WO2006056765A1 - Vehicule telecommande sous-marin - Google Patents

Vehicule telecommande sous-marin Download PDF

Info

Publication number
WO2006056765A1
WO2006056765A1 PCT/GB2005/004493 GB2005004493W WO2006056765A1 WO 2006056765 A1 WO2006056765 A1 WO 2006056765A1 GB 2005004493 W GB2005004493 W GB 2005004493W WO 2006056765 A1 WO2006056765 A1 WO 2006056765A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
thrusters
underwater vehicle
thruster
pivotally mounted
Prior art date
Application number
PCT/GB2005/004493
Other languages
English (en)
Inventor
Colin George Millum
Gordon Durward
Original Assignee
Sub-Atlantic Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sub-Atlantic Limited filed Critical Sub-Atlantic Limited
Priority to EP05808044A priority Critical patent/EP1819589A1/fr
Publication of WO2006056765A1 publication Critical patent/WO2006056765A1/fr
Priority to US11/805,413 priority patent/US20070283871A1/en
Priority to NO20073127A priority patent/NO20073127L/no

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63CLAUNCHING, HAULING-OUT, OR DRY-DOCKING OF VESSELS; LIFE-SAVING IN WATER; EQUIPMENT FOR DWELLING OR WORKING UNDER WATER; MEANS FOR SALVAGING OR SEARCHING FOR UNDERWATER OBJECTS
    • B63C11/00Equipment for dwelling or working underwater; Means for searching for underwater objects
    • B63C11/34Diving chambers with mechanical link, e.g. cable, to a base
    • B63C11/36Diving chambers with mechanical link, e.g. cable, to a base of closed type
    • B63C11/42Diving chambers with mechanical link, e.g. cable, to a base of closed type with independent propulsion or direction control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/14Control of attitude or depth
    • B63G8/16Control of attitude or depth by direct use of propellers or jets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/001Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations
    • B63G2008/002Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations unmanned
    • B63G2008/005Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations unmanned remotely controlled

Definitions

  • This invention relates to a vehicle, and particularly to an underwater vehicle such as a remotely operated vehicle commonly called an ROV.
  • ROVs are remote-controlled submersible vehicles often used for subsea tasks such as conducting repairs or inspections to underwater equipment.
  • ROVs are electrically powered via an umbilical from a control ship, which supplies power to onboard thrusters.
  • the thrusters are generally in the form of impellers able to operate in forward and reverse directions and are usually contained within a housing or cowling fixed to the corners of the ROV.
  • the thrusters are generally fixed at 45° with respect to the sides to direct their thrust through apertures in the front, rear or sides of the ROV.
  • an underwater vehicle having at least one thruster that is pivotally mounted on the vehicle.
  • the vehicle has a number of thrusters that are pivotalIy mounted.
  • four thrusters one at each corner of a generally rectangular vehicle, can be pivotally mounted to the vehicle and the attitude of the thrusters can be variable so as to direct the thrust at various angles with respect to the vehicle.
  • the attitude of the thrusters is optionally variable during use of the thrusters.
  • the thrusters are contained within the boundaries of a frame of the vehicle, and are arranged to direct thrust through apertures in the frame.
  • the attitude of the thrusters can be varied by a limited amount, for example by up to 40° to 50°, although a greater amount of variability in the thrusters can be provided with some embodiments.
  • the frame and/or the apertures for directing thrust can be larger to accommodate the wider ranges of variability.
  • variable attitude thruster is disposed at each corner of the vehicle.
  • a control system centrally controls the attitude of all the variable attitude thrusters on the vehicle, co-ordinating their attitudes to focus the overall thrust of the vehicle in a particular desired direction.
  • the thrusters can be mounted on pivot bosses with stops or rebates to control the maximum deflection of individual thrusters, and mechanical linkages such as bars or rods can link the thrusters to a central control bar that can be actuated (e.g. rotated) in order to adjust the attitude of all of the thrusters simultaneously.
  • the attitude of the thrust can be centrally controlled by electronic means, for example by semi-automatic electronic systems.
  • the underwater vehicle is a remotely operated vehicle.
  • the remotely operated vehicle comprises a camera and at least one grappling arm.
  • the thrusters can typically pivot in a single plane, such as a horizontal plane of the ROV, for example the plane of the deck of the ROV. Other planes of the ROV parallel to this can also be used. In some embodiments, the thrusters can pivot in a different, non-horizontal plane.
  • Fig. 1 is a perspective view of a vehicle. according to the invention
  • Fig. 2 is a view from beneath the Fig. 1 vehicle, showing the thrusters in a 45° orientation with respect to the front-to-rear axis of the vehicle
  • Fig. 3 shows a similar view to Figs. 2 with thrusters in a 25° orientation
  • Fig. 4 shows a view from beneath similar to Fig.
  • Fig 5 is a perspective view of a vehicle showing a control system for controlling the attitude of the thrusters, with the thrusters in a 45° orientation
  • Fig 6 is a plan view (from above) of the Fig 5 arrangement
  • Fig 7 is a perspective view of a vehicle showing a control system for controlling the attitude of the thrusters, with the thrusters in a 25° orientation
  • Fig 8 is a plan view (from above) of the Fig 7 arrangement
  • Fig 9 is a perspective view of a vehicle showing a control system for controlling the attitude of the thrusters, with the thrusters in a 65° orientation
  • Pig 10 is a plan view (from above) of the Fig 9 arrangement.
  • a remotely operated vehicle has a generally rectangular shape and comprises a frame having port and starboard sides 5, 6 arranged parallel to one another, a base 7 and a deck 8.
  • the deck 8 has a cutaway C at the front to accommodate a camera. Only certain parts of the frame and the thrusters of the vehicle are shown in the drawings to enhance understanding of the invention. Normally, the vehicle would be loaded with other parts and fittings that are not important to the invention and therefore are not shown in the drawings .
  • the deck 8 is supported by cross braces extending perpendicularly between the side frames 5, 6, and carries on its underside four thrusters disposed at each corner of the deck 8.
  • Two thrusters are disposed at the front port and starboard corners, and are designated herein as FP and FS respectively.
  • a further two thrusters are disposed at the rear port and starboard corners and are designated herein as RP and RS respectively.
  • the thrusters are bi- directional, and can operate in forward or reverse mode.
  • the impeller of thruster RS can be rotated in a clockwise direction as shown by arrow A in Fig. 1 and when thus operated can direct thrust through the aperture 5r in the starboard side plate 5.
  • the impeller can operate in the opposite direction and direct thrust through the rear of the vehicle.
  • a single thruster T is disposed in the plane of the deck 8 to provide horizontal thrust in either direction.
  • the corner thrusters are conventionally fixed in prior art devices at angles of 45° with respect to the perpendicular cross braces, and the vehicle is typically moved either forwards, backwards or to either side simply by co-ordinating the direction of thrust (ie forwards or reverse) of each of the fixed thrusters.
  • all thrusters FS, FP, RS and RP direct thrust towards the rear of the vehicle (to the left as shown in the drawings) .
  • Thrusters RP and RS direct thrust through the rear opening of the vehicle
  • the front thrusters FS and FP direct thrust through the apertures in the starboard and port side plates respectively.
  • the resolved thrust applied to the whole vehicle is less than the sum of the thrust individually exerted by the four thrusters because of the 45° vectors of the individual thrusters, so although the vehicle moves forward, the total forward thrust is only 0.71 of the total thrust exerted by the four thrusters.
  • the front thrusters FS and FP are driven in reverse to direct thrust through the front aperture of the vehicle, and the rear thrusters RS and RP are reversed to direct thrust through the apertures in the side plates 5 and 6 respectively.
  • the port thrusters RP and FP are driven through the apertures in the port side, and the starboard thrusters RS and FS through the rear and front apertures respectively.
  • the situation is reversed when the vehicle is to be moved to the port side.
  • the thrusters FS, FP, RP and RS are pivotally mounted on pivot bosses extending perpendicular to the lower surface of the deck 8 so that each thruster can move pivotally around the axis of the pivot boss in a plane that is parallel to the plane of the deck 8.
  • the thrusters when the vehicle is to move against a strong head or tail current, the thrusters can be pivotally moved to the position shown in Fig. 3, in which their attitude with is more aligned with the front to rear axis of the vehicle.
  • the thrusters In the embodiment shown in Fig. 4, the thrusters have each been pivotally moved around the pivot bosses, so that the total thrust is more focussed along the central front-to-rear axis of the vehicle, parallel to the side frames 5, 6.
  • the thrusters are adjusted to an angle of 25° with respect to the front-to-rear axis of the vehicle.
  • the vehicle can more easily move forwards against a strong head current by directing the rear thrusters RS and RP aft through the rear aperture, and the front thrusters FS and FP aft through the starboard and port side plates 5 and 6 respectively.
  • the directions of rotation of the impellers can be reversed, so that the thrust from the front thrusters FP and FS is directed through the front cavity of the vehicle, and the thrust from the rear thrusters RP and RS is directed through the port and starboard side plates 6 and 5 respectively.
  • the arrangement shown in Fig. 4 can be adopted, where the thrusters are all pivoted to adopt an angle of 65° with respect to the front-to- rear axis of the vehicle, thereby directing more of the force in the required direction.
  • the starboard thrusters FS and RS can be arranged to direct the thrust through the front and rear apertures respectively, whereas the port thrusters RP and FP are arranged to direct more of their thrust through the apertures in the port side plate 6.
  • the thrusters can be adjusted to other angles, but the boundaries of useful adjustment for the angles are typically set by the architecture of the vehicle frame, since the thrust path from each thruster should ideally be free from obstruction by the vehicle frame, or the components of the vehicle. Therefore, the range of variation of the angles is usefully restricted to about 40° for each thruster.
  • the thrusters can be set to individually different attitudes if desired.
  • the attitude of the thrusters are controlled centrally through a control mechanism, ideally constituting a mechanical linkage between a central control arm and each thruster body.
  • the control arm is disposed centrally on the deck of the vehicle, and mechanical linkages such as tie rods or wires connect the central control rod to a fixing on each of the thruster bodies so that actuation (e.g. by rotation via a solenoid, a servo actuator, or a servo- gearbox) of the central control arm moves each of the control rods attached to a thruster, in order to pivot the thrusters in a co-ordinated manner.
  • the central control arm can typically be actuated from the surface control room by the ROV operator, and can usefully be actuated independently of the other ROV controls, so as to select a "side current" setting where the control arm moves the thrusters simultaneously into the position shown in Fig. 4, with a 65° angle, or alternatively can be set to a "fore-aft current” setting in which the control arm moves each of the thrusters in concert into the position shown in Fig. 3.
  • Figs 5-10 show a typical control system for the attitude control.
  • a servo-actuator 10 is attached to the underside of the deck 8.
  • the servo-actuator 10 rotates a pin extending through the deck 8 and a disc 11 connected to the pin on the upper side of the deck 8.
  • the rotating movement of the disc 11 is transmitted via linkage bars 13 and 14 to similar disc and pin arrangements 12 on each of the thrusters, so that rotation of the disc 11 by 20° simultaneously rotates the other discs by the same amount, but typically in opposite directions.
  • Figs 5 and 6 show the control mechanism set to the 45° setting.
  • the solenoid rotates the disc 12 anticlockwise (when viewed in plan) , which rotates the discs 12 on the thrusters FP and RS in the same direction, while rotating the discs 12 on the thrusters RP and FS in the opposite direction at the same time. This moves the thrusters into the 25° position as shown in Figs 7 and 8.
  • the solenoid is signalled from the control box to rotate the disc 11 clockwise to the position shown in Figs 9 and 10, which rotates the discs 12 on the thrusters FP and RS in the same direction, while rotating the discs 12 on the thrusters RP and FS in the opposite direction at the same time. This moves the thrusters into the 65° position as shown in Figs 9 and 10.
  • the adjustment of the thruster attitudes can optionally be co-ordinated by an automatic mechanism linked to the thruster joy stick controls.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Manipulator (AREA)

Abstract

Cette invention concerne un véhicule sous-marin équipé d'au moins un propulseur (12) qui est monté pivotant sur le véhicule. Des modes de réalisation préférés de cette invention concernent un véhicule télécommandé (ROV) équipé d'un propulseur (12) à chacun des quatre angles. Chacun des propulseurs peut être pivoté en cours d'utilisation afin de diriger la propulsion dans la direction optimale afin que le véhicule télécommandé se déplace dans la direction souhaitée. Des modes de réalisation de cette invention permettent d'obtenir des véhicules télécommandés plus efficaces que les modèles classiques qui utilisent des propulseurs fixes.
PCT/GB2005/004493 2004-11-23 2005-11-23 Vehicule telecommande sous-marin WO2006056765A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP05808044A EP1819589A1 (fr) 2004-11-23 2005-11-23 Vehicule telecommande sous-marin
US11/805,413 US20070283871A1 (en) 2004-11-23 2007-05-23 Underwater remotely operated vehicle
NO20073127A NO20073127L (no) 2004-11-23 2007-06-18 Fjernstyrt undervannsfarkost

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GBGB0425694.7A GB0425694D0 (en) 2004-11-23 2004-11-23 Vehicle
GB0425694.7 2004-11-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/805,413 Continuation US20070283871A1 (en) 2004-11-23 2007-05-23 Underwater remotely operated vehicle

Publications (1)

Publication Number Publication Date
WO2006056765A1 true WO2006056765A1 (fr) 2006-06-01

Family

ID=33548686

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB2005/004493 WO2006056765A1 (fr) 2004-11-23 2005-11-23 Vehicule telecommande sous-marin

Country Status (5)

Country Link
US (1) US20070283871A1 (fr)
EP (1) EP1819589A1 (fr)
GB (1) GB0425694D0 (fr)
NO (1) NO20073127L (fr)
WO (1) WO2006056765A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010123380A3 (fr) * 2009-04-24 2011-03-24 Sperre As Navire sous-marin doté d'une propulsion et d'une manipulation améliorées
CN102009736A (zh) * 2010-11-24 2011-04-13 华中科技大学 一种开架式贴底起伏运动拖体
CN102975833A (zh) * 2012-12-10 2013-03-20 上海大学 用于水下目标探测与处置的遥操作无人潜水器
US8619134B2 (en) 2009-03-11 2013-12-31 Seatrepid International, Llc Unmanned apparatus traversal and inspection system
CN108557041A (zh) * 2018-04-18 2018-09-21 河海大学 一种双模态六自由度水下机器人及其操控方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8977407B2 (en) * 2009-05-27 2015-03-10 Honeywell International Inc. Adaptive user interface for semi-automatic operation
CN104002942A (zh) * 2014-06-09 2014-08-27 北京理工大学 一种微型自主潜水器
EP3037340B1 (fr) 2014-12-26 2018-08-01 Fundacíon Tecnalia Research & Innovation Véhicule sous-marin
WO2017085735A1 (fr) * 2015-11-18 2017-05-26 Indian Institute Of Technology Madras Conception hybride focalisée sur la fonctionnalité pour un véhicule actionné à distance sous-marin bio-inspiré de classe d'observation
AU201716527S (en) * 2017-05-05 2017-11-15 Tianjin Deepfar Ocean Tech Co Underwater propulsion device
CN107585280A (zh) * 2017-10-12 2018-01-16 上海遨拓深水装备技术开发有限公司 一种适应于垂直振荡水流的rov快速动态定位系统
CN107839859A (zh) * 2017-10-19 2018-03-27 丁建玲 一种海底光缆巡检水下航行器及巡检方法
USD869374S1 (en) * 2018-01-12 2019-12-10 Shenzhen Geneinno Technology Co., Ltd. Underwater robot
AU201811283S (en) * 2018-01-15 2018-03-28 Tianjin Deepfar Ocean Tech Co Underwater tracking vehicle
CA3096244A1 (fr) * 2018-04-06 2019-10-10 Boxfish Research Limited Vehicules teleguides et/ou vehicules sous-marins autonomes
CN112208736B (zh) * 2020-10-31 2021-10-22 国网山西省电力公司大同供电公司 一种电缆管廊水下巡检机器人多功能推进机构
RU205521U1 (ru) * 2020-12-30 2021-07-19 Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский национальный исследовательский технический университет им. А.Н. Туполева - КАИ" Малогабаритный автономный необитаемый подводный аппарат с изменяемым вектором упора винта
RU203080U1 (ru) * 2020-12-30 2021-03-22 Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский национальный исследовательский технический университет им. А.Н. Туполева - КАИ" Малогабаритный телеуправляемый необитаемый подводный аппарат с раздельным управлением движителей
RU209233U1 (ru) * 2021-09-22 2022-02-08 Федеральное государственное автономное образовательное учреждение высшего образования "Севастопольский государственный университет" Подводный аппарат с y-компоновкой движителей
CN115214862A (zh) * 2022-07-19 2022-10-21 广州大学 一种模块化水下机器人及其控制方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2985031A (en) * 1958-11-13 1961-05-23 William N Bennett Remote control for motor boats
US3636910A (en) * 1968-11-22 1972-01-25 Tokyo Keiki Seizosho Co Ltd Marine steering device for ships equipped with two propellers
US4419084A (en) * 1979-12-26 1983-12-06 Outboard Marine Corporation Power assisted steering for marine propulsion device
JP3957099B2 (ja) * 1997-10-01 2007-08-08 ヤマハマリン株式会社 船外機のステアリングフリクション構造

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIDDLE: "TROJAN: Remotely Operated Vehicle", IEEE JOURNAL OF OCEANIC ENGINEERING, IEEE SERVICE CENTER, PISCATAWAY, NJ, US, no. 3, July 1986 (1986-07-01), pages 364 - 372, XP002153951, ISSN: 0364-9059 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8619134B2 (en) 2009-03-11 2013-12-31 Seatrepid International, Llc Unmanned apparatus traversal and inspection system
WO2010123380A3 (fr) * 2009-04-24 2011-03-24 Sperre As Navire sous-marin doté d'une propulsion et d'une manipulation améliorées
CN102009736A (zh) * 2010-11-24 2011-04-13 华中科技大学 一种开架式贴底起伏运动拖体
CN102975833A (zh) * 2012-12-10 2013-03-20 上海大学 用于水下目标探测与处置的遥操作无人潜水器
CN108557041A (zh) * 2018-04-18 2018-09-21 河海大学 一种双模态六自由度水下机器人及其操控方法
CN108557041B (zh) * 2018-04-18 2020-02-21 河海大学 一种双模态六自由度水下机器人及其操控方法

Also Published As

Publication number Publication date
NO20073127L (no) 2007-06-18
US20070283871A1 (en) 2007-12-13
GB0425694D0 (en) 2004-12-22
EP1819589A1 (fr) 2007-08-22

Similar Documents

Publication Publication Date Title
US20070283871A1 (en) Underwater remotely operated vehicle
US20210362821A1 (en) Method and apparatus for controlling a marine vessel
US9434460B1 (en) Marine vessels and systems for laterally maneuvering marine vessels
US8925414B1 (en) Devices for inputting command signals to marine vessel control systems
US7037150B2 (en) Method and apparatus for controlling a waterjet-driven marine vessel
US7216599B2 (en) Method and apparatus for controlling a waterjet-driven marine vessel
US5052512A (en) Reversible control level linkage
US9132903B1 (en) Systems and methods for laterally maneuvering marine vessels
US4310320A (en) Electrical control for trim/tilt of dual outboard or stern drives
JP3238342B2 (ja) ジョイスティック操船装置
WO2020021442A1 (fr) Véhicule sous-marin à configuration variable
EP1648763B1 (fr) Procede et appareil permettant de commander un batiment marin propulse par un jet d'eau
US9493222B1 (en) Marine vessels and propulsion systems for marine vessels having steerable propulsion devices mounted on outwardly angled transom portions
JP3615985B2 (ja) 操船装置
US11480966B2 (en) Marine propulsion control system and method
US3776057A (en) Control device for one-hand operation
EP0897860A2 (fr) Gouvernail automatique pour bâteaux
JPH08292817A (ja) 荷役車両の荷役操作装置
AU2011224125B2 (en) Method and apparatus for controlling a waterjet-driven marine vessel
JPS6463492A (en) Attitude control device for unmanned underwater craft
AU2002362609A1 (en) Method and apparatus for controlling a waterjet-driven marine vessel
JPS63116996A (ja) 船舶操縦方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11805413

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005808044

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005808044

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11805413

Country of ref document: US