JP2000340859A5 - - Google Patents

Download PDF

Info

Publication number
JP2000340859A5
JP2000340859A5 JP1999324037A JP32403799A JP2000340859A5 JP 2000340859 A5 JP2000340859 A5 JP 2000340859A5 JP 1999324037 A JP1999324037 A JP 1999324037A JP 32403799 A JP32403799 A JP 32403799A JP 2000340859 A5 JP2000340859 A5 JP 2000340859A5
Authority
JP
Japan
Prior art keywords
magnetic
layer
magnetoresistive
film
magnetoresistive sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1999324037A
Other languages
Japanese (ja)
Other versions
JP2000340859A (en
JP4572434B2 (en
Filing date
Publication date
Application filed filed Critical
Priority to JP32403799A priority Critical patent/JP4572434B2/en
Priority claimed from JP32403799A external-priority patent/JP4572434B2/en
Publication of JP2000340859A publication Critical patent/JP2000340859A/en
Publication of JP2000340859A5 publication Critical patent/JP2000340859A5/ja
Application granted granted Critical
Publication of JP4572434B2 publication Critical patent/JP4572434B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【特許請求の範囲】
【請求項1】 非磁性層を介して積層された二つの磁性層の積層膜を主構成要素とする磁気抵抗効果素子であって
一方の前記磁性層が磁化回転抑制層と磁気的に結合して固定層を構成し、
前記一方の磁性層が2層の界面磁性膜と前記2層の界面磁性膜に挟まれたMFe 2 4 磁性膜(MはFe,Co,Niから選ばれる1種もしくは2種以上の元素)との積層膜より構成され、
一方の前記界面磁性膜が[磁性膜/非磁性膜/磁性膜]から成り、前記非磁性膜を介して前記二つの磁性膜が反強磁性的に結合し、
前記非磁性層を介して積層された二つの磁性層の積層膜の膜面の主に垂直方向に電流を流す、
磁気抵抗効果素子。
【請求項2】 前記一方の磁性層が外部磁界に対して磁化回転し難く他方の磁性層が磁化回転し易い、請求項1に記載の磁気抵抗効果素子。
【請求項3】 他方の前記界面磁性膜がFe,Co,Niから選ばれる1種もしくは2種以上の元素より成る、請求項1に記載の磁気抵抗効果素子。
【請求項4】 前記磁化回転抑制層がP-Mn系(PはPt,Ni,Pd,Ir,Rh,Ru,Crから選ばれる1種もしくは2種以上の元素)合金より成る、請求項1に記載の磁気抵抗効果素子。
【請求項5】 請求項1〜4のいずれかに記載の磁気抵抗効果素子に、更にシールド部を具備してなる磁気抵抗効果型ヘッド。
【請求項6】 請求項1〜4のいずれかに記載の磁気抵抗効果素子に、更に検知すべき磁界を磁気抵抗素子部に導入するヨ−クを具備してなる磁気抵抗効果型ヘッド。
【請求項7】 情報を記録するための磁界を発生させる導体線、
情報を記録するために設けられた磁気抵抗効果素子、及び
前記磁気抵抗効果素子の磁気抵抗変化より情報読み出しするための導体線
を主構成要素とするメモリ素子において、
前記磁気抵抗効果素子が請求項1に記載の磁気抵抗効果素子である、メモリ素子。
[Claims]
1. Lamination of two magnetic layers laminated via a non-magnetic layer.MembraneMagnetoresist sensor as the main componentAnd,
One of the magnetic layers is magnetically coupled with the magnetization rotation suppressing layer to form a fixed layer.
MFe in which one of the magnetic layers is sandwiched between the two interfacial magnetic films and the two interfacial magnetic films. 2 O Four It is composed of a laminated film with a magnetic film (M is one or more elements selected from Fe, Co, Ni).
One of the interfacial magnetic films is composed of [magnetic film / non-magnetic film / magnetic film], and the two magnetic films are antiferrophilically bonded via the non-magnetic film.
A current flows mainly in the vertical direction on the film surface of the laminated film of the two magnetic layers laminated via the non-magnetic layer.
Magneto resistance effect element.
2. One of the magnetic layersMagnetizes and rotates with respect to the external magnetic fieldDifficult,The other magnetic layerThe magnetoresistive element according to claim 1, which is easily magnetized and rotated.
3. The other saidThe magnetoresistive sensor according to claim 1, wherein the interfacial magnetic film is composed of one or more elements selected from Fe, Co, and Ni.
4. SaidThe magnetoresistive effect according to claim 1, wherein the magnetization rotation suppressing layer is made of a P-Mn-based (P is one or more elements selected from Pt, Ni, Pd, Ir, Rh, Ru, Cr) alloy. element.
5. A magnetoresistive head that further includes a shield portion in addition to the magnetoresistive element according to any one of claims 1 to 4.
6. A magnetoresistive head comprising the magnetoresistive element according to any one of claims 1 to 4 and a yoke for introducing a magnetic field to be detected into the magnetoresistive element.
7. A conductor wire that generates a magnetic field for recording information.
Provided to record informationMagneto Resistive Sensor,as well as
The magnetoresistive sensorConductor wire for reading information from the change in magnetoresistance of
In a memory element whose main component is
A memory element in which the magnetoresistive element is the magnetoresistive element according to claim 1.

【0008】
【課題を解決するための手段】
上記の非磁性層に高抵抗の酸化物膜を用いた従来のTMR膜とは全く異なり、本発明は、非磁性層(2)を介して積層された二つの磁性層の積層膜を主構成要素とする磁気抵抗効果素子であって一方の前記磁性層が磁化回転抑制層(4)と磁気的に結合して固定層を構成し、前記一方の磁性層が2層の界面磁性膜(5)と前記2層の界面磁性膜に挟まれたMFe 2 4 磁性膜(3、MはFe,Co,Niから選ばれる1種もしくは2種以上の元素)との積層膜より構成され、一方の前記界面磁性膜が[磁性膜(5−1)/非磁性膜(5−2)/磁性膜(5−3)]から成り、前記非磁性膜を介して前記二つの磁性膜(5−1、5−3)が反強磁性的に結合し、前記非磁性層を介して積層された二つの磁性層の積層膜の膜面の主に垂直方向に電流を流す。MがFeの場合は比較的低抵抗となり、MがNi,Coとなるに従って比較的高抵抗となるので、組成を適当に選ぶことにより素子のインピ−ダンスの調整が可能である。
0008
[Means for solving problems]
Unlike the conventional TMR film in which a high-resistance oxide film is used for the non-magnetic layer, the present invention mainly comprises a laminated film of two magnetic layers laminated via the non-magnetic layer (2). A magnetic resistance effect element as an element , wherein one of the magnetic layers is magnetically coupled with the magnetization rotation suppressing layer (4) to form a fixed layer, and the one magnetic layer is a two-layer interfacial magnetic film ( It is composed of a laminated film of 5) and an MFe 2 O 4 magnetic film (3, M is one or more elements selected from Fe, Co, Ni ) sandwiched between the two layers of interfacial magnetic films. One of the interfacial magnetic films is composed of [magnetic film (5-1) / non-magnetic film (5-2) / magnetic film (5-3)], and the two magnetic films (5) are interposed via the non-magnetic film. -1, 5-3) are antiferrophilically coupled, and a current flows mainly in the direction perpendicular to the film surface of the laminated film of the two magnetic layers laminated via the non-magnetic layer . When M is Fe, the resistance becomes relatively low, and as M becomes Ni, Co, the resistance becomes relatively high. Therefore, the impedance of the device can be adjusted by appropriately selecting the composition.

図1に参考例の磁気抵抗効果素子の構成を示す断面図の一例を示す。図1は、非磁性層2によって磁気的に隔離された二つの酸化物磁性層1,3より成る磁気抵抗効果素子を示す。酸化物磁性層1,3は主としてMFe24(MはFe,Co,Niから選ばれる1種もしくは2種以上の元素)より構成される。 FIG. 1 shows an example of a cross-sectional view showing the configuration of the magnetoresistive sensor of the reference example. FIG. 1 shows a magnetoresistive element composed of two oxide magnetic layers 1 and 3 magnetically separated by a non-magnetic layer 2. The oxide magnetic layers 1 and 3 are mainly composed of MFe 2 O 4 (M is one or more elements selected from Fe, Co, and Ni).

以上述べたような参考例の磁気抵抗効果素子を用いて、磁気抵抗効果型ヘッドを構成することができる。図に示したものはセンサ−等の磁気抵抗効果素子として使用できるし、ヨ−クの形状により読み取るべき信号磁界の領域を規制することにより磁気抵抗効果型ヘッドともなるものである。 The magnetoresistive head can be configured by using the magnetoresistive element of the reference example as described above. The one shown in the figure can be used as a magnetoresistive element such as a sensor, and can also be a magnetoresistive head by regulating the region of the signal magnetic field to be read by the shape of the yoke.

参考例1)
多元スパッタリング装置を用いて図1に示した構成の磁気抵抗効果素子を作製した。基板にはSiを用い、磁性層用のターケ゛ットには焼結したNi0.5Fe2.5O4、Co0.5Fe2.5O4を用い、又非磁性層用にはCuタ−ゲットを用いた。真空チャンバー内を1x10-8Torr以下まで排気した後、Arガスを0.8mTorrになるように流しながら、スハ゜ッタリンク゛法を用いて、下記の構成の磁気抵抗効果素子を作製した。
試料A Ni0.5Fe2.5O4(30)/Cu(25)/Co0.5Fe2.5O4(20) (()内は膜厚nmを示す)
試料Aの磁化曲線を室温で200kA/mの磁界を印可して磁界振動磁力計で測定したところ、保磁力が異なる2種類の磁性層からなる積層膜特有の2段曲線を示した。この磁気抵抗効果素子の上下に電極を設けて、そのMR特性を室温で最高200kA/mの磁界を印可して測定した。その結果MR比は30%と極めて高い値を示した。
( Reference example 1)
A magnetoresistive sensor having the configuration shown in FIG. 1 was manufactured using a multi-dimensional sputtering apparatus. Si was used for the substrate, sintered Ni 0.5 Fe 2.5 O 4 and Co 0.5 Fe 2.5 O 4 were used for the target for the magnetic layer, and Cu target was used for the non-magnetic layer. After exhausting the inside of the vacuum chamber to 1 x 10 -8 Torr or less, a magnetoresistive sensor having the following configuration was produced by using the sputtering method while flowing Ar gas to 0.8 m Torr.
Sample A Ni 0.5 Fe 2.5 O 4 (30) / Cu (25) / Co 0.5 Fe 2.5 O 4 (20) (The numbers in parentheses indicate the film thickness nm)
When the magnetization curve of Sample A was measured with a magnetic field vibration magnetic field meter by applying a magnetic field of 200 kA / m at room temperature, a two-step curve peculiar to a laminated film composed of two types of magnetic layers having different coercive forces was shown. Electrodes were provided above and below this magnetoresistive sensor, and its MR characteristics were measured by applying a magnetic field of up to 200 kA / m at room temperature. As a result, the MR ratio was extremely high at 30%.

参考例2)
参考例1と同様に多元スパッタリング装置を用いて図2に示した構成の磁気抵抗効果素子を作製した。基板にはSiを用い、磁性層用のタ−ゲットには焼結したNi0.1Fe2.9O4、Co0.2Fe2.8O4を用い、又非磁性層用にはCuを、磁化回転抑制層にはIrMnタ−ゲットを用いた。真空チャンバー内を1x10-8Torr以下まで排気した後、Arガスを0.8mTorrになるように流しながら、スハ゜ッタリンク゛法を用いて、下記の構成の磁気抵抗効果素子を作製した。
試料B Ni0.1Fe2.9O4(50)/Cu(22)/Co0.2Fe2.8O4(20)/IrMn(15)
この磁気抵抗効果素子の上下に電極を設けて、そのMR特性を室温で最高200kA/mの磁界を印可して測定した。その結果MR比は28%と極めて高い値を示した。
( Reference example 2)
Similar to Reference Example 1, a magnetoresistive sensor having the configuration shown in FIG. 2 was manufactured using a multi-dimensional sputtering apparatus. Si is used for the substrate, sintered Ni 0.1 Fe 2.9 O 4 and Co 0.2 Fe 2.8 O 4 are used for the target for the magnetic layer, and Cu is used for the non-magnetic layer as the magnetization rotation suppression layer. Used the IrMn target. After exhausting the inside of the vacuum chamber to 1 x 10 -8 Torr or less, a magnetoresistive sensor having the following configuration was produced by using the sputtering method while flowing Ar gas to 0.8 m Torr.
Sample B Ni 0.1 Fe 2.9 O 4 (50) / Cu (22) / Co 0.2 Fe 2.8 O 4 (20) / IrMn (15)
Electrodes were provided above and below this magnetoresistive sensor, and its MR characteristics were measured by applying a magnetic field of up to 200 kA / m at room temperature. As a result, the MR ratio was 28%, which was extremely high.

参考例3)
参考例1と同様に多元スパッタリング装置を用いて図3に示した構成の磁気抵抗効果素子を作製した。基板にはSiを用い、磁性層用のタ−ゲットには焼結したNi0.1Fe2.9O4、Co0.2Fe2.8O4を用い、又非磁性層用にはCuタ−ゲットを、磁化回転抑制層にはIrMnを、界面磁性層にはCo0.9Fe0.1を用いた。真空チャンバー内を1x10-8Torr以下まで排気した後、Arガスを0.8mTorrになるように流しながら、スハ゜ッタリンク゛法を用いて、下記の構成の磁気抵抗効果素子を作製した。
試料C Ni0.1Fe2.9O4(50)/Co0.9Fe0.1(2)/Cu(22)/Co0.9Fe0.1(2)/Co0.2Fe2.8O4(20)/Co0.9Fe0.1(2)/IrMn(15)
この磁気抵抗効果素子の上下に電極を設けて、そのMR特性を室温で最高200kA/mの磁界を印可して測定した。その結果MR比は32%と極めて高い値を示した。
( Reference example 3)
A magnetoresistive sensor having the configuration shown in FIG. 3 was manufactured using a multi-dimensional sputtering apparatus in the same manner as in Reference Example 1. Si is used for the substrate, sintered Ni 0.1 Fe 2.9 O 4 and Co 0.2 Fe 2.8 O 4 are used for the target for the magnetic layer, and Cu target is used for the non-magnetic layer. IrMn was used for the suppression layer, and Co 0.9 Fe 0.1 was used for the interfacial magnetic layer. After exhausting the inside of the vacuum chamber to 1 x 10 -8 Torr or less, a magnetoresistive sensor having the following configuration was produced by using the sputtering method while flowing Ar gas to 0.8 m Torr.
Sample C Ni 0.1 Fe 2.9 O 4 (50) / Co 0.9 Fe 0.1 (2) / Cu (22) / Co 0.9 Fe 0.1 (2) / Co 0.2 Fe 2.8 O 4 (20) / Co 0.9 Fe 0.1 (2) / IrMn (15)
Electrodes were provided above and below this magnetoresistive sensor, and its MR characteristics were measured by applying a magnetic field of up to 200 kA / m at room temperature. As a result, the MR ratio was 32%, which was extremely high.

参考例4)
参考例1と同様に多元スパッタリング装置を用いて類似の構成の磁気抵抗効果素子を作製した。基板にはSiを用い、磁性層用のタ−ゲットには焼結したFe3O4を用い、又非磁性層用にはCuタ−ゲットを、磁化回転抑制層にはPtMnを、界面磁性層にはCo0.9Fe0.1とNi0.8Fe0.2を用いた。真空チャンバー内を1x10-8Torr以下まで排気した後、Arガスを0.8mTorrになるように流しながら、スハ゜ッタリンク゛法を用いて、下記の構成の磁気抵抗効果素子を成膜し、280℃で磁界中熱処理を行った。
試料C’ Ni0.8Fe0.2(2)/Fe3O4(1)/Co0.9Fe0.1(0.5)/Cu(2.2)/Co0.9Fe0.1(2)/Fe3O4(1)/Co0.9Fe0.1(2)/PtMn(15)
この磁気抵抗効果素子の上下に電極を設けて、そのMR特性を室温で最高200kA/mの磁界を印可して測定した。その結果MR比は40%と極めて高い値を示した。
( Reference example 4)
Similar to Reference Example 1, a magnetoresistive sensor having a similar configuration was produced using a multi-dimensional sputtering apparatus. Si is used for the substrate, sintered Fe 3 O 4 is used for the target for the magnetic layer, Cu target is used for the non-magnetic layer, PtMn is used for the magnetization rotation suppression layer, and interfacial magnetism. Co 0.9 Fe 0.1 and Ni 0.8 Fe 0.2 were used as layers. After exhausting the inside of the vacuum chamber to 1 x 10 -8 Torr or less, a magnetoresistive sensor having the following configuration is formed using the sputtering method while flowing Ar gas to 0.8 m Torr, and in a magnetic field at 280 ° C. Heat treatment was performed.
Sample C'Ni 0.8 Fe 0.2 (2) / Fe 3 O 4 (1) / Co 0.9 Fe 0.1 (0.5) / Cu (2.2) / Co 0.9 Fe 0.1 (2) / Fe 3 O 4 (1) / Co 0.9 Fe0 .1 (2) / PtMn ( 15)
Electrodes were provided above and below this magnetoresistive sensor, and its MR characteristics were measured by applying a magnetic field of up to 200 kA / m at room temperature. As a result, the MR ratio was as high as 40%.

参考例5)
参考例1と同様に多元スパッタリング装置を用いて図1と図2に示した構成の2種類の磁気抵抗効果素子を作製した。基板にはSiを用い、磁性層用のターケ゛ットには焼結したNi0.2Fe2.8O4、Co0.2Fe2.8O4を用い、又非磁性層用にはCuを、磁化回転抑制層としてはPtMnタ−ゲットを用いた。真空チャンバー内を1x10-8Torr以下まで排気した後、Arガスを0.8mTorrになるように流しながら、スハ゜ッタリンク゛法を用いて、下記の構成の磁気抵抗効果素子を作製した。
試料D Ni0.2Fe2.8O4(50)/Cu(25)/Co0.2Fe2.8O4(20)
試料E Ni0.2Fe2.8O4(50)/Cu(25)/Co0.2Fe2.8O4(20)/PtMn(20)
成膜後試料Eは280℃で磁界中熱処理を施し、PtMnの規則化を行った。
( Reference example 5)
Similar to Reference Example 1, two types of magnetoresistive sensor having the configurations shown in FIGS. 1 and 2 were produced by using a multi-dimensional sputtering apparatus. The substrate using Si, a Ni 0.2 Fe2 .8 O 4, Co 0.2 Fe 2.8 O 4 was sintered using the Take Bu Tsu preparative for the magnetic layer, and the Cu is for non-magnetic layer, a magnetization rotation suppressing layer A PtMn target was used. After exhausting the inside of the vacuum chamber to 1 x 10 -8 Torr or less, a magnetoresistive sensor having the following configuration was produced by using the sputtering method while flowing Ar gas to 0.8 m Torr.
Sample D Ni 0.2 Fe 2.8 O 4 (50) / Cu (25) / Co 0.2 Fe 2.8 O 4 (20)
Sample E Ni 0.2 Fe 2.8 O 4 (50) / Cu (25) / Co 0.2 Fe 2.8 O 4 (20) / PtMn (20)
After film formation, sample E was heat-treated in a magnetic field at 280 ° C to normalize PtMn.

参考例6)
参考例1と同様に多元スパッタリング装置を用いて図3に示した構成の磁気抵抗効果素子を作製した。基板にはSiを用い、磁性層用のタ−ゲットには焼結したNi0.1Fe2.9O4、Co0.1Fe2.9O4を用い、又非磁性層用にはCuタ−ゲットを、磁化回転抑制層にはPtMnを、界面磁性層にはCo0.9Fe0.1を用いた。真空チャンバー内を1x10-8Torr以下まで排気した後、Arガスを0.8mTorrになるように流しながら、スハ゜ッタリンク゛法を用いて、下記の構成の磁気抵抗効果素子を作製した。
試料F Ni0.1Fe2.9O4(50)/Co0.9Fe0.1(2)/Cu(22)/Co0.9Fe0.1(2)/Co0.1Fe2.9O4(20)/Co0.9Fe0.1(2)/PtMn(20)
この磁気抵抗効果素子を用いて図に示すようなシ−ルド型の磁気抵抗効果ヘッドを作製した。基板としてはAl2O3-TiC基板を用い、シールド材にはNi0.8Fe0.2合金を用い、絶縁膜にはAl2O3を用いた。電極にはAuを用いた。自由層Ni0.1Fe2.9O4(50)/Co0.9Fe0.1(2)の磁化容易方向が検知すべき信号磁界方向と垂直になるように、固定層Co0.9Fe0.1(2)/Co0.2Fe2.8O4(20)/Co0.9Fe0.1(2)/IrMn(15)の磁化容易軸の方向が検知すべき信号磁界方向と平行になるように磁性膜に異方性を付与した。この方法は、磁気抵抗効果素子を作成後、まず、磁界中280℃で熱処理して、固定層の容易方向を規定した後、更に、200℃で上記と直交する方向に磁界を印加して熱処理し、自由層の容易軸を規定した。
( Reference example 6)
A magnetoresistive sensor having the configuration shown in FIG. 3 was manufactured using a multi-dimensional sputtering apparatus in the same manner as in Reference Example 1. Si is used for the substrate, sintered Ni 0.1 Fe 2.9 O 4 and Co 0.1 Fe 2.9 O 4 are used for the target for the magnetic layer, and Cu target is used for the non-magnetic layer. PtMn was used for the suppression layer, and Co 0.9 Fe 0.1 was used for the interfacial magnetic layer. After exhausting the inside of the vacuum chamber to 1 x 10 -8 Torr or less, a magnetoresistive sensor having the following configuration was produced by using the sputtering method while flowing Ar gas to 0.8 m Torr.
Sample F Ni 0.1 Fe 2.9 O 4 (50) / Co 0.9 Fe 0.1 (2) / Cu (22) / Co 0.9 Fe 0.1 (2) / Co 0.1 Fe 2.9 O 4 (20) / Co 0.9 Fe 0.1 (2) / PtMn (20)
Using this magnetoresistive element, a shield-type magnetoresistive head as shown in the figure was manufactured. An Al 2 O 3- TiC substrate was used as the substrate, a Ni 0.8 Fe 0.2 alloy was used as the shielding material, and Al 2 O 3 was used as the insulating film. Au was used as the electrode. Free layer Ni 0.1 Fe 2.9 O 4 (50) / Co 0.9 Fe 0.1 (2) Fixed layer Co 0.9 Fe 0.1 (2) / Co 0.2 Fe so that the easy magnetization direction is perpendicular to the signal magnetic field direction to be detected. Anisotropy was added to the magnetic film so that the direction of the easy magnetization axis of 2.8 O 4 (20) / Co 0.9 Fe 0.1 (2) / IrMn (15) was parallel to the direction of the signal magnetic field to be detected. In this method, after creating a magnetoresistive sensor, first heat treatment is performed in a magnetic field at 280 ° C. to define the easy direction of the fixed layer, and then a magnetic field is further applied at 200 ° C. in a direction orthogonal to the above to heat treatment. However, the easy axis of the free layer was defined.

参考例7)
参考例1と同様に多元スパッタリング装置を用いて図1と図2に示した構成の2種類の磁気抵抗効果素子を作製した。基板にはSiを用い、磁性層用のターケ゛ットには焼結したNi0.1Fe2.9O4とCo0.1Fe2.9O4を用い、又非磁性層用にはCuを、磁化回転抑制層としてはIrMnを、界面磁性層用としてNi0.8Fe0.2,Co0.9Fe0.1をタ−ゲットを用いた。真空チャンバー内を1x10-8Torr以下まで排気した後、Arガスを0.8mTorrになるように流しながら、スハ゜ッタリンク゛法を用いて、下記の構成の磁気抵抗効果素子を作製した。
試料G Ni0.1Fe2.9O4(50)/Ni0.8Fe0.2(2)/Cu(25)/Co0.9Fe0.1(1)/Co0.1Fe2.9O4(50)
試料H Ni0.1Fe2.9O4(50)/Ni0.8Fe0.2(2)/Cu(25)/Co0.9Fe0.1(1)/Ni0.1Fe2.9O4(20)/Co0.9Fe0.1(2)/IrMn(15)
これら磁気抵抗効果素子G,Hを用いて、図7に示したようなメモリ−素子を作製した。導体線にはAuを用い、情報読出用導体線と磁気抵抗効果素子部とを接合する電極にはPtを用いた。又情報記録用導体線と磁気抵抗効果素子部及び情報読出用導体線部との絶縁にはAl2O3を用いた。
( Reference example 7)
Similar to Reference Example 1, two types of magnetoresistive sensor having the configurations shown in FIGS. 1 and 2 were produced by using a multi-dimensional sputtering apparatus. Si is used for the substrate, sintered Ni 0.1 Fe 2.9 O 4 and Co 0.1 Fe 2.9 O 4 are used for the target for the magnetic layer, Cu is used for the non-magnetic layer, and IrMn is used for the magnetization rotation suppression layer. A target of Ni 0.8 Fe 0.2 and Co 0.9 Fe 0.1 was used for the interfacial magnetic layer. After exhausting the inside of the vacuum chamber to 1 x 10 -8 Torr or less, a magnetoresistive sensor having the following configuration was produced by using the sputtering method while flowing Ar gas to 0.8 m Torr.
Sample G Ni 0.1 Fe 2.9 O 4 (50) / Ni 0.8 Fe 0.2 (2) / Cu (25) / Co 0.9 Fe 0.1 (1) / Co 0.1 Fe 2.9 O 4 (50)
Sample H Ni 0.1 Fe 2.9 O 4 ( 50) / Ni 0.8 Fe 0.2 (2) / Cu (25) / Co 0.9 Fe 0.1 (1) / Ni0 .1 Fe 2.9 O 4 (20) / Co 0.9 Fe 0.1 (2 ) / IrMn (15)
Using these magnetoresistive elements G and H, a memory element as shown in FIG. 7 was manufactured. Au was used for the conductor wire, and Pt was used for the electrode that joins the conductor wire for reading information and the magnetoresistive sensor. Al 2 O 3 was used to insulate the conductor wire for information recording from the magnetoresistive sensor and the conductor wire for reading information.

(実施例
参考例1と同様に多元スパッタリング装置を用いて図4の構成の磁気抵抗効果素子を作製した。基板にはSiを用い、磁性層用のタ−ゲットには焼結したFe3O4を用い、又非磁性層用にはCuタ−ゲットを、磁化回転抑制層にはPtMnを、界面磁性層にはRuを介して反強磁性的に交換結合したCo0.9Fe0.1とNi0.8Fe0.2を用いた。真空チャンバー内を1x10-8Torr以下まで排気した後、Arガスを0.8mTorrになるように流しながら、スハ゜ッタリンク゛法を用いて、下記の構成の磁気抵抗効果素子を成膜し、280℃で磁界中熱処理を行った。
試料I Ni0.8Fe0.2(2)/Ru(0.7)/Ni0.8Fe0.2(1)/Fe2O3(0.6)/Co0.9Fe0.1(1)/Cu(2.2)/Co0.9Fe0.1(2)/Fe 3 O 4 (0.6)/Co0.9Fe0.1(2)/Ru(0.7)/Co0.9Fe0.1(2)/PtMn(15)
この磁気抵抗効果素子の上下に電極を設けて、そのMR特性を室温で最高200kA/mの磁界を印可して測定した。その結果MR比は36%と極めて高い値を示した。
(Example 1 )
Similar to Reference Example 1, a magnetoresistive sensor having the configuration shown in FIG. 4 was manufactured using a multi-dimensional sputtering apparatus. Si is used for the substrate, sintered Fe 3 O 4 is used for the target for the magnetic layer, Cu target is used for the non-magnetic layer, PtMn is used for the magnetization rotation suppression layer, and interfacial magnetism. For the layer, Co 0.9 Fe 0.1 and Ni 0.8 Fe 0.2, which were antiferromagnetically exchange-bonded via Ru, were used. After exhausting the inside of the vacuum chamber to 1 x 10 -8 Torr or less, a magnetoresistive sensor having the following configuration is formed using the sputtering method while flowing Ar gas to 0.8 m Torr, and in a magnetic field at 280 ° C. Heat treatment was performed.
Sample I Ni 0.8 Fe 0.2 (2) / Ru (0.7) / Ni 0.8 Fe 0.2 (1) / Fe 2 O 3 (0.6) / Co 0.9 Fe 0.1 (1) / Cu (2.2) / Co 0.9 Fe 0.1 (2) ) / Fe 3 O 4 (0.6) / Co 0.9 Fe 0.1 (2) / Ru (0.7) / Co 0.9 Fe 0.1 (2) / PtMn (15)
Electrodes were provided above and below this magnetoresistive sensor, and its MR characteristics were measured by applying a magnetic field of up to 200 kA / m at room temperature. As a result, the MR ratio was 36%, which was extremely high.

作製したこの素子を用いて実施例5と同様な方法で磁気ヘッドを作製し、センス電流として約1kA/mの交流信号磁界を印加してこの膜を用いたヘッドと実施例5のヘッドの出力を比較した。その結果このヘッドの出力は、参考例5のヘッドよりも更に感度が高くなることがわかった。 A magnetic head is manufactured by the same method as in Example 5 using the manufactured element, and an AC signal magnetic field of about 1 kA / m is applied as a sense current to output the head using this film and the head of Example 5. Was compared. As a result, it was found that the output of this head was more sensitive than the head of Reference Example 5.

又この膜を用いて参考例6と同様な方法でメモリ−素子を作製した。このメモリ−素子と参考例6のメモリ−素子の反転磁界を測定したところ、同じ形状の素子であれば、このメモリ−素子の反転磁界は参考例6のそれより小さくなることがわかった。

Further, using this film, a memory element was manufactured by the same method as in Reference Example 6. When the reversing magnetic fields of this memory element and the memory element of Reference Example 6 were measured, it was found that the reversing magnetic field of this memory element was smaller than that of Reference Example 6 if the elements had the same shape.

JP32403799A 1999-03-23 1999-11-15 Magnetoresistive element, magnetoresistive head, and memory element Expired - Fee Related JP4572434B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32403799A JP4572434B2 (en) 1999-03-23 1999-11-15 Magnetoresistive element, magnetoresistive head, and memory element

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-77384 1999-03-23
JP7738499 1999-03-23
JP32403799A JP4572434B2 (en) 1999-03-23 1999-11-15 Magnetoresistive element, magnetoresistive head, and memory element

Publications (3)

Publication Number Publication Date
JP2000340859A JP2000340859A (en) 2000-12-08
JP2000340859A5 true JP2000340859A5 (en) 2006-11-09
JP4572434B2 JP4572434B2 (en) 2010-11-04

Family

ID=26418478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32403799A Expired - Fee Related JP4572434B2 (en) 1999-03-23 1999-11-15 Magnetoresistive element, magnetoresistive head, and memory element

Country Status (1)

Country Link
JP (1) JP4572434B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002099906A1 (en) * 2001-06-04 2002-12-12 Matsushita Electric Industrial Co., Ltd. Magnetoresistance element and magnetoresistance storage element and magnetic memory
JP2003031867A (en) 2001-07-17 2003-01-31 Hitachi Ltd Magnetoresistive effect element constituted by laminating oxide magnetic layer and metallic magnetic layer upon another
FR2830971B1 (en) 2001-10-12 2004-03-12 Commissariat Energie Atomique MAGNETORESISTIVE DEVICE WITH IMPROVED PERFORMANCE SPIN VALVE
US7477490B2 (en) * 2004-06-30 2009-01-13 Seagate Technology Llc Single sensor element that is naturally differentiated
JP6553857B2 (en) * 2014-09-18 2019-07-31 三星電子株式会社Samsung Electronics Co.,Ltd. Magnetic tunnel junction device and magnetic random access memory

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0672303B1 (en) * 1993-10-06 1997-12-03 Koninklijke Philips Electronics N.V. Magneto-resistance device, and magnetic head employing such a device
JPH1041561A (en) * 1996-07-25 1998-02-13 Sanyo Electric Co Ltd Magnetoresistance effect element
JP2924825B2 (en) * 1996-10-31 1999-07-26 日本電気株式会社 Magnetoresistive element and magnetoresistive sensor using the same
JP3601690B2 (en) * 1999-03-02 2004-12-15 松下電器産業株式会社 Magnetoresistive element and manufacturing method thereof, magnetoresistive head, magnetic recording device, magnetoresistive memory element
US6556390B1 (en) * 1999-10-28 2003-04-29 Seagate Technology Llc Spin valve sensors with an oxide layer utilizing electron specular scattering effect

Similar Documents

Publication Publication Date Title
US6124711A (en) Magnetic sensor using tunnel resistance to detect an external magnetic field
JP3327375B2 (en) Magnetoresistive transducer, method of manufacturing the same, and magnetic recording apparatus
JP4088641B2 (en) Magnetoresistive element, thin film magnetic head, head gimbal assembly, head arm assembly, magnetic disk drive, magnetic memory cell and current sensor
US6633464B2 (en) Synthetic antiferromagnetic pinned layer with Fe/FeSi/Fe system
JP3976231B2 (en) Tunnel magnetoresistive element and manufacturing method thereof, and tunnel magnetoresistive head and manufacturing method thereof
JP2651015B2 (en) Magnetic field sensor with ferromagnetic thin film
JP3291208B2 (en) Magnetoresistive sensor, method of manufacturing the same, and magnetic head equipped with the sensor
KR100894521B1 (en) Tunnel magnetoresistance element, magnetic head, and magnetic memory
KR100890323B1 (en) Magnetoresistive effect element, magnetic head, magnetic storage device and magnetic memory
JPH05347013A (en) Magnetic recording and reproducing device
JP3231313B2 (en) Magnetic head
JPH0954916A (en) Spin valve magnetoresistive transducer and magnetic recording device
JP2924819B2 (en) Magnetoresistive film and method of manufacturing the same
JP2005044895A (en) Magnetoresistance effect element, magnetic head, and magnetic recording and reproducing device
JP2001307308A (en) Magnetoresistive effect type head and information reproducing device
JP2000340859A5 (en)
JP3127777B2 (en) Magnetic transducer and magnetic recording device
JPH07297465A (en) Huge magnetic reluctance sensor with insulation pinned layer
JP4572434B2 (en) Magnetoresistive element, magnetoresistive head, and memory element
JP3647306B2 (en) Magnetoresistive element and magnetoresistive memory element
JP3261698B2 (en) Magnetic head and magnetoresistive element
JP2985964B2 (en) Magnetoresistive head and its initialization method
US6923860B1 (en) Oxidation of material for tunnel magneto-resistive sensors
JP2000340857A (en) Magnetoresistive effect film and magnetoresistive effect element
JPH05258248A (en) Multilayer magnetoresistance effect film, magnetic head, and magnetic recording and reproducing device