JPH0240972A - Magnetoresistance effect thin film - Google Patents

Magnetoresistance effect thin film

Info

Publication number
JPH0240972A
JPH0240972A JP63191505A JP19150588A JPH0240972A JP H0240972 A JPH0240972 A JP H0240972A JP 63191505 A JP63191505 A JP 63191505A JP 19150588 A JP19150588 A JP 19150588A JP H0240972 A JPH0240972 A JP H0240972A
Authority
JP
Japan
Prior art keywords
magnetic field
thin film
anisotropic magnetic
value
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63191505A
Other languages
Japanese (ja)
Inventor
Tomihiko Tatsumi
富彦 辰巳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63191505A priority Critical patent/JPH0240972A/en
Publication of JPH0240972A publication Critical patent/JPH0240972A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a magnetoresistive element of high sensitivity by sufficiently decreasing anisotropic magnetic field by using fine crystal grains of Ni, Fe and Co whose average grain diameters are equal to or less than 30nm. CONSTITUTION:NiFe alloy exhibits an MR ratio, low magnetostriction and small anisotropic magnetic field. NiCo alloy exhibits an remarkably large MR ratio, but the value of isotropic magnetic field is rather large as compared with NiFe. When an alloy thin film is formed by selecting Co concentration, and using, as main component, fine crystal grains of Ni, Fe and Co whose average grain diameters are equal to or less than 30nm, the value of anisotropic magnetic field becomes sufficiently small from the viewpoint of magnetic field detection sensitivity, and exhibits characteristics suitable to a highly sensitive MR element.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は強磁性磁気抵抗効果(以下、MR効果と略す)
を利用して磁界を検出する磁気抵抗効果素子(以下、M
R素子と略す)に用いる強磁性磁気抵抗効果薄膜(以下
、MR膜と略す)に関するものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to the ferromagnetic magnetoresistive effect (hereinafter abbreviated as MR effect).
A magnetoresistive element (hereinafter referred to as M
The present invention relates to a ferromagnetic magnetoresistive thin film (hereinafter abbreviated as MR film) used in an R element (abbreviated as R element).

(従来の技術) 周知の如く、MR効果を用いて磁界を検出するMR素子
は、磁気センサー、磁気ヘッド、回転検出素子、位置検
出素子などとして、現在盛んに利用されている。このM
R素子の主要部分であるMR膜には、NiFeまたはN
iCo合金薄膜が広く用いられてきた。特に、NiFe
は、異方性磁界が40g程度と小さく、非常に良好な軟
磁気特性を示すため、外部からの印加磁界に対する磁化
の応答が良く、例えば、MR効果を用いて微弱な信号磁
界を読み出すMRヘッドには最適であるとされてきた。
(Prior Art) As is well known, MR elements that detect magnetic fields using the MR effect are currently widely used as magnetic sensors, magnetic heads, rotation detection elements, position detection elements, and the like. This M
The MR film, which is the main part of the R element, is made of NiFe or N.
iCo alloy thin films have been widely used. In particular, NiFe
has a small anisotropic magnetic field of about 40 g and exhibits very good soft magnetic properties, so its magnetization responds well to externally applied magnetic fields.For example, it is used as an MR head that uses the MR effect to read out weak signal magnetic fields. It has been considered optimal for

(発明が解決しようとする課題) ところで、現在MR素子の高感度化が重要な課題となっ
ている。特に磁気記録の分野において、記録密度の向上
のためには、MRヘッドの磁界感度を高めることが急務
である。このためには、MR膜の異方性磁界が十分小さ
な値であることが必要とされる。特に、MRヘッドにお
いては、磁界に対する線形応答性が必要とされるため、
バイアス磁界をMR膜に印加するが、その際、バイアス
のかかり易さの点から、MRs、の異方性磁界は約10
0e以下であることが望ましい。
(Problems to be Solved by the Invention) Nowadays, increasing the sensitivity of MR elements is an important issue. Particularly in the field of magnetic recording, there is an urgent need to increase the magnetic field sensitivity of MR heads in order to improve recording density. For this purpose, it is necessary that the anisotropic magnetic field of the MR film has a sufficiently small value. In particular, MR heads require linear response to magnetic fields;
A bias magnetic field is applied to the MR film, but from the viewpoint of ease of bias application, the anisotropic magnetic field of MRs is approximately 10
It is desirable that it be 0e or less.

前述したように、異方、性磁界の値が小さいMR効果材
料としては、NiFeが知られているが、MR素子にお
いてより高い出力を求める際には、NiFeよりも大き
なMR効果を示す材料が望まれる。このような材料とし
ては、NiCoが知られている(フジツウサイエンスア
ンドテクニカルジャーナル、1974年、第123ペー
ジ)。ところがNiCoは、異方性磁界の値が約200
eと大きく、高感度のMR材料としては利用できないと
いう課題があった。
As mentioned above, NiFe is known as an MR effect material with a small anisotropic magnetic field value, but when seeking higher output in an MR element, it is necessary to find a material that exhibits a larger MR effect than NiFe. desired. NiCo is known as such a material (Fujitsu Science and Technical Journal, 1974, p. 123). However, for NiCo, the anisotropic magnetic field value is approximately 200
The problem is that it cannot be used as a highly sensitive MR material due to its large e.

本発明は、以上の点に鑑み、異方性磁界の値が小さく、
高感度のMR素子に適するMR材料を提供しようとする
ものである。
In view of the above points, the present invention has a small anisotropic magnetic field value,
The present invention aims to provide an MR material suitable for highly sensitive MR elements.

(課題を解決するための手段) 本発明のMR膜においては、Ni、 Fe、 Coを主
成分とし、薄膜を構成する微結晶粒の平均粒径が30n
m以下であることを特徴としている。
(Means for Solving the Problems) The MR film of the present invention contains Ni, Fe, and Co as main components, and the average grain size of the microcrystal grains constituting the thin film is 30 nm.
m or less.

(作用) ここで、本発明において、Ni、 Fe、 Coを主成
分とし、微結晶粒の平均粒径を上記の如く限定した理由
について述べる。
(Function) Here, in the present invention, the reason why Ni, Fe, and Co are the main components and the average grain size of the microcrystalline grains is limited as described above will be described.

MR材料として用いられるNiFe合金は、比較的大き
なMR比と低磁歪および小さな異方性磁界を有している
。一方、NiCo合金は非常に大きなMR比を示すが、
異方性磁界の値はNiFeに較べてかなり大きい。これ
らの事実から、本発明における、Ni、Fe、 Coを
主成分とする合金薄膜においては、Co濃度を選択する
ことによって、NiFeよりも大きなMR比を得ること
ができ、しかもNiFeと同程度の小さな異方性磁界を
実現することができると考えられる。
NiFe alloys used as MR materials have relatively large MR ratios, low magnetostriction, and small anisotropy fields. On the other hand, NiCo alloy shows a very large MR ratio,
The value of the anisotropic magnetic field is quite large compared to NiFe. From these facts, in the alloy thin film mainly composed of Ni, Fe, and Co in the present invention, by selecting the Co concentration, it is possible to obtain a larger MR ratio than that of NiFe, and moreover, it is possible to obtain an MR ratio comparable to that of NiFe. It is believed that a small anisotropic magnetic field can be achieved.

第1図に、この三元合金薄膜における異方性磁界と結晶
粒径(測定はFE−8EMによる)の関係を示す。
FIG. 1 shows the relationship between the anisotropic magnetic field and the crystal grain size (measured using FE-8EM) in this ternary alloy thin film.

各データ点上に膜のCo濃度を示している。この図によ
ると、異方性磁界の値が、磁界検出感度の点で十分小さ
いと考えられる80e以下においては、結晶粒径の値は
30nm以下となっている。ところが異方性磁界が約1
70eとなる膜(NlB□Co18)においては、結晶
粒径200nmと非常に大きくなる。よって、結晶粒径
の値を30nm以下に抑えることによづて、異方性磁界
の値を80e以下に抑えることができる。
The Co concentration of the film is shown above each data point. According to this figure, when the anisotropic magnetic field value is 80e or less, which is considered to be sufficiently small in terms of magnetic field detection sensitivity, the crystal grain size value is 30 nm or less. However, the anisotropic magnetic field is approximately 1
In the film of 70e (NlB□Co18), the crystal grain size is very large, 200 nm. Therefore, by suppressing the crystal grain size to 30 nm or less, the anisotropic magnetic field value can be suppressed to 80e or less.

以上の実験事実から、Ni、 Fe、 Coを主成分と
し、薄膜を構成する微結晶粒の平均粒径を30nm以下
とすることによって、高感度のMR素子に適するMR効
果薄膜を得ることができる。
From the above experimental facts, it is possible to obtain an MR effect thin film suitable for high-sensitivity MR elements by using Ni, Fe, and Co as main components and setting the average grain size of the microcrystalline grains constituting the thin film to 30 nm or less. .

一般に、薄膜を構成する結晶粒が小さいほど、結晶磁気
異方性が抑制され、薄膜の異方性磁界は小さくなると考
えらえている。本発明によるNi、Fe、 Coを主成
分とする合金薄膜においては結晶粒径が30nm以下で
あるため、異方性磁界の値が磁界検出感度の点から十分
小さく、高感度なMR素子に適する薄膜として優れた特
性を発揮するにいたる。
Generally, it is believed that the smaller the crystal grains constituting a thin film, the more suppressed the magnetocrystalline anisotropy is, and the smaller the anisotropic magnetic field of the thin film becomes. Since the crystal grain size of the alloy thin film mainly composed of Ni, Fe, and Co according to the present invention is 30 nm or less, the anisotropic magnetic field value is sufficiently small from the viewpoint of magnetic field detection sensitivity, making it suitable for highly sensitive MR elements. It has come to exhibit excellent properties as a thin film.

(実施例1) 第2図に本発明の一実施例を示す。(Example 1) FIG. 2 shows an embodiment of the present invention.

第2図において、ガラス基板1上に、MR成膜として膜
厚150nmのNi82Fe12Co6(重量%)膜を
蒸着した。
In FIG. 2, a Ni82Fe12Co6 (wt%) film having a thickness of 150 nm was deposited on a glass substrate 1 as an MR film.

この膜表面をSEMを用いて観察したところ、結晶粒径
は30nmであった。さらに試料振動型磁力計を用いて
磁気異方性を測定したところ、異方性磁界の値は?、8
0eであり、磁界検出感度の点から望ましい値となって
いることがわがった。次に、この膜上にAu3を蒸着し
た(膜厚は240nm)。さらに、このAu蒸着膜上に
フォトレジストパターンを形成し、Arガス雰囲気中で
イオンエツチングを行い、感磁部分である矩形状のパタ
ーン4およびセンス電流を供給するための電極パターン
5に加工した。ここで、エツチング条件は、加速電圧:
500V、 Arガス圧カニ I X 10−’Tor
rである。さらに、このパターン上にマスクとなるフォ
トレジストパターンを形成し、選択化学エツチングを行
うことによって、MR膜を長さ2mm、幅511mの矩
形状のパターンに2出させ、MR素子を作製した。
When the surface of this film was observed using SEM, the crystal grain size was 30 nm. Furthermore, when we measured the magnetic anisotropy using a sample vibrating magnetometer, what was the value of the anisotropic magnetic field? , 8
It was found that the value was 0e, which is a desirable value from the viewpoint of magnetic field detection sensitivity. Next, Au3 was deposited on this film (film thickness: 240 nm). Furthermore, a photoresist pattern was formed on this Au vapor deposited film, and ion etching was performed in an Ar gas atmosphere to form a rectangular pattern 4 as a magnetically sensitive part and an electrode pattern 5 for supplying a sense current. Here, the etching conditions are acceleration voltage:
500V, Ar gas pressure crab I X 10-'Tor
It is r. Furthermore, a photoresist pattern serving as a mask was formed on this pattern, and selective chemical etching was performed to form two MR films into two rectangular patterns each having a length of 2 mm and a width of 511 m, thereby producing an MR element.

本実施例において作製されたMR素子は、結晶粒径が小
さいため異方性磁界が小さく、良好な軟磁気特性を示す
。そこで、この素子に数Oeのオーダーで変化する外部
磁界を印加したところ、従来に較べて、より高い磁界検
出感度を得ることができた。
The MR element manufactured in this example has a small crystal grain size, so the anisotropic magnetic field is small, and exhibits good soft magnetic properties. Therefore, when an external magnetic field varying on the order of several Oe was applied to this element, higher magnetic field detection sensitivity could be obtained than in the past.

(実施例2) 第2図において、MR成膜として、NlB2Fel2C
O6(重量%)を5X10−3TorrのArガス中、
放電電力5.0W/am2の条件下でスパッタ法で成膜
し、他は、実施例1と全く同様にしてMR素子を作製し
た。
(Example 2) In FIG. 2, NlB2Fel2C was used for MR film formation.
O6 (wt%) in Ar gas at 5X10-3 Torr,
An MR element was produced in the same manner as in Example 1 except that the film was formed by sputtering under the condition of discharge power of 5.0 W/am2.

MRR2O結晶粒径を測定したところ、実施例1と同じ
< 30nmであった。このようにして作製したMR素
子においても、実施例1と同様に、高磁界検出感度を得
ることができた。
When the MRR2O crystal grain size was measured, it was <30 nm, the same as in Example 1. In the MR element manufactured in this way as well, high magnetic field detection sensitivity could be obtained as in Example 1.

(発明の効果) 以上のように、本発明の磁気抵抗効果薄膜はNi、 F
e、 Coを主成分とし、薄膜を構成する微結晶粒の平
均粒径が30nm以下であることを特徴としているため
、異方性磁界の値が磁界検出感度の点からみて十分小さ
くなり、高感度のMR素子に適していることがわかる。
(Effects of the Invention) As described above, the magnetoresistive thin film of the present invention is made of Ni, F
e, Co as the main component, and the average grain size of the microcrystalline grains constituting the thin film is 30 nm or less, so the anisotropic magnetic field value is sufficiently small from the viewpoint of magnetic field detection sensitivity, and high It can be seen that it is suitable for high-sensitivity MR elements.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明にかかわるMR膜の基礎特性を示す図で
あって、結晶粒径と異方性磁界の関係を示す図である。 第2図は本発明の一実施例を示す図である。 図において、
FIG. 1 is a diagram showing the basic characteristics of the MR film according to the present invention, and is a diagram showing the relationship between crystal grain size and anisotropic magnetic field. FIG. 2 is a diagram showing an embodiment of the present invention. In the figure,

Claims (1)

【特許請求の範囲】[Claims] Ni、Fe、Coを主成分とする磁気抵抗効果薄膜にお
いて、薄膜を構成する微結晶粒の平均粒径が30nm以
下であることを特徴とする磁気抵抗効果薄膜。
1. A magnetoresistive thin film containing Ni, Fe, and Co as main components, characterized in that the average grain size of microcrystalline grains constituting the thin film is 30 nm or less.
JP63191505A 1988-07-29 1988-07-29 Magnetoresistance effect thin film Pending JPH0240972A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63191505A JPH0240972A (en) 1988-07-29 1988-07-29 Magnetoresistance effect thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63191505A JPH0240972A (en) 1988-07-29 1988-07-29 Magnetoresistance effect thin film

Publications (1)

Publication Number Publication Date
JPH0240972A true JPH0240972A (en) 1990-02-09

Family

ID=16275768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63191505A Pending JPH0240972A (en) 1988-07-29 1988-07-29 Magnetoresistance effect thin film

Country Status (1)

Country Link
JP (1) JPH0240972A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05235435A (en) * 1992-02-21 1993-09-10 Ckd Corp Magnetoresistance element
FR2692711A1 (en) * 1992-06-23 1993-12-24 Thomson Csf Magnetoresistive transducer.
US6052262A (en) * 1997-03-14 2000-04-18 Kabushiki Kaisha Toshiba Magneto-resistance effect element and magnetic head

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6064484A (en) * 1983-09-19 1985-04-13 Hitachi Ltd Ferromagnetic magnetoresistance effect alloy film
JPS60200935A (en) * 1984-03-23 1985-10-11 Hitachi Ltd Magneto-resistance effect alloy film and its production
JPS61144893A (en) * 1984-12-18 1986-07-02 Aichi Tokei Denki Co Ltd Magnetic resistance element
JPS6319804A (en) * 1986-07-14 1988-01-27 Hitachi Ltd Multilayer magnetic material film
JPS63311613A (en) * 1987-06-11 1988-12-20 Hitachi Ltd Thin film magnetic head

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6064484A (en) * 1983-09-19 1985-04-13 Hitachi Ltd Ferromagnetic magnetoresistance effect alloy film
JPS60200935A (en) * 1984-03-23 1985-10-11 Hitachi Ltd Magneto-resistance effect alloy film and its production
JPS61144893A (en) * 1984-12-18 1986-07-02 Aichi Tokei Denki Co Ltd Magnetic resistance element
JPS6319804A (en) * 1986-07-14 1988-01-27 Hitachi Ltd Multilayer magnetic material film
JPS63311613A (en) * 1987-06-11 1988-12-20 Hitachi Ltd Thin film magnetic head

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05235435A (en) * 1992-02-21 1993-09-10 Ckd Corp Magnetoresistance element
FR2692711A1 (en) * 1992-06-23 1993-12-24 Thomson Csf Magnetoresistive transducer.
US6052262A (en) * 1997-03-14 2000-04-18 Kabushiki Kaisha Toshiba Magneto-resistance effect element and magnetic head

Similar Documents

Publication Publication Date Title
US6111782A (en) Magnetoresistance effect device, and magnetoresistance effect type head, memory device, and amplifying device using the same
JP3293437B2 (en) Magnetoresistive element, magnetoresistive head and memory element
US5159513A (en) Magnetoresistive sensor based on the spin valve effect
EP0432890A2 (en) Magnetoresistive sensor
JP3184352B2 (en) Memory element
JP3574186B2 (en) Magnetoresistance effect element
JPH0261572A (en) Magnetic field sensor using ferromagnetic thin-film
US5764445A (en) Exchange biased magnetoresistive transducer
JPH04247607A (en) Magnetoresistance effect element
JPH04358310A (en) Magnetic reluctance sensor utilizing spin valve effect
JPH0950613A (en) Magnetoresistive effect element and magnetic field detecting device
US6256222B1 (en) Magnetoresistance effect device, and magnetoresistaance effect type head, memory device, and amplifying device using the same
JP3466470B2 (en) Thin film magnetoresistive element
JPH1187804A (en) Thin-film magnetic field sensor
JPH0240972A (en) Magnetoresistance effect thin film
JPH076329A (en) Magneto-resistance effect element and magnetic head using the same and magnetic recording and reproducing device
JP2000306218A (en) Magnetoresistance effect type head and magnetic recording and reproducing device
JP2545935B2 (en) Magnetoresistive thin film and method of manufacturing the same
JP3028585B2 (en) Magnetoresistive element
JPH08297814A (en) Magneto-resistance effect element
JP2000173026A (en) Magnetoresistive effect element and magnetic head
JPH042185A (en) Magnetoresistance effect thin film
JP2850584B2 (en) Method of manufacturing magnetoresistive element
JPH1049834A (en) Multilayer magnetoresistance film, magnetoresistance element, and magnetoresistance magnetic head
JP3832446B2 (en) Magnetoresistive element and magnetic head