JP3261698B2 - Magnetic head and magnetoresistive element - Google Patents

Magnetic head and magnetoresistive element

Info

Publication number
JP3261698B2
JP3261698B2 JP14864390A JP14864390A JP3261698B2 JP 3261698 B2 JP3261698 B2 JP 3261698B2 JP 14864390 A JP14864390 A JP 14864390A JP 14864390 A JP14864390 A JP 14864390A JP 3261698 B2 JP3261698 B2 JP 3261698B2
Authority
JP
Japan
Prior art keywords
magnetic
layer
magnetoresistive
film
magnetic layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14864390A
Other languages
Japanese (ja)
Other versions
JPH0442417A (en
Inventor
亮一 中谷
正弘 北田
直樹 小山
勇 由比藤
公史 高野
英稔 森脇
幹夫 鈴木
正昭 二本
文雄 釘屋
好文 松田
一夫 椎木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=15457386&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3261698(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to JP14864390A priority Critical patent/JP3261698B2/en
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to US07/710,775 priority patent/US5390061A/en
Publication of JPH0442417A publication Critical patent/JPH0442417A/en
Priority to US08/328,090 priority patent/US5726837A/en
Priority to US08/626,333 priority patent/US6011674A/en
Priority to US09/468,309 priority patent/US6278593B1/en
Priority to JP2000022768A priority patent/JP3378549B2/en
Priority to US09/931,897 priority patent/US6483677B2/en
Publication of JP3261698B2 publication Critical patent/JP3261698B2/en
Application granted granted Critical
Priority to US10/270,120 priority patent/US6687099B2/en
Priority to US10/700,500 priority patent/US7054120B2/en
Priority to US11/371,244 priority patent/US7159303B2/en
Priority to US11/543,210 priority patent/US7292417B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Magnetic Heads (AREA)
  • Hall/Mr Elements (AREA)
  • Thin Magnetic Films (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】TECHNICAL FIELD OF THE INVENTION

本発明は、高い磁気抵抗効果を有する多層磁性薄膜を
用いた磁気抵抗効果素子に係り、特に狭トラック化され
た磁気記録媒体を用い、高密度記録を達成するための磁
気記録再生装置に用いられる再生用磁気ヘッドに好適な
磁気抵抗効果素子を備えた磁気ヘッドに関する。
The present invention relates to a magnetoresistive element using a multilayer magnetic thin film having a high magnetoresistance effect, and is particularly used for a magnetic recording / reproducing apparatus for achieving high-density recording using a magnetic recording medium having a narrow track. The present invention relates to a magnetic head having a magnetoresistive element suitable for a reproducing magnetic head.

【0002】[0002]

【従来の技術】[Prior art]

高密度磁気記録における再生用磁気ヘッドとして、磁
気抵抗効果を用いた磁気ヘッドの研究が進められてい
る。現在、磁気抵抗効果材料としては、Ni−20at%Fe合
金薄膜が用いられている。しかし、Ni−20at%Fe合金薄
膜を用いた磁気抵抗効果素子は、バルクハウゼンノイズ
などのノイズを示すことが多く、他の磁気抵抗効果材料
の研究も進められている。
As a reproducing magnetic head for high-density magnetic recording, a magnetic head using a magnetoresistance effect has been studied. At present, a Ni-20at% Fe alloy thin film is used as a magnetoresistive effect material. However, a magnetoresistive element using a Ni-20at% Fe alloy thin film often shows noise such as Barkhausen noise, and other magnetoresistive materials are being studied.

【0003】 一方、最近、強磁性トンネル現象を利用して、絶縁層
を介して一対の磁性層が積層されている多層膜の電気抵
抗の変化から磁束を検出する磁気抵抗効果膜について、
プロシーディングス オブ ザ インタナショナル シ
ンポジウム オン フィジックス オブ マグネティッ
ク マテリアルズ、1987年4月8−11、第303頁から第3
06頁〔Proceedings of the International Symposium o
n Physics of Magnetic Materials、(April 8−11、19
87)pp.303−306〕に報告されている。ここでは、多層
構造としてNi/NiO/Co接合あるいはAl/Al2O3/Ni、Co−Al
/Al2O3/Niなどの強磁性トンネル効果を示す多層膜が紹
介されている。しかし、いずれの場合においても一対の
磁性層間の接合面積は1mm2程度と広く、かつ抵抗変化率
Δρ/ρが室温で1%前後と小さい。また、この例に示
されている素子構造では、微小な磁束変化を分解するこ
とができないため、高密度に記録信号が書き込まれた磁
気記録媒体から漏洩する磁束の変化を高感度に検出する
ことはできないという問題があった。
On the other hand, recently, a magnetoresistive effect film that detects a magnetic flux from a change in electric resistance of a multilayer film in which a pair of magnetic layers is stacked via an insulating layer by using a ferromagnetic tunnel phenomenon has been described.
Proceedings of the International Symposium on Physics of Magnetic Materials, April 8-11, 1987, pp. 303-3
P. 06 (Proceedings of the International Symposium o
n Physics of Magnetic Materials, (April 8-11, 19
87) pp. 303-306]. Here, Ni / NiO / Co junction or Al / Al 2 O 3 / Ni, Co-Al
A multilayer film exhibiting a ferromagnetic tunnel effect such as / Al 2 O 3 / Ni is introduced. However, in each case, the bonding area between the pair of magnetic layers is as large as about 1 mm 2 , and the resistance change rate Δρ / ρ is as small as about 1% at room temperature. In addition, the element structure shown in this example cannot resolve a minute change in magnetic flux, so it is necessary to detect a change in magnetic flux leaking from a magnetic recording medium on which a recording signal is written at high density with high sensitivity. There was a problem that can not be.

【0004】[0004]

【発明が解決しようとする課題】[Problems to be solved by the invention]

上述した従来技術において、例えばNi/NiO/Co多層膜
では、長方形の形状を持つNi層とCo層を互いに直交させ
ることにより、すべての電流がNiO層を通過するように
し、強磁性トンネル効果による抵抗変化を効果的に検出
している。しかし、磁気ヘッドへの適用を考えた場合、
強磁性のNi層およびCo層を直交させると、どちらかの磁
性層の長手方向が磁気記録媒体面に対して平行となり、
狭い領域の磁界を検出することに対して不利な素子形状
となる。すなわち、トラック幅の狭い記録信号に対応し
た磁束変化を高感度に検出することができないという問
題があった。
In the above-mentioned conventional technology, for example, in a Ni / NiO / Co multilayer film, by making the Ni layer and the Co layer having a rectangular shape orthogonal to each other, all the current passes through the NiO layer, and the ferromagnetic tunnel effect is applied. The resistance change is effectively detected. However, considering application to a magnetic head,
When the ferromagnetic Ni layer and Co layer are perpendicular to each other, the longitudinal direction of either magnetic layer becomes parallel to the surface of the magnetic recording medium,
The element shape is disadvantageous for detecting a magnetic field in a narrow area. That is, there is a problem that a change in magnetic flux corresponding to a recording signal having a narrow track width cannot be detected with high sensitivity.

【0005】 本発明の目的は、上記従来の磁気抵抗効果を示す多層
膜を磁気ヘッドに適用する場合の問題点を解消し、狭い
領域における微小な磁束の変化を高感度に、かつ高い分
解能で検出できる磁気抵抗効果素子を用いた磁気ヘッド
を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-described problem when a conventional multilayer film exhibiting a magnetoresistive effect is applied to a magnetic head, and to detect a minute change in magnetic flux in a narrow area with high sensitivity and high resolution. An object of the present invention is to provide a magnetic head using a magnetoresistive element that can be detected.

【0006】[0006]

【課題を解決するための手段】[Means for Solving the Problems]

本発明者らは、磁性層に、Al2O3、SiO2、NiO、BNなど
の絶縁体またはSi、Ge、GaAsなどの半導体もしくはCrな
どの反強磁性体等よりなる中間層を挿入した多層構造の
磁気抵抗効果膜を用いて形成した磁気抵抗効果素子の形
状について鋭意研究を重ねた結果、上記磁気抵抗効果膜
に流れるすべての電流が上記中間層を必ず通過する形状
の素子構造にして、電極として非磁性金属(導体)を、
上記磁気抵抗効果膜の少なくとも一部に接続した素子構
造とすることにより、狭い領域の磁界を高感度に検出で
きる磁気抵抗効果素子が構成できることを見い出し、本
発明を完成するに至った。本発明は、例えば上記多層構
造の磁気抵抗効果膜の少なくとも一部を非磁性金属から
なる導体上に形成し、上記磁気抵抗効果膜のすべての磁
性層の膜面方向を、磁気記録媒体面に対してほぼ直角に
配置できる素子構造、すなわち、多層構造の磁気抵抗効
果膜の端面部を磁気記録媒体面に対向させる素子構造と
することにより、磁気記録媒体に対向する上記磁気抵抗
効果膜の端面部の磁性層の面積を極めて小さくすること
ができるので、狭トラック化された高密度磁気記録媒体
からの微小な漏洩磁束の変化を高感度に、かつ高分解能
に検出することができるものである。
The present inventors inserted an intermediate layer made of an insulator such as Al 2 O 3 , SiO 2 , NiO, BN or a semiconductor such as Si, Ge, GaAs or an antiferromagnetic material such as Cr in the magnetic layer. As a result of intensive studies on the shape of a magnetoresistive element formed using a multi-layered magnetoresistive film, a device structure having a shape such that all current flowing through the magnetoresistive film always passes through the intermediate layer has been obtained. , A non-magnetic metal (conductor) as an electrode,
The inventor has found that a magnetoresistive element capable of detecting a magnetic field in a narrow area with high sensitivity can be configured by adopting an element structure connected to at least a part of the magnetoresistive film, thereby completing the present invention. In the present invention, for example, at least a part of the magnetoresistive film having the multilayer structure is formed on a conductor made of a non-magnetic metal, and the film surface directions of all the magnetic layers of the magnetoresistive film are aligned with the surface of the magnetic recording medium. An element structure that can be arranged substantially at right angles to the magnetic recording medium, that is, an element structure in which the end surface of the multilayered magneto-resistance effect film faces the surface of the magnetic recording medium allows the end surface of the magneto-resistance effect film to face the magnetic recording medium. Since the area of the magnetic layer of the portion can be made extremely small, a small change in leakage magnetic flux from a high-density magnetic recording medium having a narrow track can be detected with high sensitivity and high resolution. .

【0007】 本発明の多層構造を有する磁気抵抗効果膜として、
(1)磁性層に、Al2O3、SiO2、NiO、BNなどの絶縁体ま
たはSi、Ge、GaAsなどの半導体等よりなる中間層を挿入
した多層膜、例えばNi/NiO/Co、Fe/Ge/Co、Al/Al2O3/N
i、Co−Al/Al2O3/Ni、Fe−C/SiO2/Fe−Ru、Fe−C/Al2O3
/Co−Ni、Fe−C/Al2O3/Fe−Ru等の強磁性トンネル効果
を利用した磁性薄膜、(2)磁性層にCrなどの反強磁性
体からなる中間層を挿入した多層膜、例えばFe/Cr等の
反強磁性中間層を用いた磁性薄膜が挙げられるが、本発
明の磁気抵抗効果素子構造には、上記(1)および
(2)のいずれかのタイプの磁気抵抗効果膜にも好適に
用いることができる。
As a magnetoresistive film having a multilayer structure of the present invention,
(1) A multilayer film in which an insulating layer such as Al 2 O 3 , SiO 2 , NiO, or BN or an intermediate layer made of a semiconductor such as Si, Ge, or GaAs is inserted into a magnetic layer, for example, Ni / NiO / Co, Fe / Ge / Co, Al / Al 2 O 3 / N
i, Co-Al / Al 2 O 3 / Ni, Fe-C / SiO 2 / Fe-Ru, Fe-C / Al 2 O 3
/ Co-Ni, Fe-C / Al 2 O 3 / Fe-Ru, etc. Magnetic thin film using ferromagnetic tunnel effect, (2) Multi-layer in which an intermediate layer made of antiferromagnetic material such as Cr is inserted in the magnetic layer A film, for example, a magnetic thin film using an antiferromagnetic intermediate layer of Fe / Cr or the like can be cited. The magnetoresistive effect element structure of the present invention includes any one of the types (1) and (2) above. It can also be suitably used for effect films.

【0008】 さらに本発明の磁気抵抗効果素子において、微小な磁
束の変化を高感度に検出し、かつ分解能高く安定した再
生出力を得るために、次に示す具体的な技術手段を用い
ることができる。 (1)多層構造の磁気抵抗効果膜を形成する一対の磁性
層の片方の保磁力を小さくし、もう一方の磁性層との保
磁力の差を大きくする。 (2)多層構造の磁気抵抗効果膜を形成する一対の磁性
層の磁化容易方向を直交させる。 (3)多層構造の磁気抵抗効果膜を形成する一対の磁性
層の内、少なくとも一方の磁性層の異方性分散角度を10
゜以下とする。 (4)多層構造の磁気抵抗効果膜を形成する一対の磁性
層の内、少なくとも一方の磁性層を単磁区構造とする。 (5)多層構造の磁気抵抗効果膜を形成する一対の磁性
層と絶縁層との積層部分を、透磁率の高い磁性材料で挟
んだ構造とする。
Further, in the magnetoresistance effect element of the present invention, the following specific technical means can be used to detect a minute change in magnetic flux with high sensitivity and obtain a stable reproduction output with high resolution. . (1) The coercive force of one of a pair of magnetic layers forming a magnetoresistive film having a multilayer structure is reduced, and the difference in coercive force with the other magnetic layer is increased. (2) The directions of easy magnetization of a pair of magnetic layers forming a magnetoresistive film having a multilayer structure are orthogonal to each other. (3) The anisotropic dispersion angle of at least one of the pair of magnetic layers forming the magnetoresistive film having a multilayer structure is set to 10
゜ The following is assumed. (4) At least one of the pair of magnetic layers forming the multilayer structure of the magnetoresistive film has a single magnetic domain structure. (5) A structure in which a laminated portion of a pair of magnetic layers and an insulating layer forming a multilayered magnetoresistive film is sandwiched between magnetic materials having high magnetic permeability.

【0009】 上述したごとく、多層構造の磁気抵抗効果膜に流れる
電流が、磁気抵抗効果膜を構成する中間層を必ず通過す
るような素子構造にして、例えば磁気抵抗効果膜の少な
くとも一部を非磁性金属よりなる導体上に形成させるこ
とにより、狭い領域の磁界が検出できる素子形状とする
ことができる。すなわち、上記磁気抵抗効果膜の少なく
とも一部を、電極である非磁性金属よりなる導体上に形
成させることにより、磁気抵抗効果膜を構成するすべて
の磁性層の膜面方向を、磁気記録媒体面に対してほぼ直
角に対向する素子構造にすることができる。このため、
磁気記録媒体に対向する磁気抵抗効果膜の端面部の磁性
層の面積を極めて小さくすることができるので、狭い領
域の磁界を高感度に検出することが可能となる。そし
て、多層構造を持つ磁気抵抗効果膜として、(1)強磁
性トンネル効果を用いた磁性薄膜、あるいは(2)反強
磁性体の中間層を用いた磁性薄膜があるが、これらはい
ずれも上記本発明の素子構造に適用することができる。
As described above, the element structure is such that a current flowing through the magnetoresistive film having a multilayer structure always passes through the intermediate layer constituting the magnetoresistive effect film. By forming the element on a conductor made of a magnetic metal, it is possible to obtain an element shape capable of detecting a magnetic field in a narrow area. That is, by forming at least a part of the magnetoresistive film on a conductor made of a nonmagnetic metal as an electrode, the film surface directions of all the magnetic layers constituting the magnetoresistive film can be adjusted to the surface of the magnetic recording medium. Can be made to have an element structure that faces substantially at a right angle. For this reason,
Since the area of the magnetic layer at the end face of the magnetoresistive film facing the magnetic recording medium can be made extremely small, it is possible to detect a magnetic field in a narrow area with high sensitivity. As the magnetoresistive film having a multilayer structure, there are (1) a magnetic thin film using a ferromagnetic tunnel effect and (2) a magnetic thin film using an intermediate layer of an antiferromagnetic material. It can be applied to the element structure of the present invention.

【0010】 また、本発明の多層構造の磁気抵抗効果膜を形成する
一対の磁性層の内、例えば一方は、媒体からの漏洩磁界
で磁化方向が変化できるようにするため、漏洩磁界強度
程度に保磁力を設定する。また、もう一方の磁性層は、
媒体から漏洩磁界が印加されても磁化方向が変化しない
ように、十分保磁力を高く設定する。このように、一対
の磁性層の保磁力を設定することにより、従来の誘導型
の薄膜ヘッド、あるいは磁気抵抗効果型ヘッドを上回る
再生出力を得ることができるようになる。また、媒体か
らの漏洩磁界により磁化方向が変化する磁性層は、磁化
回転がいっせいに起こるように異方性分散角度を小さく
し、かつ単磁区化することが必要となる。この条件を満
足すれば再生感度、安定性を向上させることができる。
また、一対の磁性層と絶縁層により構成される多層構造
の磁気抵抗効果膜の全膜厚を、媒体に書き込まれる最短
記録ビット長よりも狭め、かつ多層構造の磁気抵抗効果
膜を一対の高透磁率膜で挟み込む構造とすることで、再
生分解能をいっそう向上させることができる。また、多
層構造の磁気抵抗効果膜を形成する一対の磁性層間の接
合面積を狭めることで、絶縁層中の欠陥(ピンホール)
の発生確率を小さくして再生感度を一段と向上させるこ
とができる。
In addition, for example, one of a pair of magnetic layers forming a magnetoresistive film having a multilayer structure according to the present invention has a leakage magnetic field strength of about a leakage magnetic field intensity so that the magnetization direction can be changed by a leakage magnetic field from a medium. Set the coercive force. Also, the other magnetic layer
The coercive force is set sufficiently high so that the magnetization direction does not change even when a leakage magnetic field is applied from the medium. Thus, by setting the coercive force of the pair of magnetic layers, it is possible to obtain a reproduction output higher than that of a conventional inductive type thin film head or a magnetoresistive head. The magnetic layer whose magnetization direction changes due to a leakage magnetic field from the medium needs to have a small anisotropic dispersion angle and a single magnetic domain so that magnetization rotation occurs at the same time. If this condition is satisfied, the reproduction sensitivity and stability can be improved.
Further, the total thickness of the multi-layered magnetoresistive film composed of a pair of magnetic layers and an insulating layer is made smaller than the shortest recording bit length to be written on the medium, and the multi-layered magnetoresistive film is made of a pair of high-resistive films. With the structure sandwiched between the magnetic permeability films, the reproduction resolution can be further improved. Also, by reducing the bonding area between a pair of magnetic layers forming a multilayered magnetoresistive film, defects (pinholes) in the insulating layer can be reduced.
And the reproduction sensitivity can be further improved by reducing the probability of occurrence of.

【0011】[0011]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

以下に本発明の一実施の形態を挙げ、図面を参照しな
がらさらに具体的に説明する。 〈実施の形態1〉 磁気抵抗効果素子に用いる磁気抵抗効果膜およびCu電
極の作製にはイオンビームスパッタリング装置を用い
た。スパッタリングは以下の条件で行った。 イオンガス……Ar 装置内Arガス圧力……2.5×10-2Pa 蒸着用イオンガス加速電圧……400V 蒸着用イオンガスイオン電流……60mA ターゲット基板間距離……127mm イオンミリング法により、磁気抵抗効果膜およびCu電
極を素子形状に加工した。基板にはコーニング社製7059
ガラスを用いた。
Hereinafter, an embodiment of the present invention will be described more specifically with reference to the drawings. <Embodiment 1> An ion beam sputtering apparatus was used for producing a magnetoresistive film and a Cu electrode used for a magnetoresistive element. Sputtering was performed under the following conditions. Ion gas …… Ar gas pressure in the Ar device …… 2.5 × 10 -2 Pa Ion gas acceleration voltage for deposition …… 400 V Ion gas ion current for deposition …… 60 mA Distance between target substrates …… 127 mm Magnetic resistance by ion milling method The effect film and the Cu electrode were processed into an element shape. The substrate is Corning 7059
Glass was used.

【0012】 図1に、本発明の磁気抵抗効果素子の構成の一例を示
す。図1に示す磁気抵抗効果素子の作製プロセスを以下
に述べる。まず、ガラス基板上にCu薄膜をイオンビーム
スパッタリング法で形成し、イオンミリング法により、
幅8μm、長さ2mmの長方形のCu電極1に加工する。加
工によって生じた段差は樹脂で平坦化した。その上に、
イオンビームスパッタリング法により、膜厚100nmのFe
−1.3at%Ru合金層2、膜厚10nmのSiO2層3、膜厚100nm
のFe−1.0at%C合金層4を順に積層する。これらの層
をイオンミリング法により、幅5μm、長さ20μmの長
方形に加工し、磁気抵抗効果膜5とする。この加工によ
って生じた段差は樹脂で平坦化した。さらに、この上
に、Cu薄膜をイオンビームスパッタリング法で形成し、
幅8μm、長さ2mmの長方形のCu電極6に加工した。電
流は、Cu電極1とCu電極6の間に流し、それらの間の電
圧変化を測定することにより、電気抵抗変化を検出す
る。なお、電流はSiO2層3を通る。
FIG. 1 shows an example of the configuration of the magnetoresistive element of the present invention. The manufacturing process of the magnetoresistive element shown in FIG. 1 will be described below. First, a Cu thin film is formed on a glass substrate by ion beam sputtering, and ion milling is used.
It is processed into a rectangular Cu electrode 1 having a width of 8 μm and a length of 2 mm. The step caused by the processing was flattened with a resin. in addition,
100 nm thick Fe by ion beam sputtering
-1.3at% Ru alloy layer 2, thickness 10 nm SiO 2 layer 3 of a thickness 100nm
Of the Fe-1.0 at% C alloy layers 4 are sequentially laminated. These layers are processed into a rectangular shape having a width of 5 μm and a length of 20 μm by ion milling to form a magnetoresistive film 5. The step caused by this processing was flattened with resin. Furthermore, a Cu thin film is formed thereon by ion beam sputtering,
A rectangular Cu electrode 6 having a width of 8 μm and a length of 2 mm was processed. An electric current flows between the Cu electrode 1 and the Cu electrode 6, and a change in electric resistance is detected by measuring a change in voltage between them. The current passes through the SiO 2 layer 3.

【0013】 ヘルムホルツコイルを用いて、磁気抵抗効果膜5の長
手方向に磁界を印加し、電気抵抗の変化を調べた。磁界
と電気抵抗の変化との関係を図2に示す。図に示すごと
く、磁界の強さによって、素子の電気抵抗が変化する。
最大の抵抗変化率は約1%であった。これは、上記の引
用文献に記載のNi/NiO/Co多層膜とほぼ同程度の値であ
るが、電気抵抗が最大となる磁界の値は、本発明の磁気
抵抗効果素子の方が低く、磁気ヘッドに適用する場合に
は極めて有利となる。この電気抵抗の変化する原因は、
以下のように考えられる。磁化曲線の測定より、Fe−1.
3at%Ru合金層2の保磁力は25Oe、Fe−1.0at%C合金層
4の保磁力は8Oeであることがわかった。磁界の大きさ
を変化させた場合、8Oeのところで、Fe−1.0at%C合金
層4の磁化の向きは変化するが、Fe−1.3at%Ru合金層
2の磁化の向きは変化しない。25Oe以上の磁界を印加し
た時に、Fe−1.3at%Ru合金層2の磁化の向きは変化す
る。したがって、±8〜25Oeの磁界では、Fe−1.0at%
C合金層4の磁化の向きとFe−1.3at%Ru合金層2の磁
化の向きは、互に反平行である。また、この磁界の範囲
以外では、磁化の向きは平行となる。SiO2層3をトンネ
ル電流が流れる場合、上記磁界層の磁化の向きが互に反
平行である時より、磁化の向きが平行である時の方がコ
ンダクタンスは高くなる。このため、磁界の大きさによ
って素子の電気抵抗が変化するものと考えられる。
Using a Helmholtz coil, a magnetic field was applied in the longitudinal direction of the magnetoresistive film 5, and the change in electrical resistance was examined. FIG. 2 shows the relationship between the magnetic field and the change in electric resistance. As shown in the figure, the electric resistance of the element changes depending on the strength of the magnetic field.
The maximum rate of resistance change was about 1%. This is almost the same value as the Ni / NiO / Co multilayer film described in the above cited document, but the value of the magnetic field at which the electric resistance is maximized is lower for the magnetoresistance effect element of the present invention, This is extremely advantageous when applied to a magnetic head. The cause of this change in electrical resistance is
It is considered as follows. From the measurement of the magnetization curve, Fe-1.
It was found that the coercive force of the 3 at% Ru alloy layer 2 was 25 Oe, and the coercive force of the Fe-1.0 at% C alloy layer 4 was 8 Oe. When the magnitude of the magnetic field is changed, the magnetization direction of the Fe-1.0 at% C alloy layer 4 changes at 8 Oe, but the magnetization direction of the Fe-1.3 at% Ru alloy layer 2 does not change. When a magnetic field of 25 Oe or more is applied, the direction of magnetization of the Fe-1.3at% Ru alloy layer 2 changes. Therefore, in a magnetic field of ± 8 to 25 Oe, Fe-1.0at%
The direction of magnetization of the C alloy layer 4 and the direction of magnetization of the Fe-1.3 at% Ru alloy layer 2 are antiparallel to each other. Outside the range of the magnetic field, the directions of magnetization are parallel. When a tunnel current flows through the SiO 2 layer 3, the conductance is higher when the magnetization directions are parallel to each other than when the magnetization directions of the magnetic field layers are antiparallel to each other. Therefore, it is considered that the electric resistance of the element changes depending on the magnitude of the magnetic field.

【0014】 次に、従来の形状を持つ強磁性トンネル素子を形成し
た。これは、図12に示すように、幅5μm、膜厚100nm
のFe−1.3at%Ru合金層2、膜厚10nmのSiO2層3、幅5
μm、膜厚100nmのFe−1.0at%C合金層4により構成し
た。Fe−1.3at%Ru合金層2とFe−1.0at%C合金層4
は、互に、直交している。
Next, a ferromagnetic tunnel device having a conventional shape was formed. This is, as shown in FIG. 12, a width of 5 μm and a thickness of 100 nm.
Of Fe-1.3 at% Ru alloy layer 2, thickness 10 nm SiO 2 layer 3, width 5
The Fe-1.0 at% C alloy layer 4 having a thickness of 100 μm and a thickness of 100 μm was used. Fe-1.3at% Ru alloy layer 2 and Fe-1.0at% C alloy layer 4
Are orthogonal to each other.

【0015】 上記従来の形状を持つ磁気抵抗効果素子は、使用する
磁性層が、先に述べた本発明の磁気抵抗効果素子(図
1)と同じであるため、磁界の大きさによる電気抵抗変
化は、図1の素子とほぼ同様であった。 これらの素子により、磁気記録媒体からの磁界を検出
する場合、本発明の磁気抵抗効果素子(図1)では、幅
5μm、長さ20μmの長方形の磁気抵抗効果膜5の端部
を磁気記録媒体に対向させることにより、トラック幅5
μmの記録を読むことができる。しかし、従来の形状を
持つ磁気抵抗効果素子(図12)では、磁気抵抗効果に強
く関与するトンネル接合部7はFe−1.0at%C合金層4
およびFe−1.3at%Ru合金層2の中央部であり、磁気記
録媒体に対向させることができない。
Since the magneto-resistance effect element having the above-mentioned conventional shape uses the same magnetic layer as the above-described magneto-resistance effect element of the present invention (FIG. 1), the electric resistance change due to the magnitude of the magnetic field. Was almost the same as the device of FIG. When the magnetic field from the magnetic recording medium is detected by these elements, in the magnetoresistive element of the present invention (FIG. 1), the end of the rectangular magnetoresistive film 5 having a width of 5 μm and a length of 20 μm is connected to the magnetic recording medium. The track width 5
μm records can be read. However, in the magnetoresistive effect element having the conventional shape (FIG. 12), the tunnel junction 7 which is strongly involved in the magnetoresistive effect has the Fe-1.0 at% C alloy layer 4.
And the central portion of the Fe-1.3 at% Ru alloy layer 2 and cannot face the magnetic recording medium.

【0016】 そこで、図13に示す従来の構造の磁気抵抗効果素子を
形成した。これは、幅5μm、膜厚100nmのFe−1.3at%
Ru合金層2、膜厚10nmのSiO2層3、幅5μm、膜厚100n
mのFe−1.0at%C合金層4により構成した。Fe−1.0at
%C合金層4は、トンネル接合部7で切断されており、
トンネル接合部7を磁気記録媒体に対向させることがで
きる。しかし、図13構造では、Fe−1.3at%Ru合金層2
の長手方向も磁気記録媒体に対向して、磁気記録媒体か
らの漏洩磁界の影響を受ける。したがって、Fe−1.0at
%C合金層4の幅を5μmとしても、実効トラック幅
は、5μmよりもはるかに大きくなってしまう。
Therefore, a magnetoresistive element having a conventional structure shown in FIG. 13 was formed. This is Fe-1.3at% of 5μm width and 100nm film thickness
Ru alloy layer 2, SiO 2 layer 3 with a thickness of 10 nm, width 5 μm, thickness 100 n
It was composed of an Fe-1.0 at% C alloy layer 4 of m. Fe-1.0at
% C alloy layer 4 is cut at the tunnel junction 7,
The tunnel junction 7 can face the magnetic recording medium. However, in the structure of FIG. 13, the Fe-1.3 at% Ru alloy layer 2
In the longitudinal direction also faces the magnetic recording medium and is affected by the leakage magnetic field from the magnetic recording medium. Therefore, Fe-1.0at
Even if the width of the% C alloy layer 4 is set to 5 μm, the effective track width becomes much larger than 5 μm.

【0017】 以上説明したように、本発明の素子構造のごとく、磁
気抵抗効果膜の少なくとも一部を非磁性金属導体上に形
成し、流した電流がすべて中間層を通るように、磁気抵
抗効果膜を一直線上に重ねて配置する構成とすることに
より、磁気抵抗効果膜のすべての磁性層の長手(膜面)
方向を、磁気記録媒体面に対してほぼ直角に配置する構
造にすることができる。このため、磁気記録媒体に対向
する磁気抵抗効果膜の端面部に位置する磁性層の面積を
極めて小さくすることができ、狭い領域の漏漏磁界を高
感度に検出することが可能となる。
As described above, as in the element structure of the present invention, at least a part of the magnetoresistive effect film is formed on the non-magnetic metal conductor, and the magnetoresistive effect film is formed so that all the flowing current passes through the intermediate layer. By adopting a configuration in which the films are arranged on a straight line, the length (film surface) of all the magnetic layers of the magnetoresistive effect film
The direction can be arranged to be substantially perpendicular to the surface of the magnetic recording medium. For this reason, the area of the magnetic layer located at the end face of the magnetoresistive film facing the magnetic recording medium can be made extremely small, and the leakage magnetic field in a narrow area can be detected with high sensitivity.

【0018】 また、本実施の形態では、磁性層として、Fe−1.3at
%Ru合金層2およびFe−1.0at%C合金層4、中間層と
して、SiO2層3を用いたが、磁性層として、他の磁性材
料、中間層として他の絶縁材料を用いても同様の効果が
あることは言うまでもない。
Further, in the present embodiment, as the magnetic layer, Fe-1.3 at
% Ru alloy layer 2, Fe-1.0 at% C alloy layer 4, and SiO 2 layer 3 as the intermediate layer, but the same applies when using another magnetic material as the magnetic layer and another insulating material as the intermediate layer. Needless to say, there is an effect.

【0021】 〈実施の形態2〉 実施の形態1と同様の方法で図3に示す構造の磁気抵
抗効果素子を作製した。これは、面積の広いCu電極1の
上に、Fe−1.3at%Ru合金層2、SiO2層3、Fe−1.0at%
C合金層4を構成する。Fe−1.3at%Ru合金層、SiO2
3、Fe−1.0at%C合金層4はすべて、Cu電極1上に形
成されている。さらに、樹脂等で段差を埋め、Fe−1.0a
t%C合金層4に接するように、Cu電極6を形成する。
Second Embodiment A magnetoresistive element having the structure shown in FIG. 3 was manufactured in the same manner as in the first embodiment. This is on the broad Cu electrode 1 in area, Fe-1.3 at% Ru alloy layer 2, SiO 2 layer 3, Fe-1.0 at%
The C alloy layer 4 is formed. The Fe-1.3 at% Ru alloy layer, the SiO 2 layer 3 and the Fe-1.0 at% C alloy layer 4 are all formed on the Cu electrode 1. Further, the step is filled with resin or the like, and Fe-1.0a
The Cu electrode 6 is formed so as to be in contact with the t% C alloy layer 4.

【0022】 また、本実施の形態では、磁性層として、Fe−1.3at
%Ru合金層2およびFe−1.0at%C合金層4、中間層と
して、SiO2層3を用いたが、磁性層として、他の磁性材
料、中間層として他の絶縁材料を用いても同様の効果が
ある。
In this embodiment, the magnetic layer is made of Fe-1.3at.
% Ru alloy layer 2, Fe-1.0 at% C alloy layer 4, and SiO 2 layer 3 as the intermediate layer, but the same applies when using another magnetic material as the magnetic layer and another insulating material as the intermediate layer. Has the effect.

【0023】 〈実施の形態3〉 図1に示す磁気抵抗効果素子の磁気抵抗効果膜5をFe
(3nm)/Cr(1nm)多層膜(膜厚100nm)で構成した。 ヘルムホルツコイルを用いて、磁気抵抗効果膜5の長
手方向に磁界を印加し、電気抵抗の変化を調べた。本実
施の形態の素子においても、磁界の強さによって、素子
の電気抵抗が変化し、最大の抵抗変化率は約10%であっ
た。
Embodiment 3 The magneto-resistance effect film 5 of the magneto-resistance effect element shown in FIG.
It was composed of a (3 nm) / Cr (1 nm) multilayer film (100 nm thick). Using a Helmholtz coil, a magnetic field was applied in the longitudinal direction of the magnetoresistive film 5, and the change in electric resistance was examined. Also in the element of the present embodiment, the electric resistance of the element changes depending on the strength of the magnetic field, and the maximum resistance change rate is about 10%.

【0024】 〈実施の形態4〉 本実施の形態では本発明による磁気抵抗効果素子を用
いた再生用磁気ヘッドの作製方法、抵抗変化率を測定し
た結果、ならびに実際に磁気記録媒体に書き込まれた記
録信号を読み出す際の再生感度を、従来の磁気抵抗効果
型(MR)ヘッドおよび誘導型の薄膜ヘッドと比較した結
果について述べる。
Fourth Embodiment In a fourth embodiment, a method of manufacturing a reproducing magnetic head using the magnetoresistive element according to the present invention, a result of measuring a rate of change in resistance, and actually writing data on a magnetic recording medium are described. The results of comparing the read sensitivity when reading a recording signal with a conventional magnetoresistive (MR) head and an inductive thin film head will be described.

【0025】 図4(a)、(b)、(c)は、ヘッドの作製方法を
説明する工程図である。まず、基板8上に、下部電極9
となるCu層をスパッタ法により形成した。この上に、保
磁力Hcの高い材料として、Hc=2000OeのCo−Ni系の磁性
層を厚さ0.1μmスパッタにより形成し下部磁極10とす
る。この下部磁極10は、上記磁性層をスパッタした後、
通常のホトレジスト工程により縦3μm、横3μmにパ
ターニングして形成される。この後、絶縁層11としてAl
2O3を、上記と同様のスパッタ法により50Å成膜する。
この後、上記磁極12として飽和磁束密度Bs=2.0T、保磁
力0.3Oe、異方性分散角度5゜以下のFe系合金よりなる
磁性層をやはりスパッタ法により形成する。本実施の形
態においては、上記磁極12としてFe−C合金を用いた。
なお、この磁性層は単磁区化して再生特性を安定化する
必要がある。そのため、上記磁性層中にはBN中間層を挿
入している。この上部磁極12は、縦横ともに2μmの大
きさにパターニングされる。パターニング後、上部磁極
12上にレジスト13を塗布し、スルーホールを形成する。
この後、上部磁極12へ電流を供給するための上部電極14
を形成してプロセスを終了する。
FIGS. 4A, 4B, and 4C are process diagrams illustrating a method for manufacturing a head. First, a lower electrode 9 is provided on a substrate 8.
Was formed by a sputtering method. As a material having a high coercive force Hc, a Co—Ni-based magnetic layer with Hc = 2000 Oe is formed thereon by sputtering with a thickness of 0.1 μm to form the lower magnetic pole 10. The lower magnetic pole 10, after sputtering the magnetic layer,
It is formed by patterning into a vertical 3 μm and a horizontal 3 μm by a normal photoresist process. Then, as the insulating layer 11, Al
2 O 3 is deposited to a thickness of 50 ° by the same sputtering method as described above.
Thereafter, a magnetic layer made of an Fe-based alloy having a saturation magnetic flux density Bs = 2.0 T, a coercive force of 0.3 Oe, and an anisotropic dispersion angle of 5 ° or less is formed as the magnetic pole 12 by the sputtering method. In the present embodiment, an Fe—C alloy is used for the magnetic pole 12.
It is necessary to stabilize the reproduction characteristics by forming this magnetic layer into a single magnetic domain. Therefore, a BN intermediate layer is inserted in the magnetic layer. The upper magnetic pole 12 is patterned to a size of 2 μm both vertically and horizontally. After patterning, top pole
A resist 13 is applied on 12 to form a through hole.
Thereafter, the upper electrode 14 for supplying a current to the upper magnetic pole 12 is formed.
And terminate the process.

【0026】 このようにして作製した、デバイスのヒステリシス特
性を図5に示す。図から明らかなごとく、一対の磁性層
の保磁力の差が明瞭に観察されている。この一対の磁性
層の内、保磁力の小さい磁性層は50Oeであり、高い方は
400Oeとなっている。また、50Oeから400Oeの範囲では、
外部磁界が変化しても磁性層の磁化層はほとんど変化し
ておらず、一対の磁性膜の磁化変化が完全に分離されて
いることが分かる。なお、一対の磁性層の保磁力の差
は、使用する媒体の保磁力、飽和磁化により適切な値に
設定することにより、外部磁界に対する再生感度を向上
させることができる。また、一様印加磁界に対する抵抗
変化を測定した結果を図6に示す。測定は室温で行なっ
たが抵抗変化率Δρ/ρは5%と高い値を示した。な
お、一対の磁性層の異方性のなす角度は90度であるが、
外部磁界は保磁力の高い磁性層の異方性の方向に印加し
た。
FIG. 5 shows the hysteresis characteristics of the device thus manufactured. As is clear from the figure, the difference in coercive force between the pair of magnetic layers is clearly observed. Of the pair of magnetic layers, the magnetic layer with a small coercive force is 50 Oe, and the higher one is
400 Oe. In the range of 50Oe to 400Oe,
Even when the external magnetic field changes, the magnetic layer of the magnetic layer hardly changes, indicating that the change in magnetization of the pair of magnetic films is completely separated. The reproduction sensitivity to an external magnetic field can be improved by setting the difference between the coercive forces of the pair of magnetic layers to an appropriate value depending on the coercive force and saturation magnetization of the medium to be used. FIG. 6 shows the result of measuring the resistance change with respect to the uniformly applied magnetic field. Although the measurement was performed at room temperature, the resistance change rate Δρ / ρ showed a high value of 5%. Although the angle between the anisotropy of the pair of magnetic layers is 90 degrees,
The external magnetic field was applied in the anisotropic direction of the magnetic layer having a high coercive force.

【0027】 次に、異方性分散角度を70度から徐々に減少させて抵
抗変化率の変化を測定した結果を図7に示す。この結
果、異方性分散角度は小さいほど好ましい結果の得られ
ることが確かめられた。しかし現状の技術では、異方性
分散角度は5度程度が限界であり、この時に抵抗変化率
Δρ/ρが5%となる。ただし、異方性分散角度を10度
前後に抑えられれば抵抗変化率を4.8%以上に設定する
ことができるため、本実施の形態では異方性分散角度を
5度から10度の間に設定している。次に、試料の一方向
を機械研磨により削り落とし、通常の薄膜ヘッドを研磨
面に押し当てて高周波領域における抵抗変化率も測定し
た。その結果を、図8に示すが、周波数30MHzまでは、
ほぼフラットな抵抗変化率を示すことが確かめられた。
Next, FIG. 7 shows the result of measuring the change in the rate of change in resistance while gradually decreasing the anisotropic dispersion angle from 70 degrees. As a result, it was confirmed that the smaller the anisotropic dispersion angle is, the more preferable results are obtained. However, in the current technology, the limit of the anisotropic dispersion angle is about 5 degrees, and at this time, the resistance change rate Δρ / ρ is 5%. However, if the anisotropic dispersion angle can be suppressed to about 10 degrees, the resistance change rate can be set to 4.8% or more. In this embodiment, the anisotropic dispersion angle is set between 5 degrees and 10 degrees. are doing. Next, one direction of the sample was scraped off by mechanical polishing, and a normal thin film head was pressed against the polished surface to measure the resistance change rate in a high frequency region. The results are shown in FIG. 8, where up to a frequency of 30 MHz,
It was confirmed that the resistance change rate was almost flat.

【0028】 次に、本実施の形態のデバイスを、誘導型の薄膜ヘッ
ド上に形成させた記録再生分離型ヘッドを試作して再生
特性を測定した。この記録再生分離型ヘッドの断面構造
を図9に示す。ここでは、外部磁界に対する分解能を向
上させるために、一対の磁性層と非磁性中間層により形
成される多層膜の両側にシールド層15と16を設けてい
る。このシールド層15、16の間隔は0.3μmである。こ
の磁気ヘッドを、保磁力2000Oe、膜厚500Åのスパッタ
媒体と組合せて再生特性を測定し、その結果を誘導型の
薄膜ヘッド、MRヘッドと比較した。図10は、横軸を記録
密度、縦軸を単位トラック幅当りの再生出力としてそれ
ぞれのヘッドの再生感度を比較した結果である。測定は
スペーシング0.15μmで行ったが、本発明の実施の形態
による磁気ヘッドにより得られる再生出力は誘導型ヘッ
ドの2.5倍、MRヘッドの約1.5倍と高く、またMRヘッドで
測定されるような再生出力変動は全く観測されなかっ
た。
Next, the device of the present embodiment was prototyped as a recording / reproducing separation type head formed on an inductive type thin film head, and the reproducing characteristics were measured. FIG. 9 shows a sectional structure of the recording / reproducing separation type head. Here, in order to improve the resolution with respect to an external magnetic field, shield layers 15 and 16 are provided on both sides of a multilayer film formed by a pair of magnetic layers and a non-magnetic intermediate layer. The distance between the shield layers 15 and 16 is 0.3 μm. This magnetic head was used in combination with a sputter medium having a coercive force of 2000 Oe and a film thickness of 500 mm to measure the reproduction characteristics, and the results were compared with those of an inductive thin film head and an MR head. FIG. 10 shows the results of comparing the read sensitivities of the respective heads with the horizontal axis representing the recording density and the vertical axis representing the read output per unit track width. Although the measurement was performed at a spacing of 0.15 μm, the reproduction output obtained by the magnetic head according to the embodiment of the present invention was 2.5 times higher than that of the inductive head and about 1.5 times higher than that of the MR head, and was measured by the MR head. No significant reproduction output fluctuation was observed.

【0029】[0029]

【発明の効果】【The invention's effect】

以上詳細に説明したごとく、磁性層に、絶縁体または
半導体もしくは反強磁性体よりなる中間層を挿入して形
成した多層構造の磁気抵抗効果膜を用いた本発明の磁気
抵抗効果素子において、磁気抵抗効果膜に流れるすべて
の電流が上記中間層を必ず通過するような素子構造にし
て、磁気抵抗効果膜の少なくとも一部を非磁性金属より
なる導体上に形成させた素子構造とすることにより、磁
気抵抗効果膜のすべての磁性層の膜面方向を、磁気記録
媒体面に対してほぼ直角に配置して磁界を検出する構造
にすることができるので、磁気記録媒体に対向する磁気
抵抗効果膜の端面部の磁性層の面積を極めて小さくする
ことができ、狭トラック化された高密度磁気記録媒体か
らの狭い領域からの漏洩磁界を高感度に検出することが
可能となる。そして、上記多層構造を持つ磁気抵抗効果
膜には、(1)強磁性トンネル効果を用いた磁性薄膜、
(2)反強磁性中間層を用いた磁性薄膜のいずれの型の
磁気抵抗効果膜にも適用することができ、本発明の利用
価値は極めて広い。
As described in detail above, in the magnetoresistive element of the present invention using the multi-layer magnetoresistive film formed by inserting an interlayer made of an insulator or a semiconductor or an antiferromagnetic material into the magnetic layer, By making the element structure such that all the current flowing through the resistance effect film always passes through the intermediate layer, by forming an element structure in which at least a part of the magnetoresistive effect film is formed on a conductor made of a nonmagnetic metal, Since the film surface direction of all the magnetic layers of the magnetoresistive film can be arranged so as to be substantially perpendicular to the surface of the magnetic recording medium to detect the magnetic field, the magnetoresistive film facing the magnetic recording medium can be formed. The area of the magnetic layer at the end face portion can be made extremely small, and it becomes possible to detect a leakage magnetic field from a narrow area from a high-density magnetic recording medium having a narrow track with high sensitivity. The magnetoresistive film having the multilayer structure includes (1) a magnetic thin film using a ferromagnetic tunnel effect,
(2) The present invention can be applied to any type of magnetoresistive film of a magnetic thin film using an antiferromagnetic intermediate layer, and the utility value of the present invention is extremely wide.

【0030】 そして、本発明の磁気抵抗効果素子を用いた再生用磁
気ヘッドは、例えばトラック幅が2μm以下であっても
再生出力が安定してS/N比の高い信号の再生が可能とな
るので、特に記憶容量が大きくかつデータの高速度転送
を必要とする磁気ディスク装置用ヘッドとして極めて有
効である。
The reproducing magnetic head using the magnetoresistive effect element of the present invention has a stable reproducing output and can reproduce a signal having a high S / N ratio even if the track width is 2 μm or less, for example. Therefore, it is particularly effective as a magnetic disk drive head which has a large storage capacity and requires high-speed data transfer.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施の形態1で例示した磁気抵抗効果素子の構
成を示す模式図。
FIG. 1 is a schematic diagram showing a configuration of a magnetoresistive element exemplified in Embodiment 1 of the present invention.

【図2】 本発明の実施の形態1で例示した磁気抵抗効果素子の印
加磁界と抵抗変化率との関係を示すグラフ。
FIG. 2 is a graph showing the relationship between the applied magnetic field and the rate of change of resistance of the magnetoresistive element exemplified in the first embodiment of the present invention.

【図3】 本発明の実施の形態2で例示した磁気抵抗効果素子の構
成を示す模式図。
FIG. 3 is a schematic diagram illustrating a configuration of a magnetoresistive element exemplified in Embodiment 2 of the present invention.

【図4】 本発明の実施の形態4で例示した磁気抵抗効果素子の作
製プロセスを示す工程図。
FIG. 4 is a process chart showing a manufacturing process of the magnetoresistance effect element exemplified in Embodiment 4 of the present invention.

【図5】 図4の工程により作製した磁気抵抗効果素子のヒステリ
シス特性を示すグラフ。
FIG. 5 is a graph showing hysteresis characteristics of the magnetoresistive element manufactured by the process of FIG.

【図6】 図4に示した素子の一様印加磁界に対する抵抗変化を示
すグラフ。
6 is a graph showing a change in resistance of the device shown in FIG. 4 with respect to a uniform applied magnetic field.

【図7】 図4に示した素子の異方性分散角度と抵抗変化率の関係
を示すグラフ。
FIG. 7 is a graph showing a relationship between an anisotropic dispersion angle and a resistance change rate of the device shown in FIG.

【図8】 図4に示した素子の周波数と抵抗変化率の関係を示すグ
ラフ。
8 is a graph showing the relationship between the frequency and the rate of change of resistance of the device shown in FIG.

【図9】 本発明の実施の形態4で例示した記録再生分離型ヘッド
の断面構造を示す模式図。
FIG. 9 is a schematic diagram showing a cross-sectional structure of a recording / reproducing separation type head exemplified in Embodiment 4 of the present invention.

【図10】 図9に示したヘッドの再生特性を従来の誘導型薄膜ヘッ
ドとMRヘッドと比較して示したグラフ。
FIG. 10 is a graph showing the reproduction characteristics of the head shown in FIG. 9 in comparison with a conventional inductive thin film head and an MR head.

【図11】 従来の磁気抵抗効果素子の構成を示す模式図。FIG. 11 is a schematic diagram showing a configuration of a conventional magnetoresistance effect element.

【図12】 従来の磁気抵抗効果素子の他の構成を示す模式図。FIG. 12 is a schematic view showing another configuration of a conventional magnetoresistance effect element.

【符号の説明】[Explanation of symbols]

1……Cu電極 2……Fe−1.3at%Ru合金層 3……SiO2層 4……Fe−1.0at%C合金層 5……磁気抵抗効果膜 6……Cu電極 7……トンネル接合部 8……基板 9……下部電極 10……下部磁極 11……絶縁層 12……上部磁極 13……レジスト 14……上部電極 15……シールド層 16……シールド層 17……絶縁層 18……磁束検出部 19……記録コイル 20……記録用磁極 21……磁気記録媒体1 ...... Cu electrode 2 ...... Fe-1.3at% Ru alloy layer 3 ...... SiO 2 layer 4 ...... Fe-1.0at% C alloy layer 5 ...... magnetoresistive film 6 ...... Cu electrode 7 ...... tunnel junction Section 8 Substrate 9 Lower electrode 10 Lower magnetic pole 11 Insulating layer 12 Upper magnetic pole 13 Resist 14 Upper electrode 15 Shield layer 16 Shield layer 17 Insulating layer 18 …… Flux detector 19 …… Recording coil 20 …… Recording magnetic pole 21 …… Magnetic recording medium

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小山 直樹 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 由比藤 勇 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 高野 公史 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 森脇 英稔 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 鈴木 幹夫 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 二本 正昭 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 釘屋 文雄 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 松田 好文 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 椎木 一夫 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (56)参考文献 特開 平2−61573(JP,A) 特開 昭58−4931(JP,A) Proceedings of th e International Sy mposium on Physics of Magnetic Mater ials(1987)p.303〜306「Eff ect of spin−depend ent tunneling on t he magnetic proper ties of multilayer ed ferromagnetic t hin films ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Naoki Koyama 1-280 Higashi Koikekubo, Kokubunji-shi, Tokyo Inside the Central Research Laboratory, Hitachi, Ltd. Inside the Central Research Laboratory of the Works (72) Inventor Kimishi Takano 1-280 Higashi Koikekubo, Kokubunji-shi, Tokyo Inside the Central Research Center of Hitachi, Ltd. In-house (72) Inventor Mikio Suzuki 1-280 Higashi Koikekubo, Kokubunji-shi, Tokyo Hitachi Central Research Laboratory, Inc. (72) Inventor Masaaki Nihon 1-280 Higashi-Koikekubo, Kokubunji-shi, Tokyo Hitachi Central Research Laboratory, Inc. Inventor Fumio Kugiya East of Kokubunji-shi, Tokyo 1-280 Koigakubo, Central Research Laboratory, Hitachi, Ltd. (72) Inventor Yoshifumi Matsuda 1-280 Higashi Koikekubo, Kokubunji-shi, Tokyo, Japan In-house Central Research Laboratory, Hitachi, Ltd. Address Central Research Laboratory of Hitachi, Ltd. (56) References JP-A-2-61573 (JP, A) JP-A-58-4931 (JP, A) Proceedings of the International Symposium on Physics of Magnetic Materials (1987) ) P. 303-306 "Effect of spin-dependent tunneling on the magnetic property properties of multilayerer ed ferromagnetic thin films"

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】第1の非磁性金属層と、該第1の非磁性金
属層上に形成された磁気抵抗効果膜と、該磁気抵抗効果
膜上に形成された第2の非磁性金属層とを備えた磁気ヘ
ッドにおいて、上記磁気抵抗効果膜が第1の磁性層と、
第2の磁性層と、該第1の磁性層と第2の磁性層との間
に形成された絶縁材料からなる中間層とを有し、トラッ
ク幅方向における上記磁気抵抗効果膜を構成する磁性層
の幅は、上記第1の非磁性金属層および第2の非磁性金
属層の幅より小さく、上記第1の非磁性金属層と第2の
非磁性金属層との間に電流を流すことにより上記中間層
を通って上記第1の磁性層および第2の磁性層間にトン
ネル電流が流れ、外部磁界が印加されると上記第1の磁
性層の磁化方向は変化することを特徴とする磁気ヘッ
ド。
1. A first non-magnetic metal layer, a magneto-resistance effect film formed on the first non-magnetic metal layer, and a second non-magnetic metal layer formed on the magneto-resistance effect film Wherein the magnetoresistive film is a first magnetic layer;
A magnetic layer having a second magnetic layer and an intermediate layer formed of an insulating material formed between the first magnetic layer and the second magnetic layer, and constituting the magnetoresistive film in the track width direction; The width of the layer is smaller than the width of the first non-magnetic metal layer and the width of the second non-magnetic metal layer, and a current flows between the first non-magnetic metal layer and the second non-magnetic metal layer. A tunnel current flows between the first magnetic layer and the second magnetic layer through the intermediate layer, and when an external magnetic field is applied, the magnetization direction of the first magnetic layer changes. head.
【請求項2】請求項1において、上記第1の非磁性金属
層と第2の非磁性金属層との間に電流を流すことによ
り、上記第1の磁性層および第2の磁性層間に上記中間
層を通過するトンネル電流が流れるとき、上記第1の磁
性層および第2の磁性層の磁化の向きが平行のときよ
り、上記第1の磁性層および第2の磁性層の磁化の向き
が反平行の時の方が、上記磁気抵抗効果膜の電気抵抗率
が高いことを特徴とする磁気ヘッド。
2. The method according to claim 1, wherein a current is passed between the first non-magnetic metal layer and the second non-magnetic metal layer so that the first magnetic layer and the second magnetic layer are interposed between the first and second magnetic layers. When a tunnel current passing through the intermediate layer flows, the magnetization directions of the first magnetic layer and the second magnetic layer are more changed than when the magnetization directions of the first magnetic layer and the second magnetic layer are parallel. A magnetic head characterized in that the electric resistance of the magnetoresistive film is higher when antiparallel is used.
【請求項3】請求項1または請求項2において、上記第
1の磁性層と第2の磁性層のいずれか一方の保磁力を他
方の保磁力より小さくすることを特徴とする磁気ヘッ
ド。
3. The magnetic head according to claim 1, wherein the coercive force of one of the first magnetic layer and the second magnetic layer is smaller than the other.
【請求項4】請求項1ないし請求項3のいずれか1項に
おいて、第1の磁気シールド層と第2の磁気シールド層
との間に磁気抵抗効果膜が形成され、上記第1の磁気シ
ールド層と磁気抵抗効果膜との間に形成された第1の非
磁性金属層と、上記第2の磁気シールド層と磁気抵抗効
果膜との間に形成された第2の非磁性金属層とを備えた
ことを特徴とする磁気ヘッド。
4. The first magnetic shield according to claim 1, wherein a magnetoresistive film is formed between the first magnetic shield layer and the second magnetic shield layer. A first nonmagnetic metal layer formed between the layer and the magnetoresistive film, and a second nonmagnetic metal layer formed between the second magnetic shield layer and the magnetoresistive film. A magnetic head comprising: a magnetic head;
【請求項5】請求項1ないし請求項4のいずれか1項に
おいて、上記中間層は酸化アルミニウムからなることを
特徴とする磁気ヘッド。
5. The magnetic head according to claim 1, wherein the intermediate layer is made of aluminum oxide.
【請求項6】第1の非磁性金属層と、該第1の非磁性金
属層上に形成された磁気抵抗効果膜と、該磁気抵抗効果
膜上に形成された第2の非磁性金属層とを備え、上記磁
気抵抗効果膜が第1の磁性層と、第2の磁性層と、該第
1の磁性層と第2の磁性層との間に形成された絶縁材料
からなる中間層とを有し、トラック幅方向における上記
磁気抵抗効果膜を構成する磁性層の幅は上記第1の非磁
性金属層および第2の非磁性金属層の幅より小さく、上
記第1の非磁性金属層と第2の非磁性金属層との間に電
流を流すことにより上記中間層を通って上記第1の磁性
層および第2の磁性層間にトンネル電流が流れ、外部磁
界が印加されると上記第1の磁性層の磁化方向は変化す
ることを特徴とする磁気抵抗効果素子。
6. A first non-magnetic metal layer, a magneto-resistance effect film formed on the first non-magnetic metal layer, and a second non-magnetic metal layer formed on the magneto-resistance effect film Wherein the magnetoresistive film comprises a first magnetic layer, a second magnetic layer, and an intermediate layer formed of an insulating material formed between the first magnetic layer and the second magnetic layer. Wherein the width of the magnetic layer constituting the magnetoresistive film in the track width direction is smaller than the width of the first nonmagnetic metal layer and the width of the second nonmagnetic metal layer. When a current flows between the first magnetic layer and the second nonmagnetic metal layer, a tunnel current flows between the first magnetic layer and the second magnetic layer through the intermediate layer. A magnetoresistive element, wherein the magnetization direction of the magnetic layer changes.
【請求項7】請求項6において、上記第1の非磁性金属
層と第2の非磁性金属層との間に電流を流すことにより
上記第1の磁性層および第2の磁性層間に上記中間層を
通過するトンネル電流が流れるとき、上記第1の磁性層
および第2の磁性層の磁化の向きが平行の時より上記第
1の磁性層および第2の磁性層の磁化の向きが反平行の
時の方が、上記磁気抵抗効果膜の電気抵抗率が高いこと
を特徴とする磁気抵抗効果素子。
7. The intermediate layer between the first magnetic layer and the second magnetic layer according to claim 6, wherein a current is passed between the first nonmagnetic metal layer and the second nonmagnetic metal layer. When a tunnel current passing through the layers flows, the magnetization directions of the first magnetic layer and the second magnetic layer are more antiparallel than when the magnetization directions of the first magnetic layer and the second magnetic layer are parallel. Wherein the electric resistance of the magnetoresistive film is higher at the time of (1).
【請求項8】請求項6または請求項7において、上記第
1の磁性層と第2の磁性層のいずれか一方の保磁力を他
方の保磁力より小さくすることを特徴とする磁気抵抗効
果素子。
8. A magnetoresistive element according to claim 6, wherein the coercive force of one of said first magnetic layer and said second magnetic layer is smaller than the other. .
【請求項9】請求項6ないし請求項8のいずれか1項に
おいて、上記中間層は酸化アルミニウムからなることを
特徴とする磁気抵抗効果素子。
9. A magnetoresistive element according to claim 6, wherein said intermediate layer is made of aluminum oxide.
JP14864390A 1990-06-08 1990-06-08 Magnetic head and magnetoresistive element Expired - Lifetime JP3261698B2 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP14864390A JP3261698B2 (en) 1990-06-08 1990-06-08 Magnetic head and magnetoresistive element
US07/710,775 US5390061A (en) 1990-06-08 1991-06-05 Multilayer magnetoresistance effect-type magnetic head
US08/328,090 US5726837A (en) 1990-06-08 1994-10-24 Multilayer magnetoresistance effect-type magnetic head
US08/626,333 US6011674A (en) 1990-06-08 1996-04-02 Magnetoresistance effect multilayer film with ferromagnetic film sublayers of different ferromagnetic material compositions
US09/468,309 US6278593B1 (en) 1990-06-08 1999-12-21 Magnetoresistance effect elements and magnetic heads using the tunneling magnetoresistive effect
JP2000022768A JP3378549B2 (en) 1990-06-08 2000-01-31 Magnetic head
US09/931,897 US6483677B2 (en) 1990-06-08 2001-08-20 Magnetic disk apparatus including magnetic head having multilayered reproducing element using tunneling effect
US10/270,120 US6687099B2 (en) 1990-06-08 2002-10-15 Magnetic head with conductors formed on endlayers of a multilayer film having magnetic layer coercive force difference
US10/700,500 US7054120B2 (en) 1990-06-08 2003-11-05 Magnetic apparatus with perpendicular recording medium and head having multilayered reproducing element using tunneling effect
US11/371,244 US7159303B2 (en) 1990-06-08 2006-03-09 Method for manufacturing magnetic head device
US11/543,210 US7292417B2 (en) 1990-06-08 2006-10-05 Magnetic apparatus with perpendicular recording medium and head having multilayered reproducing element using tunneling effect

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14864390A JP3261698B2 (en) 1990-06-08 1990-06-08 Magnetic head and magnetoresistive element

Related Child Applications (4)

Application Number Title Priority Date Filing Date
JP2000022768A Division JP3378549B2 (en) 1990-06-08 2000-01-31 Magnetic head
JP2000022776A Division JP2000200406A (en) 2000-01-01 2000-01-31 Magnetoresistance effect element and magnetic head
JP2000022796A Division JP2000200408A (en) 2000-01-01 2000-01-31 Magnetic recording and reproducing device
JP2000022782A Division JP2000200407A (en) 2000-01-01 2000-01-31 Magnetoresistance effect element and magnetic head

Publications (2)

Publication Number Publication Date
JPH0442417A JPH0442417A (en) 1992-02-13
JP3261698B2 true JP3261698B2 (en) 2002-03-04

Family

ID=15457386

Family Applications (2)

Application Number Title Priority Date Filing Date
JP14864390A Expired - Lifetime JP3261698B2 (en) 1990-06-08 1990-06-08 Magnetic head and magnetoresistive element
JP2000022768A Expired - Lifetime JP3378549B2 (en) 1990-06-08 2000-01-31 Magnetic head

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2000022768A Expired - Lifetime JP3378549B2 (en) 1990-06-08 2000-01-31 Magnetic head

Country Status (1)

Country Link
JP (2) JP3261698B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5646051A (en) * 1995-05-05 1997-07-08 Nec Research Institute, Inc. Process for forming a magnetoresistive sensor for a reading head
SG72760A1 (en) * 1996-09-19 2000-05-23 Tdk Corp Ferromagnetic tunnel junction magnetoresistive element and magnetic head
JP3436711B2 (en) 1999-08-24 2003-08-18 ティーディーケイ株式会社 Method for stabilizing characteristics of ferromagnetic tunnel junction device
JP4690675B2 (en) * 2004-07-30 2011-06-01 株式会社東芝 Magnetoresistive element, magnetic head, and magnetic recording / reproducing apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Proceedings of the International Symposium on Physics of Magnetic Materials(1987)p.303〜306「Effect of spin−dependent tunneling on the magnetic properties of multilayered ferromagnetic thin films

Also Published As

Publication number Publication date
JPH0442417A (en) 1992-02-13
JP3378549B2 (en) 2003-02-17
JP2000200405A (en) 2000-07-18

Similar Documents

Publication Publication Date Title
US6278593B1 (en) Magnetoresistance effect elements and magnetic heads using the tunneling magnetoresistive effect
JP3462832B2 (en) Magnetic resistance sensor, magnetic head and magnetic recording / reproducing apparatus using the same
US6249405B1 (en) Magnetic head including magnetoresistive element
US6295186B1 (en) Spin-valve magnetoresistive Sensor including a first antiferromagnetic layer for increasing a coercive force and a second antiferromagnetic layer for imposing a longitudinal bias
US6724585B2 (en) Magnetoresistive element and device utilizing magnetoresistance effect
US6023395A (en) Magnetic tunnel junction magnetoresistive sensor with in-stack biasing
JP2001126219A (en) Spin valve magneto-resistive sensor and thin film magnetic head
JP2003045011A (en) Spin valve type magneto-resistance effect reproducing head and its manufacturing method
JP2009026400A (en) Differential magnetoresistive magnetic head
US6765769B2 (en) Magnetoresistive-effect thin film, magnetoresistive-effect element, and magnetoresistive-effect magnetic head
JP2000215421A (en) Spin valve thin film magnetic element, thin film magnetic head, and production of spin valve thin film magnetic element
JP3541245B2 (en) Magnetic head and magnetic storage device having the same
JP2000315305A (en) Magnetic reproducing head, magnetic head assembly, magnetic disk driving device and manufacture of magnetic head assembly
JP2000113421A (en) Magnetic tunnel junction magneto-resistive head
JP3261698B2 (en) Magnetic head and magnetoresistive element
JP3190193B2 (en) How to use thin film magnetic head
JP3673250B2 (en) Magnetoresistive element and reproducing head
JPH10269532A (en) Spin valve type magneto-resistive effect head
JP2000340857A (en) Magnetoresistive effect film and magnetoresistive effect element
JP2000340859A (en) Magnetoresistive effect element, head having the same, and memory element
JP3561026B2 (en) Magnetoresistive head
JPH04339309A (en) Magneto-resistance effect element using multilayred magneto-resistance effect film
JP2000200408A (en) Magnetic recording and reproducing device
JP3083090B2 (en) Magnetoresistive sensor
JP2003051630A (en) Magnetoresistance effect device and magnetic head

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071221

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081221

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081221

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091221

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 9

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 9