   As for the substrate, in addition to a semiconductor substrate such as silicon, an inorganic substrate such as sapphire, glass, or ceramic, or an organic substrate such as resin may be used. Among these, it is particularly preferable to use a thin and light material excellent in so-called flexibility. For example, a substrate similar to a plastic film widely used as a printed wiring board or the like can be used. More specifically, various known materials as plastic film materials, such as polyimide, polyethylene terephthalate (PET), polypropylene (PP), and Teflon (registered trademark) can be used. By using a flexible substrate, it can be arranged so as to have higher sensitivity, for example, so as to surround an electric wire to be measured. In consideration of bonding with solder, a polyimide film having high heat resistance may be used. The thickness of the substrate is not particularly limited, but is preferably about 1 to 300 μm.

さらにまた、ガラス基板などの基板上に直接磁性体薄膜パターンを形成して磁界センサを形成してもよいが、一旦チップを形成し、これをガラス基板やプリント配線板などにワイヤボンディング法や、フリップチップ法で実装するようにしてもよい。またチップ内に、処理回路も含めて集積化することでより高精度で信頼性の高い磁界センサを提供することが可能となる。   Furthermore, a magnetic thin film pattern may be formed directly on a substrate such as a glass substrate to form a magnetic field sensor, but once a chip is formed, this is applied to a glass substrate or a printed wiring board using a wire bonding method, You may make it mount by the flip-chip method. Further, by integrating the processing circuit in the chip, it becomes possible to provide a magnetic field sensor with higher accuracy and reliability.

なお前記実施の形態に限定されるものではなく、磁性薄膜の出力取り出し方向を素子電流方向に対し直交する方向とするとともに、素子電流の方向に対して磁気抵抗が対称となるように形成するものであれば適用可能であり、方向の正負を判定することができ、かつ磁界を印加しないときのオフセットがなくなるため回路構成を簡単にすることができる。
また前記実施の形態では強磁性薄膜を用いた磁界センサを用いたが、これに限定されることなく他の磁界センサを用いてもよい。
The present invention is not limited to the above embodiment, and the magnetic thin film is formed so that the output extraction direction of the magnetic thin film is perpendicular to the element current direction and the magnetoresistance is symmetric with respect to the element current direction. The circuit configuration can be simplified because it is possible to determine whether the direction is positive or negative, and there is no offset when no magnetic field is applied.
Moreover, although the magnetic field sensor using a ferromagnetic thin film was used in the said embodiment, you may use another magnetic field sensor, without being limited to this.

以上説明してきたように、本発明の磁界センサによれば、高精度の磁界強度を検出できることから、電流センサや電力センサなどに適用可能である。   As described above, according to the magnetic field sensor of the present invention, it is possible to detect the magnetic field strength with high accuracy, and therefore it can be applied to a current sensor, a power sensor, and the like.

1 基板
2 絶縁膜
3、33 強磁性薄膜((環状)パターン)
4、24 補助パターン
5A,5B 給電部
5C,5D 検出部
100 強磁性薄膜
200 導体
1 Substrate 2 Insulating film 3, 33 Ferromagnetic thin film ((annular) pattern)
4, 24 Auxiliary pattern 5A, 5B Power supply unit 5C, 5D Detection unit 100 Ferromagnetic thin film 200 Conductor

Claims (9)

磁性薄膜と、
前記磁性薄膜に素子電流を供給する入出力端子を備えた給電部と、
前記素子電流の方向に直交する方向における前記磁性薄膜端部間の電圧を検出する検出部とを具備し、
前記磁性薄膜は、前記素子電流の方向に対して対称となるように形成された磁界センサ。
A magnetic thin film;
A power feeding unit having an input / output terminal for supplying an element current to the magnetic thin film;
A detection unit for detecting a voltage between the end portions of the magnetic thin film in a direction orthogonal to the direction of the element current;
The magnetic thin film is formed so that the magnetic thin film is symmetric with respect to the direction of the element current.
請求項1に記載の磁界センサであって、
前記磁性薄膜は、外形が円形である磁界センサ。
The magnetic field sensor according to claim 1,
The magnetic thin film has a circular outer shape.
請求項1または2に記載の磁界センサであって、
前記磁性薄膜は、環状体である磁界センサ。
The magnetic field sensor according to claim 1 or 2,
The magnetic thin film is a magnetic field sensor having an annular body.
請求項3に記載の磁界センサであって、
前記磁性薄膜は、正方形の環状体で構成され、前記正方形の対角線方向に電流が流れるように給電部が設けられた磁界センサ。
The magnetic field sensor according to claim 3,
The magnetic thin film includes a square annular body, and a magnetic field sensor provided with a power feeding unit so that a current flows in a diagonal direction of the square.
請求項3に記載の磁界センサであって、
前記磁性薄膜は、線幅が一定である磁界センサ。
The magnetic field sensor according to claim 3,
The magnetic thin film is a magnetic field sensor having a constant line width.
請求項2乃至5のいずれかに記載の磁界センサであって、
前記磁性薄膜は、前記環状体の内部に、磁性膜からなる内部磁性薄膜が設けられた磁界センサ。
The magnetic field sensor according to any one of claims 2 to 5,
The magnetic thin film is a magnetic field sensor in which an internal magnetic thin film made of a magnetic film is provided inside the annular body.
請求項6に記載の磁界センサであって、
前記内部磁性薄膜は、前記磁性薄膜と同一材料からなる磁性薄膜で構成された磁界センサ。
The magnetic field sensor according to claim 6,
The internal magnetic thin film is a magnetic field sensor composed of a magnetic thin film made of the same material as the magnetic thin film.
請求項6に記載の磁界センサであって、
前記内部磁性薄膜は、前記磁性薄膜と異なる磁性薄膜で構成された磁界センサ。
The magnetic field sensor according to claim 6,
The internal magnetic thin film is a magnetic field sensor formed of a magnetic thin film different from the magnetic thin film.
磁性薄膜のパターンが、
素子電流の方向に対して対称となるように、素子電流を供給し、
前記素子電流の供給方向に直交する方向で、前記磁性薄膜端部間の電圧を検出することで磁界強度を測定する磁界測定方法。
Magnetic thin film pattern
The device current is supplied so as to be symmetric with respect to the direction of the device current,
A magnetic field measurement method for measuring a magnetic field strength by detecting a voltage between the end portions of the magnetic thin film in a direction orthogonal to a supply direction of the element current.
JP2009195103A 2009-08-26 2009-08-26 Magnetic field sensor and magnetic field measurement method using the same Expired - Fee Related JP5620075B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2009195103A JP5620075B2 (en) 2009-08-26 2009-08-26 Magnetic field sensor and magnetic field measurement method using the same
US13/392,352 US20120229131A1 (en) 2009-08-26 2010-08-26 Magnetic field sensor, as well as magnetic field measurement method, power measurement device, and power measurement method using the same
CN201080038072.5A CN102656471B (en) 2009-08-26 2010-08-26 Magnetic field sensor, as well as magnetic field measurement method, power measurement device, and power measurement method using the same
KR1020127004915A KR101314365B1 (en) 2009-08-26 2010-08-26 Magnetic field sensor, as well as magnetic field measurement method, power measurement device, and power measurement method using the same
TW099128624A TWI480566B (en) 2009-08-26 2010-08-26 Magnetic field sensor, and magnetic field measuring method, power measuring appratus and power measuring method using the sensor
EP10811972.8A EP2461174A4 (en) 2009-08-26 2010-08-26 Magnetic field sensor, as well as magnetic field measurement method, power measurement device, and power measurement method using the same
PCT/JP2010/064532 WO2011024923A1 (en) 2009-08-26 2010-08-26 Magnetic field sensor, as well as magnetic field measurement method, power measurement device, and power measurement method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009195103A JP5620075B2 (en) 2009-08-26 2009-08-26 Magnetic field sensor and magnetic field measurement method using the same

Publications (2)

Publication Number Publication Date
JP2011047730A true JP2011047730A (en) 2011-03-10
JP5620075B2 JP5620075B2 (en) 2014-11-05

Family

ID=43834218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009195103A Expired - Fee Related JP5620075B2 (en) 2009-08-26 2009-08-26 Magnetic field sensor and magnetic field measurement method using the same

Country Status (1)

Country Link
JP (1) JP5620075B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104380122A (en) * 2012-03-27 2015-02-25 公立大学法人大阪市立大学 Power measuring apparatus
JP2022071641A (en) * 2020-10-28 2022-05-16 Tdk株式会社 Magnetic sensor and method for manufacturing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07249809A (en) * 1994-03-08 1995-09-26 Jeco Co Ltd Thin-film active element
JPH07249808A (en) * 1994-03-08 1995-09-26 Jeco Co Ltd Magnetoelectric conversion element
JP2008003072A (en) * 2006-05-23 2008-01-10 Alps Electric Co Ltd Thin-film magnetoresistive element and thin-film magnetic sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07249809A (en) * 1994-03-08 1995-09-26 Jeco Co Ltd Thin-film active element
JPH07249808A (en) * 1994-03-08 1995-09-26 Jeco Co Ltd Magnetoelectric conversion element
JP2008003072A (en) * 2006-05-23 2008-01-10 Alps Electric Co Ltd Thin-film magnetoresistive element and thin-film magnetic sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104380122A (en) * 2012-03-27 2015-02-25 公立大学法人大阪市立大学 Power measuring apparatus
US9689905B2 (en) 2012-03-27 2017-06-27 Osaka City University Power measurement apparatus
JP2022071641A (en) * 2020-10-28 2022-05-16 Tdk株式会社 Magnetic sensor and method for manufacturing the same
JP7347397B2 (en) 2020-10-28 2023-09-20 Tdk株式会社 Magnetic sensor and its manufacturing method

Also Published As

Publication number Publication date
JP5620075B2 (en) 2014-11-05

Similar Documents

Publication Publication Date Title
JP6522703B2 (en) Method and apparatus for a magnetic field sensor having an integrated coil
KR101314365B1 (en) Magnetic field sensor, as well as magnetic field measurement method, power measurement device, and power measurement method using the same
JP6427184B2 (en) Method and apparatus for a magnetic sensor generating a changing magnetic field
US10495699B2 (en) Methods and apparatus for magnetic sensor having an integrated coil or magnet to detect a non-ferromagnetic target
JP6018093B2 (en) Single package bridge type magnetic angle sensor
JP5620076B2 (en) Power measuring device
JP2014512003A (en) Single-chip push-pull bridge type magnetic field sensor
JP2008249406A (en) Magnetic impedance effect element and its manufacturing method
US11054490B2 (en) Magnetic field detection device
WO2011155527A1 (en) Flux gate sensor, electronic direction finder using same, and current meter
US10036785B2 (en) Temperature-compensated magneto-resistive sensor
JP2010281828A (en) Magneto-impedance element and magneto-impedance sensor
US20100090692A1 (en) Magnetic sensor module and piston position detector
JP2009180608A (en) Ic chip type current sensor
JP2000284030A (en) Magnetic sensor element
JP5620075B2 (en) Magnetic field sensor and magnetic field measurement method using the same
JP2014089088A (en) Magnetoresistive effect element
JP2012150007A (en) Power measuring device
US11009569B2 (en) Magnetic field sensing device
TWI444627B (en) Electric power measuring apparatus and method
JP2010056260A (en) Magnetic switch and magnetic field detection method
JP5793682B2 (en) Power measuring device
TWI769819B (en) Electric current sensor and sensing device
JP5793681B2 (en) Power measuring device
US20230408605A1 (en) Magnetic field detection device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120113

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131227

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140819

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140918

R150 Certificate of patent or registration of utility model

Ref document number: 5620075

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees