JP3466470B2 - Thin film magnetoresistive element - Google Patents

Thin film magnetoresistive element

Info

Publication number
JP3466470B2
JP3466470B2 JP11130198A JP11130198A JP3466470B2 JP 3466470 B2 JP3466470 B2 JP 3466470B2 JP 11130198 A JP11130198 A JP 11130198A JP 11130198 A JP11130198 A JP 11130198A JP 3466470 B2 JP3466470 B2 JP 3466470B2
Authority
JP
Japan
Prior art keywords
thin film
magnetic
magnetoresistive element
soft magnetic
magnetoresistive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11130198A
Other languages
Japanese (ja)
Other versions
JPH11274599A (en
Inventor
伸聖 小林
進 村上
繁弘 大沼
健 増本
誠司 三谷
啓安 藤森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FOUDATION: THE RESEARCH INSTITUTE FOR ELECTRIC AND MAGNETIC MATERIALS
Original Assignee
THE FOUDATION: THE RESEARCH INSTITUTE FOR ELECTRIC AND MAGNETIC MATERIALS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FOUDATION: THE RESEARCH INSTITUTE FOR ELECTRIC AND MAGNETIC MATERIALS filed Critical THE FOUDATION: THE RESEARCH INSTITUTE FOR ELECTRIC AND MAGNETIC MATERIALS
Priority to JP11130198A priority Critical patent/JP3466470B2/en
Publication of JPH11274599A publication Critical patent/JPH11274599A/en
Application granted granted Critical
Publication of JP3466470B2 publication Critical patent/JP3466470B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、巨大磁気抵抗効果を利
用した薄膜磁気抵抗素子、およびそれを用いた磁気メモ
リー、磁気センサーおよび磁気ヘッドに関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film magnetoresistive element utilizing the giant magnetoresistive effect, a magnetic memory using the same, a magnetic sensor and a magnetic head.

【0002】[0002]

【従来の技術】近年、情報の大容量化高速化に伴い、磁
気記録の分野においても、さらなる記録密度の高密度化
が進められ、垂直磁気記録方式など様々な試みがなされ
ている。磁気抵抗効果(MR)を利用した磁気ヘッド
(MRヘッド)は、上記の要請に対処できるものとして
注目され、現在盛んに研究されている。またMRセンサ
は、磁気ヘッド以外にも、サーボモーターやロータリー
エンコダーなどの磁気センサとしても広く利用されてい
る。
2. Description of the Related Art In recent years, with the increase in capacity and speed of information, even in the field of magnetic recording, the recording density has been further increased, and various attempts such as a perpendicular magnetic recording system have been made. A magnetic head (MR head) utilizing the magnetoresistive effect (MR) has been attracting attention as one that can meet the above-mentioned requirements, and is currently being actively studied. In addition to the magnetic head, the MR sensor is also widely used as a magnetic sensor such as a servo motor and a rotary encoder.

【0003】このような状況の中で、従来のMR材料の
10倍以上の大きな巨大磁気抵抗効果(GMR)を示す
材料が、Fe/Cr系などの金属人工格子膜で見出され
た(M.N.Baibich et al,Phys.
Rev.Lett.61(1988)2472)。GM
Rは、この発見をきっかけに金属人工格子のみならず、
Mn酸化物などの酸化物系、Co−Cu合金などの金属
−金属系グラニュラー合金、またCo−Al−O合金薄
膜などの金属−非金属系グラニュラー合金薄膜などで見
出され、現在盛んに研究されている。これらの材料は、
MR比が大きいことから、磁気ヘッドや磁気センサ等の
磁気素子への応用が期待されている。しかし、金属人工
格子のGMRを利用したスピンバルブヘッドの実用化が
進められているが、耐熱性や歩留まりが悪いことなど、
問題は多い。また、金属人工格子以外のGMR材料にお
いては、磁界感度が著しく低く、磁気ヘッドや磁気セン
サ等の磁気素子に利用することは出来なかった。
Under such circumstances, a material exhibiting a giant magnetoresistive effect (GMR) which is more than 10 times as large as that of a conventional MR material has been found in a metallic artificial lattice film such as Fe / Cr system (M N. Baibich et al, Phys.
Rev. Lett. 61 (1988) 2472). GM
Based on this discovery, R was not only a metal artificial lattice,
Found in oxide-based materials such as Mn oxides, metal-metal-based granular alloys such as Co-Cu alloys, and metal-non-metal-based granular alloy thin films such as Co-Al-O alloy thin films, and is currently conducting active research. Has been done. These materials are
Since the MR ratio is large, it is expected to be applied to magnetic elements such as magnetic heads and magnetic sensors. However, although the spin valve head using the GMR of the metal artificial lattice is being put into practical use, the heat resistance and the yield are poor.
There are many problems. In addition, GMR materials other than metal artificial lattices have remarkably low magnetic field sensitivity and cannot be used for magnetic elements such as magnetic heads and magnetic sensors.

【0004】先に、本発明者らは、GMR薄膜を軟磁性
薄膜と組み合わせると、GMRの磁界感度が著しく向上
することを見出し、出願した(特願平9−279308
号)。しかし、この報告では、MR比は高々4%程度で
あり、従来材料のパーマロイ(2〜3%)等と比較して
それほど特性が向上している訳ではない。
The present inventors have previously found that the combination of a GMR thin film with a soft magnetic thin film significantly improves the magnetic field sensitivity of GMR, and filed an application (Japanese Patent Application No. 9-279308).
issue). However, in this report, the MR ratio is at most about 4%, and the characteristics are not so much improved as compared with conventional materials such as Permalloy (2 to 3%).

【0005】[0005]

【発明が解決しようとする課題】上記のように、GMR
薄膜は、その応用化が期待されているにもかかわらず、
磁界感度が低いために、MR磁気センサ等の磁気素子に
用いることが出来なかった。また、軟磁性薄膜と巨大磁
気抵抗薄膜を組み合わせることによって、磁界感度は著
しく改善されるが、従来材料に比べて、より大きなMR
比は得られていない。そこで、本発明者らは、弱磁界に
おいてより大きなMR比を有し、磁界感度の優れた薄膜
磁気抵抗素子を得ようとするものである。
As described above, the GMR is
Thin films are expected to be applied, but
Due to its low magnetic field sensitivity, it cannot be used for magnetic elements such as MR magnetic sensors. Moreover, the magnetic field sensitivity is remarkably improved by combining the soft magnetic thin film and the giant magnetoresistive thin film, but it has a larger MR than the conventional material.
No ratio is obtained. Therefore, the present inventors intend to obtain a thin film magnetoresistive element having a larger MR ratio in a weak magnetic field and excellent magnetic field sensitivity.

【0006】一方、多くの磁気センサーに用いられてい
る半導体ホール素子は、耐熱性が悪く、200℃以上の
高温では用いられない。また、先に述べたスピンバルブ
膜は、用いられる反強磁性膜の耐熱性が悪く、半導体ホ
ール素子と同様に高温の環境下で用いるのは困難であ
る。
On the other hand, the semiconductor Hall element used in many magnetic sensors has poor heat resistance and cannot be used at a high temperature of 200 ° C. or higher. Further, the spin valve film described above has poor heat resistance of the antiferromagnetic film used, and thus it is difficult to use it in a high temperature environment like a semiconductor Hall element.

【0007】本発明は、上記事情を鑑みてなされたもの
で、GMR薄膜を軟磁性薄膜と複合化することにより、磁
界感度が高く、且つMR比の大きな磁気抵抗素子を提供す
ること、および1mm3以下の小型化が可能で、200℃
以上の温度環境においても、使用可能な薄膜磁気抵抗素
子を提供することを目的とする。
The present invention has been made in view of the above circumstances, and provides a magnetoresistive element having high magnetic field sensitivity and a large MR ratio by combining a GMR thin film with a soft magnetic thin film, and 1 mm. Can be downsized to 3 or less, 200 ℃
It is an object of the present invention to provide a thin film magnetoresistive element that can be used even in the above temperature environment.

【0008】[0008]

【課題を解決するための手段】本発明は、上記の事情を
鑑みて鋭意努力した結果である。高い透磁率を有する軟
磁性薄膜と耐熱性の良好なGMR薄膜を組み合わせるこ
とによって、磁界感度が高く、耐熱性の良好な薄膜磁気
抵抗素子を得ることができる。
The present invention is the result of earnest efforts in view of the above circumstances. By combining the soft magnetic thin film having high magnetic permeability with the GMR thin film having good heat resistance, a thin film magnetoresistive element having high magnetic field sensitivity and good heat resistance can be obtained.

【0009】本発明の特徴とするところは次の通りであ
る。第1発明は、軟磁性薄膜と巨大磁気抵抗薄膜とによ
って構成され、巨大磁気抵抗薄膜の両側に軟磁性薄膜を
配置することにより、磁気抵抗効果の磁界感度を上げた
薄膜磁気抵抗素子において、巨大磁気抵抗薄膜の膜厚が
軟磁性薄膜の膜厚以下であり、かつ巨大磁気抵抗薄膜の
電気比抵抗が、軟磁性薄膜の電気比抵抗の100倍以上
大きいことを特徴とする薄膜磁気抵抗素子に関する。
The features of the present invention are as follows. A first invention is a thin-film magnetoresistive element which is composed of a soft magnetic thin film and a giant magnetoresistive thin film, and in which the soft magnetic thin films are arranged on both sides of the giant magnetoresistive thin film to increase the magnetic field sensitivity of the magnetoresistive effect. A thin-film magnetoresistive element characterized in that the magnetoresistive thin film has a film thickness equal to or less than that of the soft magnetic thin film, and the giant magnetoresistive thin film has an electrical resistivity greater than 100 times greater than the electrical resistivity of the soft magnetic thin film. .

【0010】[0010]

【0011】第2発明は、軟磁性薄膜を電極とし、磁気
抵抗変化の5割以上が巨大磁気抵抗薄膜によって生じる
ことを特徴とする請求項1に記載の薄膜磁気抵抗素子に
関する。
A second aspect of the present invention relates to the thin-film magnetoresistive element according to claim 1, wherein the soft magnetic thin film is used as an electrode and 50% or more of the change in magnetic resistance is caused by the giant magnetoresistive thin film.

【0012】第3発明は、軟磁性薄膜の磁気特性が、保
磁力Hc≦2エルステッド、透磁率μ≧500であり、
且つ軟磁性薄膜の飽和磁束密度(Bs)と膜厚(t)お
よび軟磁性薄膜のギャップ幅(d)の関係が、Bs
(G)×t(μm)≧d(μm)×200であることを
特徴とする請求項1又は2に記載の薄膜磁気抵抗素子に
関する。
According to a third aspect of the invention, the soft magnetic thin film has magnetic properties of coercive force Hc ≦ 2 oersted and magnetic permeability μ ≧ 500.
Moreover, the relationship between the saturation magnetic flux density (Bs) of the soft magnetic thin film and the film thickness (t) and the gap width (d) of the soft magnetic thin film is Bs.
(G) × t (μm) ≧ d (μm) × 200 The present invention relates to a thin film magnetoresistive element according to claim 1 or 2.

【0013】第4発明は、軟磁性薄膜のギャップ幅を変
化させることにより、磁気抵抗の磁界感度を任意に制御
することを特徴とする請求項1ないし3のいずれか1項
に記載の薄膜磁気抵抗素子に関する。
According to a fourth aspect of the present invention, the magnetic field sensitivity of the magnetoresistive is arbitrarily controlled by changing the gap width of the soft magnetic thin film. Regarding a resistance element.

【0014】第5発明は、磁気特性の異なる軟磁性薄膜
を用いることによって、磁気抵抗の磁界感度を任意に制
御できることを特徴とする請求項1ないし4のいずれか
1項に記載の薄膜磁気抵抗素子に関する。
According to a fifth aspect of the present invention, the magnetic field sensitivity of the magnetic resistance can be arbitrarily controlled by using soft magnetic thin films having different magnetic properties, and the thin film magnetic resistance according to any one of claims 1 to 4 is characterized. Regarding the device.

【0015】第6発明は、薄膜磁気抵抗素子の占める容
積が1mm以下であることを特徴とする請求項1ない
し5のいずれか1項に記載の薄膜磁気抵抗素子に関す
る。
The sixth invention relates to the thin-film magnetoresistive element according to any one of claims 1 to 5, wherein the volume occupied by the thin-film magnetoresistive element is 1 mm 3 or less.

【0016】第7発明は、200℃以上の温度において
用いることを特徴とする請求項1ないし6のいずれか1
項に記載の薄膜磁気抵抗素子に関する。
A seventh aspect of the present invention is used at a temperature of 200 ° C. or higher, and any one of the first to sixth aspects is characterized.
The thin film magnetoresistive element according to the item 1.

【0017】第8発明は、請求項1ないし7のいずれか
1項に記載の薄膜磁気抵抗素子からなる磁気メモリーに
関する。
An eighth invention relates to a magnetic memory comprising the thin film magnetoresistive element according to any one of claims 1 to 7.

【0018】第9発明は、請求項1ないし7のいずれか
1項に記載の薄膜磁気抵抗素子からなる磁気センサーに
関する。
A ninth invention relates to a magnetic sensor comprising the thin film magnetoresistive element according to any one of claims 1 to 7.

【0019】第10発明は、請求項1ないし7のいずれ
か1項に記載の薄膜磁気抵抗素子からなる磁気ヘッドに
関する。
A tenth invention relates to a magnetic head comprising the thin film magnetoresistive element according to any one of claims 1 to 7.

【0020】[0020]

【作用】本発明の薄膜磁気抵抗素子は、軟磁性薄膜とG
MR薄膜を組み合わせることにより、軟磁性薄膜の高い
透磁率によって、弱磁界で大きなMR比を現す。また、
薄膜材料を用いているため、素子の容積を小さくするこ
とが可能であり、1mm以下の小型化に対応できる。
さらに、耐熱性の良好なGMR薄膜を用いることによっ
て、200℃以上の温度においても良好なMR特性が維
持される。
The thin film magnetoresistive element of the present invention comprises a soft magnetic thin film and G
By combining the MR thin films, the high magnetic permeability of the soft magnetic thin film shows a large MR ratio in a weak magnetic field. Also,
Since a thin film material is used, it is possible to reduce the volume of the element, and it is possible to support miniaturization of 1 mm 3 or less.
Furthermore, by using a GMR thin film having good heat resistance, good MR characteristics can be maintained even at temperatures of 200 ° C. or higher.

【0021】上記のような効果を得るためには、以下の
ことを考慮しなければならない。一つは、軟磁性薄膜と
GMR薄膜の膜厚である。GMR薄膜の膜厚が軟磁性薄
膜の膜厚よりも厚い場合は、軟磁性薄膜からの磁束が分
散してしまい、GMR薄膜に有効に磁束が作用しない。
そのため、弱磁界で大きな磁界感度は得られない。した
がって、GMR薄膜の膜厚は、軟磁性薄膜の膜厚以下で
なければならない。
In order to obtain the above effects, the following must be taken into consideration. One is the film thickness of the soft magnetic thin film and the GMR thin film. When the GMR thin film is thicker than the soft magnetic thin film, the magnetic flux from the soft magnetic thin film is dispersed, and the magnetic flux does not act effectively on the GMR thin film.
Therefore, a large magnetic field sensitivity cannot be obtained with a weak magnetic field. Therefore, the thickness of the GMR thin film must be equal to or less than that of the soft magnetic thin film.

【0022】二つは、GMR薄膜の電気比抵抗である。
MR素子の磁界検出は、その電圧変化の検出によって行
われる。したがって、GMR薄膜の電気抵抗が大きい方
が出力も大きい。また、軟磁性薄膜の中には、異方的磁
気抵抗(AMR)を示すものがあるが、本発明の薄膜磁
気抵抗素子においてAMRを示す軟磁性薄膜を組み込ん
だ場合、GMR薄膜の電気比抵抗が軟磁性薄膜の電気比
抵抗よりも100倍以上大きい場合は、AMRによる抵
抗変化は、GMRの抵抗変化に比べて非常に少ない。し
たがって、薄膜磁気抵抗素子の構造を簡略化するため
に、軟磁性膜を電極として利用しても、薄膜磁気抵抗素
子の電圧変化による出力の5割以上がGMR薄膜によっ
て生じる。
The second is the electrical resistivity of the GMR thin film.
The magnetic field of the MR element is detected by detecting the voltage change. Therefore, the larger the electrical resistance of the GMR thin film, the larger the output. Some soft magnetic thin films exhibit anisotropic magnetoresistance (AMR). When the soft magnetic thin film exhibiting AMR is incorporated into the thin film magnetoresistive element of the present invention, the electrical resistivity of the GMR thin film is reduced. Is 100 times or more larger than the electrical resistivity of the soft magnetic thin film, the resistance change due to AMR is much smaller than that of GMR. Therefore, even if the soft magnetic film is used as an electrode in order to simplify the structure of the thin film magnetoresistive element, 50% or more of the output due to the voltage change of the thin film magnetoresistive element is generated by the GMR thin film.

【0023】三つは、軟磁性薄膜の磁気特性とその形状
である。軟磁性膜の保磁力が2エルステッドよりも大き
く、透磁率が500より小さい場合は、弱磁界で十分に
磁化しないため、良好なMRの磁界感度は得られない。
また、軟磁性薄膜の飽和磁束密度と形状が、Bs(G)
×t(μm)≧d(μm)×200の条件を満たさない
場合は、ギャップのGMR薄膜に有効に磁束が作用せ
ず、良好なMR特性は得られない。
Three are the magnetic characteristics of the soft magnetic thin film and its shape. When the coercive force of the soft magnetic film is larger than 2 Oersted and the magnetic permeability is smaller than 500, the magnetic field is not sufficiently magnetized in the weak magnetic field, so that the good magnetic field sensitivity of MR cannot be obtained.
In addition, the saturation magnetic flux density and shape of the soft magnetic thin film are Bs (G)
If the condition of × t (μm) ≧ d (μm) × 200 is not satisfied, the magnetic flux does not act effectively on the GMR thin film in the gap, and good MR characteristics cannot be obtained.

【0024】一方、MRセンサーは、種々多様な磁界検
出に用いられている。種々な磁界検出のニーズに答える
ため、容易に磁界感度が制御できることが望ましい。本
発明の薄膜磁気抵抗素子は、軟磁性薄膜のギャップの幅
を変化させるか、もしくは磁気特性の異なる軟磁性薄膜
を用いることによって、磁気抵抗の磁界感度を任意に制
御できる。
On the other hand, MR sensors are used for detecting various magnetic fields. In order to meet various magnetic field detection needs, it is desirable that the magnetic field sensitivity can be easily controlled. In the thin film magnetoresistive element of the present invention, the magnetic field sensitivity of the magnetic resistance can be arbitrarily controlled by changing the gap width of the soft magnetic thin film or by using the soft magnetic thin film having different magnetic characteristics.

【0025】[0025]

【実施例】以下図面を参照して、本発明の実施例を詳細
に説明する。 [実施例1]薄膜磁気抵抗素子の作製 軟磁性薄膜としてパーマロイ(Fe65Ni35)薄膜
を用い、GMR薄膜にCo38.6Y14.0O47.
ナノグラニュラー薄膜を用いて、薄膜磁気抵抗素子を
作製した。作製した薄膜磁気抵抗素子の概略を図1に示
す。パーマロイ薄膜およびCo38.6Y14.0O4
7.4ナノグラニュラー薄膜の作製にはRFスパッタ装
置を用いた。
Embodiments of the present invention will now be described in detail with reference to the drawings. [Example 1] using a permalloy (Fe 65 Ni 35) thin film as manufactured soft magnetic thin film of the thin film magnetoresistive element, Co38.6Y14.0O47 the GMR film.
A thin film magnetoresistive element was produced using a 4 nano-granular thin film. An outline of the manufactured thin film magnetoresistive element is shown in FIG. Permalloy thin film and Co38.6Y14.0O4
An RF sputtering device was used for the production of the 7.4 nano-granular thin film.

【0026】パーマロイ(Fe65Ni35)薄膜は、
Fe65Ni35合金ターゲットをスパッタして作製し
た。膜厚は約2μmである。さらに、得られた薄膜にイ
オンビームエッチング装置を用いて、幅約5μmの隙間
を作製した。そして、隙間の部分を中心に隙間より広い
範囲を残して軟磁性薄膜をマスクし、その部分に、純C
o円板状にYチップを配置した複合ターゲットを
スパッタすることにより、Co38.6Y14.0O4
7.4ナノグラニュラーGMR薄膜を作製した。膜厚
は、パーマロイ(Fe65Ni35)の膜厚以下の約1
μmである。これによって図1に示したようなCo3
8.6Y14.0O47.4GMR薄膜の両側に、パー
マロイ(Fe65Ni35)薄膜を配置した薄膜磁気抵
抗素子が得られた。図2には、上記の薄膜磁気抵抗素子
の磁界に対するMR変化を示す。MR比は極めて弱い磁
界において急激に変化し、その値は1エルステッドの弱
磁界において、約6%であり、高い磁界感度を示してい
る。
The permalloy (Fe 65 Ni 35 ) thin film is
It was prepared by sputtering an Fe 65 Ni 35 alloy target. The film thickness is about 2 μm. Further, a gap having a width of about 5 μm was formed on the obtained thin film by using an ion beam etching device. Then, the soft magnetic thin film is masked leaving a wider area than the gap centering on the gap portion, and pure C
By sputtering a composite target in which Y 2 O 3 chips are arranged in a disk shape, Co38.6Y14.0O4
A 7.4 nano-granular GMR thin film was prepared. The film thickness is about 1 or less than that of permalloy (Fe 65 Ni 35 ).
μm. This results in Co3 as shown in FIG.
A thin film magnetoresistive element in which a permalloy (Fe 65 Ni 35 ) thin film was arranged on both sides of the 8.6Y14.0O47.4 GMR thin film was obtained. FIG. 2 shows the MR change with respect to the magnetic field of the thin film magnetoresistive element. The MR ratio drastically changes in an extremely weak magnetic field, and its value is about 6% in a weak magnetic field of 1 oersted , which shows high magnetic field sensitivity.

【0027】図1に示すようにパーマロイ(Fe65
35)薄膜は電極を兼ね、GMR薄膜に電流を導入し
ている。ところが、図3に示すようにMR比の飽和値
は、測定方向に依存せず、パーマロイ膜のAMRはほと
んど観察されない。また、GMR薄膜はギャップ幅に比
べて、広い範囲でパーマロイ膜を覆っているが、磁気素
子に流れる電流の大部分はギャップの最も狭い部分を流
れる。これらのことはCo38.6Y14.0O47.
膜の電気比抵抗(14×10μΩcm)が、パーマ
ロイの電気比抵抗(55μΩcm)に比べて100倍以
上の大きいためである。電気比抵抗の大幅に異なる軟磁
性薄膜とGMR薄膜を組合わせることによって、磁束導
入部と電極を兼用できること。またGMR薄膜作製の際
のマスク合わせがラフで良いことなど、磁気素子の構造
および作製工程が簡略化される。
As shown in FIG. 1, permalloy (Fe 65 N
i 35 ) The thin film also serves as an electrode and introduces a current into the GMR thin film. However, as shown in FIG. 3, the saturation value of the MR ratio does not depend on the measurement direction, and AMR of the permalloy film is hardly observed. Further, the GMR thin film covers the permalloy film in a wider range than the gap width, but most of the current flowing in the magnetic element flows in the narrowest part of the gap. These are Co38.6Y14.0O47.
This is because the electrical resistivity (14 × 10 4 μΩcm) of the four films is 100 times or more higher than the electrical resistivity (55 μΩcm) of permalloy. By combining a soft magnetic thin film and a GMR thin film, which have significantly different electrical specific resistances, it is possible to use both the magnetic flux introducing part and the electrode. In addition, the structure of the magnetic element and the manufacturing process are simplified, such as the rough mask alignment when manufacturing the GMR thin film.

【0028】〔実施例2〕ギャップ幅を変化させた薄膜
磁気抵抗素子のMR特性 図4に、軟磁性薄膜のギャップ幅を変化させた場合のM
R曲線を示す。ギャップ幅が広くなると、軟磁性薄膜か
らの漏れ磁束が分散するため、GMR薄膜に作用する磁
束が少なくなる。これを利用してMRの磁界感度が制御
でき、図4に示すように、ギャップ幅を変化させること
によって、MRの磁界感度が任意に制御できる。
[Embodiment 2] MR characteristics of thin film magnetoresistive element in which the gap width is changed. FIG. 4 shows M in the case where the gap width of the soft magnetic thin film is changed.
The R curve is shown. When the gap width is widened, the leakage magnetic flux from the soft magnetic thin film is dispersed, so that the magnetic flux acting on the GMR thin film is reduced. Utilizing this, the magnetic field sensitivity of the MR can be controlled. As shown in FIG. 4, the magnetic field sensitivity of the MR can be controlled arbitrarily by changing the gap width.

【0029】〔実施例3〕軟磁性薄膜の磁気特性を変化
させた薄膜磁気抵抗素子のMR特性 図5に、軟磁性薄膜の透磁率を変化させた場合のMR曲
線を示す。軟磁性薄膜の透磁率は、熱処理条件を変えて
変化させた。図5に示すように、軟磁性薄膜の磁気特性
を変化させることによって、MRの磁界感度が任意に制
御できる。
[Embodiment 3] MR characteristics of thin film magnetoresistive element in which magnetic characteristics of soft magnetic thin film are changed FIG. 5 shows MR curves when the magnetic permeability of the soft magnetic thin film is changed. The magnetic permeability of the soft magnetic thin film was changed by changing the heat treatment conditions. As shown in FIG. 5, the magnetic field sensitivity of MR can be arbitrarily controlled by changing the magnetic characteristics of the soft magnetic thin film.

【0030】〔実施例4〕薄膜磁気抵抗素子の耐熱性 実施例1に示した薄膜磁気抵抗素子のMR比を、種々の
温度環境下で測定した結果を図6に示す。MR比は35
0℃まで変化せず、本発明の薄膜磁気抵抗素子は良好な
耐熱性を有することがわかる。
Example 4 Heat Resistance of Thin Film Magnetoresistive Element The MR ratio of the thin film magnetoresistive element shown in Example 1 was measured under various temperature environments, and the results are shown in FIG. MR ratio is 35
It does not change up to 0 ° C., which shows that the thin film magnetoresistive element of the present invention has good heat resistance.

【0031】上記の通り、本発明の薄膜磁気抵抗素子
は、MR比の磁界感度および耐熱性が優れているので、
磁気センサ、磁気ヘッドまたは磁気メモリーなどにも好
適である。
As described above, since the thin film magnetoresistive element of the present invention is excellent in magnetic field sensitivity of MR ratio and heat resistance,
It is also suitable for magnetic sensors, magnetic heads or magnetic memories.

【0032】[0032]

【発明の効果】本発明の薄膜磁気抵抗素子は、軟磁性薄
膜とGMR薄膜とから構成され、弱磁界において非常に
大きなMR比を有し、磁界感度が極めて優れている。ま
た、磁界感度を任意に制御できるので、種々の磁界検出
の用途に応用でき、さらに耐熱性も良好なので、その工
業的意義は大きく、磁気ヘッド、磁気センサおよび磁気
メモリーなどにも好適である。
The thin film magnetoresistive element of the present invention is composed of a soft magnetic thin film and a GMR thin film, has a very large MR ratio in a weak magnetic field, and has extremely excellent magnetic field sensitivity. In addition, since the magnetic field sensitivity can be controlled arbitrarily, it can be applied to various magnetic field detection applications and has good heat resistance, so its industrial significance is great, and it is also suitable for magnetic heads, magnetic sensors, magnetic memories, and the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、本発明薄膜磁気抵抗素子の構造を示す
斜視図である。
FIG. 1 is a perspective view showing a structure of a thin film magnetoresistive element of the present invention.

【図2】図2は、本発明薄膜磁気抵抗素子の磁界とMR
比の関係を示す特性図である。
FIG. 2 is a magnetic field and MR of a thin film magnetoresistive element of the present invention.
It is a characteristic view which shows the relationship of ratio.

【図3】図3は、本発明薄膜磁気抵抗素子の測定方向を
変えた場合の磁界とMR比の関係を示す特性図である。
FIG. 3 is a characteristic diagram showing the relationship between the magnetic field and the MR ratio when the measurement direction of the thin film magnetoresistive element of the present invention is changed.

【図4】図4は、本発明薄膜磁気抵抗素子のギャップ幅
を変えた場合の磁界とMR比の関係を示す特性図であ
る。
FIG. 4 is a characteristic diagram showing the relationship between the magnetic field and the MR ratio when the gap width of the thin film magnetoresistive element of the present invention is changed.

【図5】図5は、本発明薄膜磁気抵抗素子の軟磁性薄膜
の透磁率を変化させた場合の磁界とMR比の関係を示す
特性図である。
FIG. 5 is a characteristic diagram showing the relationship between the magnetic field and the MR ratio when the magnetic permeability of the soft magnetic thin film of the thin film magnetoresistive element of the present invention is changed.

【図6】図6は、本発明薄膜磁気抵抗素子の測定温度と
10eにおけるMR比の関係を示す特性図である。
FIG. 6 is a characteristic diagram showing the relationship between the measured temperature and the MR ratio at 10e of the thin film magnetoresistive element of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 増本 健 宮城県仙台市青葉区上杉3丁目8番22号 (72)発明者 三谷 誠司 宮城県仙台市太白区八木山緑町7丁目41 番305号 (72)発明者 藤森 啓安 宮城県仙台市青葉区吉成2丁目20番3号 (56)参考文献 特開 平7−230610(JP,A) 特開 平9−153652(JP,A) 特開 平8−69917(JP,A) 特開 平10−308313(JP,A) 特開 平11−87804(JP,A) 特開 平6−215940(JP,A) 特開 平8−138215(JP,A) 特開 平4−275471(JP,A) 特開 平10−302232(JP,A) 特開 平7−307013(JP,A) 特開 平6−97534(JP,A) 特開 平3−125311(JP,A) 特開 平7−272221(JP,A) 特開 平9−246623(JP,A) 特開 平9−82522(JP,A) 特開 平9−252151(JP,A) 国際公開95/035507(WO,A1) 日本応用磁気学会誌,1997年,Vo l.21, No.4−2,pp.461− 464 日本応用磁気学会誌,1997年,Vo l.23, No.4−2,pp.1329− 1332 (58)調査した分野(Int.Cl.7,DB名) H01L 43/08 G01R 33/09 G11B 5/39 H01F 10/32 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Ken Masumoto, 3-8-22 Uesugi, Aoba-ku, Sendai-shi, Miyagi Prefecture (72) Seiji Mitani 7-41-305, Yagiyama Midoricho, Taihaku-ku, Sendai City, Miyagi Prefecture ( 72) Inventor Keimori Fujimori 2-20-3 Yoshinari, Aoba-ku, Sendai-shi, Miyagi (56) References JP-A-7-230610 (JP, A) JP-A-9-153652 (JP, A) JP-A-8 -69917 (JP, A) JP 10-308313 (JP, A) JP 11-87804 (JP, A) JP 6-215940 (JP, A) JP 8-138215 (JP, A) ) JP-A-4-275471 (JP, A) JP-A-10-302232 (JP, A) JP-A-7-307013 (JP, A) JP-A-6-97534 (JP, A) JP-A-3- 125311 (JP, A) JP-A-7-272221 (JP, A) JP-A-9-246623 (JP, A) Open flat 9-82522 (JP, A) JP flat 9-252151 (JP, A) WO 95/035507 (WO, A1) Journal of the Magnetics Society of Japan, 1997, Vo l. 21, No. 4-2, pp. 461-464 Journal of Japan Society for Applied Magnetics, 1997, Vol. 23, No. 4-2, pp. 1329-1332 (58) Fields investigated (Int.Cl. 7 , DB name) H01L 43/08 G01R 33/09 G11B 5/39 H01F 10/32

Claims (10)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 軟磁性薄膜と巨大磁気抵抗薄膜とによっ
て構成され、巨大磁気抵抗薄膜の両側に軟磁性薄膜を配
置することにより、磁気抵抗効果の磁界感度を上げた薄
膜磁気抵抗素子において、巨大磁気抵抗薄膜の膜厚が軟
磁性薄膜の膜厚以下であり、さらに巨大磁気抵抗薄膜の
電気比抵抗が、軟磁性薄膜の電気比抵抗の100倍以上
大きいこととを特徴とする薄膜磁気抵抗素子。
1. A thin-film magnetoresistive element comprising a soft magnetic thin film and a giant magnetoresistive thin film, wherein the soft magnetic thin films are arranged on both sides of the giant magnetoresistive thin film to enhance the magnetic field sensitivity of the magnetoresistive effect. A thin-film magnetoresistive element characterized in that the film thickness of the magnetoresistive thin film is equal to or less than that of the soft magnetic thin film, and the electric resistivity of the giant magnetoresistive thin film is 100 times or more larger than that of the soft magnetic thin film. .
【請求項2】 軟磁性薄膜を電極とし、磁気抵抗変化の
5割以上が巨大磁気抵抗薄膜によって生じることを特徴
とする請求項1に記載の薄膜磁気抵抗素子。
2. The thin-film magnetoresistive element according to claim 1, wherein a soft magnetic thin film is used as an electrode and 50% or more of the change in magnetic resistance is caused by the giant magnetoresistive thin film.
【請求項3】 軟磁性薄膜の磁気特性が、保磁力Hc≦
エルステッド、透磁率μ≧500であり、且つ軟磁性
薄膜の飽和磁束密度(Bs)と膜厚(t)および軟磁性
薄膜ギャップ幅(d)の関係が、Bs(G)×t(μ
m)≧d(μm)×200であることを特徴とする請求
項1又は2に記載の薄膜磁気抵抗素子。
3. The magnetic characteristics of the soft magnetic thin film have a coercive force Hc ≦
2 Oersted , magnetic permeability μ ≧ 500, and the relationship between the saturation magnetic flux density (Bs) of the soft magnetic thin film and the film thickness (t) and the soft magnetic thin film gap width (d) is Bs (G) × t (μ
3. The thin film magnetoresistive element according to claim 1, wherein m) ≧ d (μm) × 200.
【請求項4】 軟磁性薄膜のギャップ幅を変化させるこ
とにより、磁気抵抗の磁界感度を任意に制御することを
特徴とする請求項1ないし3の何れか1項記載の薄膜磁
気抵抗素子。
4. The thin film magnetoresistive element according to claim 1, wherein the magnetic field sensitivity of the magnetoresistive is arbitrarily controlled by changing the gap width of the soft magnetic thin film.
【請求項5】 磁気特性の異なる軟磁性薄膜を用いるこ
とによって、磁気抵抗の磁界感度を任意に制御すること
を特徴とする請求項1ないし4のいずれか1項に記載の
薄膜磁気抵抗素子。
5. The thin film magnetoresistive element according to claim 1, wherein the magnetic field sensitivity of the magnetoresistive is arbitrarily controlled by using soft magnetic thin films having different magnetic characteristics.
【請求項6】 薄膜磁気抵抗素子の占める容積が1mm
以下であることを特徴とする請求項1ないし5の何れ
か1項をに記載の薄膜磁気抵抗素子。
6. The volume occupied by the thin film magnetoresistive element is 1 mm.
It is 3 or less, The thin film magnetoresistive element of any one of Claim 1 thru | or 5 characterized by the above-mentioned.
【請求項7】 200℃以上の温度において用いること
を特徴とする請求項1ないし6のいずれか1項に記載の
薄膜磁気抵抗素子。
7. The thin-film magnetoresistive element according to claim 1, which is used at a temperature of 200 ° C. or higher.
【請求項8】 請求項1ないし7のいずれか1項に記載
の薄膜磁気抵抗素子からなる磁気メモリー。
8. A magnetic memory comprising the thin film magnetoresistive element according to claim 1. Description:
【請求項9】 請求項1ないし7のいずれか1項に記載
の薄膜磁気抵抗素子からなる磁気センサー。
9. A magnetic sensor comprising the thin film magnetoresistive element according to claim 1. Description:
【請求項10】 請求項1ないし7のいずれか1項に記
載の薄膜磁気抵抗素子からなる磁気ヘッド。
10. A magnetic head comprising the thin film magnetoresistive element according to claim 1. Description:
JP11130198A 1998-03-18 1998-03-18 Thin film magnetoresistive element Expired - Fee Related JP3466470B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11130198A JP3466470B2 (en) 1998-03-18 1998-03-18 Thin film magnetoresistive element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11130198A JP3466470B2 (en) 1998-03-18 1998-03-18 Thin film magnetoresistive element

Publications (2)

Publication Number Publication Date
JPH11274599A JPH11274599A (en) 1999-10-08
JP3466470B2 true JP3466470B2 (en) 2003-11-10

Family

ID=14557761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11130198A Expired - Fee Related JP3466470B2 (en) 1998-03-18 1998-03-18 Thin film magnetoresistive element

Country Status (1)

Country Link
JP (1) JP3466470B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7405961B2 (en) 2004-09-28 2008-07-29 Tdk Corporation Magnetic storage device
US7613033B2 (en) 2006-07-26 2009-11-03 Tdk Corporation Magnetic storage device
US7649766B2 (en) 2006-12-15 2010-01-19 Tdk Corporation Magnetic storage device
US7697323B2 (en) 2006-06-27 2010-04-13 Tdk Corporation Magnetic storage device

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4023997B2 (en) * 2000-10-26 2007-12-19 財団法人電気磁気材料研究所 Thin film magnetic field sensor
TW550394B (en) 2000-10-26 2003-09-01 Res Inst For Electric And Magn Thin-film magnetic field sensor
JP4204775B2 (en) * 2001-10-12 2009-01-07 財団法人電気磁気材料研究所 Thin film magnetic field sensor
JP4323220B2 (en) * 2003-05-28 2009-09-02 財団法人電気磁気材料研究所 Thin film magnetic sensor and manufacturing method thereof
JP2004363157A (en) 2003-06-02 2004-12-24 Res Inst Electric Magnetic Alloys Thin film magnetic sensor and its manufacturing method
JP4953569B2 (en) * 2004-11-29 2012-06-13 公益財団法人電磁材料研究所 Thin film magnetoresistive element and magnetic sensor using thin film magnetoresistive element
JP2007165449A (en) 2005-12-12 2007-06-28 Tdk Corp Magnetic storage device
JP2007214484A (en) 2006-02-13 2007-08-23 Tdk Corp Magnetic storage device
JP5151551B2 (en) 2008-02-27 2013-02-27 大同特殊鋼株式会社 Thin film magnetic sensor
US8963544B2 (en) 2008-09-29 2015-02-24 The Research Institute For Electric And Magnetic Materials Signal transmission device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
日本応用磁気学会誌,1997年,Vol.21, No.4−2,pp.461−464
日本応用磁気学会誌,1997年,Vol.23, No.4−2,pp.1329−1332

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7405961B2 (en) 2004-09-28 2008-07-29 Tdk Corporation Magnetic storage device
US7697323B2 (en) 2006-06-27 2010-04-13 Tdk Corporation Magnetic storage device
US7613033B2 (en) 2006-07-26 2009-11-03 Tdk Corporation Magnetic storage device
US7649766B2 (en) 2006-12-15 2010-01-19 Tdk Corporation Magnetic storage device

Also Published As

Publication number Publication date
JPH11274599A (en) 1999-10-08

Similar Documents

Publication Publication Date Title
US7660081B2 (en) Superparamagnetic platelets field sensing devices
US6005798A (en) Magnetoresistance effect device, and magnetoresistance effect type head, memory device, and amplifying device using the same
US7046490B1 (en) Spin valve magnetoresistance sensor and thin film magnetic head
US5910344A (en) Method of manufacturing a magnetoresistive sensor
US5715121A (en) Magnetoresistance element, magnetoresistive head and magnetoresistive memory
US5569544A (en) Magnetoresistive structure comprising ferromagnetic thin films and intermediate layers of less than 30 angstroms formed of alloys having immiscible components
JP3574186B2 (en) Magnetoresistance effect element
US20030070497A1 (en) Rotation angle sensor capable of accurately detecting rotation angle
JP3466470B2 (en) Thin film magnetoresistive element
JPH04247607A (en) Magnetoresistance effect element
KR20000023047A (en) Magnetic element, magnetic memory device, magnetoresistance effect head, and magnetic storage system
JPH0936456A (en) Giant reluctance, its manufacturing process and its application to magnetic sensor
JPH1041132A (en) Magnetic resistance effect film
US6256222B1 (en) Magnetoresistance effect device, and magnetoresistaance effect type head, memory device, and amplifying device using the same
KR19980070402A (en) Magnetoresistive thin film and its manufacturing method
JP3344712B2 (en) Pinning layer for magnetic devices
JP3640230B2 (en) Thin film magnetic field sensor
JPH0870149A (en) Magnetoresistance element
EP0620572B1 (en) Element having magnetoresistive effect
JP3070667B2 (en) Magnetoresistive element
JP2000150235A (en) Spin valve magnetoresistive sensor and thin-film magnetic head
JP2000340859A5 (en)
JP2850584B2 (en) Method of manufacturing magnetoresistive element
JPH1032119A (en) Magnetoresistance effect film
JPH0240972A (en) Magnetoresistance effect thin film

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030819

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070829

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080829

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees