JPH1187804A - Thin-film magnetic field sensor - Google Patents

Thin-film magnetic field sensor

Info

Publication number
JPH1187804A
JPH1187804A JP9279308A JP27930897A JPH1187804A JP H1187804 A JPH1187804 A JP H1187804A JP 9279308 A JP9279308 A JP 9279308A JP 27930897 A JP27930897 A JP 27930897A JP H1187804 A JPH1187804 A JP H1187804A
Authority
JP
Japan
Prior art keywords
thin film
magnetic field
magnetic
thin
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9279308A
Other languages
Japanese (ja)
Other versions
JP3640230B2 (en
Inventor
Nobukiyo Kobayashi
伸聖 小林
Susumu Murakami
進 村上
Shigehiro Onuma
繁弘 大沼
Takeshi Masumoto
健 増本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elect & Magn Alloys Res Inst
Research Institute for Electromagnetic Materials
Original Assignee
Elect & Magn Alloys Res Inst
Research Institute for Electromagnetic Materials
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elect & Magn Alloys Res Inst, Research Institute for Electromagnetic Materials filed Critical Elect & Magn Alloys Res Inst
Priority to JP27930897A priority Critical patent/JP3640230B2/en
Publication of JPH1187804A publication Critical patent/JPH1187804A/en
Application granted granted Critical
Publication of JP3640230B2 publication Critical patent/JP3640230B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To cope with the miniaturization of a magnetic sensor element, by increasing the magnetic sensitivity of a magnetic resistance effect due to a soft magnetic thin film and an enormous magnetic resistance thin film. SOLUTION: In a thin-film magnetic field sensor, two soft magnetic thin films are arranged with clearance that is 20 times or less larger than a film thickness in the same plane, and an enormous magnetic resistance thin film is arranged at the clearance. Then, the two soft magnetic thin films are magnetized, a magnetic field corresponding to the magnetization of each soft magnetic thin film is operated on the enormous magnetic resistance thin film being arranged at the clearance part, the MR (magnetic resistance effect) ratio of the enormous magnetic resistance thin film is set to nearly a saturation value in a small external magnetic field, and magnetic sensitivity is improved, thus enabling the enormous magnetic resistance thin film with the MR characteristics to be built into the thin-film sensor, drastically improving the magnetic field sensitivity, and coping with the miniaturization of a magnetic sensor element.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、磁界感度の劣る磁気抵
抗薄膜を軟磁性薄膜の高い飽和磁束密度を利用し、磁界
感度を著しく向上させた磁界センサおよびこれを用いた
磁気MRヘッドに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic field sensor in which a magnetic resistance thin film having a low magnetic field sensitivity utilizes a high saturation magnetic flux density of a soft magnetic thin film to greatly improve the magnetic field sensitivity, and a magnetic MR head using the same. It is.

【0002】[0002]

【従来の技術】近年、情報の大容量化、高速化に伴い、
磁気記録の分野においても更なる記録密度の高密度化が
進められ、垂直磁気記録方式など様々な試みがなされて
いる。磁気抵抗効果(MR)を利用したヘッド(MRヘ
ッド)は、上記の要請に対応するものとして注目され、
現在盛んに研究されている。また、MRセンサは、サー
ボモーターやロータリーエンコダーなどの磁界センサと
しても広く利用されている。
2. Description of the Related Art In recent years, with the increase in information capacity and speed,
In the field of magnetic recording, the recording density has been further increased, and various attempts such as a perpendicular magnetic recording method have been made. Heads (MR heads) utilizing the magnetoresistive effect (MR) have attracted attention as meeting the above requirements,
Currently being actively studied. In addition, MR sensors are widely used as magnetic field sensors such as servo motors and rotary encoders.

【0003】このような状況の中で、従来のMR材料の
10倍以上のもの巨大磁気抵抗効果(GMR)を示す材
料が、Fe/Cr系などの金属人工格子膜で見出された
(M.N.Baibich et al,Phys.R
ev.Lett.61(1988)2472)。GMR
は、この発見をきっかけに金属人工格子のみならず、M
n酸化物などの酸化物系、Co−Cu合金などの金属−
金属系グラニュラー合金、またCo−Al−O合金薄膜
などの金属−非金属系グラニュラー合金薄膜などで見出
され、現在盛んに研究されている。これらの材料は、M
R比が大きいことから磁気ヘッドなどの磁界センサへの
応用が期待されている。しかし、金属人工格子のGMR
を利用したスピンバルブヘッドの実用化が進められてい
るものの、安定性や歩留まりの悪いことなど、問題は多
い。また、金属人工格子以外の材料においては、磁界感
度が著しく悪く、磁気ヘッドなどの磁界センサに利用す
ることは出来なかった。
Under such circumstances, a material exhibiting a giant magnetoresistance effect (GMR) that is ten times or more that of a conventional MR material has been found in a metal artificial lattice film of Fe / Cr or the like (M). N. Baibich et al, Phys.
ev. Lett. 61 (1988) 2472). GMR
Has discovered that not only metal artificial lattices but also M
Oxides such as n-oxides, metals such as Co-Cu alloys-
It has been found in metal-based granular alloys and metal-nonmetallic-based granular alloy thin films such as Co-Al-O alloy thin films, and is currently being actively studied. These materials are M
Because of a large R ratio, application to a magnetic field sensor such as a magnetic head is expected. However, GMR of metal artificial lattice
Although spin valve heads utilizing the technology have been put to practical use, there are many problems such as poor stability and low yield. In addition, materials other than metal artificial lattices have extremely poor magnetic field sensitivity, and cannot be used for magnetic field sensors such as magnetic heads.

【0004】MR比が非常に大きいにもかかわらず、磁
界感度が悪い酸化物系GMR材料の磁界感度を向上させ
るユニークな方法が、H.Y.Hwang等によって提
案された(H.Y.Hwang et al,App
l.Phys.Lett.,68(1996)349
4)。それによると、0.1mm厚のMn酸化物GMR
材料を、2つの1.47×1.47×24.2mm大の
MnZnフェライトに挟み、フェライトの高い透磁率を
利用して、見かけ上GMRの磁界感度を上げることに成
功している。しかしこの報告では、フェライトの飽和磁
束密度が小さいため、十分な磁界感度が得られていない
上に、数mm以上の大きさのバルク材料を用いており、
MRヘッドなどのマイクロデバイスには用いられていな
い。
[0004] A unique method for improving the magnetic field sensitivity of oxide-based GMR materials having a very high MR ratio but low magnetic field sensitivity is disclosed in H.S. Y. (HY Hwang et al, App.
l. Phys. Lett. , 68 (1996) 349.
4). According to this, a 0.1 mm thick Mn oxide GMR
The material is sandwiched between two 1.47 × 1.47 × 24.2 mm MnZn ferrites, and apparently the magnetic field sensitivity of GMR has been successfully increased by utilizing the high magnetic permeability of the ferrite. However, in this report, because the ferrite has a low saturation magnetic flux density, sufficient magnetic field sensitivity has not been obtained, and bulk materials of several mm or more are used,
It is not used for micro devices such as MR heads.

【0005】[0005]

【発明が解決しようとする課題】以上のように、薄膜G
MR材料は、その応用化が期待されているにもかかわら
ず、磁界感度が悪いために、MRヘッドなどの磁界セン
サに用いることが出来なかった。特に、金属−非金属系
グラニュラー合金薄膜は、成膜状態でGMRを示し、ま
た1×10μΩcm以上の高い電気比抵抗を有し、小
さな電流で大きな電圧変化が得られるなどの特長を有す
るにもかかわらず、磁界感度が悪いために、センサなど
に用いることはできなかった。
As described above, the thin film G
Despite the prospect of its application, MR materials cannot be used for magnetic field sensors such as MR heads due to poor magnetic field sensitivity. In particular, a metal-nonmetallic granular alloy thin film exhibits GMR in a deposited state, has a high electric resistivity of 1 × 10 4 μΩcm or more, and has a feature that a large voltage change can be obtained with a small current. Nevertheless, it could not be used for sensors and the like due to poor magnetic field sensitivity.

【0006】本発明は、上記の事情を鑑みてなされたも
ので、磁界感度の悪いGMR薄膜材料を軟磁性薄膜と複
合化し、磁界感度の高いGMR薄膜磁界センサを提供す
ることを目的とする。
The present invention has been made in view of the above circumstances, and has as its object to provide a GMR thin film magnetic field sensor having high magnetic field sensitivity by combining a GMR thin film material having low magnetic field sensitivity with a soft magnetic thin film.

【0007】[0007]

【課題を解決するための手段】本発明は、上記の事情を
鑑みて鋭意努力した結果である。磁界感度の悪いGMR
薄膜材料と軟磁性薄膜を図1に示すように同一平面内に
配置し、外部磁界に対する軟磁性膜の高い飽和磁束密度
を利用することによって、GMRの磁界感度が著しく改
善され、極めて磁界感度の高い薄膜磁界センサを得るこ
とができる。また膜厚が数μm以下の薄膜材料を用い、
電子ビームリソグラフィやイオンビームエッチングなど
の微細加工技術を用いることによって、磁界センサのマ
イクロ化に対応することが可能である。本発明の特徴と
するところは次の通りである。
SUMMARY OF THE INVENTION The present invention is a result of intensive efforts in view of the above circumstances. GMR with poor magnetic field sensitivity
By arranging the thin film material and the soft magnetic thin film on the same plane as shown in FIG. 1 and utilizing the high saturation magnetic flux density of the soft magnetic film to an external magnetic field, the magnetic field sensitivity of the GMR is remarkably improved, A high thin-film magnetic field sensor can be obtained. Also, using a thin film material having a thickness of several μm or less,
By using a microfabrication technique such as electron beam lithography or ion beam etching, it is possible to cope with the miniaturization of a magnetic field sensor. The features of the present invention are as follows.

【0008】第1発明は、軟磁性薄膜と巨大磁気抵抗薄
膜とによって構成することにより、磁気抵抗効果の磁界
感度を上げたことを特徴とする薄膜磁界センサに関す
る。
The first invention relates to a thin film magnetic field sensor comprising a soft magnetic thin film and a giant magnetoresistive thin film to increase the magnetic field sensitivity of a magnetoresistance effect.

【0009】第2発明は、巨大磁気抵抗薄膜の両側に軟
磁性薄膜を配置することを特徴とする請求項1に記載の
薄膜磁界センサに関する。
The second invention relates to a thin-film magnetic field sensor according to claim 1, wherein soft magnetic thin films are arranged on both sides of a giant magnetoresistive thin film.

【0010】第3発明は、同一平面内において、巨大磁
気抵抗薄膜の両側に軟磁性薄膜を配置することを特徴と
する請求項1または請求項2に記載の薄膜磁界センサに
関する。
A third invention relates to a thin film magnetic field sensor according to claim 1 or 2, wherein soft magnetic thin films are arranged on both sides of a giant magnetoresistive thin film in the same plane.

【0011】第4発明は、8kG以上の飽和磁束密度を
有する軟磁性薄膜と、室温で3%以上のMR変化を有す
る巨大磁気抵抗薄膜から構成する請求項1ないし請求項
3のいずれか1項に記載の薄膜磁界センサに関する。
According to a fourth aspect of the present invention, the soft magnetic thin film has a saturation magnetic flux density of 8 kG or more and a giant magnetoresistive thin film having an MR change of 3% or more at room temperature. The present invention relates to a thin-film magnetic field sensor described in 1.

【0012】第5発明は、巨大磁気抵抗薄膜が1×10
μΩcm以上の高電気比抵抗を有し、且つ室温で3%
以上のMR変化を有する金属−絶縁体ナノグラニュラー
薄膜であることを特徴とする請求項1ないし請求項3の
いずれか1項に記載の薄膜磁界センサに関する。
According to a fifth aspect of the present invention, the giant magnetoresistive thin film is 1 × 10
High electrical resistivity of 4 μΩcm or more and 3% at room temperature
The thin film magnetic field sensor according to any one of claims 1 to 3, which is a metal-insulator nanogranular thin film having the above MR change.

【0013】第6発明は、請求項1ないし請求項5のい
ずれか1項に記載の薄膜磁界センサからなる磁気MRヘ
ッドに関する。
A sixth invention relates to a magnetic MR head comprising the thin-film magnetic field sensor according to any one of claims 1 to 5.

【0014】[0014]

【作用】本発明の薄膜磁界センサは、二つの軟磁性薄膜
を同一平面内に膜厚の20倍以下の隙間を隔てて配置
し、その隙間にGMR薄膜を配置した構造にする必要が
ある。このとき、軟磁性薄膜はどちらか一方のみでも効
果はあるが、上記のようにGMR薄膜を挟むように両側
配置した構造とする方がより効果的である。この構造を
有することによって、軟磁性薄膜が磁化すると、隙間の
部分に配置されたGMR薄膜に軟磁性薄膜の磁化に相当
する磁界が作用する。このため、GMR薄膜のMR比
は、小さな外部磁界においてほぼ飽和値を示し、磁界感
度が著しく大きくなる。
The thin film magnetic field sensor of the present invention needs to have a structure in which two soft magnetic thin films are arranged on the same plane with a gap of 20 times or less the film thickness, and the GMR thin film is arranged in the gap. At this time, although only one of the soft magnetic thin films is effective, it is more effective to adopt a structure in which the GMR thin films are arranged on both sides as described above. With this structure, when the soft magnetic thin film is magnetized, a magnetic field corresponding to the magnetization of the soft magnetic thin film acts on the GMR thin film disposed in the gap. For this reason, the MR ratio of the GMR thin film shows a substantially saturated value in a small external magnetic field, and the magnetic field sensitivity is significantly increased.

【0015】上記のような効果を得るためには、以下の
ことを考慮しなければならない。一つは、GMR薄膜の
両側に配置される軟磁性薄膜の隙間の距離及びその形状
である。隙間が広く軟磁性薄膜どうしの距離が離れすぎ
た場合、軟磁性薄膜から漏れる磁束が分散してしまい、
GMR薄膜に十分な磁界が作用しない。このことから、
隙間の間隔は、軟磁性薄膜の膜厚の20倍以下でなけれ
ばならず、狭ければ狭いほど有効に磁界が作用する。ま
た、膜厚方向で隙間が変化する場合、特に下部に比較し
て上部の隙間が大きい場合には、磁束が分散してしまい
有効な磁界は作用しない。このように、隙間の形状が磁
界センサの性能に大きな影響を及ぼす。軟磁性薄膜およ
びGMR薄膜は、RFスパッタ法、イオンビームスパッ
タ法、あるいは蒸着法などの成膜法によって作製され、
その厚さは、せいぜい数μmかそれ以下である。そのた
め、本発明の磁界センサの作製にあたっては、数μmか
ら1μm以下のオーダーの加工精度が求められ、フォト
レジストあるいは電子ビームリソグラフィによるリフト
オフ法、またはイオンビームエッチングなどの半導体な
どに用いられる微細加工技術を用いる必要がある。
In order to obtain the above effects, the following must be considered. One is the distance and shape of the gap between the soft magnetic thin films disposed on both sides of the GMR thin film. If the gap is wide and the distance between the soft magnetic thin films is too large, the magnetic flux leaking from the soft magnetic thin film will be dispersed,
Not enough magnetic field acts on GMR thin film. From this,
The space between the gaps must be 20 times or less the thickness of the soft magnetic thin film. The narrower the space, the more effective the magnetic field acts. Further, when the gap changes in the film thickness direction, particularly when the gap at the upper portion is larger than that at the lower portion, the magnetic flux is dispersed and no effective magnetic field acts. Thus, the shape of the gap greatly affects the performance of the magnetic field sensor. The soft magnetic thin film and the GMR thin film are manufactured by a film forming method such as an RF sputtering method, an ion beam sputtering method, or a vapor deposition method.
Its thickness is at most a few μm or less. Therefore, when manufacturing the magnetic field sensor of the present invention, processing accuracy on the order of several μm to 1 μm or less is required, and fine processing technology used for semiconductors such as photoresist or lift-off method using electron beam lithography, or ion beam etching. Must be used.

【0016】二つは、軟磁性薄膜の磁気特性である。フ
ェライトのように飽和磁束密度が小さい場合は、弱磁界
で磁化して飽和しても、その値が小さいためにGMR薄
膜に、充分に有効な磁界は作用しない。このため、種々
のGMR薄膜材料の飽和磁束密度を考慮すると、軟磁性
薄膜の飽和磁束密度は、8kG以上であることが必要で
ある。
Two are the magnetic properties of the soft magnetic thin film. When the saturation magnetic flux density is small, such as ferrite, even if the magnetic field is saturated by weak magnetic field, a sufficiently effective magnetic field does not act on the GMR thin film because the value is small. Therefore, considering the saturation magnetic flux densities of various GMR thin film materials, the saturation magnetic flux density of the soft magnetic thin film needs to be 8 kG or more.

【0017】さらにGMR薄膜の特性として、MR比が
3%より小さい場合は、実用材料であるMR材料のパー
マロイなどと比較して、同程度かそれ以下なので、新し
いMRセンサとしての価値がない。一方、GMR薄膜の
電気比抵抗が大きい場合には、小さな電流で大きな電圧
変化が得られるために、より大きな出力が得られる。し
たがって、1×10μΩcm以上の大きな電気比抵抗
を有する金属−非金属ナノグラニュラー薄膜は、出力の
大きな薄膜磁界センサを得るために必要である。
Further, as a characteristic of the GMR thin film, when the MR ratio is less than 3%, it is not as valuable as a new MR sensor because it is about the same as or less than the permalloy of MR material which is a practical material. On the other hand, when the electrical specific resistance of the GMR thin film is large, a large output can be obtained because a large voltage change can be obtained with a small current. Therefore, a metal-nonmetal nanogranular thin film having a large electric resistivity of 1 × 10 4 μΩcm or more is necessary to obtain a thin-film magnetic field sensor having a large output.

【0018】[0018]

【実施例】以下図面を参照して、本発明の実施例を詳細
に説明する。 〔実施例1〕試料番号03の薄膜磁界センサの作製 軟磁性薄膜としてパーマロイ(Fe65Ni35)薄膜
を用い、GMR薄膜に試料番号01のCo38.6
41.047.4ナノグラニュラー薄膜を用いて、薄
膜磁界センサを作製した。パーマロイ薄膜およびCo
38.641.047.4ナノグラニュラー薄膜の
作製にはRFスパッタ装置を用いた。図2にCo
38.641.047.4薄膜のMR曲線を示す。
MR曲線は、磁界感度が悪くなかなか飽和にいたらな
い。
Embodiments of the present invention will be described below in detail with reference to the drawings. [Example 1] Fabrication of thin film magnetic field sensor of sample No. 03 A permalloy (Fe 65 Ni 35 ) thin film was used as a soft magnetic thin film, and Co 38.6 Y of sample No. 01 was used as a GMR thin film.
A thin film magnetic field sensor was fabricated using 41.0 O 47.4 nanogranular thin films. Permalloy thin film and Co
An RF sputtering apparatus was used to produce 38.6 Y 41.0 O 47.4 nanogranular thin films. FIG.
3 shows the MR curve of a 38.6 Y 41.0 O 47.4 thin film.
The MR curve has poor magnetic field sensitivity and does not readily reach saturation.

【0019】パーマロイ(Fe65Ni35)薄膜は、
Fe65Ni35合金ターゲットをスパッタして作製し
た。膜厚は約2μmである。さらに、得られた薄膜にイ
オンビームエッチング装置を用いて、幅約9ミクロンの
隙間を作製した。そして、隙間の部分を残して軟磁性薄
膜をマスクし、その部分に、純Co円板上にY
ップを配置した複合ターゲットをスパッタすることによ
り、図2に示したMR特性を有するCo38.6
41.047.4ナノグラニュラーGMR薄膜を作製
した。これによって、図1に示したようなパーマロイ
(Fe65Ni35)薄膜とCo38.641.0
47.4GMR薄膜を同一平面内に配置された薄膜磁界
センサが得られた。図3には、上記の薄膜磁界センサの
磁界に対するMR変化を示す。MR比は極めて弱い磁界
において急激に変化し、その値は0.5Oeの弱磁界に
おいて約2%であり、良好な磁界感度を示している。図
2に示したMR特性を有するGMR薄膜を本発明の薄膜
センサに組み込むことによって、磁界感度が大幅に改善
されることがわかる。
A permalloy (Fe 65 Ni 35 ) thin film is
It was produced by sputtering an Fe 65 Ni 35 alloy target. The thickness is about 2 μm. Further, a gap having a width of about 9 μm was formed on the obtained thin film by using an ion beam etching apparatus. Then, the soft magnetic thin film is masked while leaving a gap, and a composite target in which a Y 2 O 3 chip is arranged on a pure Co disk is sputtered on the soft magnetic thin film to have the MR characteristics shown in FIG. Co 38.6 Y
A 41.0 O 47.4 nanogranular GMR thin film was prepared. Thereby, the permalloy (Fe 65 Ni 35 ) thin film and Co 38.6 Y 41.0 O as shown in FIG.
47.4 A thin film magnetic field sensor with the GMR thin film arranged in the same plane was obtained. FIG. 3 shows an MR change with respect to a magnetic field of the above-mentioned thin film magnetic field sensor. The MR ratio changes abruptly in an extremely weak magnetic field, and its value is about 2% in a weak magnetic field of 0.5 Oe, indicating good magnetic field sensitivity. It can be seen that the magnetic field sensitivity is greatly improved by incorporating the GMR thin film having the MR characteristics shown in FIG. 2 into the thin film sensor of the present invention.

【0020】〔実施例2〕試料番号22の薄膜磁界セン
サの作製 軟磁性薄膜としてFe71.3Nd9.619.1
電気抵抗ナノグラニュラー薄膜を用い、GMR薄膜には
実施例1と同様に試料番号01のCo38.6
41.047.4ナノグラニュラー薄膜を用いて、薄
膜磁界センサを作製した。Fe71.3Nd9.6
19.1薄膜およびCo38.641.047.4
薄膜の作製には実施例1と同様に、RFスパッタ装置を
用いた。
[Example 2] Preparation of thin film magnetic field sensor of sample No. 22 Fe 71.3 Nd 9.6 O 19.1 high electric resistance nano-granular thin film was used as a soft magnetic thin film, and a GMR thin film was the same as in Example 1. Co 38.6 Y of Sample No. 01
A thin film magnetic field sensor was fabricated using 41.0 O 47.4 nanogranular thin films. Fe 71.3 Nd 9.6 O
19.1 Thin Film and Co 38.6 Y 41.0 O 47.4
An RF sputtering apparatus was used for the production of the thin film, as in Example 1.

【0021】Fe71.3Nd9.619.1薄膜
は、純Co円板上にNdチップを配置した複合タ
ーゲットをスパッタすることにより作製した。膜厚は約
2μmである。その他の作製法は実施例1と同様であ
る。図4には、上記の薄膜磁界センサの磁界に対するM
R変化を示す。MR比は極めて弱い磁界において急激に
変化し、その値は1Oeの弱磁界において約2.1%で
あり、良好な磁界感度を示している。
The Fe 71.3 Nd 9.6 O 19.1 thin film was prepared by sputtering a composite target having a Nd 2 O 3 chip disposed on a pure Co disk. The thickness is about 2 μm. Other manufacturing methods are the same as in the first embodiment. FIG. 4 shows the relationship between the magnetic field of the thin film magnetic field sensor and the
R change is shown. The MR ratio changes abruptly in an extremely weak magnetic field, and its value is about 2.1% in a weak magnetic field of 1 Oe, indicating good magnetic field sensitivity.

【0022】表1には、本発明の薄膜磁界センサにおい
て、様々な軟磁性薄膜とGMR薄膜を組み合わせた場合
の1OeにおけるMR比を示した。表に見られるよう
に、GMR薄膜が単独な場合(比較例)より、本発明の
薄膜磁界センサのMR比の方が著しく向上していること
が判る。
Table 1 shows the MR ratio at 1 Oe when various soft magnetic thin films and GMR thin films were combined in the thin film magnetic field sensor of the present invention. As can be seen from the table, it can be seen that the MR ratio of the thin film magnetic field sensor of the present invention is significantly improved as compared with the case where the GMR thin film is used alone (Comparative Example).

【0023】[0023]

【表1】 [Table 1]

【0024】表1に示した軟磁性薄膜はいずれも8kG
以上の飽和磁束密度を有し、GMR薄膜は10kOeで
3%以上のMR比と1×10μΩcm以上の電気比抵
抗を有する。表2に示されたいずれのセンサも弱磁界で
大きなMR比を有し、大きな磁界感度を示す。
The soft magnetic thin films shown in Table 1 were all 8 kG.
Having the above saturation magnetic flux density, the GMR thin film has an MR ratio of 3% or more at 10 kOe and an electric resistivity of 1 × 10 4 μΩcm or more. Each of the sensors shown in Table 2 has a large MR ratio at a weak magnetic field and shows a large magnetic field sensitivity.

【0025】上記の通り、本発明の薄膜磁界センサは、
MR比の磁界感度が優れているので、磁気MRヘッドに
も好適である。
As described above, the thin film magnetic field sensor of the present invention
Since the magnetic field sensitivity of the MR ratio is excellent, it is also suitable for a magnetic MR head.

【0026】[0026]

【発明の効果】本発明の薄膜磁界センサは、軟磁性薄膜
とGMR薄膜とから構成することにより、GMRの磁界
感度が著しく向上する。GMR材料を用いることによっ
て、現在使用されているパーマロイなどを使用したMR
磁界センサに比べて大きな出力が得られ、また薄膜材料
と微細加工技術を用いているので、磁界センサ素子のマ
イクロ化にも対応することができ、その工業的意義は大
きく、磁気MRヘッドなどにも好適である。
The thin-film magnetic field sensor according to the present invention comprises a soft magnetic thin film and a GMR thin film, whereby the magnetic field sensitivity of the GMR is remarkably improved. By using GMR material, MR using permalloy or the like currently used
Higher output is obtained compared to magnetic field sensors, and the use of thin-film materials and microfabrication technology makes it possible to cope with miniaturization of magnetic field sensor elements. Are also suitable.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の薄膜磁界センサの構造を示す斜視図で
ある。
FIG. 1 is a perspective view showing the structure of a thin-film magnetic field sensor according to the present invention.

【図2】Co38.641.047.4ナノグラニ
ュラーGMR薄膜の磁界とMR比の関係を示す特性図で
ある。
FIG. 2 is a characteristic diagram showing a relationship between a magnetic field and an MR ratio of a Co 38.6 Y 41.0 O 47.4 nanogranular GMR thin film.

【図3】軟磁性薄膜にFe65Ni35薄膜、GMR薄
膜にCo38.641.047.4ナノグラニュラ
ー薄膜を用いた場合の本発明センサの磁界とMR比の関
係を示す特性図である。
FIG. 3 is a characteristic diagram showing the relationship between the magnetic field and the MR ratio of the sensor of the present invention when the Fe 65 Ni 35 thin film is used as the soft magnetic thin film and the Co 38.6 Y 41.0 O 47.4 nanogranular thin film is used as the GMR thin film. It is.

【図4】軟磁性薄膜にFe71.3Nd9.6
19.1高電気抵抗ナノグラニュラー薄膜、GMR薄膜
にCo38.641.047.4ナノグラニュラー
薄膜を用いた場合の本発明センサの磁界とMR比の関係
を示す特性図である。
FIG. 4 shows Fe 71.3 Nd 9.6 O on a soft magnetic thin film.
It is a characteristic view which shows the relationship between the magnetic field and MR ratio of the sensor of this invention at the time of using Co 38.6 Y 41.0 O 47.4 nano granular thin film for 19.1 high electric resistance nano granular thin film and GMR thin film.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 軟磁性薄膜と巨大磁気抵抗薄膜とによっ
て構成することにより、磁気抵抗効果(MR)の磁界感
度を上げたことを特徴とする薄膜磁界センサ。
1. A thin-film magnetic field sensor comprising a soft magnetic thin film and a giant magnetoresistive thin film to increase the magnetic field sensitivity of a magnetoresistance effect (MR).
【請求項2】 巨大磁気抵抗薄膜の両側に軟磁性薄膜を
配置することを特徴とする請求項1に記載の薄膜磁界セ
ンサ。
2. The thin film magnetic field sensor according to claim 1, wherein soft magnetic thin films are arranged on both sides of the giant magnetoresistive thin film.
【請求項3】 同一平面内において、巨大磁気抵抗薄膜
の両側に軟磁性薄膜を配置することを特徴とする請求項
1または請求項2に記載の薄膜磁界センサ。
3. The thin film magnetic field sensor according to claim 1, wherein soft magnetic thin films are arranged on both sides of the giant magnetoresistive thin film in the same plane.
【請求項4】 8kG以上の飽和磁束密度を有する軟磁
性薄膜と、室温で3%以上のMR変化を有する巨大磁気
抵抗薄膜から構成する請求項1ないし請求項3のいずれ
か1項に記載の薄膜磁界センサ。
4. The method according to claim 1, comprising a soft magnetic thin film having a saturation magnetic flux density of 8 kG or more, and a giant magnetoresistive thin film having an MR change of 3% or more at room temperature. Thin film magnetic field sensor.
【請求項5】 巨大磁気抵抗薄膜が1×10μΩcm
以上の高電気比抵抗を有し、且つ室温で3%以上のMR
変化を有する金属−絶縁体ナノグラニュラー薄膜である
ことを特徴とする請求項1ないし請求項3のいずれか1
項に記載の薄膜磁界センサ。
5. A giant magnetoresistive thin film of 1 × 10 4 μΩcm
Having a high electrical resistivity of at least 3% at room temperature
4. A metal-insulator nanogranular thin film having a change.
Item 7. The thin-film magnetic field sensor according to Item 1.
【請求項6】 請求項1ないし請求項5のいずれか1項
に記載の薄膜磁界センサからなる磁気MRヘッド。
6. A magnetic MR head comprising the thin-film magnetic field sensor according to claim 1.
JP27930897A 1997-09-04 1997-09-04 Thin film magnetic field sensor Expired - Lifetime JP3640230B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27930897A JP3640230B2 (en) 1997-09-04 1997-09-04 Thin film magnetic field sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27930897A JP3640230B2 (en) 1997-09-04 1997-09-04 Thin film magnetic field sensor

Publications (2)

Publication Number Publication Date
JPH1187804A true JPH1187804A (en) 1999-03-30
JP3640230B2 JP3640230B2 (en) 2005-04-20

Family

ID=17609363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27930897A Expired - Lifetime JP3640230B2 (en) 1997-09-04 1997-09-04 Thin film magnetic field sensor

Country Status (1)

Country Link
JP (1) JP3640230B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1329735A1 (en) * 2000-10-26 2003-07-23 The Foundation: The Research Institute of Electric and Magnetic Materials Thin-film magnetic field sensor
WO2006057379A1 (en) * 2004-11-29 2006-06-01 Alps Electric Co., Ltd. Thin film magnetic resistor element and method for manufacturing it, and magnetic sensor using thin film magnetic resistor element
JP2006300540A (en) * 2005-04-15 2006-11-02 Daido Steel Co Ltd Thin-film magnetometric sensor
US7170287B2 (en) 2003-06-02 2007-01-30 The Foundation : The Research Institute For Electric And Magnetic Materials Thin film magnetic sensor and method of manufacturing the same
JP2007073644A (en) * 2005-09-05 2007-03-22 Osaka Industrial Promotion Organization Magnetoresistive element and its manufacturing method
DE102009007479A1 (en) 2008-02-27 2009-09-03 Daido Steel Co., Ltd., Nagoya Thin-film magnetic sensor
CN109764797A (en) * 2017-11-09 2019-05-17 Tdk株式会社 Magnetic Sensor
US10330747B2 (en) 2016-12-15 2019-06-25 Tdk Corporation Magnetic field detection device
US11054283B2 (en) 2017-11-09 2021-07-06 Tdk Corporation Magnetic sensor
US11237228B2 (en) 2017-12-27 2022-02-01 Tdk Corporation Magnetic sensor
US11366183B2 (en) 2017-12-27 2022-06-21 Tdk Corporation Magnetic sensor with a chamfered magnetic body facing a magnetoresistive element

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6642714B2 (en) 2000-10-26 2003-11-04 The Research Institute For Electric And Magnetic Materials Thin-film magnetic field sensor
EP1329735A4 (en) * 2000-10-26 2005-05-11 Foundation The Res Instituteof Thin-film magnetic field sensor
EP1329735A1 (en) * 2000-10-26 2003-07-23 The Foundation: The Research Institute of Electric and Magnetic Materials Thin-film magnetic field sensor
US7170287B2 (en) 2003-06-02 2007-01-30 The Foundation : The Research Institute For Electric And Magnetic Materials Thin film magnetic sensor and method of manufacturing the same
US7218103B2 (en) 2003-06-02 2007-05-15 The Foundation: The Research Institute For Electric And Magnetic Materials Methods for manufacturing a thin film magnetic sensor
CN100403049C (en) * 2003-06-02 2008-07-16 财团法人电气磁气材料研究所 Thin film magnetic sensor and method of manufacturing the same
WO2006057379A1 (en) * 2004-11-29 2006-06-01 Alps Electric Co., Ltd. Thin film magnetic resistor element and method for manufacturing it, and magnetic sensor using thin film magnetic resistor element
JP4520353B2 (en) * 2005-04-15 2010-08-04 大同特殊鋼株式会社 Thin film magnetic sensor
JP2006300540A (en) * 2005-04-15 2006-11-02 Daido Steel Co Ltd Thin-film magnetometric sensor
JP2007073644A (en) * 2005-09-05 2007-03-22 Osaka Industrial Promotion Organization Magnetoresistive element and its manufacturing method
US7683612B2 (en) 2008-02-27 2010-03-23 Daido Steel Co., Ltd. Thin film magnetic sensor
DE102009007479A1 (en) 2008-02-27 2009-09-03 Daido Steel Co., Ltd., Nagoya Thin-film magnetic sensor
US10877109B2 (en) 2016-12-15 2020-12-29 Tdk Corporation Magnetic field detection device
US10330747B2 (en) 2016-12-15 2019-06-25 Tdk Corporation Magnetic field detection device
US10705161B2 (en) 2016-12-15 2020-07-07 Tdk Corporation Magnetic field detection device
CN109764797A (en) * 2017-11-09 2019-05-17 Tdk株式会社 Magnetic Sensor
US10948316B2 (en) 2017-11-09 2021-03-16 Tdk Corporation Magnetic sensor with an elongated element for reducing hysteresis
US11054283B2 (en) 2017-11-09 2021-07-06 Tdk Corporation Magnetic sensor
US11506514B2 (en) 2017-11-09 2022-11-22 Tdk Corporation Magnetic sensor with an elongated element
DE102018127554B4 (en) 2017-11-09 2024-02-08 Tdk Corporation MAGNETIC SENSOR
US11940300B2 (en) 2017-11-09 2024-03-26 Tdk Corporation Magnetic sensor with an elongated element
US11237228B2 (en) 2017-12-27 2022-02-01 Tdk Corporation Magnetic sensor
US11366183B2 (en) 2017-12-27 2022-06-21 Tdk Corporation Magnetic sensor with a chamfered magnetic body facing a magnetoresistive element
US11754645B2 (en) 2017-12-27 2023-09-12 Tdk Corporation Magnetic sensor

Also Published As

Publication number Publication date
JP3640230B2 (en) 2005-04-20

Similar Documents

Publication Publication Date Title
JP2690623B2 (en) Magnetoresistance effect element
US4103315A (en) Antiferromagnetic-ferromagnetic exchange bias films
US6914761B2 (en) Magnetoresistive sensor with magnetic flux paths surrounding non-magnetic regions of ferromagnetic material layer
US6721147B2 (en) Longitudinally biased magnetoresistance effect magnetic head and magnetic reproducing apparatus
JPH11175920A (en) Magneto-resistance effect type combined head and its manufacture
JPH04103014A (en) Ferromagnetic tunnel effect film and magneto-resistance effect element formed by using this film
JP3640230B2 (en) Thin film magnetic field sensor
JP3466470B2 (en) Thin film magnetoresistive element
JP2961914B2 (en) Magnetoresistive material and method of manufacturing the same
JPH07221363A (en) Magnetoresistive element
JP3527786B2 (en) Multilayer magnetoresistive film and magnetic head
JP2830513B2 (en) Magnetoresistive material and method of manufacturing the same
JP3382866B2 (en) Method of manufacturing magnetoresistive element
JPH1041561A (en) Magnetoresistance effect element
JPH076329A (en) Magneto-resistance effect element and magnetic head using the same and magnetic recording and reproducing device
JP2701557B2 (en) Magnetoresistive element and method of manufacturing the same
JPH1091921A (en) Dual spin bulb-type thin film magnetic head
JP3070667B2 (en) Magnetoresistive element
JPH1032119A (en) Magnetoresistance effect film
JPH0745884A (en) Magnetoresistive effect thin-film magnetic head
JPH07312449A (en) Magneto resistance effect element
JPH0774022A (en) Multilayer magnetoresistance-effect film and magnetic head
JP2850584B2 (en) Method of manufacturing magnetoresistive element
JP3021785B2 (en) Magnetoresistive material and method of manufacturing the same
JP2677018B2 (en) Magnetic multilayer film

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050112

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100128

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110128

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120128

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120128

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120128

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120128

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130128

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130128

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term