WO2006051816A1 - Semiconductor device and method for manufacturing same - Google Patents

Semiconductor device and method for manufacturing same Download PDF

Info

Publication number
WO2006051816A1
WO2006051816A1 PCT/JP2005/020538 JP2005020538W WO2006051816A1 WO 2006051816 A1 WO2006051816 A1 WO 2006051816A1 JP 2005020538 W JP2005020538 W JP 2005020538W WO 2006051816 A1 WO2006051816 A1 WO 2006051816A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiring
groove
layer
semiconductor device
memory array
Prior art date
Application number
PCT/JP2005/020538
Other languages
French (fr)
Japanese (ja)
Inventor
Sadahiko Miura
Yoshihiro Hayashi
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to JP2006544919A priority Critical patent/JP5007932B2/en
Publication of WO2006051816A1 publication Critical patent/WO2006051816A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • H10B61/20Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors
    • H10B61/22Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors of the field-effect transistor [FET] type

Definitions

  • the present invention relates to a semiconductor device and a method for manufacturing the same, and more particularly to a magnetic memory using a magnetic resistance element as a memory cell and a semiconductor device on which the magnetic memory is mounted.
  • Magnetic random access memories that store data using spontaneous magnetization of a ferromagnetic material are one of the non-volatile memories that have attracted the most attention in recent years.
  • a magnetoresistive element composed of two ferromagnetic layers separated by an insulating or conductive nonmagnetic layer is used.
  • One of the two ferromagnetic layers is configured such that the direction of magnetization is easily changed by an external magnetic field, and the other is configured so that the direction of magnetization is not easily changed.
  • the former is often called a magnetization free layer, and the latter is called a magnetization fixed layer.
  • Digital data is stored in the memory cell as the relative angle of the magnetization direction of the two ferromagnetic layers. Stored data is retained for an extremely long period unless it is intentionally rewritten.
  • TMR tunneling magnetoresistance effect
  • GMR giant magnetoresistance
  • the above document is used to access wirings coated with a high permeability layer and circuits integrated on the same substrate as the memory array, eg, memory cells. It does not discuss the consistency of the operation of peripheral circuits and logic circuits. From the viewpoint of reducing the wiring process, it may be the most appropriate force to use wiring covered with a high permeability layer as wiring for peripheral circuits and logic circuits.
  • wiring covered with a high permeability layer is not suitable for use in peripheral circuits or logic circuits because of its high inductance; it is covered with a high permeability layer. Use of wiring tends to cause malfunction of peripheral circuits and logic circuits.
  • an architecture is required in which the wiring does not adversely affect the operation of peripheral and logic circuits.
  • Japanese Unexamined Patent Application Publication Nos. 2002-359356 and 2004-158841 refer to the integration of MRAM memory arrays and peripheral circuits. However, these publications refer to wiring covered with a high magnetic permeability layer, and nothing else.
  • the object of the present invention is not to adversely affect the operation of the circuit integrated on the same substrate as the memory array by using the wiring covered with the high permeability layer. It is to provide a magnetic memory architecture.
  • a semiconductor device in one aspect of the present invention, includes a memory array and a circuit formed on the same substrate as the memory array.
  • the memory array includes a magnetoresistive element and a write wiring through which a write current for writing data to the magnetoresistive element flows.
  • writing The wiring includes a conductor portion and a yoke layer that covers the conductor portion.
  • the yoke layer includes a ferromagnetic layer.
  • the ferromagnetic layer is substantially excluded from the circuit wiring.
  • the semiconductor device having such a configuration since the ferromagnetic layer is positively excluded from the circuit wiring, it is possible to prevent the circuit from malfunctioning due to an increase in wiring inductance.
  • the above circuit is typically a peripheral circuit used for accessing the magnetoresistive element.
  • the circuit wiring is formed in the base circuit layer, and the magnetic resistance elements and the write wiring of the memory array are formed in the memory layer formed on the base circuit layer. There is power.
  • the circuit preferably has no wiring in the memory layer.
  • the circuit may include a wiring that is located in the same wiring layer as the write wiring and substantially free of the ferromagnetic layer. This configuration makes it possible to configure a circuit with a small number of wiring layers by effectively using a wiring layer in which a write wiring is formed.
  • the write wiring includes a word line and a bit line that intersects with the word line, and is provided at a position where the magnetoresistive element force word line and the bit line intersect. Including the first wiring located in the same wiring layer and the second wiring located in the same wiring layer as the bit line. In this case, it is desirable that the distance between the word line and the bit line be smaller than the distance between the first wiring and the second wiring.
  • the wiring of the circuit has a force S that is carried in a groove formed in the interlayer insulating film.
  • the residue of the ferromagnetic material is left at the corner of the groove.
  • a method for manufacturing a semiconductor device including a memory array including a magnetoresistive element and a circuit formed on the same substrate as the memory array includes:
  • step (E) After the step (D), forming a write wiring and a circuit wiring by placing a conductor in the first groove and the second groove.
  • a manufacturing method makes it possible to form the write wiring covered with the ferromagnetic layer and the wiring of the circuit from which the ferromagnetic layer is excluded in the same wiring layer.
  • a method for manufacturing a semiconductor device includes:
  • step (I) After the step (I), a step of forming a write wiring and a circuit wiring from which the ferromagnetic layer is eliminated by simultaneously embedding a conductor in the first groove and the second groove.
  • Such a manufacturing method makes it possible to form the write wiring covered with the ferromagnetic layer and the wiring of the circuit from which the ferromagnetic layer is excluded in the same wiring layer.
  • the manufacturing method can eliminate the process of etching the ferromagnetic material located inside the second groove, and therefore, the problem of difficulty in etching the ferromagnetic material can be avoided.
  • a method for manufacturing a semiconductor device according to the present invention includes:
  • Such a manufacturing method makes it possible to form the write wiring covered with the ferromagnetic layer and the wiring of the circuit from which the ferromagnetic layer is excluded in the same wiring layer.
  • a method for manufacturing a semiconductor device according to the present invention includes:
  • Such a manufacturing method makes it possible to form the write wiring covered with the ferromagnetic layer and the wiring of the circuit from which the ferromagnetic layer is excluded in the same wiring layer.
  • the manufacturing method can eliminate the step of etching the ferromagnetic material located inside the second groove, and therefore can avoid the problem of difficulty in etching the ferromagnetic material.
  • the depth of the first groove is preferably deeper than the depth of the second groove.
  • the manufacturing method includes:
  • the method further includes a step of forming a ferromagnetic layer covering the upper surface of the first conductor.
  • an architecture of a magnetic memory that does not adversely affect the operation of a circuit integrated on the same substrate as the memory array by using wiring covered with a high permeability layer. Can be provided.
  • FIG. 1 is a plan view showing a structure of a magnetic memory that is a semiconductor device according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing the structure of the magnetic memory according to the first embodiment.
  • FIG. 3A is a cross-sectional view showing the structure of the memory layer of the magnetic memory according to the first embodiment.
  • FIG. 3B is a cross-sectional view showing the structure of the memory layer in the magnetic memory according to the first embodiment.
  • FIG. 4 is a cross-sectional view showing the structure of a magnetic memory according to a second embodiment.
  • FIG. 5A is a cross-sectional view showing a manufacturing process for forming a write word line and a wiring in a peripheral circuit section of a magnetic memory according to a second embodiment.
  • FIG. 5B is a cross-sectional view showing the manufacturing process for forming the write word line and the peripheral circuit wiring of the magnetic memory according to the second embodiment.
  • FIG. 5C is a cross-sectional view showing the manufacturing process for forming the write word line and the peripheral circuit portion wiring in the magnetic memory according to the second embodiment.
  • FIG. 5D is a cross-sectional view showing the manufacturing process for forming the write word line and the peripheral circuit portion wiring in the magnetic memory according to the second embodiment.
  • FIG. 5E is a cross-sectional view showing the manufacturing process for forming the write word line and the peripheral circuit line in the magnetic memory according to the second embodiment.
  • FIG. 5F is a cross-sectional view showing the manufacturing process for forming the write word line and the peripheral circuit line in the magnetic memory according to the second embodiment.
  • FIG. 6A is a cross-sectional view showing the structure of the magnetic memory when residue remains in the groove in the manufacturing process of forming the write word line and the peripheral circuit wiring of the magnetic memory according to the second embodiment.
  • FIG. 6A is a cross-sectional view showing the structure of the magnetic memory when residue remains in the groove in the manufacturing process of forming the write word line and the peripheral circuit wiring of the magnetic memory according to the second embodiment.
  • FIG. 6B is a cross-sectional view showing the structure of the magnetic memory when residues remain in the grooves in the manufacturing process of forming the write word line and the peripheral circuit wiring of the magnetic memory according to the second embodiment.
  • FIG. 6B is a cross-sectional view showing the structure of the magnetic memory when residues remain in the grooves in the manufacturing process of forming the write word line and the peripheral circuit wiring of the magnetic memory according to the second embodiment.
  • FIG. 7A is a cross-sectional view showing another preferred manufacturing process for forming the write word line and the peripheral circuit wiring of the magnetic memory according to the second embodiment.
  • FIG. 7B is a cross-sectional view showing another preferable manufacturing process for forming the write word line and the peripheral circuit wiring of the magnetic memory according to the second embodiment.
  • FIG. 7C is a cross-sectional view showing another preferred manufacturing process for forming the write word line and the peripheral circuit wiring of the magnetic memory according to the second embodiment.
  • FIG. 7D is a cross-sectional view showing another preferable manufacturing process for forming the write word line and the peripheral circuit wiring of the magnetic memory according to the second embodiment.
  • FIG. 8A is a cross-sectional view showing a manufacturing process for forming the bit line of the magnetic memory according to the second embodiment and the wiring of the peripheral circuit portion.
  • FIG. 8B is a cross-sectional view showing the manufacturing process for forming the bit line and the peripheral circuit portion of the magnetic memory according to the second embodiment.
  • FIG. 8C is a cross-sectional view showing the manufacturing process for forming the bit line of the magnetic memory according to the second embodiment and the wiring of the peripheral circuit portion.
  • FIG. 8D is a cross-sectional view showing the manufacturing process for forming the bit line and the peripheral circuit wiring of the magnetic memory according to the second embodiment.
  • FIG. 8E is a cross-sectional view showing the manufacturing process for forming the bit line and the wiring of the peripheral circuit portion in the magnetic memory according to the second embodiment.
  • FIG. 8F is a cross-sectional view showing the manufacturing process for forming the bit line and the peripheral circuit portion wiring in the magnetic memory according to the second embodiment.
  • FIG. 9 is a cross-sectional view showing the structure of the magnetic memory according to the third embodiment.
  • FIG. 10A is a cross-sectional view showing a manufacturing process for forming the bit line of the magnetic memory according to the third embodiment and the wiring of the peripheral circuit portion.
  • FIG. 10B is a cross-sectional view showing the manufacturing process for forming the bit line and the peripheral circuit wiring of the magnetic memory according to the third embodiment.
  • FIG. 10C is a cross-sectional view showing a manufacturing process for forming the bit line of the magnetic memory according to the third embodiment and the wiring of the peripheral circuit portion.
  • FIG. 10D is a cross-sectional view showing the manufacturing process for forming the bit line of the magnetic memory according to the third embodiment and the wiring of the peripheral circuit portion.
  • FIG. 10E shows the bit lines of the magnetic memory according to the third embodiment and the wiring of the peripheral circuit section It is sectional drawing which shows the manufacturing process which forms.
  • FIG. 1 is a plan view showing a configuration of a magnetic memory 10 which is a semiconductor device according to a first embodiment of the present invention.
  • the magnetic memory 10 includes a memory array 1 and a peripheral circuit unit 2 integrated on the same substrate.
  • MTJ magnetic tunnel junction
  • the peripheral circuit unit 2 is an area where a peripheral circuit used for accessing the memory cell is provided.
  • the peripheral circuit unit 2 includes, for example, a row address buffer 2a, a row decoder 2b, a row driver 2c, a column address buffer 2d, a column decoder 2e, a ⁇ driver 2f, a sense amplifier 2g, an output amplifier 2h, and an output buffer 2i. Provided.
  • FIG. 2 is a cross-sectional view showing the structure of the magnetic memory 10.
  • the magnetic memory 10 is generally composed of a base circuit layer 4 and a memory layer 5 formed thereon.
  • the base circuit layer 4 is a portion where a MOS transistor and wiring connected thereto are formed, and includes three wiring layers: a first wiring layer 6, a second wiring layer 7, and a third wiring layer 8. Yes.
  • Memory layer 5 is the part where MTJ3 and the wiring used to access it are formed. Interlayer insulation in the underlying circuit layer 4 is achieved by interlayer insulation films 3:! -34, and interlayer insulation in the memory layer 5 is achieved by interlayer insulation films 35-39.
  • the underlying circuit layer 4 can be formed by a general complementary metal oxide semiconductor (CMOS) process, and the MTJ3 of the memory layer 5 can also be formed by a general process.
  • CMOS complementary metal oxide semiconductor
  • the memory array 1 includes a MOS transistor 11 located in the base circuit layer 4, lands 12a to 12c, vias 13a to 13c, a ground line 14 and vias 15, and a land 16 and vias 13d located in the memory layer 5. 13e, a lower electrode 17, a write word line 18, a bit line 19, and a via 20.
  • the land 12a and the ground line 14 are formed in the first wiring layer 6 of the base circuit layer 4, and the lands 12b and 12c are formed in the second wiring layer 7 and the third wiring layer 8, respectively.
  • the MTJ 3 used as a memory cell is formed on the lower electrode 17 of the memory layer 5.
  • MTJ3 is a pinned magnetization formed on the bottom electrode 17.
  • a layer 3a, a magnetization free layer 3c, and an insulating barrier layer 3b interposed therebetween are provided.
  • MTJ3 is provided at a position where the write word line 18 and the bit line 19 intersect, and data is written to MTJ3 by passing a write current through the write word line 18 and the bit line 19.
  • MTJ3 is connected to the drain 11a of the MOS transistor 11 via the lower electrode 17, the lands 12a to 12d and the vias 13a to 13e, and further via the via 20. Connected to bit line 19.
  • the source l ib of the MOS transistor 1 1 is connected to the ground line 14 via the via 15.
  • the gate 11a of the MOS transistor 11 functions as a read word line, and the MOS transistor 11 is used to select a memory cell during a read operation.
  • the MOS transistor 11 is turned on, and a predetermined voltage is applied to the bit line 19.
  • a current flows from the bit line 19 to the ground line 14 via the MTJ3, and the data written in the MTJ3 is determined by the magnitude of the current.
  • the write word line 18 and the bit line 19 through which the write current flows are composed of a conductive layer covered with a yoke layer; the yoke layer is ferromagnetic A structure including a layer formed of a body. More specifically, as shown in FIG. 3A, the write word line 18 includes a conductor layer 18a and a yoke layer 18b covering the bottom and side surfaces thereof. Similarly, as shown in FIG. 3B, the bit line 19 includes a conductor layer 19a and a yoke layer 19b covering the upper surface and side surfaces thereof. The yoke layers 18b and 19b concentrate the magnetic field generated by the write current on the MTJ3, effectively reducing the write current.
  • the land 16 belonging to the same wiring layer as the write word line 18 composed of the conductor layer 18 a covered with the yoke layer 18 b is the same as the write word line 18. It has the structure of. More specifically, the land 16 includes a conductor layer 16a and a yoke layer 16b covering the bottom surface and the side surface thereof.
  • the peripheral circuit section 2 includes the MOS transistor 21, wirings 22a to 22c, and vias 23a to 23c located in the base circuit layer 4.
  • the wiring 22 a is formed in the first wiring layer 6 of the base circuit layer 4
  • the wiring 22 b is formed in the second wiring layer 7,
  • the wiring 22 c is formed in the third wiring layer 8.
  • MOS transistor 21 and wiring 22a are connected via via 23a.
  • the self-line 22a and the wiring 22b are connected via the via 23b
  • the wiring 22b and the wiring 22c are connected via the via 23c.
  • the peripheral circuit unit 2 does not use wiring located in the memory layer 5. That is, the peripheral circuit section 2 does not use a wiring covered with a yoke layer (that is, a ferromagnetic layer) belonging to the same wiring layer as the write word line 18 and the bit line 19, but uses only a normal wiring. Shinare. Such a configuration effectively prevents the peripheral circuit portion 2 from malfunctioning by using the wiring covered with the yoke layer.
  • a yoke layer that is, a ferromagnetic layer
  • the magnetic memory 10 according to the first embodiment includes at least five wiring layers (i.e., first to third wiring layers 6 to 8) to form the peripheral circuit section 2 having three wiring layers. 2 wiring layers in which the write word line 18 and the bit line 19 are formed are required. The use of many wiring layers is undesirable because it increases the manufacturing cost of the magnetic memory 10.
  • the wiring of the same wiring layer as that of the write word line 18 and the bit line 19 is connected to the periphery. Also used for circuit part 2. Along with this, the second wiring layer 7 and the third wiring layer 8 are removed. However, when forming a wiring belonging to the same wiring layer as the write word line 18 and the bit line 19 in the peripheral circuit section 2, a process for removing the ferromagnetic layer from the wiring is performed. As described above, removing the ferromagnetic layer is important for reducing the inductance of the wiring of the peripheral circuit section 2 and preventing malfunction.
  • the peripheral circuit section 2 is provided with a self line 41 belonging to the same wiring layer as the write word line 18 and a wiring 42 belonging to the same wiring layer as the bit line 19.
  • the wirings 41 and 42 are both normal wirings that are not covered with the yoke layer.
  • the wiring 41 is connected to the wiring 22 a belonging to the first wiring layer 6 through a via 43 that penetrates the interlayer insulating film 35.
  • the wiring 42 is connected to the wiring 41 through a via 44 that penetrates the interlayer insulating films 36 and 37.
  • FIG. 5F is a cross-sectional view showing a process for forming the write word line 18 having the yoke layer 18b and the wiring 41 not covered with the yoke layer in the same wiring layer.
  • groove 36a for forming write word line 18 is formed in interlayer insulating film 36. And a step of forming a groove 36b for forming the wiring 41 is performed.
  • the groove 36 a is provided in the memory array 1, and the groove 36 b is provided in the peripheral circuit unit 2.
  • a barrier film 51, a ferromagnetic film 52, and a noria film 53 are sequentially formed.
  • a laminated film (Ta / TaN film) of a tantalum film and a tantalum nitride film is used as the barrier films 51 and 53, and a NiFe film is used as the ferromagnetic film 52.
  • the barrier film 51 also has a role of improving the adhesion between the ferromagnetic film 52 and the interlayer insulating film 36.
  • the barrier film 53 and the ferromagnetic film 5 are formed using the resist mask 54. 2 are sequentially etched. As a result, the ferromagnetic film 52 is removed from the peripheral circuit portion 2.
  • the barrier film 53 is selected by reactive etching using a fluorine-based gas (for example, CF).
  • the ferromagnetic film 52 is etched by a wet etch using an etchant such as nitric acid. By optimizing the etching solution, it is possible to selectively etch the ferromagnetic film 52 with the rear film 51 remaining.
  • the wiring metal film 56 is formed by plating.
  • the wiring metal film 56 is typically formed of aluminum, an aluminum alloy, copper, or a copper alloy.
  • the grooves 36a and 36b are both filled with the wiring metal film 56.
  • portions of the barrier film 51, the ferromagnetic film 52, the barrier film 53, the barrier film 55, and the wiring metal film 56 that are located outside the grooves 36a and 36b. are removed by CMP (chemical mechanical polishing).
  • the groove 36a has a conductor layer 18a composed of a barrier layer 55a and a wiring metal layer 56a, and a barrier layer 51a and a ferromagnetic layer 52a.
  • the yoke layer 18b is formed, and the formation of the write word line 18 to the memory array 1 is completed.
  • the barrier layer 55b and the wiring metal layer 56b remain in the trench 36b, and the wiring 41 is formed.
  • the write word line 18 having the yoke layer 18b and the wiring 41 having no yoke layer can be formed in the same wiring layer.
  • the provision of the yoke layer in the wiring 41 is also effective in reducing the wiring width rule of the wiring provided in the peripheral circuit section 2.
  • Ferromagnetic materials have a relatively high electrical resistance, so the yoke layer hardly contributes as a conductor for transmitting signals. Therefore, the width required for the portion of the wiring where the current actually flows out of the wiring in which the yoke layer is provided on the side surface is almost the same as the width of the wiring in which the yoke layer is not provided on the side surface. This means that the force of providing the yoke layer on the side of the wiring leads to an increase in the wiring width.
  • the yoke layer is not formed on the wiring 41. Therefore, in the magnetic memory 10A of the present embodiment, the rule of the wiring width of the wiring provided in the peripheral circuit unit 2 can be further reduced.
  • the problem in the manufacturing process shown in FIGS. 5A to 5F is that the ferromagnetic material etching technique necessary for the process of etching the ferromagnetic film 52 in FIG. 5C is sufficiently established. It is not. In particular, as shown in FIG. 6A where the etching of the ferromagnetic film 52 is difficult to proceed inside the groove 36b, the residue 57 tends to remain at the corner of the groove 36b in the process of etching the ferromagnetic film 52.
  • FIG. 7A a groove 36 a for forming the write word line 18 is formed in the memory array 1 in the interlayer insulating film 36. In this step, no groove is formed in the peripheral circuit portion 2.
  • the barrier film 51, the ferromagnetic film 52, and the barrier film 53 are sequentially formed.
  • the barrier film 51, the ferromagnetic film 52, and the barrier film 53 are formed along the side surface and the bottom surface of the groove 36a.
  • a laminated film of a tantalum film and a tantalum nitride film (TaZTaN film) is used.
  • a NiFe film is used as the ferromagnetic film 52.
  • a groove 36 c is formed in the peripheral circuit portion 2 by etching using the resist mask 58.
  • the resist mask 58 has an opening at a position corresponding to the groove 36c, and is formed so as to completely cover the memory array 1.
  • the grooves 36a of the memory array 1 and the grooves 36c of the peripheral circuit portion 2 are formed by the same process as the above-described manufacturing process. It is carried. More specifically, after the resist mask 58 is removed, a barrier film 55 and a seed film for bonding (not shown) are formed. Further, using the seed film, a wiring metal film 56 is formed by plating. Subsequently, portions of the barrier film 51, the ferromagnetic film 52, the barrier film 53, the barrier film 55, and the wiring metal film 56 that are located outside the grooves 36a and 36b are removed by CMP (chemical mechanical polishing).
  • CMP chemical mechanical polishing
  • a conductor layer 18a composed of a barrier layer 55a and a wiring metal layer 56a and a yoke layer 18b composed of a barrier layer 51a and a ferromagnetic layer 52a are formed inside the groove 36a, and a write word to the memory array 1 is formed.
  • the formation of line 18 is complete.
  • a wiring 41 composed of a barrier layer 55b and a wiring metal layer 56b is formed in the groove 36b.
  • the ferromagnetic film 52 is not formed inside the groove 36c of the peripheral circuit portion 2.
  • FIG. 8A to 8F are cross-sectional views showing steps for forming the bit line 19 having the yoke layer 19b and the wiring 42 not covered with the yoke layer in the same wiring layer.
  • groove 39a for forming bit line 19 in interlayer insulating film 39, and wiring A step of forming a groove 39b for forming 42 is performed.
  • the groove 39a is provided in the memory array 1, and the groove 39b is provided in the peripheral circuit portion 2.
  • the barrier film 61, the ferromagnetic film 62, and the barrier film 63 are sequentially formed.
  • a laminated film (TaZTaN film) of a tantalum film and a tantalum nitride film is used as the barrier films 61 and 63, and a NiFe film is used as the ferromagnetic film 62.
  • the barrier film 61, the ferromagnetic film 62, and the barrier film 63 that covers the upper surface of the interlayer insulating film 39, and the bottom surfaces of the grooves 39a and 39b.
  • the portion covering the surface is removed by anisotropic etching.
  • the barrier film 61, the ferromagnetic film 62, and the barrier film 63 are left only on the side walls of the trench 39a and the trench 39b.
  • the barrier film 61, the ferromagnetic film 62, and the barrier film 63 left in the trench 39a of the memory array 1 are referred to as the barrier layer 61a, the ferromagnetic layer 62a, and the barrier layer 63a.
  • the barrier film 61, the ferromagnetic film 62, and the rear film 63 left in the groove 39b of the peripheral circuit section 2 are referred to as a barrier layer 61b, a ferromagnetic layer 62b, and a barrier layer 63b hereinafter.
  • the barrier layer 63b and the ferromagnetic layer 62b inside the groove 39b of the peripheral circuit portion 2 are removed by force etching.
  • the barrier layer 63b is made of fluorine gas (for example, CF).
  • the ferromagnetic layer 62b is etched by wet etching using an etching solution such as HC1. By optimizing the etching solution, the ferromagnetic layer 62b can be selectively etched while the barrier layer 61b remains.
  • FIG. 8D after the resist mask 69 is removed, RF tallying is performed, and the barrier layer 63a of the memory array 1 and the barrier layer 61b of the peripheral circuit unit 2 are performed. Is removed.
  • FIG. 8E after the resist mask 69 is removed, the grooves 39a of the memory array 1 and the grooves 39b of the peripheral circuit portion 2 are filled with wiring metal. More specifically, after the resist mask 69 is removed, a barrier film and a seed film for adhesion are formed. Furthermore, a wiring metal film is formed by plating using the seed film.
  • the formed barrier film and wiring metal film are removed by partial force CMP (chemical mechanical polishing) located outside the grooves 39a and 39b.
  • CMP chemical mechanical polishing
  • a conductor layer 19a composed of the barrier layer 64a and the wiring metal layer 65a is formed inside the groove 39a of the memory array 1.
  • the barrier layer 64b and the wiring metal layer 65b remain inside the groove 39b of the peripheral circuit portion 2, and thereby the wiring 42 is formed.
  • the yoke layer 19b is constituted by the no layer 61a, the ferromagnetic layer 62a, the noble layer 66, the ferromagnetic layer 67, and the barrier layer 68, and the formation of the bit line 19 is completed.
  • the bit line 19 having the yoke layer 19b and the wiring 42 having no yoke layer can be formed in the same wiring layer.
  • the distance between the write side line 18 and the bit line 19 in the memory array 1 is the same as the wiring 41 and the wiring 42 in the peripheral circuit section 2. The distance between is the same.
  • a structure of a magnetic memory is provided to eliminate a strong defect.
  • the distance between the write word line 18 and the bit line 19 of the memory array 1 is the same as that of the wiring 41 of the peripheral circuit section 2.
  • a structure that is smaller than the distance between the wiring 42 and the wiring 42 is adopted. Adopting a force and a structure to reduce the write current by reducing the distance between the write lead wire 18 and MTJ3 and the distance between the bit line 19 and MTJ 3 while reducing the write current. It is possible to reduce the interlayer capacity by sufficiently increasing the distance between the two.
  • the groove 39a for forming the bit line 19 of the memory array 1 and the groove 39b for forming the wiring 42 of the peripheral circuit section 2 are separated.
  • the manufacturing process formed in this process is adopted (see FIGS. 10A to 10E).
  • the depth force of the groove 39a for forming the bit line 19 is made deeper than the depth of the groove 39b for forming the wiring 42, so that the write word line 18 and the bit line 19 of the memory array 1 are connected. Distance force between them is made smaller than the distance between the wiring 41 and the wiring 42 in the peripheral circuit section 2.
  • the interlayer insulating film 38 is formed of two layers of insulating films 38a and 38b.
  • the via 20 connected to the MTJ3 is formed so as to reach the upper surface of the insulating film 38a, and the via 44 connected to the wiring 41 is formed so as to reach the upper surface of the insulating film 38b.
  • the manufacturing process employed in the present embodiment will be described in detail.
  • grooves 39 a are formed in the memory array 1 as shown in FIG. 1OA.
  • the trench 39a is formed to reach the via 20 through the interlayer insulating film 39 and the insulating film 38a. In this process, no groove is formed in the peripheral circuit portion 2.
  • a barrier layer 61a, a ferromagnetic layer 62a, and a barrier layer 63a are formed on the side wall of the groove 39a.
  • the formation of the noria layer 61a, the ferromagnetic layer 62a, and the barrier layer 63a is performed in the same process as in the second embodiment. Specifically, first, a first barrier film, a ferromagnetic film, and a second barrier film are sequentially formed.
  • a multilayer film (TaZTaN film) of a tantalum film and a tantalum nitride film is used as the barrier film, and ferromagnetic film is used.
  • a NiFe film is used as the film.
  • the portion covering the upper surface of the interlayer insulating film 39 and the bottom surface of the groove 39a is removed by anisotropic etching.
  • the barrier layer 61a, the ferromagnetic layer 62a, and the barrier layer 63a are left only on the side wall of the groove 39a.
  • a groove 39b is formed in the peripheral circuit portion 2 by etching using the resist mask 71.
  • the resist mask 71 has an opening at a position corresponding to the groove 39b, and is formed so as to completely cover the memory array 1.
  • the depth of the groove 39b formed in the peripheral circuit portion 2 is shallower than the depth of the groove 39a formed in the memory array 1.
  • the groove 39a of the memory array 1 and the groove of the peripheral circuit section 2 are performed by the same process as the manufacturing process of the second embodiment. 39b is loaded. More specifically, after the resist mask 71 is removed, a barrier film and a seed film (not shown) for adhesion are formed. Furthermore, a wiring metal film is formed by plating using the seed film. Subsequently, the formed barrier film and wiring metal film are removed by partial force CMP (chemical mechanical polishing) located outside the grooves 39a and 39b. As a result, the conductor layer 19a composed of the barrier layer 64a and the wiring metal layer 65a is formed inside the groove 39a, and the wiring 42 composed of the barrier layer 64b and the wiring metal layer 65b is formed inside the groove 39b. .
  • CMP chemical mechanical polishing
  • the first barrier film, the ferromagnetic film, and the second barrier film are formed in accordance with the same, they are patterned to form the memory array 1.
  • a barrier layer 66, a ferromagnetic layer 67, and a barrier layer 68 covering the groove 39a are formed.
  • the noak layer 61a, the ferromagnetic layer 62a, the noria layer 63a, the noria layer 66, the ferromagnetic layer 67, and the barrier layer 68 constitute the fork layer 19b, and the formation of the bit line 19 is completed.
  • the distance force S between the write word line 18 and the bit line 19 of the memory array 1 and the wiring 41 of the peripheral circuit section 2 are obtained. It is possible to form a structure that is smaller than the distance between the wiring 42 and the wiring 42.
  • the yoke layers 18b and 19b are formed on the write lead line 18 and the bit line 19, while the peripheral circuit portion 2 has Wiring force
  • the ferromagnetic layer is actively eliminated. This makes it possible to prevent malfunction of the peripheral circuit unit 2 due to an increase in wiring inductance while reducing the write current.
  • the write node 18 of the memory array 1 and the interconnect 41 of the peripheral circuit section 2 are formed in the same interconnect layer, and the bit The line 19 and the wiring 42 of the peripheral circuit section 2 are formed in the same wiring layer. As a result, the total number of wiring layers can be reduced.
  • the distance between the write word line 18 and the bit line 19 in the memory array 1 is larger than the distance between the wiring 41 and the wiring 42 in the peripheral circuit section 2.
  • a structure that makes it smaller is adopted. This makes it possible to reduce the interlayer capacitance while reducing the write current.
  • the present invention can also be applied to a semiconductor device in which a logic circuit and a magnetic memory are integrated on the same substrate.
  • the logic circuit is formed in the same structure as that of the peripheral circuit unit 2, and malfunction of the logic circuit due to an increase in wiring inductance is prevented.

Abstract

Disclosed is a semiconductor device comprising a memory array and a peripheral circuit formed in the same substrate as the memory array. The memory array includes an MTJ, and a word line and bit line through which a write current for writing data into the MTJ is passed. The word line and the bit line respectively have a conductor portion and a yoke layer covering the conductor portion. Meanwhile, ferromagnetic layers are eliminated from wiring of the peripheral circuit. Since ferromagnetic layers are readily eliminated from the wiring of the peripheral circuit in a semiconductor device having such a constitution, malfunction of the peripheral circuit caused by increase in the inductance of the wiring can be prevented.

Description

明 細 書  Specification
半導体装置、及びその製造方法  Semiconductor device and manufacturing method thereof
技術分野  Technical field
[0001] 本発明は、半導体装置、及びその製造方法に関し、特に、メモリセルとして磁気抵 抗素子を使用する磁気メモリ、及びそれを搭載する半導体装置に関する。  The present invention relates to a semiconductor device and a method for manufacturing the same, and more particularly to a magnetic memory using a magnetic resistance element as a memory cell and a semiconductor device on which the magnetic memory is mounted.
背景技術  Background art
[0002] 強磁性体の自発磁化を用いてデータを記憶する磁気ランダムアクセスメモリは、近 年、最も注目を集めている不揮発性メモリの一つである。磁気ランダムアクセスメモリ のメモリセルとしては、絶縁体又は導電体の非磁性層によって分離された 2層の強磁 性層で構成された磁気抵抗素子が使用される。その 2層の強磁性層の一方は、外部 磁界によって容易に磁化の向きが変化されるように構成され、他方は、磁化の向きが 容易には変化しないように構成される。前者は、しばしば磁化自由層と呼ばれ、後者 は、磁化固定層と呼ばれる。メモリセルには、デジタルデータが 2層の強磁性層の磁 化の向きの相対角として記憶される。記憶されたデータは、意図的に書き換えられな い限り、極めて長期間に渡って保持される。  [0002] Magnetic random access memories that store data using spontaneous magnetization of a ferromagnetic material are one of the non-volatile memories that have attracted the most attention in recent years. As a memory cell of a magnetic random access memory, a magnetoresistive element composed of two ferromagnetic layers separated by an insulating or conductive nonmagnetic layer is used. One of the two ferromagnetic layers is configured such that the direction of magnetization is easily changed by an external magnetic field, and the other is configured so that the direction of magnetization is not easily changed. The former is often called a magnetization free layer, and the latter is called a magnetization fixed layer. Digital data is stored in the memory cell as the relative angle of the magnetization direction of the two ferromagnetic layers. Stored data is retained for an extremely long period unless it is intentionally rewritten.
[0003] 磁気ランダムアクセスメモリのデータ書き込みは、メモリセルの近傍に位置する配線  [0003] Data writing in the magnetic random access memory is performed by wiring located in the vicinity of the memory cell.
(これらは、しばしば、ワード線、ビット線、デジット線等と呼ばれる)に書き込み電流を 流して磁界を発生し、その磁界によって自由強磁性層の磁化の向きを所望の向きに 変化させることによって行われる。  (These are often referred to as word lines, bit lines, digit lines, etc.) by applying a write current to generate a magnetic field, and the magnetic field changes the magnetization direction of the free ferromagnetic layer to a desired direction. Is called.
[0004] 磁気ランダムアクセスメモリのデータ読み出しには、磁気抵抗素子の抵抗が 2層の 強磁性層の磁化の向きの相対角に依存するという現象が利用される。詳細には、非 磁性層として絶縁体が使用される場合にはトンネル磁気抵抗効果 (TMR: tunneling 腿 gnetoresistance)効果が利用され、非磁性層として導電体が使用される場合には 巨大磁気抵抗効果 (GMR : giant magnetoresistance)が禾 lj用される。  [0004] For reading data from a magnetic random access memory, a phenomenon is used in which the resistance of the magnetoresistive element depends on the relative angle of the magnetization directions of the two ferromagnetic layers. Specifically, when an insulator is used as the nonmagnetic layer, the tunneling magnetoresistance effect (TMR: tunneling thigh gnetoresistance) effect is used. When a conductor is used as the nonmagnetic layer, the giant magnetoresistance effect is used. (GMR: giant magnetoresistance) is used for lj.
[0005] 磁気ランダムアクセスメモリの一つの課題として、消費電力の低減が挙げられる。磁 気ランダムアクセスメモリでは、メモリセルの状態を書き換えるための書き込み電流が 大きいことが、電力消費の主な要因である。米国特許第 3940319号は、消費電力を 低減させるために、書き込み配線のうち、メモリセルに対向する面以外の面を高透磁 率材料で形成された高透磁率層によって被覆する技術を開示している。高透磁率層 は、書き込み電流によって発生された磁界をメモリセルに集中させ、これにより、少な い書き込み電流でデータの書き込みを行うことを可能にする。同様の技術は、特開 2 001— 273760号公報、特開 2002— 246566号公報、特開 2003— 60172号公報 、特開 2003— 198001号公報、特開 2003— 318365号公報、特開 2004— 3164 0号公報、特開 2004— 128011号公報、特開 2004— 140091号公報、特開 2004 — 165661号公報に開示されている。 One problem with magnetic random access memories is a reduction in power consumption. In the magnetic random access memory, a large write current for rewriting the state of the memory cell is a main factor of power consumption. U.S. Pat.No. 3,940,319 In order to reduce this, a technique is disclosed in which the surface of the write wiring other than the surface facing the memory cell is covered with a high magnetic permeability layer formed of a high magnetic permeability material. The high permeability layer concentrates the magnetic field generated by the write current on the memory cell, thereby enabling data to be written with a small write current. Similar techniques are disclosed in JP-A-2 001-273760, JP-A-2002-246566, JP-A-2003-60172, JP-A-2003-198001, JP-A-2003-318365, JP-A-2004-. No. 31640, JP-A 2004-128011, JP-A 2004-140091, JP-A 2004-165661.
[0006] し力、しながら、上記の文献は、高透磁率層で被覆された配線と、メモリアレイと同一 の基板に集積化された回路、例えば、メモリセルにアクセスするために使用される周 辺回路やロジック回路の動作の整合性について議論していない。配線工程を少なく するという観点からは、高透磁率層で被覆された配線を周辺回路やロジック回路の 配線としても使用することが最も適切に考えられる力もしれなレ、。しかし、発明者の検 討によれば、高透磁率層で被覆された配線は、そのインダクタンスが高いため、周辺 回路やロジック回路への使用には不向きである;高透磁率層で被覆された配線の使 用は、周辺回路やロジック回路の誤動作を招きやすい。高透磁率層で被覆された配 線を使用する場合、当該配線が、周辺回路やロジック回路の動作に悪影響を及ぼさ なレ、ようなアーキテクチャが必要である。 However, the above document, however, is used to access wirings coated with a high permeability layer and circuits integrated on the same substrate as the memory array, eg, memory cells. It does not discuss the consistency of the operation of peripheral circuits and logic circuits. From the viewpoint of reducing the wiring process, it may be the most appropriate force to use wiring covered with a high permeability layer as wiring for peripheral circuits and logic circuits. However, according to the inventor's study, wiring covered with a high permeability layer is not suitable for use in peripheral circuits or logic circuits because of its high inductance; it is covered with a high permeability layer. Use of wiring tends to cause malfunction of peripheral circuits and logic circuits. When using wiring covered with a high-permeability layer, an architecture is required in which the wiring does not adversely affect the operation of peripheral and logic circuits.
[0007] 一方、特開 2002— 359356号公報、及び特開 2004— 158841号公報は、 MRA Mメモリアレイと周辺回路の集積化について言及している。しかし、これらの公報は、 高透磁率層で被覆された配線にっレ、ては何ら言及してレ、なレ、。 On the other hand, Japanese Unexamined Patent Application Publication Nos. 2002-359356 and 2004-158841 refer to the integration of MRAM memory arrays and peripheral circuits. However, these publications refer to wiring covered with a high magnetic permeability layer, and nothing else.
発明の開示  Disclosure of the invention
[0008] したがって、本発明の目的は、高透磁率層で被覆された配線を使用することによつ て、メモリアレイと同一の基板に集積化された回路の動作に悪影響を及ぼさないよう な磁気メモリのアーキテクチャを提供することにある。  [0008] Therefore, the object of the present invention is not to adversely affect the operation of the circuit integrated on the same substrate as the memory array by using the wiring covered with the high permeability layer. It is to provide a magnetic memory architecture.
[0009] 本発明の一の観点において、半導体装置は、メモリアレイと、メモリアレイと同一基 板上に形成された回路とを備えている。メモリアレイは、磁気抵抗素子と、磁気抵抗 素子にデータを書き込む書き込み電流が流される書き込み配線とを含む。書き込み 配線は、導体部と、導体部を被覆するヨーク層とを含む。ヨーク層は、強磁性層を含 んでいる。その一方で、回路の配線からは、強磁性層が実質的に排除されている。こ こで、強磁性層が完全に排除されている場合のみならず、強磁性層を除去する工程 が行われた場合に強磁性層の残渣が存在する場合も、「強磁性層が実質的に排除 されている」ことに該当すると解釈されなくてはならない。かかる構成の半導体装置で は、回路の配線から強磁性層が積極的に排除されているため、配線のインダクタンス の増加によって回路が誤動作することを防止することができる。 In one aspect of the present invention, a semiconductor device includes a memory array and a circuit formed on the same substrate as the memory array. The memory array includes a magnetoresistive element and a write wiring through which a write current for writing data to the magnetoresistive element flows. writing The wiring includes a conductor portion and a yoke layer that covers the conductor portion. The yoke layer includes a ferromagnetic layer. On the other hand, the ferromagnetic layer is substantially excluded from the circuit wiring. Here, not only when the ferromagnetic layer is completely eliminated, but also when the ferromagnetic layer residue is present when the step of removing the ferromagnetic layer is performed, It must be interpreted as falling under the “excluded” category. In the semiconductor device having such a configuration, since the ferromagnetic layer is positively excluded from the circuit wiring, it is possible to prevent the circuit from malfunctioning due to an increase in wiring inductance.
[0010] 上記の回路とは、典型的には、磁気抵抗素子にアクセスするために使用される周 辺回路である。  [0010] The above circuit is typically a peripheral circuit used for accessing the magnetoresistive element.
[0011] 一の実施形態では、回路の配線は、下地回路層に形成され、メモリアレイの磁気抵 抗素子と書き込み配線とは、下地回路層の上に形成されたメモリ層に形成されること 力ある。この場合、回路は、メモリ層に配線を有していないことが好ましい。  In one embodiment, the circuit wiring is formed in the base circuit layer, and the magnetic resistance elements and the write wiring of the memory array are formed in the memory layer formed on the base circuit layer. There is power. In this case, the circuit preferably has no wiring in the memory layer.
[0012] 他の実施形態では、回路は、書き込み配線と同一の配線層に位置する、強磁性層 が実質的に排除された配線を含むことがある。この構成は、書き込み配線が形成され る配線層を有効に利用して少ない配線層で回路を構成することを可能にする。  [0012] In other embodiments, the circuit may include a wiring that is located in the same wiring layer as the write wiring and substantially free of the ferromagnetic layer. This configuration makes it possible to configure a circuit with a small number of wiring layers by effectively using a wiring layer in which a write wiring is formed.
[0013] 書き込み配線が、ワード線、とワード線と交差するビット線とを含み、磁気抵抗素子 力 ワード線とビット線とが交差する位置に設けられ、且つ、回路の配線は、ワード線 と同一の配線層に位置する第 1配線と、ビット線と同一の配線層に位置する第 2配線 とを含むこと力 る。この場合には、ワード線とビット線との距離は、第 1配線と第 2配 線との距離よりも小さレ、ことが望ましレ、。  [0013] The write wiring includes a word line and a bit line that intersects with the word line, and is provided at a position where the magnetoresistive element force word line and the bit line intersect. Including the first wiring located in the same wiring layer and the second wiring located in the same wiring layer as the bit line. In this case, it is desirable that the distance between the word line and the bit line be smaller than the distance between the first wiring and the second wiring.
[0014] 好適な実施形態では、回路の配線は、層間絶縁膜に形成された溝に坦め込まれる こと力 Sある。この場合、溝への配線の坦め込みを容易にするためには、該溝の隅部に は、強磁性体の残渣が残されてレ、ることが好適である。  [0014] In a preferred embodiment, the wiring of the circuit has a force S that is carried in a groove formed in the interlayer insulating film. In this case, in order to facilitate the loading of the wiring into the groove, it is preferable that the residue of the ferromagnetic material is left at the corner of the groove.
[0015] 本発明の他の観点において、磁気抵抗素子を含むメモリアレイと、メモリアレイと同 一の基板に形成された回路とを含む半導体装置の製造方法は、  In another aspect of the present invention, a method for manufacturing a semiconductor device including a memory array including a magnetoresistive element and a circuit formed on the same substrate as the memory array includes:
(A)層間絶縁膜を形成する工程と、  (A) forming an interlayer insulating film;
(B)前記層間絶縁膜に、磁気抵抗素子にデータを書き込む書き込み電流が流され る書き込み配線に対応する第 1溝と、回路の配線に対応する第 2溝とを形成するェ 程と、 (B) A first groove corresponding to a write wiring through which a write current for writing data to the magnetoresistive element flows and a second groove corresponding to a circuit wiring are formed in the interlayer insulating film. About
(C)第 1溝と第 2溝とを被覆する強磁性膜を形成する工程と、  (C) forming a ferromagnetic film covering the first groove and the second groove;
(D)強磁性膜のうち、第 2溝の内部に位置する部分の少なくとも一部を除去するェ 程と、  (D) removing at least a part of the portion of the ferromagnetic film located inside the second groove;
(E)前記(D)工程の後、第 1溝と第 2溝とに導体を坦め込むことによって、書き込み 配線と回路の配線とを形成する工程とを具備する。このような製造方法は、強磁性層 によって被覆された書き込み配線と、強磁性層が排除された回路の配線とを同一の 配線層に形成することを可能にする。  (E) After the step (D), forming a write wiring and a circuit wiring by placing a conductor in the first groove and the second groove. Such a manufacturing method makes it possible to form the write wiring covered with the ferromagnetic layer and the wiring of the circuit from which the ferromagnetic layer is excluded in the same wiring layer.
[0016] この製造方法において、強磁性膜の第 2溝の内部に位置する部分の一部が積極 的に残存されることは、第 2溝に導体を埋め込むことを容易にするために好適である  [0016] In this manufacturing method, it is preferable that a part of the portion of the ferromagnetic film located in the second groove remains positively to facilitate embedding the conductor in the second groove. is there
[0017] 本発明の更に他の観点において、半導体装置の製造方法は、 In still another aspect of the present invention, a method for manufacturing a semiconductor device includes:
(F)層間絶縁膜を形成する工程と、  (F) forming an interlayer insulating film;
(G)前記層間絶縁膜に、磁気抵抗素子にデータを書き込む書き込み電流が流され る書き込み配線に対応する第 1溝を形成する工程と、  (G) forming a first groove in the interlayer insulating film corresponding to a write wiring through which a write current for writing data to the magnetoresistive element flows;
(H)層間絶縁膜の上に、第 1溝を被覆するように強磁性膜を形成する工程と、 (H) forming a ferromagnetic film on the interlayer insulating film so as to cover the first groove;
(I)強磁性膜と層間絶縁膜とをエッチングすることによって、層間絶縁膜に、回路の 配線に対応する第 2溝を形成する工程と、 (I) forming a second groove corresponding to the circuit wiring in the interlayer insulating film by etching the ferromagnetic film and the interlayer insulating film;
CJ)前記 (I)工程の後、第 1溝と第 2溝とに同時に導体を埋め込むことによって、書き 込み配線と、強磁性層が排除された回路の配線とを形成する工程  CJ) After the step (I), a step of forming a write wiring and a circuit wiring from which the ferromagnetic layer is eliminated by simultaneously embedding a conductor in the first groove and the second groove.
とを具備する。かかる製造方法は、強磁性層によって被覆された書き込み配線と強磁 性層が排除されている回路の配線とを同一の配線層に形成することを可能にする。 カロえて、当該製造方法は、第 2溝の内部に位置する強磁性材料をエッチングするェ 程を排除でき、したがって、強磁性材料のエッチングの困難性の問題を回避できる。  It comprises. Such a manufacturing method makes it possible to form the write wiring covered with the ferromagnetic layer and the wiring of the circuit from which the ferromagnetic layer is excluded in the same wiring layer. In other words, the manufacturing method can eliminate the process of etching the ferromagnetic material located inside the second groove, and therefore, the problem of difficulty in etching the ferromagnetic material can be avoided.
[0018] 更に他の観点において、本発明による半導体装置の製造方法は、 In yet another aspect, a method for manufacturing a semiconductor device according to the present invention includes:
(Κ)磁気抵抗素子を被覆する層間絶縁膜を形成する工程と、  (Ii) forming an interlayer insulating film covering the magnetoresistive element;
(L)層間絶縁膜に、磁気抵抗素子にデータを書き込む書き込み電流が流される書 き込み配線に対応する第 1溝と、回路の配線に対応する第 2溝とを形成する工程と、 (M)第 1溝と第 2溝とを被覆する強磁性膜を形成する工程と、 (L) forming a first groove corresponding to a write wiring through which a write current for writing data to the magnetoresistive element flows and a second groove corresponding to a circuit wiring in the interlayer insulating film; (M) forming a ferromagnetic film covering the first groove and the second groove;
(N)強磁性膜のうち、第 1溝の側壁を被覆する第 1側壁部分と、第 2溝の側壁を被 覆する第 2側壁部分以外の部分を除去する工程と、  (N) removing a portion of the ferromagnetic film other than the first sidewall portion covering the sidewall of the first groove and the second sidewall portion covering the sidewall of the second groove;
(O)強磁性膜の第 2側壁部分を除去する工程と、  (O) removing the second sidewall portion of the ferromagnetic film;
(P)前記 (O)工程の後、第 1溝に第 1導体を、前記第 2溝に第 2導体を同時に埋め 込む工程  (P) Step of simultaneously embedding the first conductor in the first groove and the second conductor in the second groove after the step (O)
とを具備する。かかる製造方法は、強磁性層によって被覆された書き込み配線と強磁 性層が排除された回路の配線とを同一の配線層に形成することを可能にする。  It comprises. Such a manufacturing method makes it possible to form the write wiring covered with the ferromagnetic layer and the wiring of the circuit from which the ferromagnetic layer is excluded in the same wiring layer.
[0019] 更に他の観点において、本発明による半導体装置の製造方法は、 In yet another aspect, a method for manufacturing a semiconductor device according to the present invention includes:
(Q)磁気抵抗素子を被覆する層間絶縁膜を形成する工程と、  (Q) forming an interlayer insulating film covering the magnetoresistive element;
(R)層間絶縁膜に、磁気抵抗素子にデータを書き込む書き込み電流が流される書 き込み配線に対応する第 1溝を形成する工程と、  (R) forming a first groove corresponding to a write wiring through which a write current for writing data to the magnetoresistive element flows in the interlayer insulating film;
(S)第 1溝の側壁を被覆する強磁性層を形成する工程と、  (S) forming a ferromagnetic layer covering the sidewall of the first groove;
(T)前記(S)工程の後、回路の配線に対応する第 2溝を形成する工程と、 (U)前記 (T)工程の後、第 1溝に第 1導体を、第 2溝に第 2導体を同時に埋め込む 工程  (T) After the step (S), forming a second groove corresponding to the wiring of the circuit; (U) After the step (T), the first conductor is formed in the first groove and the second groove is formed. Process to embed second conductor at the same time
とを具備する。かかる製造方法は、強磁性層によって被覆された書き込み配線と強磁 性層が排除された回路の配線とを同一の配線層に形成することを可能にする。加え て、当該製造方法は、第 2溝の内部に位置する強磁性材料をエッチングする工程を 排除でき、したがって、強磁性材料のエッチングの困難性の問題を回避できる。  It comprises. Such a manufacturing method makes it possible to form the write wiring covered with the ferromagnetic layer and the wiring of the circuit from which the ferromagnetic layer is excluded in the same wiring layer. In addition, the manufacturing method can eliminate the step of etching the ferromagnetic material located inside the second groove, and therefore can avoid the problem of difficulty in etching the ferromagnetic material.
[0020] 第 1溝の深さは、第 2溝の深さよりも深いことが好適である。  [0020] The depth of the first groove is preferably deeper than the depth of the second groove.
[0021] 当該製造方法は、  [0021] The manufacturing method includes:
(V)第 1導体の上面を被覆する強磁性層を形成する工程を更に具備することが好 適である。  (V) It is preferable that the method further includes a step of forming a ferromagnetic layer covering the upper surface of the first conductor.
[0022] 本発明によれば、高透磁率層で被覆された配線を使用することによって、メモリァレ ィと同一の基板に集積化された回路の動作に悪影響を及ぼさないような磁気メモリの アーキテクチャを提供することができる。  [0022] According to the present invention, an architecture of a magnetic memory that does not adversely affect the operation of a circuit integrated on the same substrate as the memory array by using wiring covered with a high permeability layer. Can be provided.
図面の簡単な説明 [図 1]図 1は、本発明の実施の第 1形態に係る半導体装置である磁気メモリの構造を 示す平面図である。 Brief Description of Drawings FIG. 1 is a plan view showing a structure of a magnetic memory that is a semiconductor device according to a first embodiment of the present invention.
[図 2]図 2は、実施の第 1形態に係る磁気メモリの構造を示す断面図である。  FIG. 2 is a cross-sectional view showing the structure of the magnetic memory according to the first embodiment.
[図 3A]図 3Aは、実施の第 1形態に係る磁気メモリの、メモリ層の構造を示す断面図 である。  FIG. 3A is a cross-sectional view showing the structure of the memory layer of the magnetic memory according to the first embodiment.
[図 3B]図 3Bは、実施の第 1形態に係る磁気メモリの、メモリ層の構造を示す断面図で ある。  FIG. 3B is a cross-sectional view showing the structure of the memory layer in the magnetic memory according to the first embodiment.
[図 4]図 4は、実施の第 2形態に係る磁気メモリの構造を示す断面図である。  FIG. 4 is a cross-sectional view showing the structure of a magnetic memory according to a second embodiment.
[図 5A]図 5Aは、実施の第 2形態に係る磁気メモリの書き込みワード線と、周辺回路 部の配線とを形成する製造工程を示す断面図である。  FIG. 5A is a cross-sectional view showing a manufacturing process for forming a write word line and a wiring in a peripheral circuit section of a magnetic memory according to a second embodiment.
[図 5B]図 5Bは、実施の第 2形態に係る磁気メモリの書き込みワード線と、周辺回路部 の配線とを形成する製造工程を示す断面図である。  FIG. 5B is a cross-sectional view showing the manufacturing process for forming the write word line and the peripheral circuit wiring of the magnetic memory according to the second embodiment.
[図 5C]図 5Cは、実施の第 2形態に係る磁気メモリの書き込みワード線と、周辺回路 部の配線とを形成する製造工程を示す断面図である。  FIG. 5C is a cross-sectional view showing the manufacturing process for forming the write word line and the peripheral circuit portion wiring in the magnetic memory according to the second embodiment.
[図 5D]図 5Dは、実施の第 2形態に係る磁気メモリの書き込みワード線と、周辺回路 部の配線とを形成する製造工程を示す断面図である。  FIG. 5D is a cross-sectional view showing the manufacturing process for forming the write word line and the peripheral circuit portion wiring in the magnetic memory according to the second embodiment.
[図 5E]図 5Eは、実施の第 2形態に係る磁気メモリの書き込みワード線と、周辺回路部 の配線とを形成する製造工程を示す断面図である。  FIG. 5E is a cross-sectional view showing the manufacturing process for forming the write word line and the peripheral circuit line in the magnetic memory according to the second embodiment.
[図 5F]図 5Fは、実施の第 2形態に係る磁気メモリの書き込みワード線と、周辺回路部 の配線とを形成する製造工程を示す断面図である。  FIG. 5F is a cross-sectional view showing the manufacturing process for forming the write word line and the peripheral circuit line in the magnetic memory according to the second embodiment.
[図 6A]図 6Aは、実施の第 2形態に係る磁気メモリの書き込みワード線と、周辺回路 部の配線とを形成する製造工程において、溝に残渣が残る場合の磁気メモリの構造 を示す断面図である。  [FIG. 6A] FIG. 6A is a cross-sectional view showing the structure of the magnetic memory when residue remains in the groove in the manufacturing process of forming the write word line and the peripheral circuit wiring of the magnetic memory according to the second embodiment. FIG.
[図 6B]図 6Bは、実施の第 2形態に係る磁気メモリの書き込みワード線と、周辺回路部 の配線とを形成する製造工程において、溝に残渣が残る場合の磁気メモリの構造を 示す断面図である。  [FIG. 6B] FIG. 6B is a cross-sectional view showing the structure of the magnetic memory when residues remain in the grooves in the manufacturing process of forming the write word line and the peripheral circuit wiring of the magnetic memory according to the second embodiment. FIG.
[図 7A]図 7Aは、実施の第 2形態に係る磁気メモリの書き込みワード線と、周辺回路 部の配線とを形成するための、他の好適な製造工程を示す断面図である。 [図 7B]図 7Bは、実施の第 2形態に係る磁気メモリの書き込みワード線と、周辺回路部 の配線とを形成するための、他の好適な製造工程を示す断面図である。 FIG. 7A is a cross-sectional view showing another preferred manufacturing process for forming the write word line and the peripheral circuit wiring of the magnetic memory according to the second embodiment. FIG. 7B is a cross-sectional view showing another preferable manufacturing process for forming the write word line and the peripheral circuit wiring of the magnetic memory according to the second embodiment.
園 7C]図 7Cは、実施の第 2形態に係る磁気メモリの書き込みワード線と、周辺回路 部の配線とを形成するための、他の好適な製造工程を示す断面図である。 7C] FIG. 7C is a cross-sectional view showing another preferred manufacturing process for forming the write word line and the peripheral circuit wiring of the magnetic memory according to the second embodiment.
園 7D]図 7Dは、実施の第 2形態に係る磁気メモリの書き込みワード線と、周辺回路 部の配線とを形成するための、他の好適な製造工程を示す断面図である。 7D] FIG. 7D is a cross-sectional view showing another preferable manufacturing process for forming the write word line and the peripheral circuit wiring of the magnetic memory according to the second embodiment.
園 8A]図 8Aは、実施の第 2形態に係る磁気メモリのビット線と、周辺回路部の配線と を形成する製造工程を示す断面図である。 8A] FIG. 8A is a cross-sectional view showing a manufacturing process for forming the bit line of the magnetic memory according to the second embodiment and the wiring of the peripheral circuit portion.
[図 8B]図 8Bは、実施の第 2形態に係る磁気メモリのビット線と、周辺回路部の配線と を形成する製造工程を示す断面図である。  FIG. 8B is a cross-sectional view showing the manufacturing process for forming the bit line and the peripheral circuit portion of the magnetic memory according to the second embodiment.
園 8C]図 8Cは、実施の第 2形態に係る磁気メモリのビット線と、周辺回路部の配線と を形成する製造工程を示す断面図である。 8C] FIG. 8C is a cross-sectional view showing the manufacturing process for forming the bit line of the magnetic memory according to the second embodiment and the wiring of the peripheral circuit portion.
園 8D]図 8Dは、実施の第 2形態に係る磁気メモリのビット線と、周辺回路部の配線と を形成する製造工程を示す断面図である。 FIG. 8D is a cross-sectional view showing the manufacturing process for forming the bit line and the peripheral circuit wiring of the magnetic memory according to the second embodiment.
[図 8E]図 8Eは、実施の第 2形態に係る磁気メモリのビット線と、周辺回路部の配線と を形成する製造工程を示す断面図である。  FIG. 8E is a cross-sectional view showing the manufacturing process for forming the bit line and the wiring of the peripheral circuit portion in the magnetic memory according to the second embodiment.
[図 8F]図 8Fは、実施の第 2形態に係る磁気メモリのビット線と、周辺回路部の配線と を形成する製造工程を示す断面図である。  FIG. 8F is a cross-sectional view showing the manufacturing process for forming the bit line and the peripheral circuit portion wiring in the magnetic memory according to the second embodiment.
園 9]図 9は、実施の第 3形態に係る磁気メモリの構造を示す断面図である。 FIG. 9 is a cross-sectional view showing the structure of the magnetic memory according to the third embodiment.
園 10A]図 10Aは、実施の第 3形態に係る磁気メモリのビット線と、周辺回路部の配 線とを形成する製造工程を示す断面図である。 10A] FIG. 10A is a cross-sectional view showing a manufacturing process for forming the bit line of the magnetic memory according to the third embodiment and the wiring of the peripheral circuit portion.
園 10B]図 10Bは、実施の第 3形態に係る磁気メモリのビット線と、周辺回路部の配線 とを形成する製造工程を示す断面図である。 FIG. 10B is a cross-sectional view showing the manufacturing process for forming the bit line and the peripheral circuit wiring of the magnetic memory according to the third embodiment.
園 10C]図 10Cは、実施の第 3形態に係る磁気メモリのビット線と、周辺回路部の配 線とを形成する製造工程を示す断面図である。 10C] FIG. 10C is a cross-sectional view showing a manufacturing process for forming the bit line of the magnetic memory according to the third embodiment and the wiring of the peripheral circuit portion.
園 10D]図 10Dは、実施の第 3形態に係る磁気メモリのビット線と、周辺回路部の配 線とを形成する製造工程を示す断面図である。 10D] FIG. 10D is a cross-sectional view showing the manufacturing process for forming the bit line of the magnetic memory according to the third embodiment and the wiring of the peripheral circuit portion.
園 10E]図 10Eは、実施の第 3形態に係る磁気メモリのビット線と、周辺回路部の配線 とを形成する製造工程を示す断面図である。 10E] FIG. 10E shows the bit lines of the magnetic memory according to the third embodiment and the wiring of the peripheral circuit section It is sectional drawing which shows the manufacturing process which forms.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0024] 第 1 実施の第 1形態  [0024] First embodiment of the first embodiment
図 1は、本発明の実施の第 1形態の半導体装置である磁気メモリ 10の構成を示す 平面図である。磁気メモリ 10は、同一基板上に集積化されたメモリアレイ 1と周辺回 路部 2とを備えている。メモリアレイ 1には、メモリセルとして機能する磁気抵抗素子で ある MTJ (magnetic tunnel junction) 3が行列に配置される。周辺回路部 2とは、該メ モリセルへのアクセスに使用される周辺回路が設けられる領域である。周辺回路部 2 には、例えば、行アドレスバッファ 2a、行デコーダ 2b、行ドライバ 2c、列アドレスバッフ ァ 2d、列デコーダ 2e、歹ドライバ 2f、センスアンプ 2g、出力アンプ 2h、及び出力バッ ファ 2iが設けられる。  FIG. 1 is a plan view showing a configuration of a magnetic memory 10 which is a semiconductor device according to a first embodiment of the present invention. The magnetic memory 10 includes a memory array 1 and a peripheral circuit unit 2 integrated on the same substrate. In the memory array 1, MTJ (magnetic tunnel junction) 3 which are magnetoresistive elements functioning as memory cells are arranged in a matrix. The peripheral circuit unit 2 is an area where a peripheral circuit used for accessing the memory cell is provided. The peripheral circuit unit 2 includes, for example, a row address buffer 2a, a row decoder 2b, a row driver 2c, a column address buffer 2d, a column decoder 2e, a 歹 driver 2f, a sense amplifier 2g, an output amplifier 2h, and an output buffer 2i. Provided.
[0025] 図 2は、磁気メモリ 10の構造を示す断面図である。  FIG. 2 is a cross-sectional view showing the structure of the magnetic memory 10.
磁気メモリ 10は、概略的には、下地回路層 4と、その上に形成されたメモリ層 5で構 成されている。下地回路層 4は、 MOSトランジスタと、それに接続される配線が形成 される部分であり、 3層の配線層:第 1配線層 6、第 2配線層 7、及び第 3配線層 8を備 えている。メモリ層 5は、 MTJ3と、それにアクセスするために使用される配線が形成さ れる部分である。下地回路層 4における層間の絶縁は、層間絶縁膜 3:!〜 34によって 達成され、メモリ層 5における層間の絶縁は、層間絶縁膜 35〜39によって達成され る。下地回路層 4は、一般的な CMOS (complementary metal oxide semiconductor) プロセスで形成可能であり、メモリ層 5の MTJ3も、一般的なプロセスによって形成可 能である。  The magnetic memory 10 is generally composed of a base circuit layer 4 and a memory layer 5 formed thereon. The base circuit layer 4 is a portion where a MOS transistor and wiring connected thereto are formed, and includes three wiring layers: a first wiring layer 6, a second wiring layer 7, and a third wiring layer 8. Yes. Memory layer 5 is the part where MTJ3 and the wiring used to access it are formed. Interlayer insulation in the underlying circuit layer 4 is achieved by interlayer insulation films 3:! -34, and interlayer insulation in the memory layer 5 is achieved by interlayer insulation films 35-39. The underlying circuit layer 4 can be formed by a general complementary metal oxide semiconductor (CMOS) process, and the MTJ3 of the memory layer 5 can also be formed by a general process.
[0026] メモリアレイ 1は、下地回路層 4に位置する MOSトランジスタ 11、ランド 12a〜12c、 ビア 13a〜: 13c、接地線 14、及びビア 15と、メモリ層 5に位置するランド 16、ビア 13d 、 13e、下部電極 17、書き込みワード線 18、ビット線 19、及びビア 20とを備えている 。ランド 12aと接地線 14とは、下地回路層 4の第 1配線層 6に形成され、ランド 12b、 1 2cは、それぞれ、第 2配線層 7、第 3配線層 8に形成される。  The memory array 1 includes a MOS transistor 11 located in the base circuit layer 4, lands 12a to 12c, vias 13a to 13c, a ground line 14 and vias 15, and a land 16 and vias 13d located in the memory layer 5. 13e, a lower electrode 17, a write word line 18, a bit line 19, and a via 20. The land 12a and the ground line 14 are formed in the first wiring layer 6 of the base circuit layer 4, and the lands 12b and 12c are formed in the second wiring layer 7 and the third wiring layer 8, respectively.
[0027] メモリセルとして使用される MTJ3は、メモリ層 5の下部電極 17の上に形成されてい る。図 3Aに示されているように、 MTJ3は、下部電極 17の上に形成された磁化固定 層 3aと、磁化自由層 3cと、その間に介設された絶縁性のバリア層 3bとを備えている。 MTJ3は、書き込みワード線 18とビット線 19とが交差する位置に設けられており、 M TJ3へのデータの書き込みは、書き込みワード線 18とビット線 19とに書き込み電流を 流すことによって行われる。また、 MTJ3は、図 2に示されているように、下部電極 17、 及び、ランド 12a〜12d、ビア 13a〜13eを介して MOSトランジスタ 11のドレイン 11a に接続され、更に、ビア 20を介してビット線 19に接続されている。 M〇Sトランジスタ 1 1のソース l ibは、ビア 15を介して接地線 14に接続されている。 MOSトランジスタ 11 のゲート 11aは、読み出しワード線として機能しており、 M〇Sトランジスタ 11は、読み 出し動作時にメモリセルを選択するために使用される。読み出し動作時には、 MOS トランジスタ 11がターンオンされ、更に、ビット線 19に所定の電圧が印加される。これ により、ビット線 19から MTJ3を介して接地線 14に電流が流れ、その電流の大きさに よって MTJ3に書き込まれているデータが判別される。 The MTJ 3 used as a memory cell is formed on the lower electrode 17 of the memory layer 5. As shown in Figure 3A, MTJ3 is a pinned magnetization formed on the bottom electrode 17. A layer 3a, a magnetization free layer 3c, and an insulating barrier layer 3b interposed therebetween are provided. MTJ3 is provided at a position where the write word line 18 and the bit line 19 intersect, and data is written to MTJ3 by passing a write current through the write word line 18 and the bit line 19. Further, as shown in FIG. 2, MTJ3 is connected to the drain 11a of the MOS transistor 11 via the lower electrode 17, the lands 12a to 12d and the vias 13a to 13e, and further via the via 20. Connected to bit line 19. The source l ib of the MOS transistor 1 1 is connected to the ground line 14 via the via 15. The gate 11a of the MOS transistor 11 functions as a read word line, and the MOS transistor 11 is used to select a memory cell during a read operation. During the read operation, the MOS transistor 11 is turned on, and a predetermined voltage is applied to the bit line 19. As a result, a current flows from the bit line 19 to the ground line 14 via the MTJ3, and the data written in the MTJ3 is determined by the magnitude of the current.
[0028] 書き込み電流を低減するために、書き込み電流が流される書き込みワード線 18とビ ット線 19とは、ヨーク層で被覆された導電層で構成されている;ヨーク層とは、強磁性 体で形成された層を含む構造体である。より具体的には、図 3Aに示されているように 、書き込みワード線 18は、導体層 18aと、その底面及び側面を被覆するヨーク層 18b とを備えている。同様に、ビット線 19は、図 3Bに示されているように、導体層 19aと、 その上面及び側面を被覆するヨーク層 19bとを備えている。ヨーク層 18b、 19bは、書 き込み電流によって発生される磁界を MTJ3に集中させ、書き込み電流を有効に低 減させる。 [0028] In order to reduce the write current, the write word line 18 and the bit line 19 through which the write current flows are composed of a conductive layer covered with a yoke layer; the yoke layer is ferromagnetic A structure including a layer formed of a body. More specifically, as shown in FIG. 3A, the write word line 18 includes a conductor layer 18a and a yoke layer 18b covering the bottom and side surfaces thereof. Similarly, as shown in FIG. 3B, the bit line 19 includes a conductor layer 19a and a yoke layer 19b covering the upper surface and side surfaces thereof. The yoke layers 18b and 19b concentrate the magnetic field generated by the write current on the MTJ3, effectively reducing the write current.
[0029] 図 3Aに示されているように、ヨーク層 18bで被覆された導体層 18aで構成される書 き込みワード線 18と同一の配線層に属するランド 16は、書き込みワード線 18と同様 の構造を有している。より具体的には、ランド 16は、導体層 16aと、その底面及び側 面を被覆するヨーク層 16bとを備えている。  As shown in FIG. 3A, the land 16 belonging to the same wiring layer as the write word line 18 composed of the conductor layer 18 a covered with the yoke layer 18 b is the same as the write word line 18. It has the structure of. More specifically, the land 16 includes a conductor layer 16a and a yoke layer 16b covering the bottom surface and the side surface thereof.
[0030] 図 2に戻り、周辺回路部 2は、下地回路層 4に位置する M〇Sトランジスタ 21、配線 2 2a〜22cと、ビア 23a〜23cとを備えている。配線 22aは、下地回路層 4の第 1配線層 6に形成されており、配線 22bは、第 2配線層 7に形成されており、配線 22cは、第 3 配線層 8に形成されている。 MOSトランジスタ 21と配線 22aとは、ビア 23aを介して 接続され、酉己線 22aと配線 22bとは、ビア 23bを介して接続され、配線 22bと配線 22c とは、ビア 23cを介して接続されている。 Referring back to FIG. 2, the peripheral circuit section 2 includes the MOS transistor 21, wirings 22a to 22c, and vias 23a to 23c located in the base circuit layer 4. The wiring 22 a is formed in the first wiring layer 6 of the base circuit layer 4, the wiring 22 b is formed in the second wiring layer 7, and the wiring 22 c is formed in the third wiring layer 8. MOS transistor 21 and wiring 22a are connected via via 23a. The self-line 22a and the wiring 22b are connected via the via 23b, and the wiring 22b and the wiring 22c are connected via the via 23c.
[0031] このような構成を有する実施の第 1形態の磁気メモリ 10では、周辺回路部 2は、メモ リ層 5に位置する配線を使用しなレ、。即ち、周辺回路部 2は、書き込みワード線 18及 びビット線 19と同一の配線層に属する、ヨーク層(即ち、強磁性層)で被覆された配 線を使用せず、通常の配線しか使用しなレ、。このような構成は、ヨーク層で被覆され た配線を使用することによって周辺回路部 2が誤動作することを有効に防止する。  [0031] In the magnetic memory 10 of the first embodiment having such a configuration, the peripheral circuit unit 2 does not use wiring located in the memory layer 5. That is, the peripheral circuit section 2 does not use a wiring covered with a yoke layer (that is, a ferromagnetic layer) belonging to the same wiring layer as the write word line 18 and the bit line 19, but uses only a normal wiring. Shinare. Such a configuration effectively prevents the peripheral circuit portion 2 from malfunctioning by using the wiring covered with the yoke layer.
[0032] 第 2 実施の第 2形態  [0032] Second embodiment of the second embodiment
実施の第 1形態に係る磁気メモリ 10の一つの問題は、多くの配線層を必要とするこ とである。実施の第 1形態に係る磁気メモリ 10は、 3層の配線層を有する周辺回路部 2を形成するために、少なくとも 5層の配線層(即ち、第 1〜第 3配線層 6〜8と、書き 込みワード線 18及びビット線 19が形成される 2層の配線層)を必要とする。多くの配 線層を用いることは、磁気メモリ 10の製造コストを増大させるため好ましくない。  One problem with the magnetic memory 10 according to the first embodiment is that many wiring layers are required. The magnetic memory 10 according to the first embodiment includes at least five wiring layers (i.e., first to third wiring layers 6 to 8) to form the peripheral circuit section 2 having three wiring layers. 2 wiring layers in which the write word line 18 and the bit line 19 are formed are required. The use of many wiring layers is undesirable because it increases the manufacturing cost of the magnetic memory 10.
[0033] 力かる問題を解決するために、実施の第 2形態の磁気メモリ 10Aでは、図 4に示さ れているように、書き込みワード線 18及びビット線 19と同一の配線層の配線を周辺 回路部 2にも使用する。これに伴い、第 2配線層 7、及び第 3配線層 8が除去される。 ただし、周辺回路部 2の、書き込みワード線 18及びビット線 19と同一の配線層に属 する配線の形成の際には、当該配線から強磁性層を除去するための工程が行われ る。既述の通り、強磁性層を除去することは、周辺回路部 2の配線のインダクタンスを 減少し、誤動作を防止するために重要である。  [0033] In order to solve the problem, in the magnetic memory 10A of the second embodiment, as shown in FIG. 4, the wiring of the same wiring layer as that of the write word line 18 and the bit line 19 is connected to the periphery. Also used for circuit part 2. Along with this, the second wiring layer 7 and the third wiring layer 8 are removed. However, when forming a wiring belonging to the same wiring layer as the write word line 18 and the bit line 19 in the peripheral circuit section 2, a process for removing the ferromagnetic layer from the wiring is performed. As described above, removing the ferromagnetic layer is important for reducing the inductance of the wiring of the peripheral circuit section 2 and preventing malfunction.
[0034] より具体的には、周辺回路部 2には、書き込みワード線 18と同一の配線層に属する 酉己線 41と、ビット線 19と同一の配線層に属する配線 42とが設けられる。配線 41、 42 は、いずれも、ヨーク層によって被覆されていない通常の配線である。配線 41は、層 間絶縁膜 35を貫通するビア 43を介して第 1配線層 6に属する配線 22aに接続されて いる。配線 42は、層間絶縁膜 36、 37を貫通するビア 44を介して配線 41に接続され ている。  More specifically, the peripheral circuit section 2 is provided with a self line 41 belonging to the same wiring layer as the write word line 18 and a wiring 42 belonging to the same wiring layer as the bit line 19. The wirings 41 and 42 are both normal wirings that are not covered with the yoke layer. The wiring 41 is connected to the wiring 22 a belonging to the first wiring layer 6 through a via 43 that penetrates the interlayer insulating film 35. The wiring 42 is connected to the wiring 41 through a via 44 that penetrates the interlayer insulating films 36 and 37.
[0035] ヨーク層 18bを有する書き込みワード線 18と同一の配線層に、ヨーク層によって被 覆されていない配線 41を形成するためには、特殊な製造工程が必要である。図 5A 〜図 5Fは、ヨーク層 18bを有する書き込みワード線 18と、ヨーク層によって被覆され ていない配線 41とを同一の配線層に形成するための工程を示す断面図である。 In order to form the wiring 41 that is not covered by the yoke layer in the same wiring layer as the write word line 18 having the yoke layer 18b, a special manufacturing process is required. Figure 5A FIG. 5F is a cross-sectional view showing a process for forming the write word line 18 having the yoke layer 18b and the wiring 41 not covered with the yoke layer in the same wiring layer.
[0036] 図 5Aを参照して、書き込みワード線 18と配線 41とを同一の配線層に形成する製 造工程では、まず、層間絶縁膜 36に、書き込みワード線 18を形成するための溝 36a と、配線 41を形成するための溝 36bとを形成する工程が行われる。溝 36aは、メモリ アレイ 1に設けられ、溝 36bは、周辺回路部 2に設けられている。  Referring to FIG. 5A, in the manufacturing process of forming write word line 18 and wiring 41 in the same wiring layer, first, groove 36a for forming write word line 18 is formed in interlayer insulating film 36. And a step of forming a groove 36b for forming the wiring 41 is performed. The groove 36 a is provided in the memory array 1, and the groove 36 b is provided in the peripheral circuit unit 2.
[0037] 続いて図 5Bに示されているように、バリア膜 51と、強磁性膜 52と、ノ リア膜 53とが、 順次に形成される。本実施の形態では、バリア膜 51、 53としてはタンタル膜と窒化タ ンタル膜の積層膜 (Ta/TaN膜)が使用され、強磁性膜 52としては NiFe膜が使用さ れる。バリア膜 51は、強磁性膜 52と層間絶縁膜 36との密着性を向上する役割も有し ている。  Subsequently, as shown in FIG. 5B, a barrier film 51, a ferromagnetic film 52, and a noria film 53 are sequentially formed. In the present embodiment, a laminated film (Ta / TaN film) of a tantalum film and a tantalum nitride film is used as the barrier films 51 and 53, and a NiFe film is used as the ferromagnetic film 52. The barrier film 51 also has a role of improving the adhesion between the ferromagnetic film 52 and the interlayer insulating film 36.
[0038] 続いて図 5Cに示されているように、メモリアレイ 1に位置する溝 36aを被覆するレジ ストマスク 54が形成された後、そのレジストマスク 54を用いてバリア膜 53と強磁性膜 5 2とが順次にエッチングされる。これにより、周辺回路部 2から強磁性膜 52が除去され る。バリア膜 53は、フッ素系ガス (例えば CF )を用いた反応性エッチングによって選  Subsequently, as shown in FIG. 5C, after the resist mask 54 covering the grooves 36a located in the memory array 1 is formed, the barrier film 53 and the ferromagnetic film 5 are formed using the resist mask 54. 2 are sequentially etched. As a result, the ferromagnetic film 52 is removed from the peripheral circuit portion 2. The barrier film 53 is selected by reactive etching using a fluorine-based gas (for example, CF).
4  Four
択的にエッチングされる。強磁性膜 52は、硝酸等のエッチング液を用いたウエットェ ツチによってエッチングされる。エッチング液を最適化することにより、ノくリア膜 51を残 存したままで選択的に強磁性膜 52をエッチングすることが可能である。  Selectively etched. The ferromagnetic film 52 is etched by a wet etch using an etchant such as nitric acid. By optimizing the etching solution, it is possible to selectively etch the ferromagnetic film 52 with the rear film 51 remaining.
[0039] 続いて図 5Dに示されているように、レジストマスク 54が除去された後、 RFタリー二 ングが行われ、ノくリア膜 51が除去される。  Subsequently, as shown in FIG. 5D, after the resist mask 54 is removed, RF tallying is performed, and the rear film 51 is removed.
[0040] 続いて図 5Eに示されているように、バリア膜 55、及びめつき用のシード膜(図示さ れなレ、)が形成された後、配線金属膜 56がめつきにより形成される。配線金属膜 56 は、典型的には、アルミ、アルミ合金、銅、又は銅合金で形成される。溝 36a、 36bは 、いずれも、配線金属膜 56によって埋め込まれる。  Subsequently, as shown in FIG. 5E, after the barrier film 55 and the seed film for plating (not shown) are formed, the wiring metal film 56 is formed by plating. . The wiring metal film 56 is typically formed of aluminum, an aluminum alloy, copper, or a copper alloy. The grooves 36a and 36b are both filled with the wiring metal film 56.
[0041] 続いて図 5Fに示されているように、バリア膜 51、強磁性膜 52、バリア膜 53、バリア 膜 55、及び配線金属膜 56のうち、溝 36a、 36bの外部に位置する部分が、 CMP (ch emical mechanical polishing)によって除去される。これにより、溝 36aの内部にはバリ ァ層 55aと配線金属層 56aとからなる導体層 18aと、バリア層 51aと強磁性層 52aから なるヨーク層 18bとが形成され、メモリアレイ 1への書き込みワード線 18の形成が完了 する。一方で、溝 36bの内部にはバリア層 55bと配線金属層 56bとが残存され、配線 41が形成される。 Subsequently, as shown in FIG. 5F, portions of the barrier film 51, the ferromagnetic film 52, the barrier film 53, the barrier film 55, and the wiring metal film 56 that are located outside the grooves 36a and 36b. Are removed by CMP (chemical mechanical polishing). As a result, the groove 36a has a conductor layer 18a composed of a barrier layer 55a and a wiring metal layer 56a, and a barrier layer 51a and a ferromagnetic layer 52a. The yoke layer 18b is formed, and the formation of the write word line 18 to the memory array 1 is completed. On the other hand, the barrier layer 55b and the wiring metal layer 56b remain in the trench 36b, and the wiring 41 is formed.
[0042] このような製造工程によれば、ヨーク層 18bを有する書き込みワード線 18と、ヨーク 層を有しない配線 41とを同一の配線層に形成することが可能になる。  [0042] According to such a manufacturing process, the write word line 18 having the yoke layer 18b and the wiring 41 having no yoke layer can be formed in the same wiring layer.
[0043] 配線 41にヨーク層を設けないことは、周辺回路部 2に設けられる配線の配線幅のル ールをより小さくするためにも有効である。強磁性体は電気抵抗が比較的高いため、 ヨーク層は、信号を伝送する導体としては殆ど寄与しなレ、。したがって、ヨーク層が側 面に設けられている配線のうち、配線のうち電流が実際に流れる部分に必要な幅は 、ヨーク層が側面に設けられていない配線の幅と殆ど同じである。これは、ヨーク層を 配線の側面に設けること力 配線幅の増加につながることを意味している。しかし、本 実施の形態の磁気メモリ 10Aでは配線 41にはヨーク層が形成されなレ、。したがって、 本実施の形態の磁気メモリ 10Aは、周辺回路部 2に設けられる配線の配線幅のルー ルをより小さくすることができる。  [0043] The provision of the yoke layer in the wiring 41 is also effective in reducing the wiring width rule of the wiring provided in the peripheral circuit section 2. Ferromagnetic materials have a relatively high electrical resistance, so the yoke layer hardly contributes as a conductor for transmitting signals. Therefore, the width required for the portion of the wiring where the current actually flows out of the wiring in which the yoke layer is provided on the side surface is almost the same as the width of the wiring in which the yoke layer is not provided on the side surface. This means that the force of providing the yoke layer on the side of the wiring leads to an increase in the wiring width. However, in the magnetic memory 10A of the present embodiment, the yoke layer is not formed on the wiring 41. Therefore, in the magnetic memory 10A of the present embodiment, the rule of the wiring width of the wiring provided in the peripheral circuit unit 2 can be further reduced.
[0044] 図 5A〜図 5Fに示されている製造工程において問題になり得ることは、図 5Cの強 磁性膜 52をエッチングする工程に必要な強磁性材料のエッチング技術が充分に確 立されていないことである。とりわけ、溝 36bの内部では強磁性膜 52のエッチングが 進みにくぐ図 6Aに示されているように、強磁性膜 52をエッチングする工程では溝 3 6bの隅部に残渣 57が残りやすい。  [0044] The problem in the manufacturing process shown in FIGS. 5A to 5F is that the ferromagnetic material etching technique necessary for the process of etching the ferromagnetic film 52 in FIG. 5C is sufficiently established. It is not. In particular, as shown in FIG. 6A where the etching of the ferromagnetic film 52 is difficult to proceed inside the groove 36b, the residue 57 tends to remain at the corner of the groove 36b in the process of etching the ferromagnetic film 52.
[0045] し力 ながら、強磁性膜 52をエッチングする工程で残渣 57が多少残ることは、問題 にならない。図 6Bに示されているように、溝 36bの隅部に残渣 57を残したまま上述の 製造工程を進めても、溝 36bの隅部に強磁性膜 52の残渣 57及びバリア膜 51の残渣 51bが残るだけで、周辺回路部 2の機能に影響はない。残渣 57を残すことは、むしろ 、溝 36bに配線 41を坦め込むために有益である場合もある。残渣 57を溝 36bの隅部 に残すことにより、バリア膜 55と配線金属膜 56とを溝 36bの隅部に埋め込む必要性 がなくなる。これは、隅部にボイドが発生することを防止しながら、配線 41を溝 36bに 坦め込むことを可能にする。  However, it is not a problem that some residue 57 remains in the process of etching the ferromagnetic film 52. As shown in FIG. 6B, even if the above manufacturing process is performed with the residue 57 left in the corner of the groove 36b, the residue 57 of the ferromagnetic film 52 and the residue of the barrier film 51 are left in the corner of the groove 36b. Only 51b remains, and the function of peripheral circuit section 2 is not affected. Rather, leaving the residue 57 may be beneficial to load the wiring 41 into the groove 36b. By leaving the residue 57 at the corner of the groove 36b, it becomes unnecessary to bury the barrier film 55 and the wiring metal film 56 in the corner of the groove 36b. This enables the wiring 41 to be caught in the groove 36b while preventing voids from occurring in the corners.
[0046] 強磁性材料のエッチングの困難性の問題を軽減するためには、図 7A〜図 7Dに示 されているように、配線 41が形成される溝の内部に、強磁性膜が形成されないような 製造工程が採用されることも好適である。この製造工程では、まず、図 7Aに示されて いるように、層間絶縁膜 36に、書き込みワード線 18を形成するための溝 36aがメモリ アレイ 1に形成される。この工程では、周辺回路部 2には溝が形成されない。 [0046] To alleviate the problem of etching difficulty of ferromagnetic materials, FIG. As described above, it is also preferable to employ a manufacturing process in which the ferromagnetic film is not formed inside the groove where the wiring 41 is formed. In this manufacturing process, first, as shown in FIG. 7A, a groove 36 a for forming the write word line 18 is formed in the memory array 1 in the interlayer insulating film 36. In this step, no groove is formed in the peripheral circuit portion 2.
[0047] 続いて、図 7Bに示されているように、バリア膜 51と、強磁性膜 52と、バリア膜 53とが 、順次に形成される。バリア膜 51、強磁性膜 52、及びバリア膜 53は、溝 36aの側面 及び底面に沿って形成される。本実施の形態では、バリア膜 51、 53としては、タンタ ル膜と窒化タンタル膜の積層膜 (TaZTaN膜)が使用される。強磁性膜 52としては、 NiFe膜が使用される。 Subsequently, as shown in FIG. 7B, the barrier film 51, the ferromagnetic film 52, and the barrier film 53 are sequentially formed. The barrier film 51, the ferromagnetic film 52, and the barrier film 53 are formed along the side surface and the bottom surface of the groove 36a. In the present embodiment, as the barrier films 51 and 53, a laminated film of a tantalum film and a tantalum nitride film (TaZTaN film) is used. As the ferromagnetic film 52, a NiFe film is used.
[0048] 続いて、図 7Cに示されているように、レジストマスク 58が形成された後、レジストマス ク 58を用いたエッチングにより周辺回路部 2に溝 36cが形成される。レジストマスク 58 は、溝 36cに対応する位置に開口を有しており、且つ、メモリアレイ 1を完全に被覆す るように形成される。  Subsequently, as shown in FIG. 7C, after the resist mask 58 is formed, a groove 36 c is formed in the peripheral circuit portion 2 by etching using the resist mask 58. The resist mask 58 has an opening at a position corresponding to the groove 36c, and is formed so as to completely cover the memory array 1.
[0049] 続いて、図 7Dに示されているように、レジストマスク 58が除去された後、上述の製 造工程と同様の工程によってメモリアレイ 1の溝 36a及び周辺回路部 2の溝 36cが坦 め込まれる。より具体的には、レジストマスク 58が除去された後、バリア膜 55、及びめ つき用のシード膜(図示されない)が形成される。更に、そのシード膜を用いて、配線 金属膜 56がめつきにより形成される。続いて、バリア膜 51、強磁性膜 52、バリア膜 53 、バリア膜 55、及び配線金属膜 56のうち、溝 36a、 36bの外部に位置する部分が、 C MP (chemical mechanical polishing)によって除去される。これにより、溝 36aの内部 にはバリア層 55aと配線金属層 56aとからなる導体層 18aと、バリア層 51aと強磁性層 52aからなるヨーク層 18bとが形成され、メモリアレイ 1への書き込みワード線 18の形 成が完了する。一方で、溝 36bの内部にはバリア層 55bと配線金属層 56bとからなる 配線 41が形成される。  Subsequently, as shown in FIG. 7D, after the resist mask 58 is removed, the grooves 36a of the memory array 1 and the grooves 36c of the peripheral circuit portion 2 are formed by the same process as the above-described manufacturing process. It is carried. More specifically, after the resist mask 58 is removed, a barrier film 55 and a seed film for bonding (not shown) are formed. Further, using the seed film, a wiring metal film 56 is formed by plating. Subsequently, portions of the barrier film 51, the ferromagnetic film 52, the barrier film 53, the barrier film 55, and the wiring metal film 56 that are located outside the grooves 36a and 36b are removed by CMP (chemical mechanical polishing). The As a result, a conductor layer 18a composed of a barrier layer 55a and a wiring metal layer 56a and a yoke layer 18b composed of a barrier layer 51a and a ferromagnetic layer 52a are formed inside the groove 36a, and a write word to the memory array 1 is formed. The formation of line 18 is complete. On the other hand, a wiring 41 composed of a barrier layer 55b and a wiring metal layer 56b is formed in the groove 36b.
[0050] この製造工程では、周辺回路部 2の溝 36cの内部に強磁性膜 52が形成されない。  In this manufacturing process, the ferromagnetic film 52 is not formed inside the groove 36c of the peripheral circuit portion 2.
したがって、強磁性膜 52のエッチングの困難性を軽減することができる。  Therefore, the difficulty of etching the ferromagnetic film 52 can be reduced.
[0051] 書き込みワード線 18及び配線 41と同様に、ヨーク層 19bを有するビット線 19と同一 の配線層に、ヨーク層によって被覆されていない配線 42を形成するためには、特殊 な製造工程が必要である。図 8A〜図 8Fは、ヨーク層 19bを有するビット線 19と、ョー ク層によって被覆されていない配線 42とを同一の配線層に形成するための工程を示 す断面図である。 [0051] Similar to the write word line 18 and the wiring 41, in order to form the wiring 42 not covered with the yoke layer in the same wiring layer as the bit line 19 having the yoke layer 19b, Requires a simple manufacturing process. 8A to 8F are cross-sectional views showing steps for forming the bit line 19 having the yoke layer 19b and the wiring 42 not covered with the yoke layer in the same wiring layer.
[0052] 図 8Aを参照して、ビット線 19と配線 42とを同一の配線層に形成する製造工程では 、まず、層間絶縁膜 39に、ビット線 19を形成するための溝 39aと、配線 42を形成する ための溝 39bとを形成する工程が行われる。溝 39aは、メモリアレイ 1に設けられ、溝 39bは、周辺回路部 2に設けられている。バリア膜 61と、強磁性膜 62と、バリア膜 63 とが、順次に形成される。本実施の形態では、バリア膜 61、 63としてはタンタル膜と 窒化タンタル膜の積層膜 (TaZTaN膜)が使用され、強磁性膜 62としては、 NiFe膜 が使用される。  Referring to FIG. 8A, in the manufacturing process of forming bit line 19 and wiring 42 in the same wiring layer, first, groove 39a for forming bit line 19 in interlayer insulating film 39, and wiring A step of forming a groove 39b for forming 42 is performed. The groove 39a is provided in the memory array 1, and the groove 39b is provided in the peripheral circuit portion 2. The barrier film 61, the ferromagnetic film 62, and the barrier film 63 are sequentially formed. In the present embodiment, a laminated film (TaZTaN film) of a tantalum film and a tantalum nitride film is used as the barrier films 61 and 63, and a NiFe film is used as the ferromagnetic film 62.
[0053] 続いて図 8Bに示されているように、バリア膜 61、強磁性膜 62、及びバリア膜 63のう ちの、層間絶縁膜 39の上面を被覆する部分、及び溝 39a、 39bの底面を被覆する部 分が異方性エッチングによって除去される。これにより、溝 39a及び溝 39bの側壁に のみ、バリア膜 61、強磁性膜 62、及びバリア膜 63が残される。以下では、メモリァレ ィ 1の溝 39aに残されたバリア膜 61、強磁性膜 62、及びバリア膜 63は、バリア層 61a 、強磁性層 62a、及びバリア層 63aとして参照される。一方、周辺回路部 2の溝 39bに 残されたバリア膜 61、強磁性膜 62、及びノくリア膜 63は、以下、バリア層 61b、強磁性 層 62b、及びバリア層 63bとして参照される。  Subsequently, as shown in FIG. 8B, a portion of the barrier film 61, the ferromagnetic film 62, and the barrier film 63 that covers the upper surface of the interlayer insulating film 39, and the bottom surfaces of the grooves 39a and 39b. The portion covering the surface is removed by anisotropic etching. As a result, the barrier film 61, the ferromagnetic film 62, and the barrier film 63 are left only on the side walls of the trench 39a and the trench 39b. Hereinafter, the barrier film 61, the ferromagnetic film 62, and the barrier film 63 left in the trench 39a of the memory array 1 are referred to as the barrier layer 61a, the ferromagnetic layer 62a, and the barrier layer 63a. On the other hand, the barrier film 61, the ferromagnetic film 62, and the rear film 63 left in the groove 39b of the peripheral circuit section 2 are referred to as a barrier layer 61b, a ferromagnetic layer 62b, and a barrier layer 63b hereinafter.
[0054] 続いて図 8Cに示されているように、メモリアレイ 1の溝 39aを被覆するレジストマスク  Subsequently, as shown in FIG. 8C, a resist mask covering the grooves 39a of the memory array 1
69が形成された後、周辺回路部 2の溝 39bの内部のバリア層 63bと強磁性層 62bと 力 エッチングによって除去される。バリア層 63bは、フッ素系ガス(例えば、 CF )を  After 69 is formed, the barrier layer 63b and the ferromagnetic layer 62b inside the groove 39b of the peripheral circuit portion 2 are removed by force etching. The barrier layer 63b is made of fluorine gas (for example, CF).
4 用いた反応性エッチングによって除去される。一方、強磁性層 62bは、 HC1等のエツ チング液を用いたウエットエッチによってエッチングされる。エッチング液を最適化す ることにより、バリア層 61bを残存したままで選択的に強磁性層 62bをエッチングする ことが可能である。  4 Removed by reactive etching used. On the other hand, the ferromagnetic layer 62b is etched by wet etching using an etching solution such as HC1. By optimizing the etching solution, the ferromagnetic layer 62b can be selectively etched while the barrier layer 61b remains.
[0055] 続いて、図 8Dに示されているように、レジストマスク 69が除去された後、 RFタリー二 ングが行われ、メモリアレイ 1のバリア層 63aと、周辺回路部 2のバリア層 61bが除去さ れる。 [0056] 続いて、図 8Eに示されているように、レジストマスク 69が除去された後、メモリアレイ 1の溝 39a及び周辺回路部 2の溝 39bが、配線金属によって埋め込まれる。より具体 的には、レジストマスク 69が除去された後、バリア膜、及びめつき用のシード膜が形 成される。更に、そのシード膜を用いて、配線金属膜がめっきにより形成される。続い て、形成されたバリア膜と配線金属膜とのうち、溝 39a、 39bの外部に位置する部分 力 CMP (chemical mechanical polishing)によって除去される。これにより、メモリァレ ィ 1の溝 39aの内部にはバリア層 64aと配線金属層 65aからなる導体層 19aが形成さ れる。一方、周辺回路部 2の溝 39bの内部にはバリア層 64bと配線金属層 65bが残 存され、これにより、配線 42が形成される。 [0055] Subsequently, as shown in FIG. 8D, after the resist mask 69 is removed, RF tallying is performed, and the barrier layer 63a of the memory array 1 and the barrier layer 61b of the peripheral circuit unit 2 are performed. Is removed. Subsequently, as shown in FIG. 8E, after the resist mask 69 is removed, the grooves 39a of the memory array 1 and the grooves 39b of the peripheral circuit portion 2 are filled with wiring metal. More specifically, after the resist mask 69 is removed, a barrier film and a seed film for adhesion are formed. Furthermore, a wiring metal film is formed by plating using the seed film. Subsequently, the formed barrier film and wiring metal film are removed by partial force CMP (chemical mechanical polishing) located outside the grooves 39a and 39b. As a result, a conductor layer 19a composed of the barrier layer 64a and the wiring metal layer 65a is formed inside the groove 39a of the memory array 1. On the other hand, the barrier layer 64b and the wiring metal layer 65b remain inside the groove 39b of the peripheral circuit portion 2, and thereby the wiring 42 is formed.
[0057] 続いて図 8Fに示されているように、第 1のバリア膜、強磁性膜、第 2のノ リア膜が準 じに形成された後、これらがパターユングされることにより、メモリアレイ 1の溝 39aを被 覆するバリア層 66、強磁性層 67、及びバリア層 68が形成される。ノ^ァ層 61a、強磁 性層 62a、 ノくリア層 66、強磁性層 67、及びバリア層 68によって、ヨーク層 19bが構成 され、ビット線 19の形成が完了する。  Subsequently, as shown in FIG. 8F, after the first barrier film, the ferromagnetic film, and the second noor film are formed in the same manner, they are patterned, so that the memory A barrier layer 66, a ferromagnetic layer 67, and a barrier layer 68 covering the grooves 39a of the array 1 are formed. The yoke layer 19b is constituted by the no layer 61a, the ferromagnetic layer 62a, the noble layer 66, the ferromagnetic layer 67, and the barrier layer 68, and the formation of the bit line 19 is completed.
[0058] このような製造工程によれば、ヨーク層 19bを有するビット線 19と、ヨーク層を有しな い配線 42とを同一の配線層に形成することが可能になる。  According to such a manufacturing process, the bit line 19 having the yoke layer 19b and the wiring 42 having no yoke layer can be formed in the same wiring layer.
[0059] 第 3 実施の第 3形態  [0059] Third Embodiment of Third Embodiment
図 4を参照して、実施の第 2形態の磁気メモリ 10Aでは、メモリアレイ 1の書き込みヮ ード線 18とビット線 19との間の距離が、周辺回路部 2の配線 41と配線 42との間の距 離と同一である。  Referring to FIG. 4, in the magnetic memory 10A of the second embodiment, the distance between the write side line 18 and the bit line 19 in the memory array 1 is the same as the wiring 41 and the wiring 42 in the peripheral circuit section 2. The distance between is the same.
[0060] このような構造では、書き込み電流の低減と周辺回路部 2の層間の容量の低減とが 相反するという欠点がある。書き込み電流を低減するためには、書き込みワード線 18 と MTJ3との距離、及びビット線 19と MTJ3との間の距離を小さくすることが好適であ る。このためには、書き込みワード線 18とビット線 19との距離を小さくする必要がある 。しかし、書き込みワード線 18とビット線 19との距離を小さくすると、周辺回路部 2の 配線 41と配線 42との間の距離も小さくなる;なぜなら、周辺回路部 2の配線 41は、書 き込みワード線 18と同一の配線層に属し、酉己線 42は、ビット線 19と同一の配線層に 属しているからである。配線 41と配線 42との間の距離が小さくなると、配線 41と配線 42との間の容量が大きくなる。配線 41と配線 42との間の容量の増大は、配線遅延の 増大を招くため好ましくない。 [0060] With such a structure, there is a drawback in that a reduction in write current and a reduction in capacitance between layers of the peripheral circuit section 2 conflict. In order to reduce the write current, it is preferable to reduce the distance between the write word line 18 and MTJ3 and the distance between the bit line 19 and MTJ3. For this purpose, it is necessary to reduce the distance between the write word line 18 and the bit line 19. However, if the distance between the write word line 18 and the bit line 19 is decreased, the distance between the wiring 41 and the wiring 42 in the peripheral circuit section 2 is also reduced; because the wiring 41 in the peripheral circuit section 2 is written. This is because the self-line 42 belongs to the same wiring layer as the bit line 19 and belongs to the same wiring layer as the word line 18. When the distance between wiring 41 and wiring 42 decreases, wiring 41 and wiring Capacity between 42 is increased. An increase in capacitance between the wiring 41 and the wiring 42 is not preferable because it causes an increase in wiring delay.
[0061] 実施の第 3形態では、力かる欠点を解消するための磁気メモリの構造が提供される 。実施の第 3形態の磁気メモリ 10Bは、図 9に示されているように、メモリアレイ 1の書 き込みワード線 18とビット線 19との間の距離が、周辺回路部 2の配線 41と配線 42と の間の距離よりも小さくなるような構造を採用する。力、かる構造の採用は、書き込みヮ 一ド線 18と MTJ3との距離、及びビット線 19と MTJ 3との間の距離を小さくして書き込 み電流を低減させつつ、配線 41と配線 42との間の距離を充分に大きくして層間容 量を減少することを可能にする。  [0061] In the third embodiment, a structure of a magnetic memory is provided to eliminate a strong defect. As shown in FIG. 9, in the magnetic memory 10B of the third embodiment, the distance between the write word line 18 and the bit line 19 of the memory array 1 is the same as that of the wiring 41 of the peripheral circuit section 2. A structure that is smaller than the distance between the wiring 42 and the wiring 42 is adopted. Adopting a force and a structure to reduce the write current by reducing the distance between the write lead wire 18 and MTJ3 and the distance between the bit line 19 and MTJ 3 while reducing the write current. It is possible to reduce the interlayer capacity by sufficiently increasing the distance between the two.
[0062] 本実施の形態では、この構造を実現するために、メモリアレイ 1のビット線 19を形成 するための溝 39aと、周辺回路部 2の配線 42を形成するための溝 39bとを別の工程 で形成する製造工程が採用される(図 10A〜図 10E参照)。ビット線 19を形成するた めの溝 39aの深さ力 配線 42を形成するための溝 39bの深さよりも深くされ、これによ り、メモリアレイ 1の書き込みワード線 18とビット線 19との間の距離力 周辺回路部 2 の配線 41と配線 42との間の距離よりも小さくされる。これに伴い、本実施の形態では 、層間絶縁膜 38が 2層の絶縁膜 38a、 38bで形成される。 MTJ3に接続されるビア 2 0は絶縁膜 38aの上面に到達するように形成され、配線 41に接続されるビア 44は絶 縁膜 38bの上面に到達するように形成される。以下、本実施の形態で採用される製 造工程が詳細に説明される。  In the present embodiment, in order to realize this structure, the groove 39a for forming the bit line 19 of the memory array 1 and the groove 39b for forming the wiring 42 of the peripheral circuit section 2 are separated. The manufacturing process formed in this process is adopted (see FIGS. 10A to 10E). The depth force of the groove 39a for forming the bit line 19 is made deeper than the depth of the groove 39b for forming the wiring 42, so that the write word line 18 and the bit line 19 of the memory array 1 are connected. Distance force between them is made smaller than the distance between the wiring 41 and the wiring 42 in the peripheral circuit section 2. Accordingly, in the present embodiment, the interlayer insulating film 38 is formed of two layers of insulating films 38a and 38b. The via 20 connected to the MTJ3 is formed so as to reach the upper surface of the insulating film 38a, and the via 44 connected to the wiring 41 is formed so as to reach the upper surface of the insulating film 38b. Hereinafter, the manufacturing process employed in the present embodiment will be described in detail.
[0063] メモリアレイ 1のビット線 19と周辺回路部 2の配線 42を形成する製造工程では、図 1 OAに示されているように、まず、メモリアレイ 1に溝 39aが形成される。溝 39aは、層間 絶縁膜 39と絶縁膜 38aを貫通してビア 20に到達するように形成される。この工程で は、周辺回路部 2には溝は形成されない。  In the manufacturing process for forming the bit lines 19 of the memory array 1 and the wirings 42 of the peripheral circuit portion 2, first, grooves 39 a are formed in the memory array 1 as shown in FIG. 1OA. The trench 39a is formed to reach the via 20 through the interlayer insulating film 39 and the insulating film 38a. In this process, no groove is formed in the peripheral circuit portion 2.
[0064] 続いて図 10Bに示されているように、溝 39aの側壁にバリア層 61a、強磁性層 62a、 及びバリア層 63aが形成される。ノ リア層 61a、強磁性層 62a、及びバリア層 63aの形 成は、実施の第 2形態と同様の工程で行われる。具体的には、まず、第 1のバリア膜 と、強磁性膜と、第 2のバリア膜とが、順次に形成される。本実施の形態では、バリア 膜としてはタンタル膜と窒化タンタル膜の積層膜 (TaZTaN膜)が使用され、強磁性 膜としては、 NiFe膜が使用される。続いて、形成された 2つのバリア膜及び強磁性膜 のうち、層間絶縁膜 39の上面及び溝 39aの底面を被覆する部分が異方性エツチン グによって除去される。これにより、溝 39aの側壁にのみバリア層 61a、強磁性層 62a 、及びバリア層 63aが残される。 Subsequently, as shown in FIG. 10B, a barrier layer 61a, a ferromagnetic layer 62a, and a barrier layer 63a are formed on the side wall of the groove 39a. The formation of the noria layer 61a, the ferromagnetic layer 62a, and the barrier layer 63a is performed in the same process as in the second embodiment. Specifically, first, a first barrier film, a ferromagnetic film, and a second barrier film are sequentially formed. In this embodiment, a multilayer film (TaZTaN film) of a tantalum film and a tantalum nitride film is used as the barrier film, and ferromagnetic film is used. A NiFe film is used as the film. Subsequently, of the two barrier films and the ferromagnetic film thus formed, the portion covering the upper surface of the interlayer insulating film 39 and the bottom surface of the groove 39a is removed by anisotropic etching. As a result, the barrier layer 61a, the ferromagnetic layer 62a, and the barrier layer 63a are left only on the side wall of the groove 39a.
3  Three
[0065] 続いて図 10Cに示されているように、レジストマスク 71が形成された後、レジストマス ク 71を用いたエッチングにより周辺回路部 2に溝 39bが形成される。レジストマスク 71 は、溝 39bに対応する位置に開口を有しており、且つ、メモリアレイ 1を完全に被覆す るように形成される。周辺回路部 2に形成される溝 39bの深さは、メモリアレイ 1に形成 される溝 39aの深さよりも浅い。  Subsequently, as shown in FIG. 10C, after the resist mask 71 is formed, a groove 39b is formed in the peripheral circuit portion 2 by etching using the resist mask 71. The resist mask 71 has an opening at a position corresponding to the groove 39b, and is formed so as to completely cover the memory array 1. The depth of the groove 39b formed in the peripheral circuit portion 2 is shallower than the depth of the groove 39a formed in the memory array 1.
[0066] 続いて図 10Dに示されているように、レジストマスク 71が除去された後、実施の第 2 形態の製造工程と同様の工程によってメモリアレイ 1の溝 39a及び周辺回路部 2の溝 39bが坦め込まれる。より具体的には、レジストマスク 71が除去された後、バリア膜、 及びめつき用のシード膜(図示されない)が形成される。更に、そのシード膜を用いて 、配線金属膜がめっきにより形成される。続いて、形成されたバリア膜と配線金属膜 のうち、溝 39a、 39bの外部に位置する部分力 CMP (chemical mechanical polishing )によって除去される。これにより、溝 39aの内部にはバリア層 64aと配線金属層 65a とからなる導体層 19aが形成され、溝 39bの内部にはバリア層 64bと配線金属層 65b とからなる配線 42が形成される。  Subsequently, as shown in FIG. 10D, after the resist mask 71 is removed, the groove 39a of the memory array 1 and the groove of the peripheral circuit section 2 are performed by the same process as the manufacturing process of the second embodiment. 39b is loaded. More specifically, after the resist mask 71 is removed, a barrier film and a seed film (not shown) for adhesion are formed. Furthermore, a wiring metal film is formed by plating using the seed film. Subsequently, the formed barrier film and wiring metal film are removed by partial force CMP (chemical mechanical polishing) located outside the grooves 39a and 39b. As a result, the conductor layer 19a composed of the barrier layer 64a and the wiring metal layer 65a is formed inside the groove 39a, and the wiring 42 composed of the barrier layer 64b and the wiring metal layer 65b is formed inside the groove 39b. .
[0067] 続いて図 10Eに示されているように、第 1のバリア膜、強磁性膜、第 2のバリア膜が 準じに形成された後、これらがパターニングされることにより、メモリアレイ 1の溝 39aを 被覆するバリア層 66、強磁性層 67、及びバリア層 68が形成される。ノ^ァ層 61a、強 磁性層 62a、 ノ リア層 63a、 ノ リア層 66、強磁性層 67、及びバリア層 68によってョー ク層 19bが構成され、ビット線 19の形成が完了する。  Subsequently, as shown in FIG. 10E, after the first barrier film, the ferromagnetic film, and the second barrier film are formed in accordance with the same, they are patterned to form the memory array 1. A barrier layer 66, a ferromagnetic layer 67, and a barrier layer 68 covering the groove 39a are formed. The noak layer 61a, the ferromagnetic layer 62a, the noria layer 63a, the noria layer 66, the ferromagnetic layer 67, and the barrier layer 68 constitute the fork layer 19b, and the formation of the bit line 19 is completed.
[0068] 図 10Eから理解されるように、このような製造工程によれば、メモリアレイ 1の書き込 みワード線 18とビット線 19との間の距離力 S、周辺回路部 2の配線 41と配線 42との間 の距離よりも小さくなるような構造を形成することが可能になる。  [0068] As can be understood from FIG. 10E, according to such a manufacturing process, the distance force S between the write word line 18 and the bit line 19 of the memory array 1 and the wiring 41 of the peripheral circuit section 2 are obtained. It is possible to form a structure that is smaller than the distance between the wiring 42 and the wiring 42.
[0069] カロえて、本実施の形態の製造工程では、配線 42が形成される溝 39bの内部に強 磁性膜が形成されなレ、から、強磁性材料のエッチングの困難性の問題を軽減するた めにも有効である。 [0069] In the manufacturing process of the present embodiment, there is a strong force inside the groove 39b in which the wiring 42 is formed. This is also effective in reducing the problem of difficulty in etching ferromagnetic materials since the magnetic film is not formed.
[0070] 第 4 まとめ  [0070] Fourth Summary
以上に説明されているように、実施の第 1〜第 3形態の磁気メモリでは、書き込みヮ ード線 18とビット線 19にヨーク層 18b、 19bが形成される一方で、周辺回路部 2の配 線力 積極的に強磁性層が排除されている。これにより、書き込み電流を低減しつつ 、配線のインダクタンスの増加に起因する周辺回路部 2の誤動作を防止することが可 肯 になる。  As described above, in the magnetic memories according to the first to third embodiments, the yoke layers 18b and 19b are formed on the write lead line 18 and the bit line 19, while the peripheral circuit portion 2 has Wiring force The ferromagnetic layer is actively eliminated. This makes it possible to prevent malfunction of the peripheral circuit unit 2 due to an increase in wiring inductance while reducing the write current.
[0071] カロえて、実施の第 2形態及び第 3形態の磁気メモリでは、メモリアレイ 1の書き込みヮ ード線 18と、周辺回路部 2の配線 41とが同一の配線層に形成され、ビット線 19と周 辺回路部 2の配線 42とが同一の配線層に形成される。これにより、配線層の総数を 少なくすることができる。  In the magnetic memories of the second and third embodiments, the write node 18 of the memory array 1 and the interconnect 41 of the peripheral circuit section 2 are formed in the same interconnect layer, and the bit The line 19 and the wiring 42 of the peripheral circuit section 2 are formed in the same wiring layer. As a result, the total number of wiring layers can be reduced.
[0072] 更に実施の第 3形態の磁気メモリでは、メモリアレイ 1の書き込みワード線 18とビット 線 19との間の距離が、周辺回路部 2の配線 41と配線 42との間の距離よりも小さくな るような構造が採用される。これにより、書き込み電流を低減させつつ、層間容量を低 減させることが可能になる。  Further, in the magnetic memory of the third embodiment, the distance between the write word line 18 and the bit line 19 in the memory array 1 is larger than the distance between the wiring 41 and the wiring 42 in the peripheral circuit section 2. A structure that makes it smaller is adopted. This makes it possible to reduce the interlayer capacitance while reducing the write current.
[0073] 本発明は、ロジック回路と磁気メモリとが同一の基板に集積化された半導体装置に も適用され得る。この場合、ロジック回路は、周辺回路部 2と同様の構造に形成され、 配線のインダクタンスの増加に起因するロジック回路の誤動作が防止される。  The present invention can also be applied to a semiconductor device in which a logic circuit and a magnetic memory are integrated on the same substrate. In this case, the logic circuit is formed in the same structure as that of the peripheral circuit unit 2, and malfunction of the logic circuit due to an increase in wiring inductance is prevented.

Claims

請求の範囲 The scope of the claims
[1] メモリアレイと、  [1] Memory array,
前記メモリアレイと同一基板上に形成された回路  Circuit formed on the same substrate as the memory array
とを備え、  And
前記メモリアレイは、  The memory array is
磁気抵抗素子と、  A magnetoresistive element;
前記磁気抵抗素子にデータを書き込む書き込み電流が流される書き込み配線 とを含み、  A write wiring through which a write current for writing data to the magnetoresistive element flows,
前記書き込み配線は、  The write wiring is
導体部と、  A conductor portion;
前記導体部を被覆し、且つ、強磁性層を含むヨーク層  A yoke layer covering the conductor and including a ferromagnetic layer
とを具備し、  And
前記回路の配線からは、強磁性層が実質的に排除されている  The ferromagnetic layer is substantially excluded from the wiring of the circuit.
半導体装置。  Semiconductor device.
[2] 請求項 1に記載の半導体装置であって、  [2] The semiconductor device according to claim 1,
前記回路は、前記磁気抵抗素子にアクセスするために使用される周辺回路である 半導体装置。  The semiconductor device is a peripheral circuit used for accessing the magnetoresistive element.
[3] 請求項 1に記載の半導体装置であって、  [3] The semiconductor device according to claim 1,
前記回路の前記配線は、下地回路層に形成され、  The wiring of the circuit is formed in a base circuit layer,
前記メモリアレイの前記磁気抵抗素子と前記書き込み配線は、前記下地回路層の 上に形成されたメモリ層に形成され、  The magnetoresistive element and the write wiring of the memory array are formed in a memory layer formed on the base circuit layer,
前記回路は、前記メモリ層に配線を有していない  The circuit has no wiring in the memory layer
半導体装置。  Semiconductor device.
[4] メモリアレイと、  [4] Memory array;
前記メモリアレイと同一基板上に形成された回路  Circuit formed on the same substrate as the memory array
とを備え、  And
前記メモリアレイは、  The memory array is
磁気抵抗素子と、 前記磁気抵抗素子にデータを書き込む書き込み電流が流される書き込み配線 とを含み、 A magnetoresistive element; A write wiring through which a write current for writing data to the magnetoresistive element flows,
前記書き込み配線は、  The write wiring is
ワード線と、  A word line,
前記ワード線と交差するビット線  Bit line crossing the word line
とを具備し、  And
前記磁気抵抗素子は、前記ワード線と前記ビット線とが交差する位置に設けられ、 前記ワード線と前記ビット線は、少なくとも前記磁気抵抗素子に面した部分の対面 に強磁性層を含むヨーク層を有し、  The magnetoresistive element is provided at a position where the word line and the bit line intersect, and the word line and the bit line include a yoke layer including a ferromagnetic layer at a facing portion of at least a portion facing the magnetoresistive element Have
前記回路の配線からは、強磁性層が実質的に排除されている  The ferromagnetic layer is substantially excluded from the wiring of the circuit.
半導体装置。  Semiconductor device.
[5] 請求項 4に記載の半導体装置であって、 [5] The semiconductor device according to claim 4,
前記回路は、前記磁気抵抗素子にアクセスするために使用される周辺回路である 半導体装置。  The semiconductor device is a peripheral circuit used for accessing the magnetoresistive element.
[6] 請求項 4に記載の半導体装置であって、 [6] The semiconductor device according to claim 4,
前記回路は、  The circuit is
前記磁気抵抗素子にアクセスするために使用される周辺回路と、  A peripheral circuit used to access the magnetoresistive element;
前記磁気抵抗素子のメモリを制御するロジック回路  Logic circuit for controlling the memory of the magnetoresistive element
とを含む  And including
半導体装置。  Semiconductor device.
[7] 請求項 4に記載の半導体装置であって、 [7] The semiconductor device according to claim 4,
前記回路の前記配線は、前記ワード線と同一の配線層に位置する第 1配線と、前 記ビット線と同一の配線層に位置する第 2配線とを含み、  The wiring of the circuit includes a first wiring located in the same wiring layer as the word line, and a second wiring located in the same wiring layer as the bit line,
前記第 1配線及び前記第 2配線からは、強磁性層が実質的に排除されている 半導体装置。  A semiconductor device in which a ferromagnetic layer is substantially excluded from the first wiring and the second wiring.
[8] メモリアレイと、 [8] Memory array,
前記メモリアレイと同一基板上に形成された回路  Circuit formed on the same substrate as the memory array
とを備え、 前記メモリアレイは、 And The memory array is
磁気抵抗素子と、  A magnetoresistive element;
前記磁気抵抗素子にデータを書き込む書き込み電流が流される書き込み配線 とを含み、  A write wiring through which a write current for writing data to the magnetoresistive element flows,
前記書き込み配線は、  The write wiring is
導体部と、  A conductor portion;
前記導体部を被覆し、且つ、強磁性層を含むヨーク層  A yoke layer covering the conductor and including a ferromagnetic layer
とを具備し、 And
前記回路は、前記書き込み配線と同一の配線層に位置する配線を含み、 前記配線からは、強磁性層が実質的に排除されている  The circuit includes a wiring located in the same wiring layer as the write wiring, and the ferromagnetic layer is substantially excluded from the wiring.
半導体装置。  Semiconductor device.
請求項 8に記載の半導体装置であって、  The semiconductor device according to claim 8, wherein
前記書き込み配線は、  The write wiring is
ワード線と  Word line and
前記ワード線と交差するビット線  Bit line crossing the word line
とを具備し、 And
前記磁気抵抗素子は、前記ワード線と前記ビット線とが交差する位置に設けられ、 前記回路の前記配線は、  The magnetoresistive element is provided at a position where the word line and the bit line intersect, and the wiring of the circuit is
前記ワード線と同一の配線層に位置する第 1配線と、  A first wiring located in the same wiring layer as the word line;
前記ビット線と同一の配線層に位置する第 2配線  Second wiring located in the same wiring layer as the bit line
とを含み、 Including
前記ワード線と前記ビット線との距離は、前記第 1配線と前記第 2配線との距離より も小さい  The distance between the word line and the bit line is smaller than the distance between the first wiring and the second wiring.
半導体装置。  Semiconductor device.
メモリアレイと、  A memory array;
前記メモリアレイと同一基板上に形成された回路  Circuit formed on the same substrate as the memory array
とを備え、 And
前記メモリアレイは、 磁気抵抗素子と、 The memory array is A magnetoresistive element;
前記磁気抵抗素子にデータを書き込む書き込み電流が流される書き込み配線 とを含み、  A write wiring through which a write current for writing data to the magnetoresistive element flows,
前記書き込み配線は、  The write wiring is
導体部と、  A conductor portion;
前記導体部を被覆し、且つ、強磁性層を含むヨーク層  A yoke layer covering the conductor and including a ferromagnetic layer
とを具備し、  And
前記回路は、  The circuit is
層間絶縁膜に形成された溝に坦め込まれた、前記書き込み配線と同一の配線層に 位置する配線と、  A wiring located in the same wiring layer as the write wiring, which is held in a groove formed in the interlayer insulating film;
前記溝の隅部に形成された強磁性体の残渣を含む  Includes ferromagnetic residue formed in the corner of the groove
半導体装置。  Semiconductor device.
[11] 磁気抵抗素子を含むメモリアレイと、前記メモリアレイと同一の基板に形成された回 路とを含む半導体装置の製造方法であって、  [11] A method of manufacturing a semiconductor device including a memory array including a magnetoresistive element and a circuit formed on the same substrate as the memory array,
(A)層間絶縁膜を形成する工程と、  (A) forming an interlayer insulating film;
(B)前記層間絶縁膜に、前記磁気抵抗素子にデータを書き込む書き込み電流が 流される書き込み配線に対応する第 1溝と、前記回路の配線に対応する第 2溝とを形 成する工程と、  (B) forming a first groove corresponding to a write wiring through which a write current for writing data to the magnetoresistive element flows and a second groove corresponding to the circuit wiring in the interlayer insulating film;
(C)前記第 1溝と前記第 2溝とを被覆する強磁性膜を形成する工程と、 (C) forming a ferromagnetic film covering the first groove and the second groove;
(D)前記強磁性膜のうち、前記第 2溝の内部に位置する部分の少なくとも一部を除 去する工程と、 (D) removing at least a part of a portion of the ferromagnetic film located inside the second groove;
(E)前記 (D)工程の後、前記第 1溝と前記第 2溝とに導体を坦め込むことによって、 前記書き込み配線と前記回路の前記配線とを形成する工程  (E) After the step (D), the step of forming the write wiring and the wiring of the circuit by placing a conductor in the first groove and the second groove
とを具備する  And comprising
半導体装置の製造方法。  A method for manufacturing a semiconductor device.
[12] 請求項 11に記載の半導体装置の製造方法であって、  [12] A method of manufacturing a semiconductor device according to claim 11,
前記強磁性膜のうち、前記第 2溝の内部に位置する部分の一部が残存される 半導体装置の製造方法。 [13] 磁気抵抗素子を含むメモリアレイと、前記メモリアレイと同一の基板に形成された回 路とを含む半導体装置の製造方法であって、 A method for manufacturing a semiconductor device, wherein a part of a portion of the ferromagnetic film located inside the second groove remains. [13] A method of manufacturing a semiconductor device including a memory array including a magnetoresistive element and a circuit formed on the same substrate as the memory array,
(F)層間絶縁膜を形成する工程と、  (F) forming an interlayer insulating film;
(G)前記層間絶縁膜に、前記磁気抵抗素子にデータを書き込む書き込み電流が 流される書き込み配線に対応する第 1溝を形成する工程と、  (G) forming a first groove in the interlayer insulating film corresponding to a write wiring through which a write current for writing data to the magnetoresistive element flows;
(H)前記層間絶縁膜の上に、前記第 1溝を被覆するように強磁性膜を形成するェ 程と、  (H) forming a ferromagnetic film on the interlayer insulating film so as to cover the first groove;
(I)前記強磁性膜と前記層間絶縁膜とをエッチングすることによって、前記層間絶 縁膜に、前記回路の配線に対応する第 2溝を形成する工程と、  (I) forming a second groove corresponding to the wiring of the circuit in the interlayer insulating film by etching the ferromagnetic film and the interlayer insulating film;
CO前記 (I)工程の後、前記第 1溝と前記第 2溝とに同時に導体を埋め込むことによ つて、前記書き込み配線と前記回路の前記配線とを形成する工程  CO After the step (I), a step of forming the write wiring and the wiring of the circuit by simultaneously burying a conductor in the first groove and the second groove
とを具備する  And comprising
半導体装置の製造方法。  A method for manufacturing a semiconductor device.
[14] 磁気抵抗素子を含むメモリアレイと、前記メモリアレイと同一の基板に形成された回 路とを含む半導体装置の製造方法であって、 [14] A method of manufacturing a semiconductor device including a memory array including a magnetoresistive element and a circuit formed on the same substrate as the memory array,
(K)前記磁気抵抗素子を被覆する層間絶縁膜を形成する工程と、  (K) forming an interlayer insulating film covering the magnetoresistive element;
(L)前記層間絶縁膜に、前記磁気抵抗素子にデータを書き込む書き込み電流が 流される書き込み配線に対応する第 1溝と、前記回路の配線に対応する第 2溝とを形 成する工程と、  (L) forming a first groove corresponding to a write wiring through which a write current for writing data to the magnetoresistive element flows and a second groove corresponding to the circuit wiring in the interlayer insulating film;
(M)前記第 1溝と前記第 2溝とを被覆する強磁性膜を形成する工程と、 (N)前記強磁性膜のうち、前記第 1溝の側壁を被覆する第 1側壁部分と、前記第 2 溝の側壁を被覆する第 2側壁部分以外の部分を除去する工程と、  (M) forming a ferromagnetic film that covers the first groove and the second groove; and (N) a first side wall portion that covers a side wall of the first groove in the ferromagnetic film; Removing a portion other than the second sidewall portion covering the sidewall of the second groove;
(O)前記強磁性膜の第 2側壁部分を除去する工程と、  (O) removing the second sidewall portion of the ferromagnetic film;
(P)前記 (O)工程の後、前記第 1溝に第 1導体を、前記第 2溝に第 2導体を同時に 坦め込む工程  (P) After the step (O), the step of simultaneously loading the first conductor in the first groove and the second conductor in the second groove
とを具備する  And comprising
半導体装置の製造方法。  A method for manufacturing a semiconductor device.
[15] 磁気抵抗素子を含むメモリアレイと、前記メモリアレイと同一の基板に形成された回 路とを含む半導体装置の製造方法であって、 [15] A memory array including magnetoresistive elements and a circuit formed on the same substrate as the memory array. A method of manufacturing a semiconductor device including a road,
(Q)前記磁気抵抗素子を被覆する層間絶縁膜を形成する工程と、  (Q) forming an interlayer insulating film covering the magnetoresistive element;
(R)前記層間絶縁膜に、前記磁気抵抗素子にデータを書き込む書き込み電流が 流される書き込み配線に対応する第 1溝を形成する工程と、  (R) forming a first groove in the interlayer insulating film corresponding to a write wiring through which a write current for writing data to the magnetoresistive element flows;
(S)前記第 1溝の側壁を被覆する強磁性層を形成する工程と、  (S) forming a ferromagnetic layer covering the side wall of the first groove;
(T)前記(S)工程の後、前記回路の配線に対応する第 2溝を形成する工程と、 (U)前記 (T)工程の後、前記第 1溝に第 1導体を、前記第 2溝に第 2導体を同時に 坦め込む工程  (T) After the step (S), forming a second groove corresponding to the wiring of the circuit; (U) After the step (T), the first conductor is placed in the first groove, and The process of simultaneously loading the second conductor into the two grooves
とを具備する  And comprising
半導体装置の製造方法。  A method for manufacturing a semiconductor device.
[16] 請求項 15に記載の半導体装置の製造方法であって、  [16] The method of manufacturing a semiconductor device according to claim 15,
前記第 1溝の深さは、前記第 2溝の深さよりも深い  The depth of the first groove is deeper than the depth of the second groove.
半導体装置の製造方法。  A method for manufacturing a semiconductor device.
[17] 請求項 15又は請求項 16に記載の半導体装置の製造方法であって、 [17] A method of manufacturing a semiconductor device according to claim 15 or claim 16,
(V)前記第 1導体の上面を被覆する強磁性層を形成する工程  (V) forming a ferromagnetic layer covering the upper surface of the first conductor
を更に具備する  Further comprising
半導体装置の製造方法。  A method for manufacturing a semiconductor device.
PCT/JP2005/020538 2004-11-11 2005-11-09 Semiconductor device and method for manufacturing same WO2006051816A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006544919A JP5007932B2 (en) 2004-11-11 2005-11-09 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-328248 2004-11-11
JP2004328248 2004-11-11

Publications (1)

Publication Number Publication Date
WO2006051816A1 true WO2006051816A1 (en) 2006-05-18

Family

ID=36336493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/020538 WO2006051816A1 (en) 2004-11-11 2005-11-09 Semiconductor device and method for manufacturing same

Country Status (2)

Country Link
JP (1) JP5007932B2 (en)
WO (1) WO2006051816A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009038221A (en) * 2007-08-02 2009-02-19 Renesas Technology Corp Semiconductor device, and manufacturing method thereof
JP2009283843A (en) * 2008-05-26 2009-12-03 Renesas Technology Corp Semiconductor device and method of manufacturing the same
JP2011514676A (en) * 2008-03-04 2011-05-06 クゥアルコム・インコーポレイテッド Method for forming a magnetic tunnel junction structure
US8634231B2 (en) 2009-08-24 2014-01-21 Qualcomm Incorporated Magnetic tunnel junction structure

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000315789A (en) * 1999-04-30 2000-11-14 Toshiba Corp Semiconductor device and its manufacture
JP2001044423A (en) * 1999-07-29 2001-02-16 Matsushita Electronics Industry Corp Semiconductor device and manufacture thereof
JP2003243631A (en) * 2002-02-18 2003-08-29 Mitsubishi Electric Corp Thin film magnetic storage device and radio chip, distribution management system and manufacturing process management system using the same
JP2003318367A (en) * 2002-04-22 2003-11-07 Toshiba Corp Magnetic random access memory
JP2004311513A (en) * 2003-04-02 2004-11-04 Mitsubishi Electric Corp Magnetic memory device and its manufacturing method
JP2004363411A (en) * 2003-06-06 2004-12-24 Sony Corp Magnetic storage device and its manufacturing method
JP2005108973A (en) * 2003-09-29 2005-04-21 Toshiba Corp Magnetic storage device and manufacturing method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000315789A (en) * 1999-04-30 2000-11-14 Toshiba Corp Semiconductor device and its manufacture
JP2001044423A (en) * 1999-07-29 2001-02-16 Matsushita Electronics Industry Corp Semiconductor device and manufacture thereof
JP2003243631A (en) * 2002-02-18 2003-08-29 Mitsubishi Electric Corp Thin film magnetic storage device and radio chip, distribution management system and manufacturing process management system using the same
JP2003318367A (en) * 2002-04-22 2003-11-07 Toshiba Corp Magnetic random access memory
JP2004311513A (en) * 2003-04-02 2004-11-04 Mitsubishi Electric Corp Magnetic memory device and its manufacturing method
JP2004363411A (en) * 2003-06-06 2004-12-24 Sony Corp Magnetic storage device and its manufacturing method
JP2005108973A (en) * 2003-09-29 2005-04-21 Toshiba Corp Magnetic storage device and manufacturing method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009038221A (en) * 2007-08-02 2009-02-19 Renesas Technology Corp Semiconductor device, and manufacturing method thereof
JP2011514676A (en) * 2008-03-04 2011-05-06 クゥアルコム・インコーポレイテッド Method for forming a magnetic tunnel junction structure
US9029170B2 (en) 2008-03-04 2015-05-12 Qualcomm Incorporated Magnetic tunnel junction structure
US9105670B2 (en) 2008-03-04 2015-08-11 Qualcomm Incorporated Magnetic tunnel junction structure
KR101575852B1 (en) 2008-03-04 2015-12-08 퀄컴 인코포레이티드 Method of forming a magnetic tunnel junction structure
JP2009283843A (en) * 2008-05-26 2009-12-03 Renesas Technology Corp Semiconductor device and method of manufacturing the same
US8634231B2 (en) 2009-08-24 2014-01-21 Qualcomm Incorporated Magnetic tunnel junction structure

Also Published As

Publication number Publication date
JP5007932B2 (en) 2012-08-22
JPWO2006051816A1 (en) 2008-05-29

Similar Documents

Publication Publication Date Title
TWI395356B (en) Magnetic element utilizing protective sidewall passivation
JP4186046B2 (en) Protective structure for MRAM electrode
KR101154468B1 (en) Solid-state memory device and method for arrangement of solid-state memory cells
US8558297B2 (en) MRAM cell structure
US20060220084A1 (en) Magnetoresistive effect element and method for fabricating the same
JP2002110933A (en) Semiconductor memory device and its manufacturing method
JP2006523963A (en) Magnetoresistive random access memory device and manufacturing method thereof
JP4987830B2 (en) Magnetic memory
JP2002246565A (en) Nonvolatile magnetic storage device and its manufacturing method
JP2006210396A (en) Magnetic memory device and reading method thereof
JPWO2006092849A1 (en) Magnetoresistive element and magnetic memory device
US20020084500A1 (en) Magnetic random access memory and method for manufacturing the same
JP4483231B2 (en) Method for manufacturing magnetic memory device
US20040105320A1 (en) Semiconductor memory device including magneto resistive element and method of fabricating the same
KR100951068B1 (en) Magnetic storage apparatus and manufacturing method thereof
US20030103393A1 (en) Magnetic memory device and method for manufacturing the same
JP2006278645A (en) Magnetic memory device
US7205590B2 (en) Semiconductor memory device provided with magneto-resistive element and method for fabricating the same
KR100518703B1 (en) Magnetic memory and manufacturing method thereof using damascene process
JP2005260082A (en) Magnetic random access memory
JP5007932B2 (en) Semiconductor device and manufacturing method thereof
JP2012209358A (en) Magnetic storage element and magnetic storage device
JP2004006713A (en) Magnetic storage apparatus and manufacturing method thereof
JP4590862B2 (en) Magnetic memory device and manufacturing method thereof
JP2005056976A (en) Magnetic memory device and its manufacturing method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006544919

Country of ref document: JP

122 Ep: pct application non-entry in european phase

Ref document number: 05806168

Country of ref document: EP

Kind code of ref document: A1