WO2006053731A1 - Verfahren zur herstellung wasserabsorbierender polymere - Google Patents

Verfahren zur herstellung wasserabsorbierender polymere Download PDF

Info

Publication number
WO2006053731A1
WO2006053731A1 PCT/EP2005/012282 EP2005012282W WO2006053731A1 WO 2006053731 A1 WO2006053731 A1 WO 2006053731A1 EP 2005012282 W EP2005012282 W EP 2005012282W WO 2006053731 A1 WO2006053731 A1 WO 2006053731A1
Authority
WO
WIPO (PCT)
Prior art keywords
acrylic acid
water
polymers
copolymerized
allyl
Prior art date
Application number
PCT/EP2005/012282
Other languages
English (en)
French (fr)
Inventor
Rüdiger Funk
Uwe Stueven
Friedrich-Georg Martin
Jürgen Schröder
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=35539379&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2006053731(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to CN200580039558XA priority Critical patent/CN101061146B/zh
Priority to DE502005004152T priority patent/DE502005004152D1/de
Priority to US11/666,962 priority patent/US7960485B2/en
Priority to JP2007541779A priority patent/JP2008520778A/ja
Priority to PL05807619T priority patent/PL1814923T3/pl
Priority to EP05807619A priority patent/EP1814923B1/de
Publication of WO2006053731A1 publication Critical patent/WO2006053731A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/04Polymerisation in solution
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/40Esters of unsaturated alcohols, e.g. allyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/103Esters of polyhydric alcohols or polyhydric phenols of trialcohols, e.g. trimethylolpropane tri(meth)acrylate

Definitions

  • the present invention relates to processes for the preparation of water-absorbing polymers by polymerization of a monomer solution, aqueous monomer solutions for the preparation of water-absorbing polymers, water-absorbing polymers, processes for producing hygiene articles and hygiene articles.
  • Water-absorbing polymers are, in particular, polymers of (co) polymerized hydrophilic monomers, graft (co) polymers of one or more hydrophilic monomers on a suitable graft base, crosslinked cellulose or starch ethers, crosslinked carboxymethylcellulose, partially crosslinked polyalkylene oxide or natural products swellable in aqueous liquids, such as guar derivatives.
  • Such polymers are used as aqueous solution-absorbing products for the production of diapers, tampons, sanitary napkins and other hygiene articles, but also as water-retaining agents in agricultural horticulture.
  • Acrylic acid can be prepared by various methods. These processes are described, for example, in Ullmann's Encyclopedia of Industrial Chemistry, 6th Edition, Volume 1, pages 289 to 296. The most important process currently is the two-stage propene oxidation.
  • the object of the present invention was therefore to provide an improved process for the preparation of water-absorbing polymers, in which a product with low extractables and little residual monomer is obtained.
  • the two-stage propene oxidation also produces by-products and secondary products, which interfere with the polymerization and have to be separated off from acrylic acid.
  • DE-A-39 41 996 describes the interfering influence of aldehydes in the acrylic acid polymerization and discloses a process for the chemical separation of the aldehydes from acrylic acid.
  • DE-A-102 21 203 teaches the extraction of aldehydic impurities from aqueous sodium acrylate solutions.
  • DE-A-22 10 956 discloses that protoanemonin retards the polymerization of acrylic acid and teaches the distillative purification of acrylic acid.
  • EP-A-1 302 485 describes a process for the preparation of water-absorbing polymers.
  • the document discloses that a high content of protoanemonin in the acrylic acid used leads to an increased proportion of residual monomer and extractables in the water-absorbent polymer.
  • Acrylic acid has a lower boiling point and can be separated from protoanemonin by distillation.
  • EP-A-0 574 260 discloses a process for the preparation of water-absorbing polymers with little residual monomer. The document teaches that the residual monomer content depends on the concentration of ⁇ -hydroxypropionic acid in the monomer solution and recommends the use of freshly distilled acrylic acid.
  • DE-A-102 57 449 discloses the influence of oligomeric acrylic acids on the residual monomer content of water-absorbing polymers and describes that oligomeric acrylic acids can be separated by crystallization.
  • DE-A-102 21 202 discloses a process for preparing water-absorbing polymers having a low residual monomer content, in which acrylic acid is purified by crystallization and the monomer solution is prepared by dissolving acrylic acid crystals in sodium hydroxide solution.
  • acrylic acid produced by propene oxidation also contains allyl acrylate.
  • Compounds having at least two ethylenically unsaturated groups, such as allyl acrylate, are used as crosslinking agents in the preparation of water-absorbing polymers, with allyl acrylate-like compounds also being used. bonds are used.
  • crosslinking agents are mentioned, for example, which contain an allyl group and an acrylate group. According to the monograph "Modern Superabsorbent Polymer Technology", FL Buch ⁇ wood and AT. Graham, Wiley-VCH, 1998, pp. 20-23 and 74-77, the allyl methacrylate, which is very similar to allyl acrylate, is a common crosslinker.
  • acrylic acid contains even larger amounts of acetic acid, although acetic acid is more easily separated from acrylic acid because of its more favorable boiling point.
  • allyl acrylate even in low concentrations, has a negative influence on the production of water-absorbing polymers.
  • even low allyl acrylate concentrations lead to an increase in extractable fractions and to increased residual monomer contents.
  • allyl alcohol wherein allyl alcohol can already be present in the acrylic acid or can only be formed by hydrolysis of allyl acrylate in the preparation of the at least partially neutralized monomer solution.
  • the object of the present invention was achieved by a process for the preparation of water-absorbing polymers by polymerization of a monomer solution, ent
  • acrylic acid wherein the acrylic acid may be at least partially neutralized, b) at least one crosslinker, c) allyl acrylate and / or allyl alcohol, d) optionally one or more ethylenically and / or allylically unsaturated monomers which can be copolymerized with the monomers mentioned under a) and e) optionally one or more water-soluble polymers,
  • the solution contains at most 0.002 wt .-% allyl acrylate and / or allyl alcohol, based on acrylic acid.
  • aqueous monomer solutions are used.
  • the hydrogels prepared according to the process of the invention can be dried, ground and classified.
  • the water-absorbing polymers are post-crosslinked.
  • the water-absorbing polymers typically have a centrifuge retention capacity (CRC) of at least 15 g / g, preferably at least 20 g / g, more preferably at least 25 g / g.
  • CRC centrifuge retention capacity
  • the postcrosslinked water-absorbing polymers typically have an absorption under pressure of 0.7 psi (4.83 kPa) of at least 15 g / g, preferably at least 20 g / g, particularly preferably at least 25 g / g.
  • Absorption under pressure (AUL) is determined according to the test method No. 442.2-02 "Absorption under pressure" recommended by EDANA (European Disposables and Nonwovens Association).
  • the weight ratio z / y is preferably at least 0.001, more preferably at least 0.1, most preferably at least 0.5, and preferably at most 500, more preferably at most 50, most preferably at most 1.
  • the proportion of acrylic acid in the mixture a) to e) is typically at least 50 wt .-%, preferably at least 80 wt.%, Particularly preferably at least 95 wt .-%, most preferably at least 99 wt.%, Wherein the presence of Components d) and e) are each optional.
  • the acrylic acid used is prepared by gas phase oxidation of propane, propene and / or acrolein, wherein the gas phase oxidation can be carried out in one stage, eurosstu ⁇ fig or three stages. Preference is given to the two-stage oxidation of propene, in which propene is converted to acrolein in a first stage and acrolein in a second stage to acrylic acid.
  • acrylic acid is isolated in a known manner, for example by fractional condensation, as described in DE-A-197 40 253, by total condensation, as described in DE-A-34 29 391 and DE-A-21 64 767, or by absorption into a suitable absorbent.
  • suitable absorbents are, for example, high-boiling organic solvents, as described in DE-A-21 36 396 and DE-A-43 08 087, and water, as described in EP-A-0 511 111.
  • the acrylic acid prepared by these methods usually contains less than 2 wt .-%, preferably less than 1, 5 wt .-%, more preferably less than 1 wt .-%, most preferably less than 0.5 wt .-%, of Impurities, ie, the acrylic acid content is usually at least 98 wt .-%, preferably at least 98.5 wt .-%, more preferably at least 99 wt .-%, most preferably at least 99.5 wt .-%.
  • the acrylic acid prepared by the abovementioned processes still contains at least 0.02% by weight, 0.015% by weight, 0.01% by weight or 0.005% by weight of alkyl acrylate and / or allyl alcohol.
  • the acrylic acid is further purified before it is used for the preparation of water-absorbing polymers, preferably by crystallization.
  • a portion of the acrylic acid is crystallized under cooling.
  • the crystals are separated from the mother liquor and melted, dissolved in water or aqueous sodium hydroxide solution.
  • preference is given to adding to the acrylic acid small amounts of a polymerization inhibitor, preferably of a hydroquinone half ether, such as hydroquinone monomethyl ether.
  • the amount is usually in the range of 0.0001 to 0.015 wt .-%, preferably in the range of 0.0005 to 0.013 wt .-%, particularly preferably in the range of 0.003 to 0.007 wt .-%.
  • the acrylic acid is crystallized one or more times, preferably twice, three times or four times, more preferably twice, until the desired degree of purity is reached.
  • one works according to the countercurrent principle ie the mother liquor of the respective crystallization stage is fed to the respective preceding crystallization stage. If necessary, further purification steps are carried out.
  • the mother liquor obtained in the course of crystallization in the case of multi-stage crystallization, preferably the mother liquor obtained in the first stage, is fed to a simple distillation or to a fractional distillation.
  • Acrylic acid is distilled overhead and the low-volatility Verun ⁇ purifications of the mother liquor, such as maleic acid (anhydride) and process inhibitors, i. highly effective polymerization inhibitors, such as phenotiazine and hydroquinone, are discharged as swamp.
  • process inhibitors i. highly effective polymerization inhibitors, such as phenotiazine and hydroquinone
  • the mother liquor can then be used for another purpose, for example for the production of acrylic acid esters, or recycled into the crystallization.
  • the crystallization in the particular crystallization stage is preferably carried out to crystallize out at least 20% by weight and preferably at least 40% by weight of the acrylic acid.
  • not more than 90% by weight, preferably not more than 80% by weight, in particular not more than 70% by weight, of the acrylic acid used in the respective crystallization stage is crystallized out in a crystallization stage in order to achieve a sufficient cleaning action ,
  • the crystallizer which can be used in the process according to the invention is subject to no restriction per se.
  • Particularly suitable crystallizers have been found, whose function is based on the formation of crystals on cooled surfaces. Such crystallization processes are also referred to as layer crystallization.
  • Suitable apparatus can be found in the patents cited in DE-A-102 57 449 on page 4, lines 6 and 7.
  • the acrylic acid to be purified is brought into contact with the cooled surfaces of a heat exchanger.
  • the heat exchanger surfaces of the crystallizer are preferably cooled to temperatures of up to 40 ° C. below the melting point of the acrylic acid to be purified.
  • the cooling process is ended and the liquid mother liquor is discharged, for example by pumping off or draining off.
  • the purified, crystallized acrylic acid is usually isolated by melting the crystallized acrylic acid, for example by heating the heat exchanger surfaces to a temperature above the melting point of the acrylic acid and / or by feeding a melt of purified acrylic acid. In this case, the purified acrylic acid as a melt and is isolated as such. It is also possible to dissolve the crystalline acrylic acid in water or aqueous sodium hydroxide solution and to use the solution thus obtained directly in the subsequent polymerization.
  • the temperature of the crystal layer is raised slightly, for example by 0.5 to 5 0 C above the melting temperature, preferably the higher contaminated Berei ⁇ surface of the crystal layer melt and thus an additional cleaning effect is achieved.
  • the sweat product is then fed to the mother liquor and further processed with this. It is also possible to treat the crystal layer with a cleaning liquid, for example a melt of already purified acrylic acid.
  • the temperature required for layer crystallization depends on the degree of contamination.
  • the upper limit is of course the temperature at which the already crystallized acrylic acid is in equilibrium with the acrylic acid present in the mother liquor (equilibrium temperature).
  • the equilibrium temperature is in the range of 5 to 13.5 ° C.
  • the temperature of the acrylic acid to be crystallized is preferably in the range from 0 to 13.5 ° C., preferably in the range from 5 to 12 ° C., whereby strongly supercooled melts are usually avoided.
  • the cooling medium which is required to dissipate the heat of crystallization is cooled down from about +5 to -5 ° C. to about -10 to -25 ° C. during the crystallization process.
  • the cooling medium during the crystallization process from a temperature of about +5 to ⁇ 15 ° C to about -15 to -30 0 C cool.
  • the layer crystallization is carried out in the presence of seed crystals.
  • the crystallization on cooling surfaces can be carried out as a dynamic or static method. Dynamic methods are known for example from EP-AO 616 998, static, for example from US 3,597,164.
  • the crude product to be crystallized is kept in a flowing motion. This can be done by a forced flow in full heat exchangers, as described in DE-A-26 06 364, or by a trickle film on a cooled wall, such as cooling rollers or cooling belts.
  • mass transfer in the liquid phase takes place only by free convection (quiescent melt).
  • the layer crystallization on cooling surfaces in dynamic process operation is preferred in the present invention.
  • the crystallization can also be carried out as suspension crystallization.
  • a crystal suspension is produced by cooling the crude product in a melt enriched in dehydrations.
  • the crystals can grow directly in the suspension (melt) or deposit as a layer on a cooled wall, from which they are then scraped off and suspended in the residual melt.
  • the crystal suspension is preferably moved during the process, for which in particular pumped or stirred.
  • the suspension crystallization can be operated continuously or batchwise, preferably continuously.
  • the acrylic acid used as the starting material for the crystallization usually contains less than 2 wt .-%, preferably less than 1, 5 wt .-%, more preferably less than 1 wt .-%, most preferably less than 0.5 wt .-% Impurities, ie, the acrylic acid content is usually at least 98 wt .-%, preferably at least 98.5 wt .-%, more preferably at least 99 wt .-%, most preferably at least 99.5 wt .-%.
  • the acrylic acid used as a starting material for the crystallization still contains at least 0.02 wt .-%, 0.015 wt .-%, 0.01 wt .-% or 0.005 wt .-% acrylate and / or allyl alcohol.
  • the acrylic acid produced by crystallization contains at most 0.002 wt .-%, preferably at most 0.0015 wt .-%, more preferably at most 0.001 wt .-%, most preferably at most 0.0005 wt .-%, allyl acrylate and / or Allyl alcohol, in each case based on acrylic acid.
  • the acrylic acid a) preferably contains at most 0.015% by weight of a hydroquinone halide ether.
  • Preferred hydroquinone half ethers are hydroquinone monomethyl ether (MEHQ) and / or tocopherols.
  • Tocopherol is understood as meaning compounds of the following formula
  • R 1 is hydrogen or methyl
  • R 2 is hydrogen or methyl
  • R 3 is hydrogen or methyl
  • R 4 is hydrogen or an acid radical having 1 to 20 carbon atoms.
  • Preferred radicals for R 4 are acetyl, ascorbyl, succinyl, nicotinyl and other physiologically compatible carboxylic acids.
  • the carboxylic acids can be mono-, di- or tricarboxylic acids.
  • R 4 is particularly preferably hydrogen or acetyl. Especially preferred is RRR-alpha-tocopherol.
  • Hydroquinone half ethers are added to the acrylic acid a) preferably at 5 to 130 ppm, more preferably 30 to 70 ppm, in particular around 50 ppm.
  • the water-absorbing polymers are crosslinked, i. the polymerization is carried out in the presence of compounds having at least two polymerisable groups which can be radically copolymerized into the polymer network.
  • Suitable crosslinkers b) are, for example, ethylene glycol dimethacrylate, diethylene glycol diacrylate, allyl methacrylate, trimethylolpropane triacrylate, triallylamine, tetraallyloxyethane, as described in EP-AO 530 438, di- and triacrylates, as in EP-A-0 547 847, EP-A-0 559 476, EP-A-0 632 068, WO-A-93/21237, WO-A-03/104299, WO-A-03/104300, WO-A-03/104301 and in the German patent application with the reference 10331450.4 described, mixed acrylates, in addition to acrylate groups contain further ethylenically unsaturated groups, as described in the German patent applications
  • Suitable crosslinkers b) are especially N, N'-Methylenbisacry! Amide and N 1 N'-methylenebismethacrylamide, esters of unsaturated mono- or polycarboxylic acids of polyols, such as diacrylate or triacrylate, for example butanediol or ethylene glycol di acrylate or methacrylate, and trimethylolpropane triacrylate, and Allyl compounds, such as allyl (meth) acrylate, triallyl cyanurate, maleic acid diallyl esters, polyallyl esters, tetraallyloxyethane, triallylamine, tetraallylethylenediamine, allyl esters of phosphoric acid and vinylphosphonic acid derivatives, as described, for example, in EP-A-0 343 427.
  • crosslinkers b) are pentaerythritol di-pentaerythritol tri- and pentaerythritol tetraallyl ethers, polyethylene glycol diallyl ether, ethylene glycol diallyl ether, glycerol and triallyl ethers, polyallyl ethers based on sorbitol, and ethoxylated variants thereof.
  • Useful in the process according to the invention are di (meth) acrylates of polyethylene glycols, where the polyethylene glycol used has a molecular weight of between 300 and 1000.
  • crosslinkers b) are di- and triacrylates of 3 to 15 times ethoxylated glycerol, 3 to 15 times ethoxylated trimethylolpropane, in particular di- and triacrylates of 3-times ethoxylated glycerol or trimethylolpropane, of the 3-fold propoxylated glycerol or trimethylolpropane, and of the 3-times mixed ethoxylated or propoxylated glycerol or trimethylolpropane, the 15-fold ethoxylated glycerol or trimethylolpropane, and the 40-times ethoxylated glycerol or trimethylolpropane.
  • Very particularly preferred crosslinkers b) are the polyethyleneglyoxylated and / or propoxylated glycerols esterified with acrylic acid or methacrylic acid to form di- or triacrylates, as described, for example, in German Patent Application DE 10319462.2. Particularly advantageous are di- and / or triacrylates of 3- to 10-fold ethoxylated glycerol. Very particular preference is given to diacrylates or triacrylates of 1 to 5 times ethoxylated and / or propoxylated glycerol. Most preferred are the triacrylates of 3 to 5 times ethoxylated and / or propoxylated glycerol.
  • ethylenically unsaturated monomers d) copolymerizable with acrylic acid a) include methacrylic acid, maleic acid, fumaric acid, itaconic acid, acrylamide, methacrylamide, crotonamide, dimethylaminoethyl methacrylate, dimethylaminoethyl acrylate, dimethylaminopropyl acrylate, diethylaminopropyl acrylate, dimethylaminobutyl acrylate, dimethylaminoethyl methacrylate, diethylaminoethyl methacrylate, dimethylaminoneone. pentyl acrylate and dimethylaminoneopentyl methacrylate.
  • water-soluble polymers e it is possible to use polyvinyl alcohol, polyvinylpyrrolidone, starch, starch derivatives, polyglycols or polyacrylic acids, preferably polyvinyl alcohol and starch.
  • Water-absorbing polymers are usually obtained by polymerization of an aqueous monomer solution and optionally subsequent comminution of the hydrogel. Suitable preparation methods are described in the literature. Water-absorbing polymers can be obtained, for example
  • the reaction is preferably carried out in a kneader, as described for example in WO-A-01/38402, or on a belt reactor, as described, for example, in EP-A-0 955 086.
  • the acid groups of the resulting hydrogels are usually partially neutralized, preferably from 25 to 85 mol%, preferably from 27 to 80 mol%, more preferably from 27 to 30 mol% or from 40 to 75 mol%, using the customary neutralizing agents may be, preferably alkali metal hydroxides, alkali metal oxides, alkali metal carbonates or Alkalimetallhydrogencarbonate and mixtures thereof. Instead of alkali metal salts and ammonium salts can be used. Sodium and potassium are particularly preferred as alkali metals, most preferably, however, sodium hydroxide, sodium carbonate or sodium bicarbonate, and mixtures thereof. Usually, the neutralization is achieved by mixing the neutralizing agent as an aqueous solution or preferably also as a solid.
  • the neutralization can be carried out after the polymerization at the hydrogel stage. However, it is also possible to neutralize up to 40 mol%, preferably 10 to 30 mol%, particularly preferably 15 to 25 mol%, of the acid groups prior to the polymerization by adding a part of the neutralizing agent already to the monomer solution and only after the desired degree of final neutralization is adjusted after the polymerization at the level of the hydrogel.
  • the monomer solution can be neutralized by mixing in the neutralizing agent.
  • the hydrogel can be mechanically comminuted, for example by means of a meat grinder, wherein the neutralizing agent can be sprayed on, scattered or poured on and then thoroughly mixed in. For this purpose, the resulting gel mass can be further wound several times for homogenization. Neutralization of the monomer solution to the final neutralization level is preferred.
  • the further treatment of the resulting hydrogel, whose acid groups may be at least partially neutralized, does not matter in the process according to the invention.
  • the process according to the invention may, for example, also comprise the steps of drying, milling, sieving and / or post-crosslinking.
  • the neutralized hydrogel is then dried with a belt or drum dryer until the residual moisture content is preferably below 10% by weight, in particular below 5% by weight, the water content being that recommended by EDANA (European Disposables and Nonwovens Association) Test Method No. 430.2-02 "Moisture content" is determined.
  • the dried hydrogel is then milled and sieved, with mill stands, pin mills or vibratory mills usually being used for grinding.
  • the particle size of the sieved, dry hydrogel is preferably below 1000 .mu.m, more preferably below 900 .mu.m, most preferably below 800 .mu.m, and preferably above 100 .mu.m, more preferably above 150 .mu.m, most preferably above 200 .mu.m.
  • particle size (sieve cut) of 106 to 850 ⁇ m.
  • the particle size is determined according to the test method No. 420.2-02 "Particle size distribution" recommended by the EDANA (European Disposables and Nonwovens Association).
  • the base polymers are then preferably surface postcrosslinked.
  • Suitable postcrosslinkers for this purpose are compounds which contain at least two groups which can form covalent bonds with the carboxylate groups of the hydrogel.
  • Suitable compounds are, for example, alkoxysilyl compounds, polyaziridines, polyamines, polyamidoamines, di- or polyglycidyl compounds, as described in EP-AO 083 022, EP-A-543 303 and EP-A-937 736, di- or polyfunctional alcohols, as described in DE-C-33 14 019, DE-C-35 23 617 and EP-A-450 922, or ⁇ -hydroxyalkylamides as described in DE-A-102 04 938 and US-6,239,230.
  • the postcrosslinking is usually carried out so that a solution of the surface postcrosslinker is sprayed onto the hydrogel or the dry base polymer powder. Following the spraying, the polymer powder is thermally dried, whereby the crosslinking reaction can take place both before and during the drying.
  • the spraying of a solution of the crosslinker is preferably carried out in mixers with moving mixing tools, such as screw mixers, paddle mixers, disk mixers, plowshare mixers and paddle mixers.
  • Vertical mixers are particularly preferred, plowshare mixers and display mixers are very particularly preferred.
  • Suitable mixers are, for example, Lödige® mixers, Bepex® mixers, Nauta® mixers, Processall® mixers and Schugi® mixers.
  • the thermal drying is preferably carried out in contact dryers, particularly preferred paddle dryers, very particularly preferably disc dryers.
  • Suitable dryers include Bepex® dryers and Nara® dryers.
  • Math ⁇ this can also be used fluidized bed dryer.
  • the drying can take place in the mixer itself, by heating the jacket or blowing hot air. Also suitable is a downstream dryer, such as a hopper dryer, a rotary kiln or a heatable screw. However, it is also possible, for example, to use an azeotropic distillation as the drying process.
  • Preferred drying temperatures are in the range 50 to 250 0 C, preferably at 50 to 200 0 C, and particularly preferably at 50 to 150 0 C.
  • the preferred residence time at this temperature in the reaction mixer or dryer is below 30 minutes, be ⁇ Sonders preferably below 10 minutes.
  • Another object of the present invention are water-absorbing polymers, which are obtainable by the method described above.
  • Another object of the present invention are aqueous monomer solutions for the preparation of water-absorbing polymers containing
  • acrylic acid wherein the acrylic acid may be at least partially neutralized, b) at least one crosslinker, c) allyl acrylate and / or allyl alcohol, d) optionally one or more ethylenically and / or allylically unsaturated monomers which can be copolymerized with the monomers mentioned under a) and e) optionally one or more water-soluble polymers,
  • the solution contains at most 0.002 wt .-% allyl acrylate and / or allyl alcohol, based on acrylic acid, and wherein the above applies to the components a) to e).
  • Another object of the present invention are water-absorbing polymers containing polymers i) copolymerized acrylic acid, in which the copolymerized acrylic acid may be at least partially neutralized, ii) at least one copolymerized crosslinker, iii) copolymerized allyl acrylate and / or allyl alcohol, iv) optionally one or more copolymerized ethylenic and / or copolymerizable with the monomers mentioned under i); allylic unsaturated monomers and v) optionally one or more water-soluble polymers to which the monomers mentioned under i) are at least partially impinged,
  • polymers contain not more than 0.002% by weight of copolymerized allyl acrylate and / or copolymerized allyl alcohol, based on copolymerized acrylic acid, and the same applies mutatis mutandis to components i) to v) for components a) to e) above.
  • a further subject of the present invention are methods for producing hygiene articles, in particular diapers, comprising the abovementioned method for producing water-absorbing polymers.
  • a further subject of the present invention are hygiene articles containing an absorbent layer consisting of 50 to 100 wt.%, Preferably 60 to 100 wt.%, Preferably 70 to 100 wt.%, Particularly preferably 80 to 100 wt. , Very particularly preferably 90 to 100 wt .-%, inventive water-absorbing polymers, wherein the envelope of the absorbent layer is of course not taken into account.
  • the dried water-absorbing polymers are tested by the test methods described below.
  • the measurements should, unless stated otherwise, be carried out at an ambient temperature of 23 + 2 ° C. and a relative atmospheric humidity of 50 + 10%.
  • the water-absorbing polymers are thoroughly mixed before the measurement.
  • centrifuge retention capacity of the water-absorbing polymers is determined according to the test method No. 441.2-02 "Centrifuge retention capacity" recommended by the EDANA (European Disposables and Nonwovens Association). extractable
  • the content of extractable constituents of the water-absorbing polymers is determined according to the test method No. 470.2-02 "Determination of extractable polymer content by potentiometry titration" recommended by EDANA (European Disposables and Nonwovens Association).
  • the content of residual monomers of the water-absorbing polymers is determined according to the test method No. 410.2-02 "Residual monomers" recommended by the EDANA (European Disposables and Nonwovens Association).
  • the water content of the water-absorbing polymers is determined according to the test method No. 430.2-02 "Moisture content" recommended by the EDA-NA (European Disposables and Nonwovens Association).
  • the EDANA test methods are available, for example, from the European Dispersables and Nonwovens Association, Avenue Eugene Plasky 157, B-1030 Brussels, Belgium.
  • the initiator system was the stirred monomer solution, each as a dilute aqueous solution, at 4 0 C in the order 0.02 wt .-% sodium persulfate, 0.007 wt .-% hydrogen peroxide and 0.0015 wt .-% ascorbic acid, each based on Acrylic acid, added.
  • the temperature rose to 90 0 C, wherein a solid hydrogel was formed.
  • the hydrogel was mechanically comminuted, dried for 60 minutes at 150 0 C, ground and sieved to 100 to 850 microns.
  • the acrylic acid used contained defined amounts of allyl acrylate or allyl alcohol.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Graft Or Block Polymers (AREA)
  • Polymerisation Methods In General (AREA)
  • Absorbent Articles And Supports Therefor (AREA)

Abstract

Die Erfindung betrifft Verfahren zur Herstellung wasserabsorbierender Polymere durch Polymerisation einer Monomerlösung, enthaltend Allylacrylat und/oder Allylalkohol, wobei die Lösung höchstens 0,002 Gew.-% Allylacrylat und/oder Allylalkohol, bezogen auf Acrylsäure, enthält, wässrige Monomerlösungen zur Herstellung wasserabsorbierender Polymere, wasserabsorbierende Polymere, Verfahren zur Herstellung von Hygieneartikeln sowie Hygieneartikel.

Description

Verfahren zur Herstellung wasserabsorbierender Polymere
Beschreibung
Die vorliegende Erfindung betrifft Verfahren zur Herstellung wasserabsorbierender Po¬ lymere durch Polymerisation einer Monomerlösung, wässrige Monomerlösungen zur Herstellung wasserabsorbierender Polymere, wasserabsorbierende Polymere, Verfah¬ ren zur Herstellung von Hygieneartikeln sowie Hygieneartikel.
Weitere Ausführungsformen der vorliegenden Erfindung sind den Ansprüchen, der Be¬ schreibung und den Beispielen zu entnehmen. Es versteht sich, dass die vorstehend genannten und die nachstehend noch zu erläuternden Merkmale des erfindungsgemä¬ ßen Gegenstandes nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen verwendbar sind, ohne den Rahmen der Erindung zu verlas- sen.
Wasserabsorbierende Polymere sind insbesondere Polymere aus (co)polymerisierten hydrophilen Monomeren, Pfropf(co)polymere von einem oder mehreren hydrophilen Monomeren auf einer geeigneten Pfropfgrundlage, vernetzte Cellulose- oder Stärke- ether, vernetzte Carboxymethylcellulose, teilweise vernetztes Polyalkylenoxid oder in wässrigen Flüssigkeiten quellbare Naturprodukte, wie beispielsweise Guarderivate. Solche Polymere werden als wässrige Lösungen absorbierende Produkte zur Herstel¬ lung von Windeln, Tampons, Damenbinden und anderen Hygieneartikeln, aber auch als wasserzurückhaltende Mittel im landwirtschaftlichen Gartenbau verwendet.
Die Herstellung der wasserabsorbierenden Polymere wird beispielsweise in der Mono¬ graphie "Modern Superabsorbent Polymer Technology", F.L. Buchholz und AT. Gra¬ ham, Wiley-VCH, 1998, oder in Ullmann's Encyclopedia of Industrial Chemistry, 6. Auf¬ lage, Band 35, Seiten 73 bis 103, beschrieben. Die mit Abstand wichtigsten Monomere zur Herstellung wasserabsorbierender Polymere sind Acrylsäure und Acrylsäuresalze.
Acrylsäure kann nach verschiedenen Verfahren hergestellt werden. Diese Verfahren werden beispielsweise in Ullmann's Encyclopedia of Industrial Chemistry, 6. Auflage, Band 1 , Seiten 289 bis 296 beschrieben. Das bedeutenste Verfahren ist zurzeit die zweistufige Propenoxidation.
Bei der Herstellung wasserabsorbierender Polymere wird ein niedriger Gehalt an extrahierbaren Anteilen und an nicht umgesetzten Monomeren angestrebt. Insbeson¬ dere können die exhtrahierbaren Anteile bei der Anwendung der wasserabsorbieren- den Partikel aus den wasserunlöslichen, wasserquellbaren Polymeren ausgewaschen werden und tragen somit nichts zur Absorptionsleistung der Polymere bei. Dabei kön¬ nen auch nicht umgesetzte Monomere, wie Acrylsäure, freigesetzt werden, was auf¬ grund der hautreizenden Wirkung unerwünscht ist. Aufgabe der vorliegenden Erfindung war daher die Bereitstellung eines verbesserten Verfahrens zur Herstellung wasserabsorbierender Polymere, bei dem ein Produkt mit geringen extrahierbaren Anteilen und wenig Restmonomer erhalten wird.
Bei der zweistufigen Propenoxidation entstehen auch Neben- und Folgeprodukte, die bei der Polymerisation stören und aus Acrylsäure abgetrennt werden müssen.
DE-A-39 41 996 beschreibt den störenden Einfluss von Aldehyden bei der Acrylsäure- polymerisation und offenbart ein Verfahren zur chemischen Abtrennung der Aldehyde aus Acrylsäure.
DE-A-102 21 203 lehrt die Extraktion von aldehydischen Verunreinigungen aus wässri- gen Natriumacrylatlösungen.
DE-A-22 10 956 offenbart, dass Protoanemonin die Polymerisation von Acrylsäure verzögert und lehrt die destillative Reinigung von Acrylsäure.
EP-A-1 302 485 beschreibt ein Verfahren zur Herstellung wasserabsorbierender PoIy- mere. Die Schrift offenbart, dass ein hoher Gehalt an Protoanemonin in der verwende¬ ten Acrylsäure zu einem erhöhten Anteil an Restmonomer und Extrahierbaren im was¬ serabsorbierenden Polymer führt. Acrylsäure hat einen niedrigeren Siedepunkt und kann destillativ von Protoanemonin abgetrennt werden.
EP-A-O 574 260 offenbart ein Verfahren zur Herstellung wasserabsorbierender Poly¬ mere mit wenig Restmonomer. Die Schrift lehrt, dass der Restmonomergehalt von der Konzentration an ß-Hydroxypropionsäure in der Monomerlösung abhängt und emp¬ fiehlt die Verwendung frisch destillierter Acrylsäure.
DE-A-102 57 449 offenbart den Einfluss oligomerer Acrylsäuren auf den Restmono- merengehalt wasserabsorbierender Polymere und beschreibt, dass oligomere Acryl¬ säuren durch Kristallisation abgetrennt werden können.
DE-A-102 21 202 offenbart ein Verfahren zur Herstellung wasserabsorbierender PoIy- mere mit niedrigen Restmonomerengehalt, bei dem Acrylsäure durch Kristallisation gereinigt und die Monomerlösung durch Auflösen von Acrylsäurekristallen in Natron¬ lauge hergestellt wird.
Neben den obengenannten Verunreinigungen enthält durch Propenoxidation herge- stellte Acrylsäure auch Allylacrylat. Verbindungen mit mindestens zwei ethylenisch ungesättigten Gruppen, wie Allylacrylat, werden bei der Herstellung wasserabsorbie¬ render Polymere als Vernetzer eingesetzt, wobei auch dem Allylacrylat ähnliche Ver- bindungen verwendet werden. In DE-A-195 43 368 und DE-A-196 46 484 werden bei¬ spielsweise Vernetzer genannt, die eine Allylgruppe und eine Acrylatgruppe enthalten. Gemäß der Monographie "Modern Superabsorbent Polymer Technology", F. L. Buch¬ holz und AT. Graham, Wiley-VCH, 1998, Seiten 20 bis 23 und 74 bis 77, ist das dem Allyacrylat sehr ähnliche Allylmethacrylat ein üblicher Vernetzer.
Da bei der Herstellung wasserabsorbierender Polymere üblicherweise mindestens 0,1 Gew.-% Vernetzer, bezogen auf Acrylsäure, eingesetzt wird, wurde der Abtrennung von Allylacrylat aus Acrylsäure bislang keine Bedeutung beigemessen. Insbesondere, weil sich Allylacrylat nur schwer aus Acrylsäure abtrennen lässt.
So ist der Siedepunktsunterschied zwischen Acrylsäure und Allylacrylat nur gering, was die destillative Abtrennung erschwert. Beispielsweise enthält handelsübliche Ac¬ rylsäure noch größere Mengen an Essigsäure, obwohl sich Essigsäure aufgrund ihres günstigeren Siedepunktes leichter von Acrylsäure abtrennen lässt.
Die strukturelle Ähnlichkeit zur Acrylsäure erschwert dagegen die Abtrennung durch Kristallisation. Beispielsweise kann Furfural in Acrylsäure durch einstufige Kristallisati¬ on um einen Faktor von über 50 abgereichert werden. Für Allylacrylat beträgt der Ab- reicherungsgrad dagegen nur etwa 7. So enthielt die zur Herstellung wasserabsorbie¬ render Polymere verwendete Acrylsäure bislang Allylacrylat.
Die Monographie "Modern Superabsorbent Polymer Technology", F. L Buchholz und AT. Graham, Wiley-VCH, 1998, Seiten 121 und 122, enthält ein Gaschromatogramm kommerziell verfügbarer Acrylsäure. Die dort analysierte Acrylsäure enthielt noch ca. 0,003 Gew.-% Allylacrylat.
Überraschenderweise wurde nun gefunden, dass Allylacrylat bereits in geringen Kon¬ zentrationen eine negativen Einfluss auf die Herstellung wasserabsorbierender PoIy- mere hat. Insbesondere führen bereits geringe Allylacrylatkonzentrationen zu einem Anstieg extrahierbarer Anteile und zu erhöhten Restmonomerengehalten. Daselbe gilt für Allylalkohol, wobei Allylalkohol bereits in der Acrylsäure enthalten sein kann oder erst bei der Herstellung der zumindest teilneutralisierten Monomerlösung durch Hydro¬ lyse aus Allylacrylat entstehen kann.
Gelöst wurde die Aufgabe der vorliegenden Erfindung durch ein Verfahren zur Herstel¬ lung wasserabsorbierender Polymere durch Polymerisation einer Monomerlösung, ent¬ haltend
a) Acrylsäure, wobei die Acrylsäure zumindest teilweise neutralisiert sein kann, b) mindestens einen Vernetzer, c) Allylacrylat und/oder Allylalkohol, d) gegebenenfalls ein oder mehrere mit den unter a) genannten Monomeren copo- lymerisierbare ethylenisch und/oder allylisch ungesättigte Monomere und e) gegebenenfalls ein oder mehrere wasserlösliche Polymere,
dadurch gekennzeichnet, dass die Lösung höchstens 0,002 Gew.-% Allylacrylat und/oder Allylalkohol, bezogen auf Acrylsäure, enthält.
Vorzugsweise werden wässrige Monomerlösungen eingesetzt. Die gemäß dem erfin¬ dungsgemäßen Verfahren hergestellten Hydrogele können getrocknet, gemahlen und klassiert werden.
In einer bevorzugten Ausführungsform werden die wasserabsorbierenden Polymere nachvemetzt.
Die Herstellung der wasserabsorbierenden Polymere wird beispielsweise in der Mono¬ graphie "Modern Superabsorbent Polymer Technology", F.L. Buchholz und AT. Gra¬ ham, Wiley-VCH, 1998, oder in Ullmann's Encyclopedia of Industrial Chemistry, 6. Auf¬ lage, Band 35, Seiten 73 bis 103, beschrieben.
Die wasserabsorbierenden Polymere weisen typischerweise eine Zentrifugenretenti- onskapazität (CRC) von mindestens 15 g/g, vorzugsweise mindestens 20 g/g, beson¬ ders bevorzugt mindestens 25 g/g, auf. Die Zentrifugenretentionskapazität (CRC) wird gemäß der von der EDANA (European Disposables and Nonwovens Association) emp¬ fohlenen Testmethode Nr. 441.2-02 "Centrifuge retention capacity" bestimmt.
Die nachvernetzten wasserabsorbierenden Polymere weisen typischerweise eine Ab¬ sorption unter Druck 0,7 psi (4,83 kPa) von mindestens 15 g/g, vorzugsweise mindes¬ tens 20 g/g, besonders bevorzugt mindestens 25 g/g, auf. Die Absorption unter Druck (AUL) wird gemäß der von der EDANA (European Disposables and Nonwovens Asso- ciation) empfohlenen Testmethode Nr. 442.2-02 "Absorption under pressure" bestimmt.
Der Gehalt an Allylacrylat und/oder Allylalkohol beträgt vorzugsweise höchstens 0,0015 Gew.-%, besonders bevorzugt höchstens 0,001 Gew.-%, ganz besonders be¬ vorzugt höchstens 0,0005 Gew.-%, jeweils bezogen auf Acrylsäure, wobei ein Gehalt von x Gew.-% Allylacrylat und/oder Allylalkohol einen Gehalt von y Gew.-% Allylacrylat und z Gew.-% Allylalkohol bedeutet, wobei gilt x = y + z und y, z ≤ x.
Das Gewichtsverhältnis z/y beträgt vorzugsweise mindestens 0,001 , besonders bevor¬ zugt mindestens 0,1 , ganz besonders bevorzugt mindestens 0,5, und vorzugsweise höchstens 500, besonders bevorzugt höchstens 50, ganz besonders bevorzugt höchs¬ tens 1. Der Anteil an Acrylsäure in der Mischung a) bis e) beträgt typischerweise mindestens 50 Gew.-%, vorzugsweise mindestens 80 Gew.%, besonders bevorzugt mindestens 95 Gew.-%, ganz besonders bevorzugt mindestens 99 Gew.%, wobei die Anwesenheit der Komponenten d) und e) jeweils optional ist.
Vorzugsweise wird die eingesetzte Acrylsäure durch Gasphasenoxidation von Propan, Propen und/oder Acrolein hergestellt, wobei die Gasphasenoxidation einstufig, zweistu¬ fig oder dreistufig durchgeführt werden kann. Bevorzugt ist die zweistufige Oxidation von Propen, bei der in einer ersten Stufe Propen zu Acrolein und in einer zweiten Stufe Acrolein zu Acrylsäure umgesetzt werden.
Aus dem Reaktionsgemisch wird Acrylsäure in bekannter Weise isoliert, beispielsweise durch fraktionierte Kondensation, wie in DE-A-197 40 253 beschrieben, durch Total¬ kondensation, wie in DE-A-34 29 391 und DE-A-21 64 767 beschrieben, oder durch Absorption in ein geeignetes Absorptionsmittel. Geeignete Absorptionsmittel sind bei¬ spielsweise hochsiedede organische Lösungsmittel, wie in DE-A-21 36 396 und DE-A- 43 08 087 beschrieben, und Wasser, wie in EP-A-O 511 111 beschrieben.
Die nach diesen Verfahren hergestellte Acrylsäure enthält üblicherweise weniger als 2 Gew.-%, vorzugsweise weniger als 1 ,5 Gew-%, besonders bevorzugt weniger als 1 Gew.-%, ganz besonders bevorzugt weniger als 0,5 Gew.-%, an Verunreinigungen, d.h., der Acrylsäuregehalt beträgt üblicherweise mindestens 98 Gew.-%, vorzugsweise mindesten 98,5 Gew.-%, besonders bevorzugt mindestend 99 Gew.-%, ganz beson¬ ders bevorzugt mindestens 99,5 Gew.-%.
Üblicherweise enthält die nach den obengenannten Verfahren hergestellte Acrylsäure noch mindestens 0,02 Gew.-%, 0,015 Gew.-%, 0,01 Gew.-% oder 0,005 Gew.-% AIIy- lacrylat und/oder Allylalkohol.
Nach dem erfindungsgemäßen Verfahren wird die Acrylsäure vor ihrer Verwendung zur Herstellung wasserabsorbierender Polymere weiter gereinigt, vorzugsweise durch Kris¬ tallisation.
Dabei wird ein Teil der Acrylsäure unter Kühlung kristallisiert. Die Kristalle werden von der Mutterlauge getrennt und aufgeschmolzen, in Wasser oder wässriger Natronlauge gelöst. Vorzugsweise setzt man hierbei der Acrylsäure geringe Mengen eines Polyme¬ risationsinhibitors, vorzugsweise eines Hydrochinonhalbethers, wie Hydrochinonmo- nomethylether, zu. Die Menge liegt üblicherweise im Bereich von 0,0001 bis 0,015 Gew.-%, vorzugsweise im Bereich von 0,0005 bis 0,013 Gew.-%, besonders bevorzugt im Bereich von 0,003 bis 0,007 Gew.-%. Die Acrylsäure wird ein- oder mehrfach, vorzugsweise zweifach, dreifach oder vierfach, besonders bevorzugt zweifach, kristallisiert, bis der gewünschte Reinheitsgrad erreicht ist. Vorzugsweise arbeitet man dabei nach dem Gegenstromprinzip, d.h. die Mutterlau¬ ge der jeweiligen Kristallisationsstufe wird der jeweils vorangehenden Kristallisations- stufe zugeführt. Gegebenenfalls werden noch weitere Reinigungsschritte durchgeführt.
In einer alternativen Ausführungsform wird die bei der Kristallisation anfallende Mutter¬ lauge, bei einer mehrstufigen Kristallisation, vorzugsweise die in der ersten Stufe anfal¬ lende Mutterlauge, einer einfachen Destillation oder einer fraktionierenden Destillation zugeführt. Hierbei wird Acrylsäure über Kopf destilliert und die schwerflüchtigen Verun¬ reinigungen der Mutterlauge, wie Maleinsäure(anhydrid) und Prozessinhibitoren, d.h. hochwirksame Polymerisationsinhibitoren, wie Phenotiazin und Hydrochinon, werden als Sumpf ausgeschleust. Verfahren hierzu sind aus der WO-A-00/01657 bekannt. Zweckmäßigerweise wird für die einfache Destillation der Mutterlauge ein Fallfilmver- dampfer eingesetzt. Die Mutterlauge kann dann einer anderen Verwendung zugeführt, beispielsweise zur Herstellung von Acrylsäureestem, oder in die Kristallisation rückge¬ führt werden.
Vorzugsweise führt man die Kristallisation in der jeweiligen Kristallisationsstufe so weit, dass wenigstens 20 Gew.-% und vorzugsweise wenigstens 40 Gew.-% der Acrylsäure auskristallisiert wird. Typischerweise wird in einer Kristallisationsstufe nicht mehr als 90 Gew.-%, vorzugsweise nicht mehr als 80 Gew.-%, insbesondere nicht mehr als 70 Gew.-% der in der jeweiligen Kristallisationsstufe eingesetzten Acrylsäure auskristalli¬ siert, um eine hinreichende Reinigungswirkung zu erzielen.
Der im erfindungsgemäßen Verfahren einsetzbare Kristaller unterliegt an sich keiner Beschränkung. Als besonders geeignet haben sich Kristaller erwiesen, deren Funktion auf der Bildung von Kristallen auf gekühlten Flächen beruht. Derartige Kristallisations¬ verfahren werden auch als Schichtkristallisation bezeichnet. Geeignete Apparate fin- den sich in den in DE-A-102 57 449 auf Seite 4, Zeile 6 und 7, angegebenen Patent¬ schriften.
Zur Schichtkristallisation wird die zu reinigende Acrylsäure mit den gekühlten Flächen eines Wärmetauschers in Kontakt gebracht. Dabei kühlt man die Wärmetauscherflä- chen des Kristallers vorzugsweise auf Temperaturen, die bis zu 400C unterhalb der Schmelztemperatur der zu reinigenden Acrylsäure liegen. Bei Erreichen des ge¬ wünschten Kristallisationsgrades wird der Abkühlvorgang beendet und die flüssige Mutterlauge abgeführt, beispielsweise durch Abpumpen oder Abfließen. Die Isolierung der gereinigten, kristallisierten Acrylsäure erfolgt üblicherweise durch Aufschmelzen der kristallisierten Acrylsäure, beispielsweise durch Erwärmen der Wärmetauscherflä¬ chen auf eine Temperatur oberhalb der Schmelztemperatur der Acrylsäure und/oder durch Zufuhr einer Schmelze gereinigter Acrylsäure. Hierbei fällt die gereinigte Acryl- säure als Schmelze an und wird als solche isoliert. Auch kann man die kristalline Acryl- säure in Wasser oder wässriger Natronlauge lösen und die so erhaltene Lösung direkt in der nachfolgenden Polymerisation einsetzen.
Als zusätzlichen Reinigungschritt kann man bei der Schichtkristallisation beispielsweise die auf den Wärmetauscherflächen abgeschiedene Kristallschicht anschwitzen. Hierzu wird die Temperatur der Kristallschicht etwas angehoben, beispielsweise um 0,5 bis 50C oberhalb der Schmelztemperatur, wobei bevorzugt die höher verunreinigten Berei¬ che der Kristallschicht abschmelzen und so eine zusätzliche Reinigungswirkung erzielt wird. Das Schwitzprodukt wird dann der Mutterlauge zugeführt und mit dieser weiter verarbeitet. Auch kann man die Kristallschicht mit einer Reinigungsflüssigkeit, bei¬ spielsweise einer Schmelze von bereits gereinigter Acrylsäure, behandeln.
Die zur Schichtkristallisation erforderliche Temperatur hängt vom Grad der Verunreini- gung ab. Die Obergrenze ist naturgemäß die Temperatur, bei der sich die bereits kris¬ tallisierte Acrylsäure mit der in der Mutterlauge enthaltenen Acrylsäure im Gleichge¬ wicht befindet (Gleichgewichtstemperatur). Je nach Zusammensetzung des Rohpro¬ duktes liegt die Gleichgewichtstemperatur im Bereich von 5 bis 13,5°C. Die Temperatur der zu kristallisierenden Acrylsäure liegt vorzugsweise im Bereich von 0 bis 13,5°C, vorzugsweise im Bereich von 5 bis 12°C, wobei stark unterkühlte Schmelzen üblicher¬ weise vermieden werden. Insbesondere wird man bei der dynamischen Schichtkristalli¬ sation das Kühlmedium, das zur Abfuhr der Kristallisationswärme erforderlich ist, wäh¬ rend des Kristallisationsvorgangs von etwa +5 bis -5°C auf etwa -10 bis -25°C abküh¬ len. Bei einer statisch durchgeführten Schichtkristallisation wird man vorzugsweise das Kühlmedium während des Kristallisationsvorgangs von einer Temperatur von etwa +5 bis ~15°C auf etwa -15 bis -300C abkühlen.
In einer Ausführungsform des Kristallisationsverfahrens führt man die Schichtkristallisa¬ tion in Gegenwart von Impfkristallen durch.
Die Kristallisation an Kühlflächen kann als dynamisches oder statisches Verfahren durchgeführt werden. Dynamische Verfahren sind beispielsweise aus EP-A-O 616 998 bekannt, statische beispielsweise aus US-3,597,164. Bei den dynamischen Kristallisa¬ tionsverfahren wird das zu kristallisierende Rohprodukt in einer strömenden Bewegung gehalten. Dies kann durch eine erzwungene Strömung in voll durchströmten Wärme¬ tauschern geschehen, wie in DE-A-26 06 364 beschrieben, oder durch einen Rieselfilm auf eine gekühlte Wand, wie Kühlwalzen oder Kühlbänder. Bei der statischen Kristalli¬ sation findet ein Stoffaustausch in der flüssigen Phase nur durch freie Konvektion statt (ruhende Schmelze). Die Schichtkristallisation an Kühlflächen im dynamischen Verfah- rensbetrieb ist in der vorliegenden Erfindung bevorzugt. Als Alternative zur Schichtkristallisation kann die Kristallisation auch als Suspensions¬ kristallisation durchgeführt werden. Bei der Suspensionskristallisation wird durch Küh¬ lung des Rohprodukts eine Kristallsuspension in einer an Verunreinuigungen angerei¬ cherten Schmelze erzeugt. Die Kristalle können dabei unmittelbar in der Suspension (Schmelze) wachsen oder sich als Schicht auf einer gekühlten Wand abscheiden, von der sie anschließend abgekratzt und in der Restschmelze suspendiert werden. Die Kristallsuspension wird vorzugsweise während des Verfahrens bewegt, wozu insbe¬ sondere umgepumpt oder gerührt wird. Die Suspensionskristallisation kann kontinuier¬ lich oder diskontinuierlich, vorzugsweise kontinuierlich, betrieben werden.
Die als Einsatzstoff für die Kristallisation verwendete Acrylsäure enthält üblicherweise weniger als 2 Gew.-%, vorzugsweise weniger als 1 ,5 Gew-%, besonders bevorzugt weniger als 1 Gew.-%, ganz besonders bevorzugt weniger als 0,5 Gew.-%, an Verun¬ reinigungen, d.h., der Acrylsäuregehalt beträgt üblicherweise mindestens 98 Gew.-%, vorzugsweise mindesten 98,5 Gew.-%, besonders bevorzugt mindestend 99 Gew.-%, ganz besonders bevorzugt mindestens 99,5 Gew.-%.
Üblicherweise enthält die als Einsatzstoff für die Kristallisation verwendete Acrylsäure noch mindestens 0,02 Gew.-%, 0,015 Gew.-%, 0,01 Gew.-% oder 0,005 Gew.-% AIIy- lacrylat und/oderAllylalkohol.
Die durch Kristallisation erzeugte Acrylsäure enthält höchstens 0,002 Gew.-%, vor¬ zugsweise höchstens 0,0015 Gew.-%, besonders bevorzugt höchstens 0,001 Gew.-%, ganz besonders bevorzugt höchstens 0,0005 Gew.-%, Allylacrylat und/oder Allylalko- hol, jeweils bezogen auf Acrylsäure.
Die Acrylsäure a), enthält vorzugsweise höchstens 0,015 Gew.-% eines Hydrochinon- halbethers. Bevorzugte Hydrochinonhalbether sind Hydrochinonmonomethylether (MEHQ) und/oder Tocopherole.
Unter Tocopherol werden Verbindungen der folgenden Formel verstanden
Figure imgf000009_0001
wobei R1 Wasserstoff oder Methyl, R2 Wasserstoff oder Methyl, R3 Wasserstoff oder Methyl und R4 Wasserstoff oder ein Säurerest mit 1 bis 20 Kohlenstoffatomen bedeu¬ tet. Bevorzugte Reste für R4 sind Acetyl, Ascorbyl, Succinyl, Nicotinyl und andere physio¬ logisch verträgliche Carbonsäuren. Die Carbonsäuren können Mono-, Di- oder Tricar- bonsäuren sein.
Bevorzugt ist alpha-Tocopherol mit R1 = R2 = R3 = Methyl, insbesondere racemisches alpha-Tocopherol. R4 ist besonders bevorzugt Wasserstoff oder Acetyl. Insbesondere bevorzugt ist RRR-alpha-Tocopherol.
Hydrochinonhalbether werden der Acrylsäure a) bevorzugt zu 5 bis 130 ppm, beson- ders bevorzugt 30 bis 70 ppm, inbesondere um 50 ppm zugesetzt.
Die wasserabsorbierenden Polymere sind vernetzt, d.h. die Polymerisation wird in Ge¬ genwart von Verbindungen mit mindestens zwei polymerisierbaren Gruppen, die in das Polymernetzwerk radikalisch einpolymerisiert werden können, durchgeführt. Geeignete Vernetzer b) sind beispielsweise Ethylenglykoldimethacrylat, Diethylenglykoldiacrylat, Allylmethacrylat, Trimethylolpropantriacrylat, Triallylamin, Tetraallyloxyethan, wie in EP-A-O 530 438 beschrieben, Di- und Triacrylate, wie in EP-A-O 547 847, EP-A-O 559 476, EP-A-O 632 068, WO-A-93/21237, WO-A-03/104299, WO-A-03/104300, WO-A- 03/104301 und in der deutschen Patentanmeldung mit dem Aktenzeichen 10331450.4 beschrieben, gemischte Acrylate, die neben Acrylatgruppen weitere ethylenisch unge¬ sättigte Gruppen enthalten, wie in den deutschen Patentanmeldungen mit den Akten¬ zeichen 10331456.3 und 10355401.7 beschrieben, oder Vernetzermischungen, wie beispielsweise in DE-A-195 43 368, DE-A-196 46 484, WO-A-90/15830 und WO-A- 02/32962 beschrieben.
Geeignete Vernetzer b) sind insbesondere N,N'-Methylenbisacry!amid und N1N'- Methylenbismethacrylamid, Ester ungesättigter Mono- oder Polycarbonsäuren von Polyolen, wie Diacrylat oder Triacrylat, beispielsweise Butandiol- oder Ethylenglykoldi- acrylat bzw. -methacrylat sowie Trimethylolpropantriacrylat und Allylverbindungen, wie Allyl(meth)acrylat, Triallylcyanurat, Maleinsäurediallylester, Polyallylester, Tetraallylo¬ xyethan, Triallylamin, Tetraallylethylendiamin, Allylester der Phosphorsäure sowie Vi- nylphosphonsäurederivate, wie sie beispielsweise in EP-A-O 343 427 beschrieben sind. Weiterhin geeignete Vernetzer b) sind Pentaerythritoldi- Pentaerythritoltri- und Pentaerythritoltetraallylether, Polyethylenglykoldiallylether, Ethylenglykoldiallylether, Glyzerin- und triallylether, Polyallylether auf Basis Sorbitol, sowie ethoxylierte Varian¬ ten davon. Im erfindungsgemäßen Verfahren einsetzbar sind Di(meth)acrylate von Po- lyethylenglykolen, wobei das eingesetzte Polyethylenglykol ein Molekulargewicht zwi¬ schen 300 und 1000 aufweist.
Besonders vorteilhafte Vernetzer b) sind jedoch Di- und Triacrylate des 3- bis 15-fach ethoxylierten Glyzerins, des 3- bis 15-fach ethoxylierten Trimethylolpropans, inbeson¬ dere Di- und Triacrylate des 3-fach ethoxylierten Glyzerins oder Trimethylolpropans, des 3-fach propoxylierten Glyzerins oder Trimethylolpropans, sowie des 3-fach ge¬ mischt ethoxylierten oder propoxylierten Glyzerins oder Trimethylolpropans, des 15- fach ethoxylierten Glyzerins oder Trimethylolpropans, sowie des 40-fach ethoxylierten Glyzerins oder Trimethylolpropans.
Ganz besonders bevorzugte Vemetzer b) sind die mit Acrylsäure oder Methacrylsäure zu Di- oder Triacrylaten veresterten mehrfach ethoxylierten und/oder propoxylierten Glyzerine wie sie beispielsweise in der älteren deutschen Anmeldung mit Aktenzeichen DE 10319462.2 beschrieben sind. Besonders vorteilhaft sind Di- und/oder Triacrylate des 3- bis 10-fach ethoxylierten Glyzerins. Ganz besonders bevorzugt sind Di- oder Triacrylate des 1- bis 5- fach ethoxylierten und/oder propoxylierten Glyzerins. Am meis¬ ten bevorzugt sind die Triacrylate des 3- bis 5-fach ethoxylierten und/oder propoxylier¬ ten Glyzerins. Diese zeichnen sich durch besonders niedrige Restgehalte (typischer¬ weise unter 10 ppm) im wasseraborbierenden Polymer aus und die wässrigen Extrakte der damit hergestellten wasserabsorbierenden Polymere weisen eine fast unveränder¬ te Oberflächenspannung (typischerweise mindestens 0,068 N/m) im Vergleich zu Was¬ ser gleicher Temperatur auf.
Mit Acrylsäure a) copolymerisierbare ethylenisch ungesättigte Monomere d) sind bei- spielsweise Methacrylsäure, Maleinsäure, Fumarsäure, Itaconsäure, Acrylamid, Me- thacrylamid, Crotonsäureamid, Dimethylaminoethylmethacrylat, Dimethylaminoethylac- rylat, Dimethylaminopropylacrylat, Diethylaminopropylacrylat, Dimethylaminobutylacry- lat, Dimethylaminoethylmethacrylat, Diethylaminoethylmethacrylat, Dimethylaminoneo- pentylacrylat und Dimethylaminoneopentylmethacrylat.
Als wasserlösliche Polymere e) können Polyvinylalkohol, Polyvinylpyrrolidon, Stärke, Stärkederivate, Polyglykole oder Polyacrylsäuren, vorzugsweise Polyvinylalkohol und Stärke, eingesetzt werden.
Die Herstellung eines geeigneten Grundpolymers sowie weitere geeignete hydrophile ethylenisch ungesättigte Monomere d) werden in DE-A-199 41 423, EP-A-O 686 650, WO-A-01/45758 und WO-A-03/104300 beschrieben.
Wasserabsorbierende Polymere werden üblicherweise durch Polymerisation einer wässrigen Monomerlösung und gegebenenfalls einer anschließenden Zerkleinerung des Hydrogels erhalten. Geeignete Herstellverfahren sind in der Literatur beschrieben. Wasserabsorbierende Polymere können beispielsweise erhalten werden durch
Gelpolymerisation im Batchverfahren bzw. Rohrreaktor und anschließender Zer- kleinerung im Fleischwolf, Extruder oder Kneter (EP-A-O 445 619, DE-A-19 846
413) Polymerisation im Kneter, wobei durch beispielsweise gegenläufige Rührwellen kontinuierlich zerkleinert wird, (WO-A-01/38402)
Polymerisation auf dem Band und anschließende Zerkleinerung im Fleischwolf, Extruder oder Kneter (DE-A-38 25 366, US-6,241 ,928) - Emulsionspolymerisation, wobei bereits Perlpolymerisate relativ enger Gelgrö¬ ßenverteilung anfallen (EP-A-O 457 660)
In-situ Polymerisation einer Gewebeschicht, die zumeist im kontinuierlichen Be¬ trieb zuvor mit wässriger Monomerlösung besprüht und anschließend einer Pho¬ topolymerisation unterworfen wurde (WO-A-02/94328, WO-A-02/94329)
Die Umsetzung wird vorzugsweise in einem Kneter, wie beispielsweise in WO-A- 01/38402 beschrieben, oder auf einem Bandreaktor, wie beispielsweise in EP-A-O 955 086 beschrieben, durchgeführt.
Die Säuregruppen der erhaltenen Hydrogele sind üblicherweise teilweise neutralisiert, vorzugsweise zu 25 bis 85 mol-%, bevorzugt zu 27 bis 80 mol-%, besonders bevorzugt zu 27 bis 30 mol-% oder 40 bis 75 mol-%, wobei die üblichen Neutralisationsmittel verwendet werden können, vorzugsweise Alkalimetallhydroxide, Alkalimetalloxide, Al- kalimetallcarbonate oder Alkalimetallhydrogencarbonate sowie deren Mischungen. Statt Alkalimetallsalzen können auch Ammoniumsalze verwendet werden. Natrium und Kalium als Alkalimetalle besonders bevorzugt sind, ganz besonders bevorzugt jedoch Natriumhydroxid, Natriumcarbonat oder Natriumhydrogencarbonat sowie deren Mi¬ schungen. Üblicherweise wird die Neutralisation durch Einmischung des Neutralisati¬ onsmittels als wässrige Lösung oder bevorzugt auch als Feststoff erreicht.
Die Neutralisation kann nach der Polymerisation auf der Stufe des Hydrogels durchge¬ führt werden. Es ist aber auch möglich bis zu 40 mol-%, vorzugsweise 10 bis 30 mol- %, besonders bevorzugt 15 bis 25 mol-%, der Säureguppen vor der Polymerisation zu neutralisieren indem ein Teil des Neutralisationsmittels bereits der Monomerlösung zugesetzt und der gewünschte Endneutralisationsgrad erst nach der Polymerisation auf der Stufe des Hydrogels einzustellt wird. Die Monomerlösung kann durch Einmi¬ schen des Neutralisationsmittels neutralisiert werden. Das Hydrogel kann mechanisch zerkleinert werden, beispielsweise mittels eines Fleischwolfes, wobei das Neutralisati¬ onsmittel aufgesprüht, übergestreut oder aufgegossen und dann sorgfältig unterge- mischt werden kann. Dazu kann die erhaltene Gelmasse noch mehrmals zur Homoge¬ nisierung gewolft werden. Die Neutralisation der Monomerlösung auf den Endneutrali¬ sationsgrad ist bevorzugt.
Auf die weitere Behandlung des erhaltenen Hydrogels, dessen Säuregruppen zumin- dest teilweise neutralisiert sein können, kommt es bei dem erfindungsgemäßen Verfah¬ ren nicht an. Das erfindungsgemäße Verfahren kann beispielsweise noch die Schritte Trocknung, Mahlung, Siebung und/oder Nachvernetzung umfassen. Das neutralisierte Hydrogel wird dann mit einem Band- oder Walzentrockner getrock¬ net bis der Restfeuchtegehalt vorzugsweise unter 10 Gew.-%, insbesondere unter 5 Gew.-% liegt, wobei der Wassergehalt gemäß der von der EDANA (European Disposables and Nonwovens Association) empfohlenen Testmethode Nr. 430.2-02 "Moisture content" bestimmt wird. Das getrocknete Hydrogel wird hiernach gemahlen und gesiebt, wobei zur Mahlung üblicherweise Walzenstühle, Stiftmühlen oder Schwingmühlen eingesetzt werden können. Die Partikelgröße des gesiebten, trocke¬ nen Hydrogels beträgt vorzugsweise unter 1000 μm, besonders bevorzugt unter 900 μm, ganz besonders bevorzugt unter 800 μm, und vorzugsweise über 100 μm, beson¬ ders bevorzugt über 150 μm, ganz besonders bevorzugt über 200 μm.
Ganz besonders bevorzugt ist eine Partikelgröße (Siebschnitt) von 106 bis 850 μm. Die Partikelgröße wird gemäß der von der EDANA (European Disposables and Nonwovens Association) empfohlenen Testmethode Nr. 420.2-02 "Particle size distribution" be¬ stimmt.
Die Grundpolymere werden vorzugsweise anschließend oberflächennachvernetzt. Hierzu geeignete Nachvernetzer sind Verbindungen, die mindestens zwei Gruppen enthalten, die mit den Carboxylatgruppen des Hydrogels kovalente Bindungen bilden können. Geeignete Verbindungen sind beispielsweise Alkoxysiliylverbindungen, Polya- ziridine, Polyamine, Polyamidoamine, Di- oder Polyglycidylverbindungen, wie in EP-A-O 083 022, EP-A-543 303 und EP-A-937 736 beschrieben, di- oder polyfunktionelle Alko¬ hole, wie in DE-C-33 14 019, DE-C-35 23 617 und EP-A-450 922 beschrieben, oder ß- Hydroxyalkylamide, wie in DE-A-102 04 938 und US-6,239,230 beschrieben.
Desweiteren sind in DE-A-40 20 780 zyclische Karbonate, in DE-A-198 07 502 2- Oxazolidon und dessen Derivate, wie 2-Hydroxyethyl-2-oxazolidon, in DE-A-198 07 992 Bis- und Poly-2-oxazolidinone, in DE-A-198 54 573 2-Oxotetrahydro-1 ,3-oxazin und dessen Derivate, in DE-A-198 54 574 N-Acyl-2-Oxazolidone, in DE-A-102 04 937 zyklische Harnstoffe, in der deutschen Patentanmeldung mit dem Aktenzeichen 10334584.1 bizyklische Amidacetale, in EP-A-1 199 327 Oxetane und zyklische Harn¬ stoffe und in WO-A-03/031482 Morpholin-2,3-dion und dessen Derivate als geeignete Oberflächennnachvernetzer beschrieben.
Die Nachvernetzung wird üblicherweise so durchgeführt, dass eine Lösung des O- berflächennachvemetzers auf das Hydrogel oder das trockene Grundpolymerpulver aufgesprüht wird. Im Anschluss an das Aufsprühen wird das Polymerpulver thermisch getrocknet, wobei die Vernetzungsreaktion sowohl vor als auch während der Trock- nung stattfinden kann. Das Aufsprühen einer Lösung des Vernetzers wird vorzugsweise in Mischern mit be¬ wegten Mischwerkzeugen, wie Schneckenmischer, Paddelmischer, Scheibenmischer, Pflugscharmischer und Schaufelmischer, durchgeführt werden. Besonders bevorzugt sind Vertikalmischer, ganz besonders bevorzugt sind Pflugscharmischer und Schau- feimischer. Geeignete Mischer sind beispielsweise LödigeΘ-Mischer, Bepex®-Mischer, Nauta®-Mischer, ProcessallΘ-Mischer und Schugi®-Mischer.
Die thermische Trocknung wird vorzugsweise in Kontakttrocknern, besonders bevor¬ zugt Schaufeltrocknern, ganz besonders bevorzugt Scheibentrocknern, durchgeführt. Geeignete Trockner sind beispielsweise Bepex®-Trockner und Nara®-Trockner. Über¬ dies können auch Wirbelschichttrockner eingesetzt werden.
Die Trocknung kann im Mischer selbst erfolgen, durch Beheizung des Mantels oder Einblasen von Warmluft. Ebenso geeignet ist ein nachgeschalteter Trockner, wie bei- spielsweise ein Hordentrockner, ein Drehrohrofen oder eine beheizbare Schnecke. Es kann aber auch beispielsweise eine azeotrope Destillation als Trocknungsverfahren benutzt werden.
Bevorzugte Trocknungstemperaturen liegen im Bereich 50 bis 2500C, bevorzugt bei 50 bis 2000C, und besonders bevorzugt bei 50 bis 1500C. Die bevorzugte Verweilzeit bei dieser Temperatur im Reaktionsmischer oder Trockner beträgt unter 30 Minuten, be¬ sonders bevorzugt unter 10 Minuten.
Ein weiterer Gegenstand der vorliegenden Erfindung sind wasserabsorbierende PoIy- mere, die nach dem oben beschriebenen Verfahren erhältlich sind.
Ein weiterer Gegenstand der vorliegenden Erfindung sind wässrige Monomerlösungen zur Herstellung wasserabsorbierender Polymere, enthaltend
a) Acrylsäure, wobei die Acrylsäure zumindest teilweise neutralisiert sein kann, b) mindestens einen Vernetzer, c) Allylacrylat und/oder Allylalkohol, d) gegebenenfalls ein oder mehrere mit den unter a) genannten Monomeren copo- lymerisierbare ethylenisch und/oder allylisch ungesättigte Monomere und e) gegebenenfalls ein oder mehrere wasserlösliche Polymere,
wobei die Lösung höchstens 0,002 Gew.-% Allylacrylat und/oder Allylalkohol, bezogen auf Acrylsäure, enthält, und wobei für die Komponenten a) bis e) das obengenannte gilt.
Ein weiterer Gegenstand der vorliegenden Erfindung sind wasserabsorbierende Poly¬ mere, enthaltend i) einpolymerisierte Acrylsäure, wobei die einpolymerisierte Acrylsäure zumindest teilweise neutralisiert sein kann, ii) mindestens einen einpolymerisierten Vernetzer, iii) einpolymerisiertes Allylacrylat und/oder Allylalkohol, iv) gegebenenfalls ein oder mehrere einpolymerisierte mit den unter i) genannten Monomeren copolymerisierbare ethylenisch und/oder allylisch ungesättigte Mo¬ nomere und v) gegebenenfalls ein oder mehrere wasserlösliche Polymere, auf die die unter i) genannten Monomere zumindest teilweise aufgeproft sind,
wobei die Polymere höchstens 0,002 Gew.-% einpolymerisiertes Allylacrylat und/oder einpolymerisierten Allylalkohol, bezogen auf einpolymerisierte Acrylsäure, enthalten, und wobei für die Komponenten i) bis v) sinngemäß das für die Komponenten a) bis e) obengenannte gilt.
Ein weiterer Gegenstand der vorliegenden Erfindung sind Verfahren zur Herstellung von Hygieneartikeln, insbesondere Windeln, umfassend das obengenannte Verfahren zur Herstellung wasserabsorbierender Polymere.
Ein weiterer Gegenstand der vorliegenden Erfindung sind Hygieneartikel, enthaltend eine absorbierende Schicht bestehend aus 50 bis 100 Gew.-%, vorzugsweise 60 bis 100 Gew.-%, bevorzugt 70 bis 100 Gew.-%, besonders bevorzugt 80 bis 100 Gew.-%, ganz besonders bevorzugt 90 bis 100 Gew.-%, erfindungsgemäßer wasserabsorbie- render Polymere, wobei die Umhüllung der absorbierenden Schicht selbstverständlich nicht berücksichtigt ist.
Zur Bestimmung der Güte der Nachvernetzung werden die getrocknete wasserabsor¬ bierenden Polymere mit den nachfolgend beschrieben Testmethoden geprüft.
Methoden:
Die Messungen sollten, wenn nicht anders angegeben, bei einer Umgebungstempera¬ tur von 23 + 2 0C und einer relativen Luftfeuchte von 50 + 10 % durchgeführt werden. Die wasserabsorbierenden Polymere werden vor der Messung gut durchmischt.
Zentrifugenretentionskapazität (CRC Centrifuge Retention Capacity)
Die Zentrifugenretentionskapazität der wasserabsorbierenden Polymere wird gemäß der von der EDANA (European Disposables and Nonwovens Association) empfohle¬ nen Testmethode Nr. 441.2-02 "Centrifuge retention capacity" bestimmt. Extrahierbare
Der Gehalt an extrahierbaren Bestandteilen der wasserabsorbierenden Polymere wird gemäß der von der EDANA (European Disposables and Nonwovens Association) emp- fohlenen Testmethode Nr. 470.2-02 "Determination of extractable polymer content by Potentiometrie titration" bestimmt.
Restmonomere
Der Gehalt an Restmonomeren der wasserabsorbierenden Polymere wird gemäß der von der EDANA (European Disposables and Nonwovens Association) empfohlenen Testmethode Nr. 410.2-02 "Residual monomers" bestimmt.
Feuchtegehalt der Polymere
Der Wassergehalt der wasserabsorbierenden Polymere wird gemäß der von der EDA- NA (European Disposables and Nonwovens Association) empfohlenen Testmethode Nr. 430.2-02 "Moisture content" bestimmt.
Die EDANA-Testmethoden sind beispielsweise erhältlich bei der European Dispo¬ sables and Nonwovens Association, Avenue Eugene Plasky 157, B-1030 Brüssel, Bel¬ gien.
Beispiele
Beispiele 1 bis 8:
In einem durch geschäumten Kunststoff isolierten Polyethylengefäß mit einem Fas¬ sungsvermögen von 10 I wurdem 3.500 g entmineralisiertes Wasser, 1.500 g Acrylsäu- re und 15 g 15fach ethoxiliertes Trimethylolpropantriacrylat (beispielsweise Sartomer® SR9035) vorgelegt. Durch Zugabe von 50gew.-%iger Natronlauge wurde die auf 250C gekühlte Acrylsäurelösung unter Rühren und Kühlen auf einen Neutralisationsgrad von 72 mol-% eingestellt. Vor Zugabe des Polymersationsinitiators wurde die Monomerlö¬ sung durch Einleiten von Stickstoff 30 Minuten inertisiert. Das Initiatorsystem wurde der gerührten Monomerlösung, jeweils als verdünnte wässrige Lösung, bei 40C in der Rei¬ henfolge 0,02 Gew.-% Natriumpersulfat, 0,007 Gew.-% Wasserstoffperoxid und 0,0015 Gew.-% Ascorbinsäure, jeweils bezogen auf Acrylsäure, zugesetzt. Durch einsetzende Polymerisation stieg die Temperatur auf 900C, wobei en festes Hydrogel entstand. Das Hydrogel wurde mechanisch zerkleinert, 60 Minuten bei 1500C getrocknet, gemahlen und auf 100 bis 850 μm abgesiebt.
Die eingesetzte Acrylsäure enthielt definierte Mengen an Allylacrylat bzw. Allylalkohol.
Figure imgf000017_0001
σ>

Claims

Patentansprüche
1. Verfahren zur Herstellung wasserabsorbierender Polymere durch Polymerisation einer Monomerlösung, enthaltend
a) Acrylsäure, wobei die Acrylsäure zumindest teilweise neutralisiert sein kann, b) mindestens einen Vernetzer, c) Allylacrylat und/oder Allylalkohol, d) gegebenenfalls ein oder mehrere mit den unter a) genannten Monomeren copolymerisierbare ethylenisch und/oder allylisch ungesättigte Monomere und e) gegebenenfalls ein oder mehrere wasserlösliche Polymere,
dadurch gekennzeichnet, dass die Lösung höchstens 0,002 Gew.-% Allylacrylat und/oder Allylalkohol, bezogen auf Acrylsäure, enthält.
2. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, dass die wasserabsor¬ bierenden Polymere nachvernetzt werden.
3. Verfahren gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Acryl¬ säure durch Gasphasenoxidation von Propan, Propen und/oder Acrolein herge¬ stellt wird.
4. Verfahren gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Acrylsäure vor der Polymerisation durch Kristallisation gereinigt wird.
5. Verfahren gemäß einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Acrylsäure vor der Polymerisation durch mindestens zweistufige Schichtkris- tallisation gereinigt wird.
6. Verfahren gemäß Anspruch 4 oder 5, dadurch gekennzeichnet, dass die Acryl¬ säure vor der Kristallisation mindestens 98 Gew.-% Acrylsäure enthält.
7. Verfahren gemäß einem der Ansprüche 4 bis 6, dadurch gekennzeichnet, dass die Acrylsäure vor der Kristallisation mindestens 0,005 Gew.-% Allylacrylat und/oder Allylalkohol enthält.
8. Wässrige Monomerlösung zur Herstellung wasserabsorbierender Polymere, ent- haltend a) Acrylsäure, wobei die Acrylsäure zumindest teilweise neutralisiert sein kann, b) mindestens einen Vernetzer, c) Allylacrylat und/oder Allylalkohol, d) gegebenenfalls ein oder mehrere mit den unter a) genannten Monomeren copolymerisierbare ethylenisch und/oder allylisch ungesättigte Monomere und e) gegebenenfalls ein oder mehrere wasserlösliche Polymere,
wobei die Lösung höchstens 0,002 Gew.-% Allylacrylat und/oder Allylalkohol, bezogen auf Acrylsäure, enthält.
9. Wässrige Monomerlösung gemäß Anspruch 8, dadurch gekennzeichnet, dass die Lösung höchstens 0,015 Gew.-% eines Hydrochinonhalbethers, bezogen auf Acrylsäure, enthält.
10. Wasserabsorbierende Polymere, enthaltend
i) einpolymerisierte Acrylsäure, wobei die einpolymerisierte Acrylsäure zu- mindest teilweise neutralisiert sein kann, ii) mindestens einen einpolymerisierten Vernetzer, iii) einpolymerisiertes Allylacrylat und/oder Allylalkohol, iv) gegebenenfalls ein oder mehrere einpolymerisierte mit den unter i) genann¬ ten Monomeren copolymerisierbare ethylenisch und/oder allylisch ungesät- tigte Monomere und v) gegebenenfalls ein oder mehrere wasserlösliche Polymere, auf die die un¬ ter i) genannten Monomere zumindest teilweise aufgeproft sind,
wobei die Polymere höchstens 0,002 Gew.-% einpolymerisiertes Allylacrylat und/oder einpolymerisierten Allylalkohol, bezogen auf einpolymerisierte Acryl¬ säure, enthalten.
11. Verfahren zur Herstellung von Hygieneartikeln unter Verwendung wasserabsor¬ bierender Polymere, erhältlich gemäß einem Verfahren der Ansprüche 1 bis 7.
12. Hygieneartikel, enthaltend wasserabsorbierende Polymere gemäß Anspruch 10.
PCT/EP2005/012282 2004-11-18 2005-11-16 Verfahren zur herstellung wasserabsorbierender polymere WO2006053731A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN200580039558XA CN101061146B (zh) 2004-11-18 2005-11-16 制备吸水性聚合物的方法
DE502005004152T DE502005004152D1 (de) 2004-11-18 2005-11-16 Verfahren zur herstellung wasserabsorbierender polymere
US11/666,962 US7960485B2 (en) 2004-11-18 2005-11-16 Method for producing water-absorbing polymers
JP2007541779A JP2008520778A (ja) 2004-11-18 2005-11-16 吸水性ポリマーの製造方法
PL05807619T PL1814923T3 (pl) 2004-11-18 2005-11-16 Sposób wytwarzania polimerów wchłaniających wodę
EP05807619A EP1814923B1 (de) 2004-11-18 2005-11-16 Verfahren zur herstellung wasserabsorbierender polymere

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004055765.9 2004-11-18
DE102004055765A DE102004055765A1 (de) 2004-11-18 2004-11-18 Verfahren zur Herstellung wasserabsorbierender Polymere

Publications (1)

Publication Number Publication Date
WO2006053731A1 true WO2006053731A1 (de) 2006-05-26

Family

ID=35539379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/012282 WO2006053731A1 (de) 2004-11-18 2005-11-16 Verfahren zur herstellung wasserabsorbierender polymere

Country Status (9)

Country Link
US (1) US7960485B2 (de)
EP (1) EP1814923B1 (de)
JP (1) JP2008520778A (de)
CN (1) CN101061146B (de)
AT (1) ATE395369T1 (de)
DE (2) DE102004055765A1 (de)
PL (1) PL1814923T3 (de)
TW (1) TW200628500A (de)
WO (1) WO2006053731A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100298513A1 (en) * 2008-01-29 2010-11-25 Basf Se Method for the Production of Water-Absorbing Polymer Particles
WO2012163931A1 (de) 2011-06-03 2012-12-06 Basf Se Wässrige lösung, enthaltend acrylsäure und deren konjugierte base
US9518133B2 (en) 2009-02-06 2016-12-13 Nippon Shokubai Co., Ltd. Hydrophilic polyacrylic acid (salt) resin and manufacturing method thereof
US10640588B2 (en) 2010-04-26 2020-05-05 Nippon Shokubai Co., Ltd. Polyacrylic acid (salt), polyacrylic acid (salt)-based water-absorbing resin, and process for producing same
US10640593B2 (en) 2010-04-26 2020-05-05 Nippon Shokubai Co., Ltd. Polyacrylic acid (salt), polyacrylic acid (salt)-based water-absorbing resin, and process for producing same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006036177B4 (de) * 2006-07-21 2013-05-08 Evonik Degussa Gmbh Vorrichtung und Verfahren zur Herstellung von Acrylsäure mit verminderter Autoxidationsneigung
CN101896266B (zh) * 2007-12-14 2013-01-30 巴斯夫欧洲公司 制备吸水性聚合物颗粒的方法
BRPI0915852A2 (pt) * 2008-07-11 2015-08-04 Basf Se Processo para produzir partículas poliméricas que absorvem água.
KR102000808B1 (ko) 2012-02-17 2019-07-16 가부시키가이샤 닛폰 쇼쿠바이 폴리아크릴산(염)계 흡수성 수지 및 그의 제조 방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999014181A1 (de) * 1997-09-12 1999-03-25 Basf Aktiengesellschaft Verfahren zur herstellung von acrylsäure und methacrylsäure
WO2000075097A1 (de) * 1999-06-08 2000-12-14 Basf Aktiengesellschaft Verfahren zur reiningung und herstellung von acrylsäure oder methacrylsäure

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2120956A1 (de) 1970-05-13 1971-11-25
DE3641996A1 (de) 1986-12-09 1988-06-16 Basf Ag Verfahren zum abtrennen von aldehyden aus (alpha),(beta)-olefinisch ungesaettigten carbonsaeuren
ES2234068T5 (es) 1992-06-10 2011-01-24 Nippon Shokubai Co., Ltd. Método de producción de una resina hidrofílica.
BR9307292A (pt) 1992-10-14 1999-06-01 Dow Chemical Co Material absorvente de água polimérico processo para preparar um material absorvente de fluideo aquoso material absorvente de fluideo aquoso material absorvente de fluido aquoso e método para usar um material absorvente de fluido aquoso
DE19646484C2 (de) 1995-11-21 2000-10-19 Stockhausen Chem Fab Gmbh Flüssigkeitsabsorbierende Polymere, Verfahren zu deren Herstellung und deren Verwendung
DE19543368C2 (de) 1995-11-21 1998-11-26 Stockhausen Chem Fab Gmbh Wasserabsorbierende Polymere mit verbesserten Eigenschaften, Verfahren zu deren Herstellung und deren Verwendung
DE19740253A1 (de) * 1997-09-12 1999-03-18 Basf Ag Verfahren zur fraktionierten Kondensation eines heißen Gasgemisches mit einem hohen Anteil nicht kondensierbarer Komponenten
US6444744B1 (en) 1998-03-11 2002-09-03 Nippon Shokubai Co., Ltd. Hydrophilic resin, absorbent article, and acrylic acid for polymerization
DE19923389A1 (de) * 1999-05-21 2000-08-17 Basf Ag Verfahren zum Lagern und/oder Transportieren von Reinacrylsäure
DE10003497A1 (de) 2000-01-27 2001-04-12 Basf Ag Reinigungsverfahren für (Meth)acrylsäure
US6927268B2 (en) 2000-06-21 2005-08-09 Nippon Shokubai Co., Ltd. Production process for water-absorbent resin
DE10156016A1 (de) 2001-11-15 2003-06-05 Basf Ag Vorrichtung zum reinigenden Abtrennen von Kristallen aus ihrer Suspension in verunreinigter Kristallschmelze
WO2003041832A1 (de) 2001-11-15 2003-05-22 Basf Aktiengesellschaft Verfahren zum reinigenden abtrennen von kristallen aus ihrer suspension in mutterlauge
CN1279067C (zh) 2001-12-19 2006-10-11 株式会社日本触媒 丙烯酸组合物及其制备方法,用其制备吸水性树脂的方法,以及吸水性树脂
DE10221202A1 (de) 2002-05-13 2003-07-10 Basf Ag Verfahren zur Herstellung von wässrigen für die Herstellung von Acrylsäurepolymeren geeigneten Acrylsäure-Lösung II
DE10221176A1 (de) 2002-05-13 2003-11-27 Basf Ag Verfahren zur Herstellung geruchsarmer Hydrogelbildender Polymerisate
DE10221203A1 (de) 2002-05-13 2003-07-10 Basf Ag Verfahren zur Herstellung von wässrigen für die Herstellung von Polymeren geeigneten Acrylsäure-Lösungen I
DE50303213D1 (de) 2002-06-11 2006-06-08 Basf Ag (meth)acrylester von polyalkoxyliertem glycerin
KR20050053643A (ko) 2002-09-10 2005-06-08 아르끄마 프로판으로부터 아크릴산의 제조 방법
DE10257449A1 (de) 2002-12-09 2003-11-06 Basf Ag Verfahren zur Herstellung geruchsarmer Hydrogel-bildender Polymerisate
DE10358372A1 (de) 2003-04-03 2004-10-14 Basf Ag Gemische von Verbindungen mit mindestens zwei Doppelbindungen und deren Verwendung

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999014181A1 (de) * 1997-09-12 1999-03-25 Basf Aktiengesellschaft Verfahren zur herstellung von acrylsäure und methacrylsäure
WO2000075097A1 (de) * 1999-06-08 2000-12-14 Basf Aktiengesellschaft Verfahren zur reiningung und herstellung von acrylsäure oder methacrylsäure

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100298513A1 (en) * 2008-01-29 2010-11-25 Basf Se Method for the Production of Water-Absorbing Polymer Particles
US8835575B2 (en) 2008-01-29 2014-09-16 Basf Se Method for the production of water-absorbing polymer particles
EP2238181B1 (de) * 2008-01-29 2019-06-12 Basf Se Verfahren zur herstellung wasserabsorbierender polymerpartikel
US9518133B2 (en) 2009-02-06 2016-12-13 Nippon Shokubai Co., Ltd. Hydrophilic polyacrylic acid (salt) resin and manufacturing method thereof
US10640588B2 (en) 2010-04-26 2020-05-05 Nippon Shokubai Co., Ltd. Polyacrylic acid (salt), polyacrylic acid (salt)-based water-absorbing resin, and process for producing same
US10640593B2 (en) 2010-04-26 2020-05-05 Nippon Shokubai Co., Ltd. Polyacrylic acid (salt), polyacrylic acid (salt)-based water-absorbing resin, and process for producing same
WO2012163931A1 (de) 2011-06-03 2012-12-06 Basf Se Wässrige lösung, enthaltend acrylsäure und deren konjugierte base
DE102011076931A1 (de) 2011-06-03 2012-12-06 Basf Se Wässrige Lösung, enthaltend Acrylsäure und deren konjugierte Base
US9150483B2 (en) 2011-06-03 2015-10-06 Basf Se Aqueous solution comprising acrylic acid and the conjugate base thereof

Also Published As

Publication number Publication date
CN101061146B (zh) 2011-12-21
DE102004055765A1 (de) 2006-05-24
EP1814923B1 (de) 2008-05-14
PL1814923T3 (pl) 2008-10-31
CN101061146A (zh) 2007-10-24
US7960485B2 (en) 2011-06-14
US20080214750A1 (en) 2008-09-04
DE502005004152D1 (de) 2008-06-26
EP1814923A1 (de) 2007-08-08
ATE395369T1 (de) 2008-05-15
TW200628500A (en) 2006-08-16
JP2008520778A (ja) 2008-06-19

Similar Documents

Publication Publication Date Title
EP2073943B1 (de) Verfahren zum klassieren wasserabsorbierender polymerpartikel
EP3473655B1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel durch suspensionspolymerisation
EP2076338B1 (de) Verfahren zum klassieren wasserabsorbierender polymerpartikel
EP1814923B1 (de) Verfahren zur herstellung wasserabsorbierender polymere
EP2102141B1 (de) Neutralisationsverfahren
EP2074153B1 (de) Verfahren zur herstellung farbstabiler wasserabsorbierender polymerpartikel mit niedrigen neutralisationsgrad
EP2099828B1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel durch suspensionspolymerisation
EP2291416A1 (de) Verfahren zur kontinuierlichen herstellung wasserabsorbierender polymerpartikel
DE102005014291A1 (de) Verfahren zur Herstellung wasserabsorbierender Polymere
DE102005042604A1 (de) Neutralisationsverfahren
DE102005042607A1 (de) Polymerisationsverfahren
EP2238181B1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel
DE102005042606A1 (de) Neutralisationsverfahren
EP1926758A1 (de) Polymerisationsverfahren
EP2547705B1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel mit verbesserter farbstabilität
EP2109628B1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel durch suspensionspolymerisation
EP2046402B2 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel durch polymerisation von tropfen einer monomerlösung
EP2225284B1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel
EP2780044B1 (de) Verfahren zur herstellung thermisch oberflächennachvernetzter wasserabsorbierender polymerpartikel
WO2008095893A1 (de) Verfahren zur herstellung von polymerpartikeln durch polymerisation von flüssigkeitstropfen in einer gasphase
EP2485773B1 (de) Verwendung von heizdampfkondensat zur herstellung wasserabsorbierender polymerpartikel
EP2485774B1 (de) Verfahren zur kontinuierlichen herstellung wasserabsorbierender polymerpartikel
EP1919568A1 (de) Verfahren zur herstellung niedrigviskoser polymergele

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11666962

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2005807619

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007541779

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200580039558.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005807619

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2005807619

Country of ref document: EP