JP2002131407A5 - - Google Patents

Download PDF

Info

Publication number
JP2002131407A5
JP2002131407A5 JP2000367822A JP2000367822A JP2002131407A5 JP 2002131407 A5 JP2002131407 A5 JP 2002131407A5 JP 2000367822 A JP2000367822 A JP 2000367822A JP 2000367822 A JP2000367822 A JP 2000367822A JP 2002131407 A5 JP2002131407 A5 JP 2002131407A5
Authority
JP
Japan
Prior art keywords
thin film
magnetic field
air gap
soft magnetic
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000367822A
Other languages
Japanese (ja)
Other versions
JP2002131407A (en
JP4023997B2 (en
Filing date
Publication date
Application filed filed Critical
Priority claimed from JP2000367822A external-priority patent/JP4023997B2/en
Priority to JP2000367822A priority Critical patent/JP4023997B2/en
Priority to DE60139017T priority patent/DE60139017D1/en
Priority to CNB018032648A priority patent/CN100403048C/en
Priority to EP01978911A priority patent/EP1329735B1/en
Priority to TW090126413A priority patent/TW550394B/en
Priority to KR1020027008326A priority patent/KR100687513B1/en
Priority to AT01978911T priority patent/ATE434192T1/en
Priority to PCT/JP2001/009385 priority patent/WO2002037131A1/en
Publication of JP2002131407A publication Critical patent/JP2002131407A/en
Priority to US10/225,794 priority patent/US6642714B2/en
Publication of JP2002131407A5 publication Critical patent/JP2002131407A5/ja
Publication of JP4023997B2 publication Critical patent/JP4023997B2/en
Application granted granted Critical
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の名称】薄膜磁界センサ
【特許請求の範囲】
【請求項1】所定の空隙長を持つ空隙によって2分割され、所定の膜厚および空隙に接する所定の幅を持つ軟磁性薄膜1、その空隙を埋めるように形成された巨大磁気抵抗薄膜2、2分割された軟磁性薄膜1の各々に電気的に接続された端子3および端子4、前記空隙長と実質的に等しい空隙長を持つ空隙によって2分割され、前記膜厚と実質的に等しい膜厚、および前記空隙に接する幅と実質的に等しい幅を持つ導体膜6、その空隙を埋めるように形成された巨大磁気抵抗薄膜7、および2分割された導体膜6の各々に電気的に接続された端子8および端子9からなり、端子3および端子4と端子8および端子9は、各々ブリッジ回路の2つのアームを形成することを特徴とする薄膜磁界センサ。
【請求項2】所定の空隙長を持つ空隙によって2分割され、所定の膜厚および空隙に接する所定の幅を持つ軟磁性薄膜1、その空隙を埋めるように形成された巨大磁気抵抗薄膜2、2分割された軟磁性薄膜1の各々に電気的に接続された端子3および端子4、前記空隙長と実質的に等しい空隙長を持つ空隙によって2分割され、前記膜厚と実質的に等しい膜厚および前記空隙に接する幅と実質的に等しい幅を持つ導体膜6、その空隙を埋めるように形成された巨大磁気抵抗薄膜7、2分割された導体膜6の各々に電気的に接続された端子8および端子9、前記空隙長と実質的に等しい空隙長を持つ空隙によって2分割され、前記膜厚と実質的に等しい膜厚および前記空隙に接する幅と実質的に等しい幅を持つ軟磁性薄膜21、その空隙を埋めるように形成された巨大磁気抵抗薄膜22、2分割された軟磁性薄膜21の各々に電気的に接続された端子23および端子24、前記空隙長と実質的に等しい空隙長を持つ空隙によって2分割され、前記膜厚と実質的に等しい膜厚および前記空隙に接する幅と実質的に等しい幅を持つ導体膜26、その空隙を埋めるように形成された巨大磁気抵抗薄膜27、および2分割された導体膜26の各々に電気的に接続された端子28および端子29からなり、端子3および端子4、端子8および端子9、端子23および端子24、端子28および端子29は、各々ブリッジ回路の4つのアームを形成することを特徴とする薄膜磁界センサ。
【請求項3】所定の空隙長を持つ空隙によって2分割され、所定の膜厚および空隙に接する所定の幅を持つ軟磁性薄膜1、その空隙を埋めるように形成された巨大磁気抵抗薄膜2、2分割された軟磁性薄膜1の各々に電気的に接続された端子3および端子4、前記空隙長と実質的に等しい空隙長を持つ空隙によって2分割され、前記膜厚と実質的に等しい膜厚、および前記空隙に接する幅と実質的に等しい幅を持つ軟磁性薄膜31、その空隙を埋めるように形成された巨大磁気抵抗薄膜32、および2分割された軟磁性薄膜31の各々に電気的に接続された端子33および端子34からなり、端子3および端子4、端子33および端子34は、各々ブリッジ回路の2つのアームを形成し、且つまた軟磁性薄膜31の平面上の面積は、軟磁性薄膜1の平面上の面積に比して1/10以下であることを特徴とする薄膜磁界センサ。
【請求項4】空隙に接する線と並行な線に沿って測った軟磁性薄膜1の幅寸法の少なくとも一部は、その軟磁性薄膜1が空隙に接する線の幅よりも大であることを特徴とする請求項1ないし請求項3のいずれか1項に記載の薄膜磁界センサ。
【請求項5】軟磁性薄膜1の磁気特性は一軸異方性であって、その磁化容易軸方向は、実質的に、空隙に接する線と並行な方向であることを特徴とする請求項1ないし請求項3のいずれか1項に記載の薄膜磁界センサ。
【発明の詳細な説明】
【0001】
【産業上の利用分野】
本発明は、空間中の磁界を測定する薄膜磁界センサに関し、巨大磁気抵抗薄膜、例えばナノグラニュラー巨大磁気抵抗効果薄膜を用いて、磁界を精密に測定するための薄膜磁界センサに関するものである。
【0002】
【従来の技術】
図1は、特開平11−87804号公報および特開平11−274599に記載された磁界センサを示す。図中、巨大磁気抵抗薄膜と書かれた部分は、10kOeの磁界の印加に対して、約10%の電気抵抗変化を示す金属−絶縁体ナノグラニュラー巨大磁気抵抗薄膜である。この例のように、巨大磁気抵抗薄膜の場合には、一般の磁気抵抗効果材料に比して電気抵抗値の変化幅は大であるが、前記の通り電気抵抗変化を起こさせるための印加磁界は大きく、巨大磁気抵抗薄膜のみを単独で用いる場合には、一般に磁界センサとして利用されるような小さな磁界での電気抵抗値変化は期待できない。図1の構成は、それを補うものである。すなわち、軟磁性薄膜は周辺の磁束を集める役割を担っており、適切な軟磁性薄膜の寸法を選定することにより、原理的には、軟磁性薄膜周辺の磁界の大小に拘わらず、巨大磁気抵抗薄膜部分に対して軟磁性薄膜の飽和磁束密度以内で、いかようにも大きな磁束密度を印加することが可能である。また、図1の構成を電気抵抗の観点から見ると、軟磁性薄膜間の電気抵抗値は、軟磁性薄膜部分と巨大磁気抵抗薄膜部分の電気抵抗値の和になっているが、巨大磁気抵抗薄膜の電気比抵抗の値は、軟磁性薄膜のそれに比して100倍以上大きいため、実質的に軟磁性薄膜間の電気抵抗値は巨大磁気抵抗薄膜部分の値と等しい。つまり、軟磁性薄膜間の電気抵抗値には、巨大磁気抵抗薄膜の電気抵抗値変化が直接現れる。図2は、このような図1の構成の電気抵抗変化の例を示すものであり、数Oeの小さな磁界において約6%の電気抵抗値変化を実現している。
【0003】
【発明が解決しようとする課題】
しかし、本発明が目的とする、巨大磁気抵抗薄膜の電気抵抗測定値をもとにして、印加された磁界の絶対値を計測する磁界センサを実現する場合には、図1の構成では、大きな問題があることが判明した。それは、巨大磁気抵抗薄膜の温度による電気抵抗値変化の問題である。前記の通り、図1の構成の場合には検出したい磁界の大小に対しては選択の余地がある。しかし、いかに感度を高めたとしても、それは感動する磁界に対する選択であり、巨大磁気抵抗薄膜の持つ電気抵抗変化以上の変化幅を得ることは、原理的にできない。現実に図1の構成の場合の電気抵抗変化幅は、他の要因を含めて更に圧縮されてほぼ6%程度となっている。この6%の電気抵抗値変化に対して、巨大磁気抵抗薄膜の温度による変化があれば、その電気抵抗値変化分だけは印加された磁界を推定する場合の不確定要素となる。図3は温度特性の実例を示している。この図から明らかな通り、巨大磁気抵抗薄膜の温度による電気抵抗値変化は、磁界印加による抵抗変化よりむしろ大であり、図1の構成のままでは、磁界の絶対値を計測する磁界センサとしては利用が難しい。
【課題を解決するための手段】
【0004】
本発明の特徴とするところは、下記の点にある。第1発明は、所定の空隙長を持つ空隙によって2分割され、所定の膜厚および空隙に接する所定の幅を持つ軟磁性薄膜1、その空隙を埋めるように形成された巨大磁気抵抗薄膜2、2分割された軟磁性薄膜1の各々に電気的に接続された端子3および端子4、前記空隙長と実質的に等しい空隙長を持つ空隙によって2分割され、前記膜厚と実質的に等しい膜厚、および前記空隙に接する幅と実質的に等しい幅を持つ導体膜6、その空隙を埋めるように形成された巨大磁気抵抗薄膜7、および2分割された導体膜6の各々に電気的に接続された端子8および端子9からなり、端子3および端子4と端子8および端子9は、各々ブリッジ回路の2つのアームを形成することを特徴とする薄膜磁界センサを提供する。
【0005】
第2発明は、所定の空隙長を持つ空隙によって2分割され、所定の膜厚および空隙に接する所定の幅を持つ軟磁性薄膜1、その空隙を埋めるように形成された巨大磁気抵抗薄膜2、2分割された軟磁性薄膜1の各々に電気的に接続された端子3および端子4、前記空隙長と実質的に等しい空隙長を持つ空隙によって2分割され、前記膜厚と実質的に等しい膜厚および前記空隙に接する幅と実質的に等しい幅を持つ導体膜6、その空隙を埋めるように形成された巨大磁気抵抗薄膜7、2分割された導体膜6の各々に電気的に接続された端子8および端子9、前記空隙長と実質的に等しい空隙長を持つ空隙によって2分割され、前記膜厚と実質的に等しい膜厚および前記空隙に接する幅と実質的に等しい幅を持つ軟磁性薄膜21、その空隙を埋めるように形成された巨大磁気抵抗薄膜22、2分割された軟磁性薄膜21の各々に電気的に接続された端子23および端子24、前記空隙長と実質的に等しい空隙長を持つ空隙によって2分割され、前記膜厚と実質的に等しい膜厚および前記空隙に接する幅と実質的に等しい幅を持つ導体膜26、その空隙を埋めるように形成された巨大磁気抵抗薄膜27、および2分割された導体膜26の各々に電気的に接続された端子28および端子29からなり、端子3および端子4、端子8および端子9、端子23および端子24、端子28および端子29は、各々ブリッジ回路の4つのアームを形成することを特徴とする薄膜磁界センサを提供する。
【0006】
第3発明は、所定の空隙長を持つ空隙によって2分割され、所定の膜厚および空隙に接する所定の幅を持つ軟磁性薄膜1、その空隙を埋めるように形成された巨大磁気抵抗薄膜2、2分割された軟磁性薄膜1の各々に電気的に接続された端子3および端子4、前記空隙長と実質的に等しい空隙長を持つ空隙によって2分割され、前記膜厚と実質的に等しい膜厚、および前記空隙に接する幅と実質的に等しい幅を持つ軟磁性薄膜31、その空隙を埋めるように形成された巨大磁気抵抗薄膜32、および2分割された軟磁性薄膜31の各々に電気的に接続された端子33および端子34からなり、端子3および端子4、端子33および端子34は、各々ブリッジ回路の2つのアームを形成し、且つまた軟磁性薄膜31の平面上の面積は、軟磁性薄膜1の平面上の面積に比して1/10以下であることを特徴とする薄膜磁界センサを提供する。
【0007】
第4発明は、空隙に接する線と並行な線に沿って測った軟磁性薄膜1の幅寸法の少なくとも一部は、その軟磁性薄膜1が空隙に接する線の幅よりも大であることを特徴とする第1発明ないし第3発明のいずれかに記載の薄膜磁界センサを提供する。
【0008】
第5本発明は、軟磁性薄膜1の磁気特性は一軸異方性であって、その磁化容易軸方向は、実質的に、空隙に接する線と並行な方向であることを特徴とする第1発明ないし第3発明のいずれかに記載の薄膜磁界センサを提供する。
【0009】
【作用】
本発明の作用は下記の通りである。
第一発明の構成は、巨大磁気抵抗薄膜の持つ電気抵抗値変化の中で、温度、湿度および経時的な原因による変化を除外し、磁界による変化のみを抽出することによって、精度の高い磁界センサを実現するものである。すなわち、巨大磁気抵抗薄膜および構造を同一とする2系統の素子によるブリッジ回路を形成し、その中の一方の素子は巨大磁気抵抗薄膜の両側に軟磁性薄膜を配置することによって磁界に対する感度を高め、他方の素子は巨大磁気抵抗薄膜をそのまま用いることにより磁界に対する感度を実質的に零としている。ブリッジ回路の出力電圧はこれら素子の電気抵抗値の差に比例するものであるから、結果的に、巨大磁気抵抗薄膜の持つ温度変化を始めその他の湿度、経時変化等の変動要因は出力電圧より除外され、磁界による電気抵抗値変化のみが出力に現れる。そのため磁界の絶対値の検出が精度良く実現可能になり、また同時に極めて小さな磁界の検出も可能になる。
【0010】
第2発明の構成は、さらに精度が高く、且つ磁界感度の高い薄膜磁界センサを実現するものである。すなわち、巨大磁気抵抗薄膜の両側に軟磁性薄膜を配置した素子と、巨大磁気抵抗薄膜の両側に導体膜を配置した素子を、各々2個用いてブリッジ回路を構成することによって、ブリッジ出力電圧は、第1発明の構成よりも更に2倍大きくすることが可能となり、より精度が高く、且つより磁界感度の高い薄膜磁界センサが実現可能となる。
【0011】
第3発明の構成は、利用する材料の観点から、薄膜磁界センサの精度を更に高めるものである。すなわち、ブリッジを構成する素子中の巨大磁気抵抗薄膜部分の材質・構造が全く同じでも、巨大磁気抵抗薄膜を挟んでいる材料が異なる場合には、接触電位差、あるいは熱起電力等により微小な電気抵抗値の違いが出る場合がある。第3発明の構成によれば、これ等の問題を含めて、2つの構造の磁界印加による抵抗変化以外の要因による巨大磁気抵抗薄膜の電気抵抗値変化を、厳密な意味で相殺することができ、これにより更に精度の高い薄膜磁界センサが実現できる。
【0012】
第4発明の構成は、構造の面から、より小型で高精度の薄膜磁界センサを実現するものである。磁界センサとしての感度を高く、しかも、形状的に小型化するためには、巨大磁気抵抗薄膜の両側に軟磁性薄膜を配置した構造において、軟磁性薄膜の有効面積を一定とした上で、軟磁性薄膜部分の小型化を計る必要がある。第4発明の構成により、感度が高く、また形状的により小型の磁界センサの実現が可能になる。
【0013】
第5発明の構成は、残留磁化の面から薄膜磁界センサの精度を、さらに高めるものである。つまり、印加された磁界の計測を完了し、外部磁界が取り去られた後で、軟磁性薄膜中に磁化が残留する場合には、この残留磁化は、巨大磁気抵抗薄膜に対して外部磁界印加と同様の作用を及ぼすことになり、磁界の検出精度の低下を来たす。このため、第5発明の構成では、軟磁性薄膜を巨大磁気抵抗薄膜の検出磁界と直交する方向に磁化させることにより、軟磁性薄膜中の残留磁化を減らして、より高精度に磁界を計測することができる。
【0014】
【実施例】
以下、図面に基づき、本発明の種々の実施形態につき説明する。尚、各図において同一の要素は同じ番号を付してあり、説明の重複を避けている。
【0015】
[実施例1]
図4は、本発明の第1の実施例を示す。この図および以降の図では、理解を助けるため、巨大磁気抵抗薄膜の部分を点々の印、軟磁性薄膜の部分を斜め線、導体薄膜部分を白ぬき、として区別している。5は、軟磁性薄膜1、巨大磁気抵抗薄膜2および電気端子3、4を含めた素子を表しており、公知技術である図1の構成と同一である。素子5の作用についての記述は本文中の段落0002に述べたので、ここでは重複を避けて本発明の具体内容の記述のみを行う。1は軟磁性薄膜で、15kG以上の高い飽和磁束密度と、0.5Oe以下の低い保磁力を持つパーマロイである。その他の材料を含めて、軟磁性薄膜1の具体的な材料名およびその代表特性は表1に示す。
【0016】
【表1】

Figure 2002131407
【0017】
軟磁性薄膜1の厚さはt=1μmである。軟磁性薄膜1には、空隙長gで示した空隙が形成されている。空隙長gの寸法はg=1μmである。空隙に接する軟磁性薄膜1の幅wの寸法はw=100μmである。その軟磁性薄膜1の空隙を埋めるように巨大磁気抵抗薄膜2が形成されている。巨大磁気抵抗薄膜2の材質は、Co391447である。この材料を含め、巨大磁気抵抗薄膜2として可能な材料名およびその代表特性は表2に示す。
【0018】
【表2】
Figure 2002131407
【0019】
ここでの軟磁性薄膜1の厚さt、空隙長gおよび空隙に接する軟磁性薄膜1の幅wの寸法については、磁気的な条件と電気的な条件の両面からの要求される特性を満たすように選択する必要があるが、本発明の特徴は広い範囲に亙って目的とする性能を得る事にある。すなわち、寸法の選択範囲は大変広い。磁気的な条件としては、空隙長gが広すぎる場合、例えば軟磁性薄膜の厚さtの数倍以上の場合には、軟磁性薄膜1が周辺の磁束を集めて空隙部分に磁束を十分に集中させる事が出来ない。一方、軟磁性薄膜の厚さtについては、機能上はいかに厚くても本発明の機能を発揮するが、軟磁性薄膜を形成する装置の持つ単位時間当たりの堆積能力、あるいは軟磁性薄膜が基板に形成された場合の応力により、軟磁性薄膜が基板から剥離するなど、現実的な制約条件で厚さの限界は決まってくる。逆に軟磁性薄膜の厚さtが10nm以下の場合には、軟磁性薄膜の磁気特性が劣化するので、実質的に10nmが厚さの下限である。電気的な条件としては、軟磁性薄膜1の幅wは、磁気センサの小型化および電気抵抗の絶対値として周辺回路が扱いやすい値、例えば数10kΩから数100MΩの範囲となることを勘案して設定する必要がある。電気抵抗の絶対値は、巨大磁気抵抗薄膜の電気比抵抗および空隙長gに比例し、軟磁性薄膜の幅wおよび軟磁性薄膜の厚さtに反比例するので、比較的設計での自由度は大であり、具体的な軟磁性薄膜の幅gは、最大数mmから最小数μmの広い範囲での実現の可能性がある。
【0020】
空隙を挟んで2分割された両側の軟磁性薄膜1には、各々Cuによる電気端子3および4が接続されている。この電気端子部分の材質は、磁気的には大きな影響を持たないので、電気的な導通性を中心として決定して良く、軟磁性薄膜の材質を共通に利用することも可能であり、また実際に外部との接続に供せられる部分にのみ、表面にCu膜を形成すること等も可能である。5は軟磁性薄膜1、巨大磁気抵抗薄膜2、ならびに電気端子3および4を含めた素子を表している。電気端子3と4の間の電気抵抗値をRaと表す。図5は、軟磁性薄膜1の長さ寸法Lをパラメータとして、素子5の印加磁界と電気抵抗値変化の関係の一例を示したものであり、長さ寸法Lを大きくすることにより、より小さな磁界において感動させることが可能であることが分かる。図6は素子5の温度による抵抗値変化を示したものである。図5の印加磁界と電気抵抗値との関係は、印加磁界の絶対値を取れば、ある大きさの磁界まではほぼリニアな変化になっている。また、図6の温度と電気抵抗値の変化について、室温付近でリニアな関係とみなす。そこで、印加磁界零で、且つ温度22℃の場合の抵抗値をRとし、印加磁界の絶対値をH、温度をTとすれば、抵抗値Raは式1のように表現できる。
【0021】
Ra=R(1+rH+r(T−25)) (1)
ここに、rは電気抵抗値の印加磁界による変化の微係数、rは電気抵抗値の温度係数である。表3は、軟磁性薄膜の各長さ寸法Lについてrの値および式1が成立する磁界Hの範囲、およびrの値を示している。
【0022】
【表3】
Figure 2002131407
【0023】
6は、軟磁性薄膜1と実質的に同じ厚さt´を持った導体膜である。導体膜6の材料はCuである。Cu材料は、極く弱い反磁性を示すがほとんど磁気的には透明とみなされる。導体膜6には軟磁性薄膜1の空隙長gと実質的に等しい寸法の空隙長g′が形成されている。空隙に接する導体膜6の幅w´は、実質的に空隙に接する軟磁性薄膜1の幅wと同一である。素子5のLに対応する長さ寸法は任意である。その導体膜6の空隙を埋めるように、巨大磁気抵抗薄膜7が形成されている。巨大磁気抵抗薄膜7の材質は、巨大磁気抵抗薄膜2と同一である。空隙を挟んで2分割された両側の導体膜6には、各々電気端子8および9が接続されている。10は、導体膜6、巨大磁気抵抗薄膜7、および電気端子8、9を含めた素子を表している。電気端子8、9間の電気抵抗をRbと表す。
【0024】
素子10については、導体膜6が磁気的な作用を持たないため、巨大磁気抵抗薄膜7に印加される磁束密度は、巨大磁気抵抗薄膜7の置かれる環境の磁束密度そのものである。図7は、印加磁界によるRbの変化を示すもので、実質的に印加磁界による電気抵抗値変化は零とみなされる。一方、温度に対する変化としては、図6に示す温度係数と同じ温度係数を示す。従って、式1に対応して素子10の場合の電気抵抗値Rbの式を示すと、式2のようになる。
Rb=R (1+r (T−25)) (2)
0025
11は電気抵抗値Rcを持つ第1の抵抗器であり、第1の抵抗器11には電気端子12および13が接続されている。14は電気抵抗値Rdを持つ第2の抵抗器である。第2の抵抗器14には、電気端子15および16が接続されている。第1の抵抗器と第2の抵抗器については、それ等の間で抵抗値およびその温度係数は、精密に一致したものを利用する。式1、2と同様にして、電気抵抗の温度係数をr′とすれば、式3および4を得る。
Rc=R (1+r ´(T−25)) (3)
Rd=R (1+r ´(T−25)) (4)
0026
端子4、8および20間、端子3、12および17間、端子9、16および18間、端子13、15および19間は電気的に相互接続されている。図8は、図4の構成を電気的等価回路として表したものであり、全体として一つのブリッジ回路を形成している。素子5および素子10は、ブリッジ回路の2つのアームを形成している。端子17と18間には駆動電圧が印加され、端子19、20間にはブリッジの出力電圧が現れる。図8の回路において、端子17、18間に電圧Vを印加した場合に、端子19、20間に現れる電圧Vは、式5で表される。
=(RaRd−RbRc)V /((Ra+Rb)・(Rc+Rd)) (5)
0027
式5のRa、Rb、Rc、Rdに各々式1、2、3、4を代入し、2次の微小量を省略すれば、Vの温度に関係する項はすべて相殺され、式6を得る。
=r HV /4 (6)
0028
ここに、V、r、Rはあらかじめ決定できる定数であり、Vの測定値を得れば、目的とする磁界は式7のように決定できる。
H=4V /(V ) (7)
0029
ブリッジ回路出力Vとして、Vに対してどの程度のレベルまで安定に検出可能かは、ブリッジ回路出力電圧の増幅器の安定性等で決定されるが、一般にV/V=1x10−5は容易に実現可能である。従って、式7において、V/V=1x10−5および表3のrの値を代入すれば、本発明によって可能な磁界の分解能を得る。結果は表4の通りである。
0030
【表4】
Figure 2002131407
0031
表4の分解能は、従来技術のFluxGateセンサの分解能に匹敵する。このFluxGateセンサは、磁性材料の飽和特性を利用するもので、センサ構造としてもまた周辺回路の構成としてもかなり複雑でまた大型のものである。本発明の構成は、これらの磁界センサに比して極めて簡単、且つ小型軽量であり、本発明の効用は極めて高い。
0032
[実施例2−1]
図9は、本発明の第2の実施例の一つを示す。図中、各々、素子25は、図4で述べた素子5と、素子30は素子10と同等の素子である。全体の回路としては、素子25が第1の抵抗器を、素子30が第2の抵抗器をそれぞれ置き換えた形になっている。図9を等価回路として表せば、全体として図8に示した回路と同じ回路となるが、図9の場合は、Rd=RaおよびRc=Rbが成立している。式6と同じく式5に、式1、2を代入すれば、式8を得る。
=r HV /2 (8)
0033
ここに式8の値は式6の2倍になっている。従って、図9の構成によれば、図4の構成に比してより正確な磁界の大きさの推定が可能であり、また検出可能な磁界の分解能も更に2倍まで高めることができる。
0034
[実施例2−2]
図10は、本発明の第2の実施例の他の一つを示す。図10では、素子5および素子25を並行して配置し、それ等の間に素子10および素子30を配置することにより、全体として占有面積の有効利用を計っている。また、端子4と端子8、端子24と端子28、および端子3と端子9、端子23と端子29は各々共通になっており、これ等の端子間の接続を省略して構造の簡単化を計っている。外部回路への接続端子である17、18、19、20については、端子3と9、端子23と29および端子4と8、端子24および28に直接接続はされていないが、素子5および素子25を通して電気的に接続されており、電気機能的には図6と同様の機能を持っている。図10の場合には、巨大磁気抵抗薄膜の置かれている角度が、素子5と素子10および素子25と素子30とで直交している。素子10および素子30については、図7に示した通り、磁界に対する感度はほとんど零であるが、図10のように配置することにより、素子5の長手方向に加えられた磁界に対して更に厳密に素子10および素子30の電気抵抗変化を零とすることができる。
0035
[実施例3]
図11は、本発明の第3の実施例を示す。この実施例の第1実施例との違いは、図4で示した6の導体膜として1の軟磁性薄膜と共通の材料を使用している事である。図4では、素子5および素子10の持つ電気抵抗変化の中で、磁界による変化以外のものをできるだけ等しくし、ブリッジ回路において相殺させることが必要である。このためには、先ず、巨大磁気抵抗薄膜そのものの材質、構造を共通化することであるが、巨大磁気抵抗薄膜そのものが全く同じであっても、それに接触する材料によっては微細な電気抵抗値の違いが出る可能性がある。その原因となるのは、接触電位差、あるいは熱起電力等である。図11に示す実施例3では、巨大磁気抵抗薄膜に接触させる材質を、素子5と素子35で共通の軟磁性薄膜とすることにより、この問題を回避している。しかし、素子35の軟磁性薄膜31の寸法を大きくすると、必然的に巨大磁気抵抗薄膜32に加わる磁束密度も大きくなり、素子5と素子32の抵抗値の差としての磁界センサの感度を低下させてしまう。実施例3では、素子35の軟磁性薄膜31の面積を、素子5の軟磁性薄膜1の面積の1/10以下とすることで、この問題を回避している。この構成によれば、素子35の導体部分が非磁性体である場合のブリッジ出力電圧に対し、少なくとも90%以上の出力電圧を確保でき、しかも磁界印加以外の要因による抵抗の変化を、素子5と素子35で厳密に相殺することができ、高精度の薄膜磁界センサの実現が可能になる。
0036
[実施例4]
図12は、本発明の第4の実施例を示す。実施例1において、素子5については、軟磁性薄膜のL寸法を大きくすることにより、感動する磁界の感度を高められることを述べた。軟磁性薄膜1の持つ機能は、周辺の磁束を集めて巨大磁気抵抗薄膜部分に集中させることであるが、周辺の磁束を集める機能は、ほぼ軟磁性薄膜の面積に比例する。従って、図4に示す構成の場合には、小さな磁界での感度を持たせるためには、どうしてもL寸法を大きくする必要があり、磁界センサの全体の寸法が大きくなってしまうことは避けられない。図12の構成によれば、軟磁性薄膜が巨大磁気抵抗薄膜と接する幅wに比して大きなwxの幅の部分を設けることにより、軟磁性薄膜の占有面積の有効利用を計り、全体として小型でしかも磁界感度の高い磁気センサが実現できる。
0037
[実施例5]
図13は本発明の第5の実施例である。軟磁性薄膜では、外部磁界が加わっても、外部磁界を除いた後は磁化が残留し難いが、保磁力Hcの範囲で、磁化が残留してしまう可能性がある。この残留磁化は、検出する磁界の直接誤差となるものであるから、可及的に残留磁化のない材料が望ましい。表1に示した通りCo77FeSi 材料は、パーマロイに比しても1/6程度の低いHcを有し、この値は磁化困難軸方向に励磁した場合に得られる。一般的に、一軸異方性を有する磁性材料の困難軸方向の磁化過程は磁化回転によるため、ヒステリシスは発生せず、Hcはほぼ零となる。したがって、困難軸方向では残留磁化は発生しない。本発明の第5の構成によれば、一軸異方性を有する材料の困難軸方向を磁界検出方向とするため、外部から印加された磁界が取り去られた後も軟磁性薄膜中に残留磁化が少なく、従って、正確な磁界の計測が可能になる。
0038
【発明の効果】
以上の説明の通り、本発明によれば次のような効果が得られる。
0039
巨大磁気抵抗薄膜の有する電気抵抗値の温度変化等、磁界印加による電気抵抗値変化以外は、すべてブリッジ回路の中で相殺されてブリッジ出力としては出ないため、従来技術では問題であった巨大磁気抵抗薄膜の温度等による電気抵抗値変化が除外されて、純粋に磁界の印加による変化分が検出可能である。
0040
ブリッジ回路の持つ微小な電気抵抗値変化の検出機能が利用出来るため、極めて小さな変化に対応する、高い分解能での磁界検出が可能である。
0041
2つの巨大磁気抵抗薄膜の両側に配置された材料の違いによって生じる微小な抵抗値の違いを避けるため、2つの巨大磁気抵抗薄膜の両側に配置する材料を同一とすることにより、磁界以外の要因による電気抵抗値変化は、更に厳密に相殺される。
0042
巨大磁気抵抗薄膜の両側に配置する軟磁性薄膜の長さを減らし、その代わりに幅を広く取ることにより、磁界センサの感度を低下させることなく、磁界センサ全体としての小型化が可能である。
0043
巨大磁気抵抗薄膜の両側に配置する軟磁性薄膜として、残留磁化が少ない一軸異方性を持った材料を適用することにより、検出すべき磁界を除いた後の残留磁化による磁界検出精度の低下を防止することができる。
0044
本発明の薄膜磁界センサは、構造が単純で小型化が可能であり、また優れた磁界感度を有するので、次世代の高性能磁界センサーとして、その工業的意義は極めて大きい。
【図面の簡単な説明】
【図1】従来技術による薄膜磁界センサ
【図2】同上の磁界印加による抵抗値の変化
【図3】同上の抵抗値の温度特性
【図4】本発明の第1の実施例
【図5】本発明の第1の実施例の素子5の磁界と抵抗変化との関係
【図6】本発明の第1の実施例の素子5および素子10の抵抗値温度特性
【図7】本発明の第1の実施例の素子10の磁界と抵抗変化との関係
【図8】同上の電気的等価回路
【図9】本発明の第2の実施例の1
【図10】本発明の第2の実施例の2
【図11】本発明の第3の実施例
【図12】本発明の第4の実施例
【図13】本発明の第5の実施例
【符号の説明】
1:第1の軟磁性薄膜
2:第1の巨大磁気抵抗薄膜
3:第1の軟磁性薄膜に接続される電気端子の1つ
4:第1の軟磁性薄膜に接続される他の電気端子
5:上記1〜4を含めた素子
6:第1の導体膜
7:第2の巨大磁気抵抗薄膜
8:第1の導体膜に接続される電気端子の1つ
9:第1の導体膜に接続される他の電気端子
10:上記6〜9を含めた素子
11:第1の抵抗器
12:第1の抵抗器に接続される電気端子の1つ
13:第1の抵抗器に接続される他の電気端子
14:第2の抵抗器
15:第2の抵抗器に接続される電気端子の1つ
16:第2の抵抗器に接続される他の電気端子
17:駆動電圧を与えられる電気端子の1つ
18:駆動電圧を与えられる他の電気端子
19:ブリッジ出力の電気端子の1つ
20:ブリッジ出力の他の電気端子
21:第2の軟磁性薄膜
22:第3の巨大磁気抵抗薄膜
23:第2の軟磁性薄膜に接続される電気端子の1つ
24:第2の軟磁性薄膜に接続される他の電気端子
25:上記21〜24を含めた素子
26:第2の導体膜
27:第4の巨大磁気抵抗薄膜
28:第2の導体膜に接続される電気端子の1つ
29:第2の導体膜に接続される他の電気端子
30:上記26〜29を含めた素子
31:第3の軟磁性薄膜
32:第5の巨大磁気抵抗膜
33:第3の軟磁性薄膜に接続される電気端子の1つ
34:第3の軟磁性薄膜に接続される他の電気端子
35:上記31〜34を含めた素子Patent application title: Thin film magnetic field sensor
[Claim of claim]
1. A soft magnetic thin film 1 divided into two by an air gap having a predetermined air gap length and having a predetermined film thickness and a predetermined width in contact with the air gap, a giant magnetoresistive thin film 2 formed to fill the air gap; A terminal 3 and a terminal 4 electrically connected to each of the soft magnetic thin film 1 divided into two, a film divided into two by an air gap having an air gap length substantially equal to the air gap length, and a film substantially equal to the film thickness Electrically connected to each of conductor film 6 having a thickness and a width substantially equal to the width in contact with the air gap, a giant magnetoresistive thin film 7 formed to fill the air gap, and the conductor film 6 divided into two. A thin film magnetic field sensor comprising a terminal 8 and a terminal 9, wherein the terminal 3 and the terminal 4 and the terminal 8 and the terminal 9 respectively form two arms of a bridge circuit.
2. A soft magnetic thin film 1 divided into two by an air gap having a predetermined air gap length and having a predetermined film thickness and a predetermined width in contact with the air gap; a giant magnetoresistive thin film 2 formed to fill the air gap; A terminal 3 and a terminal 4 electrically connected to each of the soft magnetic thin film 1 divided into two, a film divided into two by an air gap having an air gap length substantially equal to the air gap length, and a film substantially equal to the film thickness A conductor film 6 having a thickness and a width substantially equal to the width contacting the air gap, a giant magnetoresistive thin film 7 formed to fill the air gap, and a conductor film 6 divided into two electrically connected Soft magnetic field of a terminal 8 and a terminal 9 divided by an air gap having an air gap length substantially equal to the air gap length and having a film thickness substantially equal to the film thickness and a width substantially equal to a width in contact with the air gap Thin film 21 fills the void The giant magnetoresistive thin film 22 thus formed, the terminals 23 and 24 electrically connected to each of the two divided soft magnetic thin films 21, and the two divisions by an air gap having an air gap length substantially equal to the air gap length A conductor film 26 having a film thickness substantially equal to the film thickness and a width substantially equal to the width contacting the air gap, a giant magnetoresistive thin film 27 formed to fill the air gap, and Terminals 3 and 4, terminals 8 and 9, terminals 23 and 24, terminals 28 and 29 are respectively connected to each of conductor films 26, and each of the terminals 3 and 4 is a bridge circuit. A thin film magnetic field sensor characterized by forming two arms.
3. A soft magnetic thin film 1 divided into two by an air gap having a predetermined air gap length and having a predetermined film thickness and a predetermined width in contact with the air gap; a giant magnetoresistive thin film 2 formed to fill the air gap; A terminal 3 and a terminal 4 electrically connected to each of the soft magnetic thin film 1 divided into two, a film divided into two by an air gap having an air gap length substantially equal to the air gap length, and a film substantially equal to the film thickness A soft magnetic thin film 31 having a thickness and a width substantially equal to a width in contact with the air gap, a giant magnetoresistive thin film 32 formed to fill the air gap, and an electric current for each of the divided soft magnetic thin film 31 , Terminals 3 and 4, terminals 33 and 34 respectively form two arms of the bridge circuit, and also the area on the plane of the soft magnetic thin film 31 is soft. Magnetic thin Thin film magnetic field sensor, characterized in that in comparison to the area of the first plane is 1/10 or less.
4. At least a portion of the width dimension of the soft magnetic thin film 1 measured along a line parallel to the line in contact with the air gap is larger than the width of the line in which the soft magnetic thin film 1 contacts the air space. The thin film magnetic field sensor according to any one of claims 1 to 3, characterized in that:
5. The magnetic characteristic of the soft magnetic thin film 1 is uniaxial anisotropy, and the direction of the easy axis of magnetization is substantially parallel to the line in contact with the air gap. The thin film magnetic field sensor according to any one of claims 1 to 3.
Detailed Description of the Invention
[0001]
[Industrial application field]
The present invention relates to a thin film magnetic field sensor for measuring a magnetic field in space, and to a thin film magnetic field sensor for precisely measuring a magnetic field using a giant magnetoresistance thin film, for example, a nanogranular giant magnetoresistance effect thin film.
[0002]
[Prior Art]
FIG. 1 shows magnetic field sensors described in Japanese Patent Application Laid-Open Nos. 11-87804 and 11-274599. In the figure, the portion written as a giant magnetoresistive thin film is a metal-insulator nanogranular giant magnetoresistive thin film showing a change in electrical resistance of about 10% with respect to the application of a magnetic field of 10 kOe. As in this example, in the case of a giant magnetoresistive thin film, although the change width of the electrical resistance value is larger than that of a general magnetoresistive effect material, the applied magnetic field for causing the electrical resistance change as described above In the case where only a giant magnetoresistive thin film is used alone, a change in electrical resistance value with a small magnetic field that is generally used as a magnetic field sensor can not be expected. The configuration of FIG. 1 compensates for that. That is, the soft magnetic thin film plays a role of collecting magnetic flux in the periphery, and by selecting an appropriate dimension of the soft magnetic thin film, in principle, the giant magnetoresistance is obtained regardless of the magnitude of the magnetic field around the soft magnetic thin film. Any large magnetic flux density can be applied to the thin film portion within the saturation magnetic flux density of the soft magnetic thin film. Moreover, when the configuration of FIG. 1 is viewed from the viewpoint of electrical resistance, the electrical resistance value between the soft magnetic thin films is the sum of the electrical resistance values of the soft magnetic thin film portion and the giant magnetoresistance thin film portion. Since the value of the electrical resistivity of the thin film is 100 times or more larger than that of the soft magnetic thin film, the electric resistance between the soft magnetic thin films is substantially equal to the value of the giant magnetoresistive thin film portion. That is, the change in the electrical resistance value of the giant magnetoresistive thin film directly appears in the electrical resistance value between the soft magnetic thin films. FIG. 2 shows an example of such a change in electrical resistance in the configuration of FIG. 1, and realizes a change in electrical resistance of about 6% in a small magnetic field of several Oe.
[0003]
[Problems to be solved by the invention]
However, in the case of realizing the magnetic field sensor for measuring the absolute value of the applied magnetic field based on the electrical resistance measurement value of the giant magnetoresistance thin film, which is the object of the present invention, the configuration of FIG. It turned out that there was a problem. It is a problem of the electrical resistance value change by the temperature of a giant magnetoresistive thin film. As described above, in the case of the configuration of FIG. 1, there is a choice as to the magnitude of the magnetic field to be detected. However, no matter how much the sensitivity is increased, it is the choice for the magnetic field to be moved, and it is impossible in principle to obtain a change width larger than the change in electrical resistance of the giant magnetoresistive thin film. In fact, the electrical resistance change width in the case of the configuration of FIG. 1 is further compressed to approximately 6% including other factors. If there is a change due to the temperature of the giant magnetoresistive thin film with respect to the change of the electrical resistance value of 6%, the change of the electrical resistance value becomes an uncertain factor in estimating the applied magnetic field. FIG. 3 shows an example of the temperature characteristic. As apparent from this figure, depending on the temperature of the giant magnetoresistive thin filmElectricalThe change in resistance is larger than the change in resistance due to the application of a magnetic field, and the configuration of FIG. 1 is difficult to use as a magnetic field sensor that measures the absolute value of the magnetic field.
[Means for Solving the Problems]
[0004]
The features of the present invention are as follows. According to the first aspect of the present invention, there is provided a soft magnetic thin film 1 divided into two by an air gap having a predetermined air gap length and having a predetermined film thickness and a predetermined width in contact with the air gap, a giant magnetoresistive thin film 2 formed to fill the air gap A terminal 3 and a terminal 4 electrically connected to each of the soft magnetic thin film 1 divided into two, a film divided into two by an air gap having an air gap length substantially equal to the air gap length, and a film substantially equal to the film thickness Electrically connected to each of conductor film 6 having a thickness and a width substantially equal to the width in contact with the air gap, a giant magnetoresistive thin film 7 formed to fill the air gap, and the conductor film 6 divided into two. Thin film magnetic field sensor comprising terminal 8 and terminal 9, wherein terminal 3 and terminal 4 and terminal 8 and terminal 9 respectively form two arms of a bridge circuitProvideDo.
[0005]
According to the second aspect of the invention, there is provided a soft magnetic thin film 1 divided into two by an air gap having a predetermined air gap length and having a predetermined film thickness and a predetermined width in contact with the air gap, and a giant magnetoresistive thin film 2 formed to fill the air gap. A terminal 3 and a terminal 4 electrically connected to each of the soft magnetic thin film 1 divided into two, a film divided into two by an air gap having an air gap length substantially equal to the air gap length, and a film substantially equal to the film thickness A conductor film 6 having a thickness and a width substantially equal to the width contacting the air gap, a giant magnetoresistive thin film 7 formed to fill the air gap, and a conductor film 6 divided into two electrically connected Soft magnetic field of a terminal 8 and a terminal 9 divided by an air gap having an air gap length substantially equal to the air gap length and having a film thickness substantially equal to the film thickness and a width substantially equal to a width in contact with the air gap Thin film 21 fills the void The giant magnetoresistive thin film 22 thus formed, the terminals 23 and 24 electrically connected to each of the two divided soft magnetic thin films 21, and the two divisions by an air gap having an air gap length substantially equal to the air gap length A conductor film 26 having a film thickness substantially equal to the film thickness and a width substantially equal to the width contacting the air gap, a giant magnetoresistive thin film 27 formed to fill the air gap, and Terminals 3 and 4, terminals 8 and 9, terminals 23 and 24, terminals 28 and 29 are respectively connected to each of conductor films 26, and each of the terminals 3 and 4 is a bridge circuit. Film magnetic field sensor characterized by forming two armsProvideDo.
[0006]
The third invention is a soft magnetic thin film 1 divided into two by a void having a predetermined void length and having a predetermined thickness and a predetermined width in contact with the void, and a giant magnetoresistive thin film 2 formed to fill the void. A terminal 3 and a terminal 4 electrically connected to each of the soft magnetic thin film 1 divided into two, a film divided into two by an air gap having an air gap length substantially equal to the air gap length, and a film substantially equal to the film thickness A soft magnetic thin film 31 having a thickness and a width substantially equal to a width in contact with the air gap, a giant magnetoresistive thin film 32 formed to fill the air gap, and an electric current for each of the divided soft magnetic thin film 31 , Terminals 3 and 4, terminals 33 and 34 respectively form two arms of the bridge circuit, and also the area on the plane of the soft magnetic thin film 31 is soft. Magnetic thin Thin film magnetic field sensor, characterized in that in comparison to the area of the first plane is less than 1/10ProvideDo.
[0007]
The fourth invention is that at least a part of the width dimension of the soft magnetic thin film 1 measured along a line parallel to a line in contact with the air gap is larger than the width of a line in which the soft magnetic thin film 1 is in contact with the air space The thin film magnetic field sensor according to any one of the first to third inventions characterized by the present inventionProvideDo.
[0008]
According to a fifth invention, the magnetic characteristic of the soft magnetic thin film 1 is uniaxial anisotropy, and the direction of the easy axis of magnetization thereof is substantially parallel to a line in contact with the air gap. Thin film magnetic field sensor according to any of inventions to third inventionsProvideDo.
[0009]
【Function】
The action of the present invention is as follows.
The configuration of the first invention is a high-precision magnetic field sensor by excluding changes due to temperature, humidity and causes with time among electric resistance value changes of a giant magnetoresistive thin film, and extracting only changes due to a magnetic field. To achieve That is, a bridge by two systems of elements having the same structure as the giant magnetoresistive thin filmcircuitThe sensitivity of the device to the magnetic field is enhanced by arranging soft magnetic thin films on both sides of the giant magnetoresistance thin film, and the other element substantially increases the sensitivity to the magnetic field by using the giant magnetoresistance thin film as it is. It is considered to be zero. bridgecircuitSince the output voltage of these elements is proportional to the difference in electric resistance value of these elements, other factors such as temperature change of the giant magnetoresistive thin film and other changes such as humidity and aging are excluded from the output voltage. , Only changes in electrical resistance due to magnetic fields appear at the output. Therefore, detection of the absolute value of the magnetic field can be realized with high accuracy, and at the same time detection of an extremely small magnetic field also becomes possible.
[0010]
The configuration of the second invention realizes a thin film magnetic field sensor with high accuracy and high magnetic field sensitivity. That is, the bridge output voltage can be obtained by configuring a bridge circuit using two elements each having a soft magnetic thin film disposed on both sides of the giant magnetoresistive thin film and two elements each having a conductive film disposed on both sides of the giant magnetoresistive thin film. It becomes possible to further increase the size by a factor of 2 more than the configuration of the first invention, and a thin film magnetic field sensor with higher accuracy and higher magnetic field sensitivity can be realized.
[0011]
The configuration of the third invention further enhances the accuracy of the thin film magnetic field sensor from the viewpoint of the material to be used. That is, even if the material and structure of the giant magnetoresistive thin film portion in the elements constituting the bridge are exactly the same, but the materials sandwiching the giant magnetoresistive thin film are different, minute electric power may be generated by contact potential difference or thermoelectromotive force. There may be differences in resistance. According to the configuration of the third aspect of the invention, including these problems, it is possible to exactly cancel out the change in electrical resistance of the giant magnetoresistive thin film due to factors other than the change in resistance due to the magnetic field application of the two structures. Thus, a thin film magnetic field sensor with higher accuracy can be realized.
[0012]
The configuration according to the fourth aspect of the present invention is to realize a thin film magnetic field sensor with smaller size and high precision in terms of structure. In order to make the sensitivity as a magnetic field sensor high and to make the shape smaller in size, in the structure in which soft magnetic thin films are arranged on both sides of a giant magnetoresistive thin film, the effective area of the soft magnetic thin film is made constant and soft. It is necessary to reduce the size of the magnetic thin film portion. According to the configuration of the fourth invention, it is possible to realize a magnetic field sensor with high sensitivity and geometrically smaller size.
[0013]
The configuration of the fifth invention further enhances the accuracy of the thin film magnetic field sensor in terms of residual magnetization. That is, when the magnetization remains in the soft magnetic thin film after the measurement of the applied magnetic field is completed and the external magnetic field is removed, the residual magnetization is applied to the giant magnetoresistance thin film. Effect similar to that of the above, resulting in a decrease in detection accuracy of the magnetic field. Therefore, in the configuration of the fifth invention, the residual magnetization in the soft magnetic thin film is reduced by magnetizing the soft magnetic thin film in the direction orthogonal to the detection magnetic field of the giant magnetoresistance thin film, and the magnetic field is measured more accurately. be able to.
[0014]
【Example】
Hereinafter, various embodiments of the present invention will be described based on the drawings. In the drawings, the same elements are denoted by the same reference numerals to avoid duplicating descriptions.
[0015]
Example 1
FIG. 4 shows a first embodiment of the present invention. In this figure and the following figures, in order to aid in understanding, the portions of the giant magnetoresistive thin film are distinguished as dotted marks, the portion of the soft magnetic thin film as oblique lines, and the conductive thin film portion as whiteout. Reference numeral 5 denotes an element including the soft magnetic thin film 1, the giant magnetoresistive thin film 2 and the electric terminals 3 and 4, and is the same as the configuration of FIG. 1 which is a known technique. The description of the action of element 5 is in the textParagraphAs described in 0002, only the description of the specific content of the present invention will be made here without duplication. A soft magnetic thin film 1 is a permalloy having a high saturation magnetic flux density of 15 kG or more and a low coercivity of 0.5 Oe or less. Specific material names of the soft magnetic thin film 1 and representative characteristics thereof, including other materials, are shown in Table 1.
[0016]
[Table 1]
Figure 2002131407
[0017]
The thickness of the soft magnetic thin film 1 is t = 1 μm. In the soft magnetic thin film 1, a gap indicated by a gap length g is formed. The dimension of the air gap length g is g = 1 μm. The dimension of the width w of the soft magnetic thin film 1 in contact with the air gap is w = 100 μm. A giant magnetoresistive thin film 2 is formed to fill the air gap of the soft magnetic thin film 1. The material of the giant magnetoresistive thin film 2 is Co39Y14O47It is. Table 2 shows names of materials that can be used as the giant magnetoresistive thin film 2 and the representative characteristics thereof including this material.
[0018]
【Table 2】
Figure 2002131407
[0019]
The thickness t of the soft magnetic thin film 1, the gap length g, and the width w of the soft magnetic thin film 1 in contact with the gap satisfy the required characteristics from both the magnetic condition and the electrical condition. Although it is necessary to select as such, the feature of the present invention is to obtain the desired performance over a wide range. That is, the choice of dimensions is very wide. As the magnetic condition, when the air gap length g is too wide, for example, several times or more of the thickness t of the soft magnetic thin film, the soft magnetic thin film 1 collects the magnetic flux in the periphery and the magnetic flux is sufficiently I can not concentrate. On the other hand, although the thickness t of the soft magnetic thin film exhibits the function of the present invention even if it is functionally thick, the deposition capability per unit time possessed by the device for forming the soft magnetic thin film, or the soft magnetic thin film The limit of thickness is determined by realistic constraints such as the soft magnetic thin film peeling off from the substrate depending on the stress when it is formed. On the other hand, when the thickness t of the soft magnetic thin film is 10 nm or less, the magnetic properties of the soft magnetic thin film deteriorate, so that substantially 10 nm is the lower limit of the thickness. In terms of electrical conditions, the width w of the soft magnetic thin film 1 is a value that the peripheral circuit can be easily handled as the miniaturization of the magnetic sensor and the absolute value of the electrical resistance, for example, in the range of several tens kΩ to several hundreds MΩ. It is necessary to set it. Since the absolute value of the electrical resistance is proportional to the electrical resistivity and gap length g of the giant magnetoresistive thin film and inversely proportional to the width w of the soft magnetic thin film and the thickness t of the soft magnetic thin film, the degree of freedom in design is relatively large. A large and specific soft magnetic thin film width g can be realized in a wide range of several mm to several μm at the minimum.
[0020]
Electrical terminals 3 and 4 of Cu are respectively connected to the soft magnetic thin film 1 on both sides divided into two parts across the air gap. The material of the electrical terminal portion does not have a large magnetic effect, so it may be determined centering on the electrical conductivity, and it is possible to commonly use the material of the soft magnetic thin film, and in practice It is also possible to form a Cu film on the surface, etc., only at the portion which is to be connected to the outside. Reference numeral 5 denotes an element including the soft magnetic thin film 1, the giant magnetoresistive thin film 2, and the electric terminals 3 and 4. The electrical resistance between the electrical terminals 3 and 4 is denoted as Ra. FIG. 5 shows an example of the relationship between the applied magnetic field of the element 5 and the change in the electrical resistance value with the length dimension L of the soft magnetic thin film 1 as a parameter, which is smaller by increasing the length dimension L. It can be seen that it is possible to impress in the magnetic field. FIG. 6 shows the change in the resistance value of the element 5 due to the temperature. The relationship between the applied magnetic field and the electrical resistance value shown in FIG. 5 changes substantially linearly up to a certain magnitude of magnetic field if the absolute value of the applied magnetic field is taken. Further, the change in the temperature and the electric resistance value in FIG. 6 is considered to be a linear relationship near room temperature. Therefore, when the applied magnetic field is zero and the temperature is 22 ° C., the resistance value is R0Assuming that the absolute value of the applied magnetic field is H and the temperature is T, the resistance value Ra can be expressed as Equation 1.
[0021]
Ra = R0(1 + rMH + rT(T-25)) (1)
Here rMIs the derivative of the change in electrical resistance due to the applied magnetic field, rTIs the temperature coefficient of the electrical resistance value. Table 3 shows r for each length dimension L of the soft magnetic thin filmMAnd the range of the magnetic field H for which equation 1 holds, and rTIndicates the value of.
[0022]
[Table 3]
Figure 2002131407
[0023]
6 is a conductor film having substantially the same thickness t 'as the soft magnetic film 1; The material of the conductor film 6 is Cu. The Cu material is considered to be very weakly diamagnetic but almost magnetically transparent. In the conductor film 6, an air gap length g 'of a size substantially equal to the air gap length g of the soft magnetic thin film 1 is formed. The width w ′ of the conductor film 6 in contact with the air gap is substantially the same as the width w of the soft magnetic thin film 1 in contact with the air gap. The length dimension corresponding to L of the element 5 is arbitrary. A giant magnetoresistive thin film 7 is formed to fill the air gap of the conductor film 6. The material of the giant magnetoresistive thin film 7 is the same as that of the giant magnetoresistive thin film 2. Electrical terminals 8 and 9 are connected to the conductor films 6 on both sides divided into two across the air gap. 10 represents an element including the conductor film 6, the giant magnetoresistive thin film 7, and the electrical terminals 8 and 9. The electrical resistance between the electrical terminals 8 and 9 is denoted as Rb.
[0024]
In the element 10, since the conductor film 6 has no magnetic action, the magnetic flux density applied to the giant magnetoresistive thin film 7 is the magnetic flux density itself of the environment where the giant magnetoresistive thin film 7 is placed. FIG. 7 shows the change of Rb due to the applied magnetic field, and the change of the electrical resistance value due to the applied magnetic field is regarded as substantially zero. On the other hand, as the change with respect to temperature, the same temperature coefficient as the temperature coefficient shown in FIG. 6 is shown. Thus, corresponding to equation 1, element 10ElectricalThe equation of the resistance value Rb is as shown in equation 2.
Rb = R 0 (1 + r T (T-25)) (2)
[0025]
11 isElectricalElectrical terminals 12 and 13 are connected to the first resistor 11, which is a first resistor having a resistance value Rc. 14 isElectricalIt is a second resistor having a resistance value Rd. Electrical terminals 15 and 16 are connected to the second resistor 14. For the first resistor and the second resistor, the resistance values and their temperature coefficients between them are used exactly as they match. In the same way as Equations 1 and 2,ElectricalTemperature coefficient of resistance rTEquations 3 and 4 are obtained.
Rc = R 0 (1 + r T '(T-25)) (3)
Rd = R 0 (1 + r T '(T-25)) (4)
[0026]
Electrical interconnections are made among the terminals 4, 8 and 20, between the terminals 3, 12 and 17, between the terminals 9, 16 and 18 and between the terminals 13, 15 and 19. FIG. 8 shows the configuration of FIG. 4 as an electrically equivalent circuit, and forms one bridge circuit as a whole. Element 5 and element 10 form the two arms of the bridge circuit. A driving voltage is applied between the terminals 17 and 18 and an output voltage of the bridge appears between the terminals 19 and 20. In the circuit of FIG. 8, the voltage V between terminals 17 and 18 is0Voltage V which appears between terminals 19 and 20 when2Is expressed by Equation 5.
V 2 = (RaRd-RbRc) V 0 / ((Ra + Rb) · (Rc + Rd)) (5)
[0027]
If Equations 1, 2, 3 and 4 are substituted for Ra, Rb, Rc, and Rd in Equation 5, and the secondary minute amount is omitted, V2All the terms related to the temperature of are offset to obtain Equation 6.
V 2 = R T HV 0 / 4 (6)
[0028]
Here, V0, RT, R0Is a constant that can be determined in advance2The target magnetic field can be determined as shown in Eq.
H = 4V 2 / (V 0 r T ) (7)
[0029]
Bridge circuit output V2As V0The level to which stable detection is possible is determined by the stability of the bridge circuit output voltage amplifier, etc.2/ V0= 1x10-5Is easily achievable. Therefore, in equation 7, V2/ V0= 1x10-5And r in Table 3TSubstituting the value of x, the resolution of the magnetic field possible according to the invention is obtained. The results are as shown in Table 4.
[0030]
[Table 4]
Figure 2002131407
[0031]
The resolution in Table 4 is comparable to that of the prior art FluxGate sensor. The FluxGate sensor utilizes the saturation characteristics of the magnetic material, and is quite complicated and large as a sensor structure and a peripheral circuit configuration. The configuration of the present invention is extremely simple, small and light as compared to these magnetic field sensors, and the utility of the present invention is extremely high.
[0032]
Example 2-1
FIG. 9 shows one of the second embodiments of the present invention. In the figure, each of the elements 25 is an element equivalent to the element 5 described in FIG. In the entire circuit, the element 25 replaces the first resistor, and the element 30 replaces the second resistor. If FIG. 9 is expressed as an equivalent circuit, the circuit as a whole is the same as the circuit shown in FIG. 8, but in the case of FIG. 9, Rd = Ra and Rc = Rb are satisfied. If equations 1 and 2 are substituted into equation 5 as in equation 6, equation 8 is obtained.
V 2 = R T HV 0 / 2 (8)
[0033]
Here, the value of Equation 8 is twice that of Equation 6. Therefore, according to the configuration of FIG. 9, it is possible to estimate the magnitude of the magnetic field more accurately than that of the configuration of FIG.2xCan be raised up.
[0034]
[Example 2-2]
FIG. 10 shows another one of the second embodiments of the present invention. In FIG. 10, the element 5 and the element 25 are disposed in parallel, and the element 10 and the element 30 are disposed between them, thereby effectively utilizing the occupied area as a whole. Further, the terminals 4 and 8, the terminals 24 and 28, the terminals 3 and 9, and the terminals 23 and 29 are respectively common, and the connection between these terminals is omitted to simplify the structure. I am measuring. Although the terminals 3 and 9, the terminals 23 and 29, the terminals 4 and 8, and the terminals 24 and 28 are not directly connected to the external circuit connection terminals 17, 18, 19 and 20, the element 5 and the element are not It is electrically connected through 25 and has the same electrical function as that of FIG. In the case of FIG. 10, the angles at which the giant magnetoresistive thin films are placed are orthogonal to each other between the elements 5 and 10 and the elements 25 and 30. The element 10 and the element 30 have almost no sensitivity to the magnetic field as shown in FIG. 7, but by arranging as shown in FIG. 10, the magnetic field applied in the longitudinal direction of the element 5 is more precise The resistance change of the element 10 and the element 30 can be made zero.
[0035]
[Example 3]
FIG. 11 shows a third embodiment of the present invention. The difference from the first embodiment of this embodiment is that the same material as the soft magnetic thin film of 1 is used as the conductor film of 6 shown in FIG. In FIG. 4, it is necessary to equalize as much as possible the change due to the magnetic field among the change in electric resistance of the element 5 and the element 10 and make them offset in the bridge circuit. For this purpose, first of all, the material and structure of the giant magnetoresistive thin film itself are made common, but even if the giant magnetoresistive thin film itself is completely the same, depending on the material in contact with it, There may be differences. The cause is the contact potential difference or the thermoelectromotive force. In the third embodiment shown in FIG. 11, this problem is avoided by making the material to be in contact with the giant magnetoresistive thin film be a soft magnetic thin film common to the element 5 and the element 35. However, if the size of the soft magnetic thin film 31 of the element 35 is increased, the magnetic flux density applied to the giant magnetoresistive thin film 32 inevitably increases, and the sensitivity of the magnetic field sensor as the difference between the resistance values of the element 5 and the element 32 decreases. It will In the third embodiment, this problem is avoided by setting the area of the soft magnetic thin film 31 of the element 35 to 1/10 or less of the area of the soft magnetic thin film 1 of the element 5. According to this configuration, an output voltage of at least 90% or more can be secured with respect to the bridge output voltage when the conductor portion of the element 35 is a nonmagnetic material. And the element 35 can exactly cancel each other, making it possible to realize a highly accurate thin film magnetic field sensor.
[0036]
Example 4
FIG. 12 shows a fourth embodiment of the present invention. In Example 1, it was described that the sensitivity of the moving magnetic field can be enhanced by increasing the L dimension of the soft magnetic thin film for the element 5. The function of the soft magnetic thin film 1 is to collect the peripheral magnetic flux and concentrate it on the giant magnetoresistive thin film, but the function to collect the peripheral magnetic flux is approximately proportional to the area of the soft magnetic thin film. Therefore, in the case of the configuration shown in FIG. 4, in order to provide sensitivity with a small magnetic field, it is necessary to increase the L size by all means, and it is inevitable that the overall size of the magnetic field sensor will be increased. . According to the configuration of FIG. 12, by providing a portion of a width wx larger than the width w at which the soft magnetic thin film is in contact with the giant magnetoresistive thin film, the effective utilization of the area occupied by the soft magnetic thin film is measured. In addition, a magnetic sensor with high magnetic field sensitivity can be realized.
[0037]
[Example 5]
FIG. 13 shows the fifth embodiment of the present invention. In the soft magnetic thin film, even if an external magnetic field is applied, the magnetization hardly remains after removing the external magnetic field, but the magnetization may remain in the range of the coercive force Hc. Since this residual magnetization is a direct error of the magnetic field to be detected, a material free of residual magnetization as much as possible is desirable. As shown in Table 1, Co77Fe5Si9B 9 The material has an Hc as low as about 1/6 that of permalloy, and this value is obtained when excited in the direction of the hard axis. In general, since the magnetization process in the direction of the hard axis of the magnetic material having uniaxial anisotropy is due to magnetization rotation, no hysteresis occurs and Hc becomes almost zero. Therefore, no residual magnetization occurs in the hard axis direction. According to the fifth configuration of the present invention, since the hard axis direction of the material having uniaxial anisotropy is the magnetic field detection direction, the residual magnetization in the soft magnetic thin film even after the magnetic field applied from the outside is removed. Therefore, accurate measurement of the magnetic field becomes possible.
[0038]
【Effect of the invention】
As described above, according to the present invention, the following effects can be obtained.
[0039]
Except for the temperature change of the electric resistance value of the giant magnetoresistive thin film and the electric resistance value change due to the application of the magnetic field, they are all offset in the bridge circuit and do not appear as a bridge output. The change in electrical resistance value due to the temperature or the like of the resistive thin film is excluded, and the change due to the application of the magnetic field can be detected purely.
[0040]
Since the detection function of the minute electric resistance value change of the bridge circuit can be used, it is possible to detect the magnetic field with high resolution corresponding to an extremely small change.
[0041]
In order to avoid the difference in the minute resistance value caused by the difference of the material placed on both sides of the two giant magnetoresistive thin films, by making the materials placed on both sides of the two giant magnetoresistive thin films the same factor other than the magnetic field The change in the electrical resistance value due to is more exactly offset.
[0042]
By reducing the length of the soft magnetic thin film disposed on both sides of the giant magnetoresistive thin film and taking a wider width instead, it is possible to miniaturize the magnetic field sensor as a whole without reducing the sensitivity of the magnetic field sensor.
[0043]
By applying a material with uniaxial anisotropy with little residual magnetization as the soft magnetic thin film disposed on both sides of the giant magnetoresistive thin film, the decrease in magnetic field detection accuracy due to the residual magnetization after removing the magnetic field to be detected It can be prevented.
[0044]
The thin film magnetic field sensor of the present invention has a simple structure, can be miniaturized, and has excellent magnetic field sensitivity. Therefore, the industrial significance of the thin film magnetic field sensor as a next generation high performance magnetic field sensor is extremely large.
Brief Description of the Drawings
FIG. 1 shows a thin film magnetic field sensor according to the prior art
[Fig. 2] The change of the resistance value by the application of the above magnetic field
[Fig. 3] Temperature characteristics of resistance value same as above
FIG. 4 shows a first embodiment of the present invention.
FIG. 5 shows the relationship between the magnetic field and the resistance change of the element 5 of the first embodiment of the present invention.
[FIG. 6] Temperature characteristic of resistance value of the element 5 and the element 10 according to the first embodiment of the present invention
FIG. 7 shows the relationship between the magnetic field and the resistance change of the element 10 of the first embodiment of the present invention.
[Fig. 8] Same electrical equivalent circuit
FIG. 9 shows a second embodiment of the present invention.
FIG. 10 is a second embodiment of the present invention.
FIG. 11 shows a third embodiment of the present invention.
FIG. 12 shows a fourth embodiment of the present invention.
FIG. 13 shows the fifth embodiment of the present invention.
[Description of the code]
1: First soft magnetic thin film
2: The first giant magnetoresistive thin film
3: One of the electrical terminals connected to the first soft magnetic thin film
4: Another electrical terminal connected to the first soft magnetic thin film
5: an element including the above 1 to 4
6: First conductor film
7: Second giant magnetoresistance thin film
8: One of the electrical terminals connected to the first conductor film
9: Another electrical terminal connected to the first conductor film
10: Element including the above 6 to 9
11: The first resistor
12: One of the electrical terminals connected to the first resistor
13: Another electrical terminal connected to the first resistor
14: Second resistor
15: One of the electrical terminals connected to the second resistor
16: Another electrical terminal connected to the second resistor
17: One of the electrical terminals to which a drive voltage is applied
18: Other electrical terminal to which drive voltage is given
19: One of the electrical terminals of the bridge output
20: Other electrical terminal of bridge output
21: Second soft magnetic thin film
22: The third giant magnetoresistive thin film
23: one of the electrical terminals connected to the second soft magnetic thin film
24: Another electrical terminal connected to the second soft magnetic thin film
25: an element including the above 21 to 24
26: second conductor film
27: Fourth giant magnetoresistive thin film
28: one of the electrical terminals connected to the second conductor film
29: Another electrical terminal connected to the second conductor film
30: A device including the above 26 to 29
31: Third soft magnetic thin film
32: Fifth giant magnetoresistive film
33: One of the electrical terminals connected to the third soft magnetic thin film
34: Another electrical terminal connected to the third soft magnetic thin film
35: an element including the above 31 to 34

JP2000367822A 2000-10-26 2000-10-26 Thin film magnetic field sensor Expired - Fee Related JP4023997B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2000367822A JP4023997B2 (en) 2000-10-26 2000-10-26 Thin film magnetic field sensor
KR1020027008326A KR100687513B1 (en) 2000-10-26 2001-10-25 Thin-film magnetic field sensor
PCT/JP2001/009385 WO2002037131A1 (en) 2000-10-26 2001-10-25 Thin-film magnetic field sensor
CNB018032648A CN100403048C (en) 2000-10-26 2001-10-25 Thin-film magnetic field sensor
EP01978911A EP1329735B1 (en) 2000-10-26 2001-10-25 Thin-film magnetic field sensor
TW090126413A TW550394B (en) 2000-10-26 2001-10-25 Thin-film magnetic field sensor
DE60139017T DE60139017D1 (en) 2000-10-26 2001-10-25 THIN FILM MAGNETIC SENSOR
AT01978911T ATE434192T1 (en) 2000-10-26 2001-10-25 THIN FILM MAGNETIC FIELD SENSOR
US10/225,794 US6642714B2 (en) 2000-10-26 2002-08-22 Thin-film magnetic field sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000367822A JP4023997B2 (en) 2000-10-26 2000-10-26 Thin film magnetic field sensor

Publications (3)

Publication Number Publication Date
JP2002131407A JP2002131407A (en) 2002-05-09
JP2002131407A5 true JP2002131407A5 (en) 2005-03-17
JP4023997B2 JP4023997B2 (en) 2007-12-19

Family

ID=18838177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000367822A Expired - Fee Related JP4023997B2 (en) 2000-10-26 2000-10-26 Thin film magnetic field sensor

Country Status (1)

Country Link
JP (1) JP4023997B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4334914B2 (en) * 2003-05-28 2009-09-30 財団法人電気磁気材料研究所 Thin film magnetic sensor
JP4323220B2 (en) * 2003-05-28 2009-09-02 財団法人電気磁気材料研究所 Thin film magnetic sensor and manufacturing method thereof
JP2008209224A (en) * 2007-02-26 2008-09-11 Daido Steel Co Ltd Magnetic sensor
JP6083690B2 (en) 2012-05-11 2017-02-22 公立大学法人大阪市立大学 Power factor measuring device
CN103558467B (en) * 2013-10-29 2015-08-26 中国南方电网有限责任公司超高压输电公司 A kind of computing method of capacitive apparatus parameter
CN104808158A (en) * 2015-05-07 2015-07-29 李川 Ferroxcube detector
CN107037381A (en) * 2015-12-29 2017-08-11 爱盛科技股份有限公司 Magnetic field sensing device and sensing method thereof
JP2018151332A (en) * 2017-03-14 2018-09-27 大同特殊鋼株式会社 Thin-film magnetic sensor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3466470B2 (en) * 1998-03-18 2003-11-10 財団法人電気磁気材料研究所 Thin film magnetoresistive element
JP2000180207A (en) * 1998-12-16 2000-06-30 Yazaki Corp Magnetism sensor

Similar Documents

Publication Publication Date Title
KR100687513B1 (en) Thin-film magnetic field sensor
JP4131869B2 (en) Current sensor
US6640652B2 (en) Rotation angle sensor capable of accurately detecting rotation angle
US6069476A (en) Magnetic field sensor having a magnetoresistance bridge with a pair of magnetoresistive elements featuring a plateau effect in their resistance-magnetic field response
US7501928B2 (en) Current sensor
JP4105147B2 (en) Current sensor
US6072382A (en) Spin dependent tunneling sensor
JP3210192B2 (en) Magnetic sensing element
KR960018612A (en) Magnetic field sensor, bridge circuit magnetic field sensor and manufacturing method thereof
JP2009250931A (en) Magnetic sensor, operation method thereof, and magnetic sensor system
Sanchez et al. Electrical characterization of a magnetic tunnel junction current sensor for industrial applications
JP2000284030A (en) Magnetic sensor element
JP4023997B2 (en) Thin film magnetic field sensor
JP2002131407A5 (en)
KR20010078004A (en) Magnetic sensor and magnetic storage using same
JPH06130088A (en) Current sensor
JP2000512763A (en) Magnetic field sensor with Wheatstone bridge
US11002806B2 (en) Magnetic field detection device
JP2000180524A (en) Magnetic field sensor
JP2000193407A (en) Magnetic positioning device
JP2006156661A (en) Thin film magnetoresistive element, its manufacturing method, and magnetic sensor using the same
JP3449160B2 (en) Magnetoresistive element and rotation sensor using the same
JP4204775B2 (en) Thin film magnetic field sensor
US20040174165A1 (en) Leakage flux detector
JPS62118586A (en) Magnetoelectric device using magnetic thin film having planar effect magnetoresistance