WO2006051731A1 - Epoxy resin composition - Google Patents

Epoxy resin composition Download PDF

Info

Publication number
WO2006051731A1
WO2006051731A1 PCT/JP2005/020192 JP2005020192W WO2006051731A1 WO 2006051731 A1 WO2006051731 A1 WO 2006051731A1 JP 2005020192 W JP2005020192 W JP 2005020192W WO 2006051731 A1 WO2006051731 A1 WO 2006051731A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
epoxy resin
resin composition
compound
silicone compound
Prior art date
Application number
PCT/JP2005/020192
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Tsuneishi
Original Assignee
Kaneka Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corporation filed Critical Kaneka Corporation
Priority to JP2006544863A priority Critical patent/JP5153141B2/en
Publication of WO2006051731A1 publication Critical patent/WO2006051731A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • C08K5/5419Silicon-containing compounds containing oxygen containing at least one Si—O bond containing at least one Si—C bond
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0209Inorganic, non-metallic particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/12Using specific substances
    • H05K2203/122Organic non-polymeric compounds, e.g. oil, wax, thiol

Definitions

  • the present invention relates to an epoxy resin composition that does not contain atoms such as halogen and phosphorus and is highly flame retardant.
  • Epoxy resin molding materials have excellent heat resistance and insulation properties, as well as good thermal and electrical properties, as well as good physical properties such as adhesion, dimensional stability, chemical resistance, and moisture resistance. Therefore, it is widely used in electronic component materials such as semiconductor sealing molding materials and printed wiring board materials.
  • Flame retardants used in epoxy resin molding materials are used in combination with halogen-based flame retardants typified by brominated epoxy resins, and halogen-based flame retardants and antimony-based flame retardants such as antimony trioxide. It has been widely used. In recent years, however, flame retardants that replace halogenated compounds and antimony compounds have been demanded from the viewpoint of environmental impact.
  • Patent Document 2 a technique for improving flame retardancy by adding a silicone compound to a resin composition obtained by adding a specially modified phenolic resin and a benzoxazine compound to an epoxy resin composition has been reported (for example, Patent Document 2). See), the compounded resin composition is special, and further general-purpose technology is required.
  • Non-Patent Document 1 Epoxy Resin Technology Association published review epoxy resin
  • Patent Document 1 JP 2003-165897
  • Patent Document 2 JP 2004-27000
  • the present invention is to provide a highly flame-retardant epoxy resin composition containing no halogen or phosphorus atom.
  • the present inventor has paid attention to the flame retardant effect of metal hydrate, and as a result of earnestly studying a method for achieving flame retardant with a small amount of compounding system that does not reduce moldability and workability, a silicone having a specific structure
  • the present invention was completed by finding that excellent flame retardancy can be obtained by combining with a compound.
  • the present invention relates to an epoxy resin (A), a curing agent (B), a curing accelerator (C), an inorganic filler (D), a metal hydrate (E), and an average composition formula (1).
  • R 1 represents a group selected from a group in which carbon directly bonded to a carbon atom is an aliphatic carbon, a hydroxyl group, and an alkoxy group
  • R 2 represents an aromatic hydrocarbon group having 6 to 24 carbon atoms.
  • R 1 and R 2 may be present in two or more types, m and n are 1. l ⁇ m + n ⁇ l .7 and 0.4 ⁇ n / m ⁇ 2.5
  • the epoxy resin composition characterized by containing the silicone compound (F) represented by this.
  • R 1 of the silicone compound of component (F) is one or more selected from an epoxy group, a hydroxyl group, an alkoxy group, an amino group, a carboxy group, and a carboxylic acid anhydride group.
  • the epoxy resin composition is characterized by being a hydrocarbon group having a reactive group.
  • the present invention relates to a xy resin composition.
  • the embodiment is characterized in that the metal hydrate (E) is surface-treated with a surface treatment agent selected from an aluminum compound and a silicon compound.
  • a surface treatment agent selected from an aluminum compound and a silicon compound.
  • the present invention relates to a resin composition.
  • the epoxy resin composition of the present invention exhibits very excellent flame retardancy without using generally used flame retardants such as chlorine, bromine and phosphorus, and impairs the inherent characteristics of the resin. There are few. Such an epoxy resin composition is very useful industrially.
  • the epoxy resin (A) used in the present invention is one generally used which has at least two epoxy groups in one molecule and reacts with a curing agent to form a crosslinked network structure.
  • phenols such as phenol novolac type epoxy resin, orthocresol novolak type epoxy resin, epoxy resin having triphenylmethane skeleton, phenol, cresol, xylenol, resorcin, catechol, bisphenol A, bisphenol F, etc.
  • / or naphthols such as ⁇ -naphthol, ⁇ naphthol and dihydroxynaphthalene and a compound having an aldehyde group such as formaldehyde, acetoaldehyde, propionaldehyde, benzaldehyde, salicylaldehyde, or the like by condensation or cocondensation under an acidic catalyst.
  • Epoxidized novolak resin obtained.
  • diglycidyl ethers such as bisphenol ⁇ , bisphenol F, bisphenol S, and bisphenol A / D
  • biphenyl epoxy resins that are diglycidyl ethers of alkyl-substituted or unsubstituted biphenol, phenols and / or Epoxidized phenolic aralkyl resin synthesized from naphthols and dimethoxyparaxylene or bis (methoxymethyl) bifuel
  • stilbene type epoxy resin hydroquinone type epoxy resin Obtained by reaction of polyamines such as alicyclic acid such as fat, phthalic acid, and dimer acid with epicyclohydrin, and polyamines such as daricidyl ester type epoxy resin, diaminodiphenylmethane, and isocyanuric acid, and epichlorohydrin.
  • Glycidinoleamine type epoxy resin such as bisphenol ⁇ , bisphenol F, bisphenol S, and bisphenol A / D
  • biphenyl epoxy resins that
  • dicyclopentagen type epoxy resin epoxidized product of co-condensation resin of dicyclopentagen and phenols
  • epoxy resin having naphthalene ring triphenol methane type epoxy resin, trimethylolpropane type epoxy resin
  • terpene modified epoxy resin Linear aliphatic epoxy resins, alicyclic epoxy resins obtained by oxidizing olefin bonds with peracids such as peracetic acid, and these epoxy resins with silicone, acrylonitrile, butadiene, isoprene rubber, polyamide resin, etc.
  • modified epoxy resins include modified epoxy resins.
  • epoxy resins may be used alone or in combination of two or more.
  • the curing agent (B) used in the present invention those generally used as a curing agent for epoxy resins, such as phenol compounds, amine compounds, acid anhydrides, etc. are applied, and are not particularly limited.
  • a phenol resin having two or more phenolic hydroxyl groups in the molecule can be suitably used.
  • Specific examples of phenol resins include novolak-type phenol resins such as phenol novolak resins and cresol novolak resins, resol-type phenol resins, phenol aralkyl resins, triphenol methane-type resins, and triphenol propane-type resins.
  • Examples include phenolalkane-type phenolic resins and polymers thereof, naphthalene ring-containing phenolic resins, dicyclopentagen-modified phenolic resins, bisphenol F-type resins, bisphenol A-type resins and other bisphenol type phenolic resins. These curing agents can be used alone or in combination of two or more.
  • the curing accelerator (C) used in the present invention is not particularly limited.
  • a curing accelerator generally used in epoxy resin molding materials such as a phosphorus compound-based curing accelerator and a nitrogen compound-based curing accelerator.
  • the phosphorus compound-based curing accelerator include trialkylphosphine such as trimethylphosphine, triethylphosphine, tripropylphosphine, and tributylphosphine, and dialkylarylphosphine such as dimethylphenylphosphine, diphenylphosphine, and methyldiphenylphosphine.
  • Tris (alkoxy) such as alkyldiarylphosphine such as phosphine, triphenylphosphine, tris (4-methylphenyl) phosphine Norephinorephosphine, tris (alkoxyphenenole) phosphine, tris (alkynole'alkoxyphenenole) phosphine, tris (dialkylphenenole) phosphine, tris (trialkylphenenole) phosphine, tris (tetraalkylphenol) Organic phosphines such as phosphine, tris (dialkoxyphenyl) phosphine, tris (trialkoxyphenyl) phosphine, tris (tetraalkoxyphenyl) phosphine, diphenylphosphine, diphenyl (p-tolyl) phosphine, tetra Butylphosphonium tetra
  • tributylphosphine triphenylphosphine, tris (4 methylphenyl) phosphine, tetrabutyltetrabutylphosphoniumtetraphenylborate, and tetraphenylphosphoniumtetraphenylborate are preferable.
  • Nitrogen-based curing accelerators include, for example, 1,8 diazabicyclo [5. 4. 0] undecene 1, 1, 5—diazabicyclo [4 ⁇ 3.0] nonene 1, 5, 5, 6 —Cycloamidine compounds such as dibutylamino-1,8-diazabicyclo [5.4.0] undecene 7 and their derivatives, benzyldimethylamine, triethanolamine, dimethylaminoethanol, tris (dimethylaminomethyl) phenol, etc.
  • Tertiary amine compounds and their derivatives triammonium tetraphenylborate, 1,8-diazabicyclo [5.4.0] -7-unde senemtetraphenylborate, and the like.
  • 1,8-diazabicyclo [5.4.0] undecene 7 and 1,5-diazabicyclo [4.3.0] nonen-5 are preferred.
  • the inorganic filler (D) used in the present invention is blended for hygroscopicity, linear expansion coefficient reduction, thermal conductivity improvement and strength improvement, and is generally used for epoxy resin molding materials.
  • Inorganic fillers are silane coupling agents to improve adhesion to resin components It is desirable that the surface treatment is performed with a titanate coupling agent or the like, or that such a coupling agent is added when the epoxy resin composition is blended.
  • Examples of such coupling agents include ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyl methyljetoxysilane, _ (3,4-epoxycyclohexyl) ethyltrimethoxysilane.
  • Silane power such as epoxy silane such as N- ⁇ (aminoethyl) 1 ⁇ -aminopropyltrimethoxysilane, ⁇ - aminopropyltriethoxysilane, ⁇ - phenol ⁇ -aminopropyltrimethoxy A pulling agent.
  • epoxy silane such as N- ⁇ (aminoethyl) 1 ⁇ -aminopropyltrimethoxysilane, ⁇ - aminopropyltriethoxysilane, ⁇ - phenol ⁇ -aminopropyltrimethoxy A pulling agent.
  • Examples of the metal hydrate (soot) used in the present invention include aluminum hydroxide, magnesium hydroxide, calcium hydroxide, barium hydroxide and the like. These metal hydrates may be blended as a mixture of two or more. Also, magnesium hydroxide is particularly preferred for the recent lead-free soldering because of its decomposition temperature. In addition, a surface-treated product is preferable in order to improve the affinity with the resin, to prevent the mechanical properties of the resin composition from being lowered, and to improve water resistance and acid resistance. That is, the metal hydrate ( ⁇ ) is preferably surface-treated with a surface treatment agent selected from an aluminum compound and a key compound. Examples of the aluminum compound include inorganic substances such as alumina and aluminum coupling agents.
  • Examples of the key compound include inorganic substances such as silica and silane coupling agents such as epoxy silane.
  • examples of other surface treatment agents include titanium compounds such as titanium oxide and titanate coupling agents, higher fatty acids such as stearic acid, and oxalate anion. Two or more of these may be used in combination.
  • the silicone compound (F) used in the present invention comprises an aromatic group-containing organosiloxane compound, and is composed of Q unit (SiO 2), ⁇ unit (RSiO), D unit (R SiO) and M unit. (R Si ⁇
  • R 1 represents a group selected from a group in which carbon directly bonded to a carbon atom is an aliphatic carbon, a hydroxyl group, and an alkoxy group
  • R 2 represents an aromatic hydrocarbon group having 6 to 24 carbon atoms.
  • R 1 and R 2 may be present in two or more types, m and n are 1. l ⁇ m + n ⁇ l .7 and 0 4 ⁇ n / m ⁇ 2.
  • the aromatic group-containing organosiloxane compound represented by the average composition formula (1) is a group R 1 selected from a group in which carbon directly bonded to a carbon atom in the molecule is an aliphatic carbon, a hydroxyl group, and an alkoxy group.
  • an aromatic hydrocarbon group R 2 having 6 to 24 carbon atoms, and the number of moles m + n of all substituents on these silicon atoms is 1.l ⁇ m + n ⁇ l .7
  • Each element and the ratio of m and n can be calculated using NMR of hydrogen, carbon and silicon.
  • the group R 1 in which the carbon directly bonded to the carbon atom is an aliphatic carbon is a saturated aliphatic hydrocarbon group, methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, Examples thereof include s-butyl group and t-butyl group. Among these, preferred are a methyl group and an ethyl group, and a methyl group is more preferred because of its excellent flame retardancy.
  • the saturated aliphatic hydrocarbon group has 5 or more carbon atoms, the flame retardancy of the aromatic group-containing organosiloxane compound itself is lowered, and the flame retarding effect is lowered.
  • examples of the alkoxy group selected as R 1 include a methoxy group, an ethoxy group, and an isopropoxy group. Among these, the availability of raw materials, etc.
  • the methoxy group is preferred.
  • R 1 of the silicone compound of component (F) is a hydrocarbon group having one or more reactive groups selected from an epoxy group, a hydroxyl group, an alkoxy group, an amino group, a carboxy group, and a carboxylic anhydride group. It is preferable that In order to introduce these reactive groups into the silicone compound, a polymerizable monomer having the above-mentioned reactive group-substituted hydrocarbon group as a substituent on the silicon atom is used, or SiH groups are introduced into the silicone compound. After introduction, it can be achieved by a method of reacting a carbon-carbon unsaturated compound by a hydrosilylation reaction. These methods are not particularly limited.
  • [0029] is not particularly restricted but includes aromatic hydrocarbon group R 2 having a carbon number of 6-24, for example, Fuweni Examples include nore group, methylphenyl group, dimethylphenyl group, ethylphenyl group, naphthyl group, anthracenyl group, and the like. Among these, an aromatic group having no substituent on the aromatic ring is preferable because of its excellent flame retardant effect, and a phenyl group is more preferable.
  • the plurality of R 2 may be the same or different groups may be mixed.
  • the number of moles m + n of all substituents on the key atom is in the range of 1. l ⁇ m + n ⁇ l.
  • m + n is preferably 1.15 ⁇ m + n ⁇ l.65, more preferably 1.18 ⁇ m + n ⁇ l.6, more preferably 1.20 ⁇ m + n ⁇ l.55 Range. Even if the value of m + n is less than 1.1 or above 1.7, the flame retarding effect of the aromatic group-containing organosiloxane compound is reduced, which is preferable.
  • the construction of the structure in the above range can be achieved by introducing T units and / or Q units into the skeleton of the organosiloxane compound.
  • the above range is easily achieved as the introduction amount of these units increases. it can.
  • the introduction amount of the Q unit is large, the compatibility with the inorganic filler which is the component (D) of the present invention is improved, and the flame retardancy is improved. That is, it is preferable to contain 10 mol% or more of SiO units among all the siloxane units constituting the silicone compound of component (F).
  • the SiO unit content is more preferably 20 mol% or more, most preferably 30 mol% or more.
  • n / m Is in the range of 0.4 ⁇ n / m ⁇ 2.5.
  • n / m is less than 0.4, the aromatic group-containing onoreganosiloxane compound decreases due to the decrease in aromatic groups in the molecule, and the aromatic group-containing onoreganosiloxane compound is reduced. This will cause the flame retardancy effect of the object to decrease.
  • n / m is preferably 0.43 ⁇ n / m ⁇ 2.3, more preferably 0.45 ⁇ n / m ⁇ 2.1, and even more preferably 0.47 ⁇ n / m ⁇ 2. 0.
  • Such an aromatic group-containing organosiloxane compound can be easily synthesized by a known silicone synthesis method. That is, a monofunctional key compound represented by R SiX,
  • Tetrahalogenated silicon Tetraalkoxysilane, and organic condensates thereof It can be synthesized by condensation reaction of at least one, preferably at least two, selected from among inorganic compounds such as silicon compounds, water glass and metal silicates.
  • R represents an aromatic hydrocarbon group or a group in which the carbon directly bonded to the silicon atom is an aliphatic carbon.
  • X represents a group capable of condensing to form a siloxane bond, such as a halogen, a hydroxyl group or an alkoxy group.
  • Reaction conditions vary depending on the substrate used and the composition and molecular weight of the target compound.
  • the reaction can be carried out by mixing the silicon compound with heating, if necessary, in the presence of water, an acid and / or an alkali, and an organic solvent as necessary.
  • the usage ratio of each silicon compound takes into account the content of each unit and the ratio of aromatic hydrocarbon groups to aliphatic hydrocarbon groups so that the resulting aromatic group-containing onoreganosiloxane compound satisfies the above conditions. Therefore, it can be set as appropriate.
  • the epoxy resin composition of the present invention includes, as other additives, carnauba wax, montanic acid, stearic acid, higher fatty acids, higher fatty acid metal salts, montan to ensure mold releasability.
  • release agents such as ester waxes such as acid esters, oxidized or non-oxidized polyolefin waxes such as polyethylene and polyethylene oxide, stress relaxation agents such as silicone oil and silicone rubber powder, carbon black, organic It is possible to mix dyes, organic pigments, colorants such as titanium oxide, red lead, and bengara as necessary.
  • the epoxy resin composition of the present invention can be prepared using any of the above methods as long as various raw materials can be uniformly dispersed and mixed. Are mixed well with a mixer or the like and used for molding. In the case where the epoxy resin composition is solid, a method of further melting and kneading with a mixing roll, kneader, extruder, etc., followed by cooling and pulverization can be exemplified. Further, the epoxy resin composition of the present invention can be used as a liquid epoxy resin composition by using a liquid resin or by dissolving in various organic solvents, and the liquid epoxy resin composition can be used on a plate or a film. It can also be used as a sheet or a film-like epoxy resin composition obtained by spreading the organic solvent thinly and spraying the organic solvent under conditions such that the resin curing reaction does not proceed so much.
  • the resin composition of the present invention comprises an epoxy resin (A), a curing agent (B), a curing accelerator (C), 2 to 50 parts by weight of epoxy resin (A) and 100 to 50 parts by weight of curing agent (B) per 100 parts by weight of machine filler (D), metal hydrate (E) and silicone compound (F) Curing accelerator (C) 0.0:! To 5 parts by weight, inorganic filler (D) 30 to 95 parts by weight, metal hydrate (E):! To 30 parts by weight, silicone compound (F) 0. :! ⁇ 20 parts by weight can be exemplified.
  • the component (F) is preferably 0.2 to 15 parts by weight, more preferably 0.5 to 12 parts by weight.
  • part means part by weight
  • % means weight% unless otherwise specified.
  • Epoxy resin Cresol monovolak type epoxy resin (EPI CLON N— 637, manufactured by Dainippon Ink and Chemicals, Inc.)
  • Curing agent Novolac-type phenolic resin (Showa High Polymer Shounol BRG-556)
  • Curing accelerator Triphenylphosphine (Wako Pure Chemical Industries, Ltd.)
  • Inorganic filler fused silica (FB-74, manufactured by Denki Kagaku Kogyo)
  • Metal Hydrate El Aluminum hydroxide (NO, Ijirite H-21 made by Showa Denko)
  • Metal Hydrate E2 Higher Fatty Acid Surface Treated Magnesium Hydroxide (Madashiz W-H25 from Kamishima Chemical)
  • Metal Hydrate E3 Inorganic + Epoxysilane Surface-treated Magnesium Hydroxide (Madashiz EP1-E)
  • Metal Hydrate E4 Mineral Surface-treated Magnesium Hydroxide (Madashies E P1-A manufactured by Kamishima Chemical)
  • Silane coupling agent ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane (N-UNIKAR A-186)
  • Mold release agent Fine powder carnauba S (manufactured by Toa Kasei)
  • the obtained resin composition was pulverized with a pulverizer and then heated with a compression molding machine at 165 ° C for 3 minutes to prepare a test piece having a width of 10 mm, a length of 100 mm, and a thickness of 1.6 mm.
  • the body was further cured by heating in an oven at 175 ° C for 6 hours.
  • the obtained molded product was evaluated for flame retardancy by V test according to UL-94 standard.
  • Resin compositions were obtained and evaluated in the same manner as in Example 1 except that the types and addition amounts of the metal hydrate and the silicone compound were changed.
  • the silicone compound of the present invention was not added, and the flame retardancy was insufficient.
  • the epoxy resin composition of the present invention exhibits very excellent flame retardancy without using commonly used flame retardants such as chlorine, bromine and phosphorus, and impairs the inherent characteristics of the resin. Also Few. Such an epoxy resin composition is very useful industrially.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Abstract

A novel epoxy resin composition which can produce an extremely high flame-retardant effect without containing any flame retardant having atoms of a halogen, phosphorus, or the like. The composition comprises an epoxy resin (A), a hardener (B), a hardening accelerator (C), an inorganic filler (D), a metal hydrate (E), and a silicone compound (F) represented by the empirical formula (1): R1mR2nSiO(4-m-n)/2 (1) (wherein R1 represents a group selected among a group in which the carbon atom directly bonded to the silicon atom is an aliphatic carbon atom, hydroxy, and alkoxy and R2 represents a C6-24 aromatic hydrocarbon group, provided that R1 and R2 each may be of two or more kinds; and m and n are numbers satisfying 1.1≤m+n≤1.7 and 0.4≤n/m≤2.5).

Description

明 細 書  Specification
エポキシ樹脂組成物  Epoxy resin composition
技術分野  Technical field
[0001] 本発明は、ハロゲン、リン等の原子を含有せず、高度に難燃化されたエポキシ樹脂 組成物に関する。  The present invention relates to an epoxy resin composition that does not contain atoms such as halogen and phosphorus and is highly flame retardant.
背景技術  Background art
[0002] エポキシ樹脂成形材料は耐熱性、絶縁性に優れるとレ、つた熱的および電気的特性 に加えて、接着力、寸法安定性、耐薬品性、耐湿性に優れるといった物性バランスが 良いことから、半導体封止成型材料やプリント配線板材料などの電子部品材料に広 く使用されている。  [0002] Epoxy resin molding materials have excellent heat resistance and insulation properties, as well as good thermal and electrical properties, as well as good physical properties such as adhesion, dimensional stability, chemical resistance, and moisture resistance. Therefore, it is widely used in electronic component materials such as semiconductor sealing molding materials and printed wiring board materials.
[0003] 半導体封止成形材料やプリント配線板材料は火災に対する安全性から高度な難 燃性が必要され、 UL規格 (米国アンダーライターズラボラトリー規格)の V—0を満た すことが要求される用途に用いることが出来るように、様々な難燃剤が配合されてい る (例えば、非特許文献 1参照)。  [0003] Semiconductor encapsulated molding materials and printed wiring board materials require a high level of flame resistance for safety against fires, and are required to satisfy UL (US Underwriters Laboratory Standards) V-0. Various flame retardants are blended so that they can be used for applications (see Non-Patent Document 1, for example).
[0004] エポキシ樹脂成形材料に使用される難燃剤としては臭素化エポキシ樹脂に代表さ れるようなハロゲン系難燃剤や、ハロゲン系難燃剤と三酸化アンチモンなどのアンチ モン系難燃剤と併用して用いることが従来から広く行われてきた。しかしながら、近年 、環境負荷の観点からハロゲン系化合物やアンチモン化合物に替わる難燃剤が求 められている。  [0004] Flame retardants used in epoxy resin molding materials are used in combination with halogen-based flame retardants typified by brominated epoxy resins, and halogen-based flame retardants and antimony-based flame retardants such as antimony trioxide. It has been widely used. In recent years, however, flame retardants that replace halogenated compounds and antimony compounds have been demanded from the viewpoint of environmental impact.
[0005] ハロゲン系難燃剤に替わるものとしてリン系化合物を用いる方法があるが、リン系化 合物は吸湿性が高ぐ加水分解により電気特性が低下するといつた問題がある。  [0005] As an alternative to the halogen flame retardant, there is a method using a phosphorus compound, but the phosphorus compound has a high hygroscopic property, and there is a problem when the electrical properties are lowered due to hydrolysis.
[0006] ハロゲン系やリン系難燃剤を用いずに難燃化する方法としては、一般的に金属水 和物の使用が考えられるが、高度な難燃性を満たすには多量に配合する必要があり 、作業性や成形性および硬化物の加工性が劣るという課題があった。  [0006] As a method of making flame retardant without using a halogen-based or phosphorus-based flame retardant, use of a metal hydrate is generally considered, but it is necessary to add a large amount in order to satisfy a high level of flame retardancy. However, there existed a subject that workability | operativity, a moldability, and the workability of hardened | cured material were inferior.
[0007] ハロゲン系やリン系難燃剤を用いずにエポキシ樹脂成形材料を難燃化するその他 の方法としては、シリコーン化合物を用いる方法が報告されており、例えば、エポキシ 樹脂組成物にポリカーボネート樹脂と特定構造のオノレガノポリシロキサンを添加する 方法が開示されているが (例えば、特許文献 1参照)、この場合、熱硬化性樹脂であ るエポキシ樹脂に熱可塑性樹脂を配合することから配合や成形条件が複雑であると レ、う課題がある。さらに、エポキシ樹脂組成物に特殊変性フエノール樹脂とベンゾォ キサジン化合物を加えた樹脂組成物にシリコーンィ匕合物が添加されて難燃性を改良 する技術が報告されているが (例えば、特許文献 2参照)、配合樹脂組成が特殊であ り、さらなる汎用技術が求められている。 [0007] As another method for flame retarding an epoxy resin molding material without using a halogen-based or phosphorus-based flame retardant, a method using a silicone compound has been reported. For example, a polycarbonate resin and an epoxy resin composition can be combined with a polycarbonate resin. Add onoreganopolysiloxane with specific structure Although a method is disclosed (for example, see Patent Document 1), in this case, since a thermoplastic resin is blended with an epoxy resin that is a thermosetting resin, the blending and molding conditions are complicated. There is. Furthermore, a technique for improving flame retardancy by adding a silicone compound to a resin composition obtained by adding a specially modified phenolic resin and a benzoxazine compound to an epoxy resin composition has been reported (for example, Patent Document 2). See), the compounded resin composition is special, and further general-purpose technology is required.
非特許文献 1:エポキシ樹脂技術協会発行 総説エポキシ樹脂  Non-Patent Document 1: Epoxy Resin Technology Association published review epoxy resin
特許文献 1 :特開 2003— 165897  Patent Document 1: JP 2003-165897
特許文献 2:特開 2004— 27000  Patent Document 2: JP 2004-27000
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] 本発明は、上記現状に鑑み、ハロゲンやリン原子を含むことなぐ高度に難燃化さ れたエポキシ樹脂組成物を提供することにある。 [0008] In view of the above situation, the present invention is to provide a highly flame-retardant epoxy resin composition containing no halogen or phosphorus atom.
課題を解決するための手段  Means for solving the problem
[0009] 本発明者は、金属水和物の難燃効果に着目し、成形性や加工性を低下させない 少量の配合系で難燃化を達成する方法を鋭意検討した結果、特定構造のシリコーン 化合物と組み合わせることにより優れた難燃性が得られることを見出し、本発明を完 成した。 [0009] The present inventor has paid attention to the flame retardant effect of metal hydrate, and as a result of earnestly studying a method for achieving flame retardant with a small amount of compounding system that does not reduce moldability and workability, a silicone having a specific structure The present invention was completed by finding that excellent flame retardancy can be obtained by combining with a compound.
[0010] すなわち本発明は、エポキシ樹脂 (A)、硬化剤(B)、硬化促進剤(C)、無機充填 剤(D)、金属水和物 (E)、および平均組成式(1)  That is, the present invention relates to an epoxy resin (A), a curing agent (B), a curing accelerator (C), an inorganic filler (D), a metal hydrate (E), and an average composition formula (1).
R1 R2 SiO (1) R 1 R 2 SiO (1)
m n (4-m-n)/2  m n (4-m-n) / 2
(式中、 R1はケィ素原子に直結する炭素が脂肪族炭素である基、水酸基、アルコキシ 基から選ばれる基を表し、 R2は炭素数が 6〜24の芳香族炭化水素基を表す。 R1, R2 はそれぞれ 2種類以上存在していても良レ、。 mと nは、 1. l≤m + n≤l . 7、及び、 0 . 4≤n/m≤2. 5を満たす数を表す。)で表されるシリコーン化合物(F)を含有する ことを特徴とするエポキシ樹脂組成物に関する。 (In the formula, R 1 represents a group selected from a group in which carbon directly bonded to a carbon atom is an aliphatic carbon, a hydroxyl group, and an alkoxy group, and R 2 represents an aromatic hydrocarbon group having 6 to 24 carbon atoms. R 1 and R 2 may be present in two or more types, m and n are 1. l≤m + n≤l .7 and 0.4≤n / m≤2.5 The epoxy resin composition characterized by containing the silicone compound (F) represented by this.
[0011] 好ましい実施態様は、(F)成分のシリコーンィ匕合物の R1がエポキシ基、水酸基、ァ ルコキシ基、アミノ基、カルボキシ基、カルボン酸無水物基から選ばれる 1種以上の 反応性基を有する炭化水素基であることを特徴とする前記のエポキシ樹脂組成物に 関する。 In a preferred embodiment, R 1 of the silicone compound of component (F) is one or more selected from an epoxy group, a hydroxyl group, an alkoxy group, an amino group, a carboxy group, and a carboxylic acid anhydride group. The epoxy resin composition is characterized by being a hydrocarbon group having a reactive group.
[0012] 好ましい実施態様は、(F)成分のシリコーンィ匕合物が構成する全シロキサン単位の うち SiO単位を 10モル%以上含有することを特徴とする前記いずれかに記載のェポ [0012] In a preferred embodiment, the epoxy resin according to any one of the above, wherein the SiO unit is contained in an amount of 10 mol% or more of all siloxane units constituting the silicone compound of component (F).
2 2
キシ樹脂組成物に関する。  The present invention relates to a xy resin composition.
[0013] 好ましレ、実施態様は、金属水和物 (E)がアルミニウム化合物、ケィ素化合物から選 ばれる表面処理剤で表面処理されてなることを特徴とする前記いずれかに記載のェ ポキシ樹脂組成物に関する。 [0013] Preferably, the embodiment is characterized in that the metal hydrate (E) is surface-treated with a surface treatment agent selected from an aluminum compound and a silicon compound. The present invention relates to a resin composition.
発明の効果  The invention's effect
[0014] 本発明のエポキシ樹脂組成物は、塩素、臭素、リン、等一般に用いられている難燃 剤を用いなくても非常に優れた難燃性を示し、樹脂が本来有する特徴を損なうことも 少ない。このようなエポキシ樹脂組成物は工業的に非常に有用である。  [0014] The epoxy resin composition of the present invention exhibits very excellent flame retardancy without using generally used flame retardants such as chlorine, bromine and phosphorus, and impairs the inherent characteristics of the resin. There are few. Such an epoxy resin composition is very useful industrially.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0015] 以下に本発明を詳述する。 [0015] The present invention is described in detail below.
[0016] 本発明に使用されるエポキシ樹脂 (A)とは、 1分子中に少なくとも 2個のエポキシ基 を有し、硬化剤と反応して架橋網目構造を形成する一般に使用されているもので特 に制限は無い。例えば、フエノールノボラック型エポキシ樹脂、オルソクレゾールノボ ラック型エポキシ樹脂、トリフエニルメタン骨格を有するエポキシ樹脂をはじめとするフ エノーノレ、クレゾール、キシレノール、レゾルシン、カテコール、ビスフエノール A、ビス フエノール F等のフエノール類及び/又は α—ナフトール、 β ナフトール、ジヒドロ キシナフタレン等のナフトール類とホルムアルデヒド、ァセトアルデヒド、プロピオンァ ルデヒド、ベンズアルデヒド、サリチルアルデヒド等のアルデヒド基を有する化合物とを 酸性触媒下で縮合又は共縮合させて得られるノボラック樹脂をエポキシ化したもの。 又ビスフエノール Α、ビスフエノール F、ビスフエノール S、ビスフエノール A/D等のジ グリシジルエーテル、アルキル置換又は非置換のビフエノールのジグリシジルエーテ ルであるビフエ二ル型エポキシ樹脂、フエノール類及び/又はナフトール類とジメトキ シパラキシレン又はビス(メトキシメチル)ビフエエルから合成されるフエノール'ァラル キル樹脂のエポキシ化物、スチルベン型エポキシ樹脂、ハイドロキノン型エポキシ樹 脂、フタル酸、ダイマー酸等の多塩基酸とェピクロルヒドリンの反応により得られるダリ シジルエステル型エポキシ樹脂、ジアミノジフエ二ルメタン、イソシァヌル酸等のポリア ミンとェピクロルヒドリンの反応により得られるグリシジノレアミン型エポキシ樹脂。 [0016] The epoxy resin (A) used in the present invention is one generally used which has at least two epoxy groups in one molecule and reacts with a curing agent to form a crosslinked network structure. There are no particular restrictions. For example, phenols such as phenol novolac type epoxy resin, orthocresol novolak type epoxy resin, epoxy resin having triphenylmethane skeleton, phenol, cresol, xylenol, resorcin, catechol, bisphenol A, bisphenol F, etc. And / or naphthols such as α-naphthol, β naphthol and dihydroxynaphthalene and a compound having an aldehyde group such as formaldehyde, acetoaldehyde, propionaldehyde, benzaldehyde, salicylaldehyde, or the like by condensation or cocondensation under an acidic catalyst. Epoxidized novolak resin obtained. Also, diglycidyl ethers such as bisphenol Α, bisphenol F, bisphenol S, and bisphenol A / D, biphenyl epoxy resins that are diglycidyl ethers of alkyl-substituted or unsubstituted biphenol, phenols and / or Epoxidized phenolic aralkyl resin synthesized from naphthols and dimethoxyparaxylene or bis (methoxymethyl) bifuel, stilbene type epoxy resin, hydroquinone type epoxy resin Obtained by reaction of polyamines such as alicyclic acid such as fat, phthalic acid, and dimer acid with epicyclohydrin, and polyamines such as daricidyl ester type epoxy resin, diaminodiphenylmethane, and isocyanuric acid, and epichlorohydrin. Glycidinoleamine type epoxy resin.
又ジシクロペンタジェンとフエノール類の共縮合樹脂のエポキシ化物であるジシクロ ペンタジェン型エポキシ樹脂、ナフタレン環を有するエポキシ樹脂、トリフエノールメタ ン型エポキシ樹脂、トリメチロールプロパン型エポキシ樹脂、テルペン変性エポキシ 樹脂、ォレフィン結合を過酢酸等の過酸で酸化して得られる線状脂肪族エポキシ樹 脂、脂環族エポキシ樹脂、及びこれらのエポキシ樹脂をシリコーン、アクリロニトリル、 ブタジエン、イソプレン系ゴム、ポリアミド系樹脂等により変性したエポキシ樹脂などが 挙げられる。  In addition, dicyclopentagen type epoxy resin, epoxidized product of co-condensation resin of dicyclopentagen and phenols, epoxy resin having naphthalene ring, triphenol methane type epoxy resin, trimethylolpropane type epoxy resin, terpene modified epoxy resin, Linear aliphatic epoxy resins, alicyclic epoxy resins obtained by oxidizing olefin bonds with peracids such as peracetic acid, and these epoxy resins with silicone, acrylonitrile, butadiene, isoprene rubber, polyamide resin, etc. Examples include modified epoxy resins.
[0017] これらエポキシ樹脂を単独で用いても 2種以上を組み合わせて用いてもよい。  [0017] These epoxy resins may be used alone or in combination of two or more.
[0018] 本発明に用いる硬化剤(B)としてはフエノール化合物、ァミン化合物、酸無水物等 、従来からエポキシ樹脂の硬化剤として使用されるもの全般が適用され、特に制限さ れないが、 1分子中にフエノール性水酸基を 2個以上有するフエノール樹脂を好適に 使用すること力できる。フエノール樹脂として、具体的には、フエノールノボラック樹脂 、クレゾ一ルノボラック樹脂等のノボラック型フエノール樹脂、レゾール型フエノール樹 脂、フエノールァラルキル樹脂、トリフエノールメタン型樹脂、トリフエノールプロパン型 樹脂等のトリフエノールアルカン型フエノール樹脂及びその重合物、ナフタレン環含 有フエノール樹脂、ジシクロペンタジェン変性フエノール樹脂、ビスフエノール F型樹 脂、ビスフエノール A型樹脂等のビスフエノール型フエノール樹脂などが挙げられ、こ れらの硬化剤は、 1種を単独で又は 2種以上を混合して用いることができる。 [0018] As the curing agent (B) used in the present invention, those generally used as a curing agent for epoxy resins, such as phenol compounds, amine compounds, acid anhydrides, etc. are applied, and are not particularly limited. A phenol resin having two or more phenolic hydroxyl groups in the molecule can be suitably used. Specific examples of phenol resins include novolak-type phenol resins such as phenol novolak resins and cresol novolak resins, resol-type phenol resins, phenol aralkyl resins, triphenol methane-type resins, and triphenol propane-type resins. Examples include phenolalkane-type phenolic resins and polymers thereof, naphthalene ring-containing phenolic resins, dicyclopentagen-modified phenolic resins, bisphenol F-type resins, bisphenol A-type resins and other bisphenol type phenolic resins. These curing agents can be used alone or in combination of two or more.
[0019] 本発明に使用される硬化促進剤(C)としては特に制限はなぐリン化合物系硬化促 進剤、窒素化合物系硬化促進剤などエポキシ樹脂成形材料に一般に使用されてレヽ る硬化促進剤を用いることができる。リン化合物系硬化促進剤としては、たとえば、トリ メチルホスフィン、トリェチルホスフィン、トリプロピルホスフィン、トリブチルホスフィン等 のトリアルキルホスフィン、ジメチルフエニルホスフィン等のジアルキルァリールホスフ イン、ジフエニルホスフィン、メチルジフエニルホスフィン等のアルキルジァリールホス フィン、トリフエニルホスフィン、トリス(4—メチルフエニル)ホスフィン等のトリス(アルキ ノレフエ二ノレ)ホスフィン、トリス(アルコキシフエ二ノレ)ホスフィン、トリス(アルキノレ'アルコ キシフエ二ノレ)ホスフィン、トリス(ジアルキルフエ二ノレ)ホスフィン、トリス(トリアルキルフ ェニノレ)ホスフィン、トリス(テトラアルキルフエ二ノレ)ホスフィン、トリス(ジアルコキシフエ ニル)ホスフィン、トリス(トリアルコキシフエニル)ホスフィン、トリス(テトラアルコキシフエ 二ノレ)ホスフィン、ジフエ二ルホスフィン、ジフエ二ル(p—トリル)ホスフィンなどの有機 ホスフィン、テトラブチルホスホニゥムテトラフエニルボレート、ブチルトリフエニルホス ホニゥムテトラフエニルボレート、テトラフェニルホスホニゥムテトラブチルボレート、テト ラフェニルホスホニゥムテトラフエニルボレート、トリフエニルホスフィンテトラフエニルボ レート等のホスホニゥムボレート、有機ホスフィン類と有機ボロン類との錯体などが挙 げられる。 [0019] The curing accelerator (C) used in the present invention is not particularly limited. A curing accelerator generally used in epoxy resin molding materials such as a phosphorus compound-based curing accelerator and a nitrogen compound-based curing accelerator. Can be used. Examples of the phosphorus compound-based curing accelerator include trialkylphosphine such as trimethylphosphine, triethylphosphine, tripropylphosphine, and tributylphosphine, and dialkylarylphosphine such as dimethylphenylphosphine, diphenylphosphine, and methyldiphenylphosphine. Tris (alkoxy) such as alkyldiarylphosphine such as phosphine, triphenylphosphine, tris (4-methylphenyl) phosphine Norephinorephosphine, tris (alkoxyphenenole) phosphine, tris (alkynole'alkoxyphenenole) phosphine, tris (dialkylphenenole) phosphine, tris (trialkylphenenole) phosphine, tris (tetraalkylphenol) Organic phosphines such as phosphine, tris (dialkoxyphenyl) phosphine, tris (trialkoxyphenyl) phosphine, tris (tetraalkoxyphenyl) phosphine, diphenylphosphine, diphenyl (p-tolyl) phosphine, tetra Butylphosphonium tetraphenylborate, Butyltriphenylphosphine tetraphenylborate, Tetraphenylphosphonium tetrabutylborate, Tetraphenylphosphonium tetraphenylborate , Triphenyl phosphine tetra-phenylalanine borate etc. phosphonyl © Mubo rate, such complexes with organic phosphines and organic boron compound can be mentioned up.
[0020] なかでも、トリブチルホスフィン、トリフエニルホスフィン、トリス(4 メチルフエニル)ホ スフイン、テトラブチルテトラブチルホスホニゥムテトラフヱニルボレート、及び、テトラフ ェニルホスホニゥムテトラフエニルボレートが好ましい。  Of these, tributylphosphine, triphenylphosphine, tris (4 methylphenyl) phosphine, tetrabutyltetrabutylphosphoniumtetraphenylborate, and tetraphenylphosphoniumtetraphenylborate are preferable.
[0021] 窒素化合物系硬化促進剤としては、たとえば、 1 , 8 ジァザビシクロ [5. 4. 0]ゥン デセン一 7、 1 , 5—ジァザビシクロ [4· 3. 0]ノネン一 5、 5, 6—ジブチルァミノ一 1 , 8 ージァザビシクロ [5. 4. 0]ゥンデセン 7等のシクロアミジン化合物及びこれらの誘 導体、ベンジルジメチルァミン、トリエタノールァミン、ジメチルァミノエタノール、トリス( ジメチルアミノメチル)フエノール等の 3級アミンィ匕合物及びこれらの誘導体、トリェチ ルアンモニゥムテトラフエニルボレート、 1 , 8—ジァザビシクロ [5. 4. 0]— 7—ゥンデ セニゥムテトラフエ二ルポレート等が挙げられ、なかでも、 1 , 8—ジァザビシクロ [5· 4 . 0]ゥンデセンー7、及び、 1 , 5—ジァザビシクロ [4· 3. 0]ノネンー 5が好ましい。  [0021] Nitrogen-based curing accelerators include, for example, 1,8 diazabicyclo [5. 4. 0] undecene 1, 1, 5—diazabicyclo [4 · 3.0] nonene 1, 5, 5, 6 —Cycloamidine compounds such as dibutylamino-1,8-diazabicyclo [5.4.0] undecene 7 and their derivatives, benzyldimethylamine, triethanolamine, dimethylaminoethanol, tris (dimethylaminomethyl) phenol, etc. Tertiary amine compounds and their derivatives, triammonium tetraphenylborate, 1,8-diazabicyclo [5.4.0] -7-unde senemtetraphenylborate, and the like. However, 1,8-diazabicyclo [5.4.0] undecene 7 and 1,5-diazabicyclo [4.3.0] nonen-5 are preferred.
[0022] 本発明に用いられる無機充填剤(D)は吸湿性、線膨張係数低減、熱伝導性向上 及び強度向上のために配合されるものであり、エポキシ樹脂成形材料に一般に使用 されるもので特に制限はないが、たとえば、溶融シリカ、結晶シリカ、アルミナ、ジルコ ン、珪酸カルシウム、炭酸カルシウム、チタン酸カリウム、炭化珪素、窒化珪素、窒化 ァノレミ、窒化ホウ素、ベリリア、ジルコユア、ジノレコン、フォステライト、ステアタイト、スピ ネル、ムライト、チタニア等の粉体、又はこれらを球形化したビーズ、ガラス繊維など が挙げられる。無機充填剤は樹脂成分との接着性を高めるためシランカップリング剤 、チタネートカップリング剤などで表面処理するカ または、ェポシシ樹脂組成物配合 時にそれらのカップリング剤を添加することが望ましい。このようなカップリング剤の具 体例としては、 γ—グリシドキシプロピルトリメトキシシラン、 γ—グリシドキシプロピル メチルジェトキシシラン、 _ (3, 4_エポキシシクロへキシル)ェチルトリメトキシシラ ンのようなエポキシシラン、 N— β (アミノエチル)一 γ—ァミノプロピルトリメトキシシラ ン、 Ί—ァミノプロピルトリエトキシシラン、 Ν—フエ二ノレ一 γ—ァミノプロピルトリメトキ などのシラン力ップリング剤があげられる。 [0022] The inorganic filler (D) used in the present invention is blended for hygroscopicity, linear expansion coefficient reduction, thermal conductivity improvement and strength improvement, and is generally used for epoxy resin molding materials. For example, fused silica, crystalline silica, alumina, zircon, calcium silicate, calcium carbonate, potassium titanate, silicon carbide, silicon nitride, ano-remi, boron nitride, beryllia, zirconia, dinolecon, fosterite , Powders of steatite, spinel, mullite, titania, or the like, or beads or glass fibers formed by spheroidizing these. Inorganic fillers are silane coupling agents to improve adhesion to resin components It is desirable that the surface treatment is performed with a titanate coupling agent or the like, or that such a coupling agent is added when the epoxy resin composition is blended. Examples of such coupling agents include γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyl methyljetoxysilane, _ (3,4-epoxycyclohexyl) ethyltrimethoxysilane. Silane power such as epoxy silane such as N-β (aminoethyl) 1 γ-aminopropyltrimethoxysilane, Ί- aminopropyltriethoxysilane, Ν- phenol γ-aminopropyltrimethoxy A pulling agent.
[0023] 本発明に用いられる金属水和物(Ε)は、水酸化アルミニウム、水酸化マグネシウム 、水酸化カルシウム、水酸化バリウム等が挙げられる。これらの金属水和物は、 2種以 上の混合物として配合されてもよい。また、近年の鉛フリーハンダ化に対しては分解 温度から特に水酸化マグネシウムが好ましい。また、樹脂との親和性向上、樹脂組成 物の機械特性の低下防止、耐水性、耐酸性の向上等のために、表面処理したものが 好ましい。すなわち、金属水和物(Ε)がアルミニウム化合物、ケィ素化合物から選ば れる表面処理剤で表面処理されてなることが好ましく、アルミニウム化合物としては、 アルミナなどの無機物、アルミニウムカップリング剤などが挙げられ、ケィ素化合物と しては、シリカなどの無機物、エポキシシラン等のシランカップリング剤などが挙げら れる。その他の表面処理剤としては、酸化チタン、チタネートカップリング剤などのチ タン化合物、ステアリン酸などの高級脂肪酸、シユウ酸ァニオンなどが選ばれ、これら を 2種類以上併用してもよい。  [0023] Examples of the metal hydrate (soot) used in the present invention include aluminum hydroxide, magnesium hydroxide, calcium hydroxide, barium hydroxide and the like. These metal hydrates may be blended as a mixture of two or more. Also, magnesium hydroxide is particularly preferred for the recent lead-free soldering because of its decomposition temperature. In addition, a surface-treated product is preferable in order to improve the affinity with the resin, to prevent the mechanical properties of the resin composition from being lowered, and to improve water resistance and acid resistance. That is, the metal hydrate (金属) is preferably surface-treated with a surface treatment agent selected from an aluminum compound and a key compound. Examples of the aluminum compound include inorganic substances such as alumina and aluminum coupling agents. Examples of the key compound include inorganic substances such as silica and silane coupling agents such as epoxy silane. Examples of other surface treatment agents include titanium compounds such as titanium oxide and titanate coupling agents, higher fatty acids such as stearic acid, and oxalate anion. Two or more of these may be used in combination.
[0024] 本発明に用いられるシリコーンィ匕合物 (F)は芳香族基含有オルガノシロキサン化合 物からなり、 Q単位(SiO )、 Τ単位(RSi〇 )、 D単位(R SiO)及び M単位(R Si〇  [0024] The silicone compound (F) used in the present invention comprises an aromatic group-containing organosiloxane compound, and is composed of Q unit (SiO 2), Τ unit (RSiO), D unit (R SiO) and M unit. (R Si〇
2 1.5 2 3 0.5 2 1.5 2 3 0.5
)という 4種類の構成単位のうち任意の組合わせで構成された化合物を用いて製造さ れる ) Is produced using a compound composed of any combination of the four types of structural units
R1 R2 SiO (1) R 1 R 2 SiO (1)
m n (4-m-n)/2  m n (4-m-n) / 2
(式中、 R1はケィ素原子に直結する炭素が脂肪族炭素である基、水酸基、アルコキシ 基から選ばれる基を表し、 R2は炭素数が 6〜24の芳香族炭化水素基を表す。 R1, R2 はそれぞれ 2種類以上存在していても良レ、。 mと nは、 1. l≤m + n≤l . 7、及び、 0 . 4≤n/m≤2. 5を満たす数を表す。)の平均組成式で表されるシリコーン化合物 である。 (In the formula, R 1 represents a group selected from a group in which carbon directly bonded to a carbon atom is an aliphatic carbon, a hydroxyl group, and an alkoxy group, and R 2 represents an aromatic hydrocarbon group having 6 to 24 carbon atoms. R 1 and R 2 may be present in two or more types, m and n are 1. l≤m + n≤l .7 and 0 4≤n / m≤2. ) In the average composition formula.
[0025] 平均組成式(1)で表される芳香族基含有オルガノシロキサン化合物は、分子内に ケィ素原子に直結する炭素が脂肪族炭素である基、水酸基、アルコキシ基から選ば れる基 R1及び炭素数が 6〜24の芳香族炭化水素基 R2の両方を有すること、これらケ ィ素原子上の全置換基のモル数 m + nが 1. l≤m+n≤l . 7という範囲内であること 、ケィ素原子に直結する炭素が脂肪族炭素である基、水酸基、アルコキシ基から選 ばれる R1と炭素数が 6〜24の芳香族炭化水素基 R2とのモル比 n/mが 0. 4≤n/m ≤2. 5という範囲内であること、を満たす。なお、各元素および mと nの割合は、水素 、炭素およびケィ素の NMRを用いて算出することが出来る。 [0025] The aromatic group-containing organosiloxane compound represented by the average composition formula (1) is a group R 1 selected from a group in which carbon directly bonded to a carbon atom in the molecule is an aliphatic carbon, a hydroxyl group, and an alkoxy group. And an aromatic hydrocarbon group R 2 having 6 to 24 carbon atoms, and the number of moles m + n of all substituents on these silicon atoms is 1.l≤m + n≤l .7 A molar ratio of R 1 selected from a group in which carbon directly bonded to a silicon atom is an aliphatic carbon, a hydroxyl group, and an alkoxy group to an aromatic hydrocarbon group R 2 having 6 to 24 carbon atoms n Satisfies that / m is in the range 0.4 ≤ n / m ≤ 2.5. Each element and the ratio of m and n can be calculated using NMR of hydrogen, carbon and silicon.
[0026] ケィ素原子に直結する炭素が脂肪族炭素である基 R1は飽和脂肪族炭化水素基で あればメチル基、ェチル基、 n—プロピル基、 i一プロピル基、 n—ブチル基、 s—ブチ ル基、 t—ブチル基、等が例示される。これらの中で難燃効果に優れるため好ましレヽ のは、メチル基及びェチル基であり、より好ましいのはメチル基である。飽和脂肪族 炭化水素基の炭素数が 5以上になると、芳香族基含有オルガノシロキサン化合物自 体の難燃性が低下するため難燃効果が低くなる。 [0026] The group R 1 in which the carbon directly bonded to the carbon atom is an aliphatic carbon is a saturated aliphatic hydrocarbon group, methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, Examples thereof include s-butyl group and t-butyl group. Among these, preferred are a methyl group and an ethyl group, and a methyl group is more preferred because of its excellent flame retardancy. When the saturated aliphatic hydrocarbon group has 5 or more carbon atoms, the flame retardancy of the aromatic group-containing organosiloxane compound itself is lowered, and the flame retarding effect is lowered.
[0027] さらに R1として選ばれるアルコキシ基としてはメトキシ基、エトキシ基、イソプロポキシ 基が例示される。この中では原料の入手性等力 メトキシ基が好ましレ、。 [0027] Further, examples of the alkoxy group selected as R 1 include a methoxy group, an ethoxy group, and an isopropoxy group. Among these, the availability of raw materials, etc. The methoxy group is preferred.
[0028] さらにエポキシ樹脂や硬化剤と結合するような反応性基をシリコーン化合物中に導 入することによりエポキシ樹脂硬化物中にシリコーン化合物がより均一に分散して難 燃性が優れる。すなわち、(F)成分のシリコーンィ匕合物の R1がエポキシ基、水酸基、 アルコキシ基、アミノ基、カルボキシ基、カルボン酸無水物基から選ばれる 1種以上の 反応性基を有する炭化水素基であることが好ましい。これらの反応性基をシリコーン 化合物中に導入するには、上記反応性基置換炭化水素基をケィ素原子上の置換基 として有する重合性単量体を用いるカ あるいは、シリコーン化合物中に SiH基を導 入した後、炭素一炭素不飽和化合物をヒドロシリル化反応により反応させるなどの方 法によって達成できる。これらの方法に関しては特に限定されるものではない。 [0028] Further, by introducing a reactive group capable of bonding to an epoxy resin or a curing agent into the silicone compound, the silicone compound is more uniformly dispersed in the cured epoxy resin and the flame retardancy is excellent. That is, R 1 of the silicone compound of component (F) is a hydrocarbon group having one or more reactive groups selected from an epoxy group, a hydroxyl group, an alkoxy group, an amino group, a carboxy group, and a carboxylic anhydride group. It is preferable that In order to introduce these reactive groups into the silicone compound, a polymerizable monomer having the above-mentioned reactive group-substituted hydrocarbon group as a substituent on the silicon atom is used, or SiH groups are introduced into the silicone compound. After introduction, it can be achieved by a method of reacting a carbon-carbon unsaturated compound by a hydrosilylation reaction. These methods are not particularly limited.
[0029] 炭素数が 6〜24の芳香族炭化水素基 R2としては特に限定されず、例えば、フヱニ ノレ基、メチルフエ二ル基、ジメチルフヱニル基、ェチルフエニル基、ナフチル基、アン トラセニル基、等が例示される。これらの中で難燃効果に優れるため好ましいのは、 芳香族環上に置換基を有しない芳香族基であり、より好ましいのはフエニル基である 。これら複数の R2は、全て同一であってもよいし、異なる基が混在していてもよい。 [0029] is not particularly restricted but includes aromatic hydrocarbon group R 2 having a carbon number of 6-24, for example, Fuweni Examples include nore group, methylphenyl group, dimethylphenyl group, ethylphenyl group, naphthyl group, anthracenyl group, and the like. Among these, an aromatic group having no substituent on the aromatic ring is preferable because of its excellent flame retardant effect, and a phenyl group is more preferable. The plurality of R 2 may be the same or different groups may be mixed.
[0030] ケィ素原子上の全置換基のモル数 m+nは、 1. l≤m+n≤l . 7という範囲内であ る。 m + nのィ直は好ましくは 1. 15≤m+n≤l . 65、より好ましくは 1. 18≤m+n≤l . 6、さらに好ましくは 1. 20≤m + n≤l . 55の範囲である。 m+nの値が 1. 1未満で あっても 1. 7より上であっても、芳香族基含有オルガノシロキサン化合物の難燃効果 が低下するため好ましくなレ、。上記のような範囲の構造を構築するにはオルガノシロ キサン化合物の骨格中に T単位および/または Q単位を導入することにより達成でき 、一般にそれらの単位の導入量が多いほど上記範囲を容易に達成できる。特に Q単 位の導入量が多い場合には、本発明の(D)成分である無機充填剤との相溶性が向 上して難燃性が向上するので好ましい。すなわち、(F)成分のシリコーン化合物が構 成する全シロキサン単位のうち SiO単位を 10モル%以上含有することが好ましレ、。 S i〇単位の含有量としては 20モル%以上がさらに好ましぐ 30モル%以上が最も好ま しい。 [0030] The number of moles m + n of all substituents on the key atom is in the range of 1. l≤m + n≤l. m + n is preferably 1.15≤m + n≤l.65, more preferably 1.18≤m + n≤l.6, more preferably 1.20≤m + n≤l.55 Range. Even if the value of m + n is less than 1.1 or above 1.7, the flame retarding effect of the aromatic group-containing organosiloxane compound is reduced, which is preferable. The construction of the structure in the above range can be achieved by introducing T units and / or Q units into the skeleton of the organosiloxane compound. In general, the above range is easily achieved as the introduction amount of these units increases. it can. In particular, when the introduction amount of the Q unit is large, the compatibility with the inorganic filler which is the component (D) of the present invention is improved, and the flame retardancy is improved. That is, it is preferable to contain 10 mol% or more of SiO units among all the siloxane units constituting the silicone compound of component (F). The SiO unit content is more preferably 20 mol% or more, most preferably 30 mol% or more.
[0031] ケィ素原子に直結する炭素が脂肪族炭素である基、水酸基、アルコキシ基から選 ばれる基 R1と炭素数が 6〜24の芳香族炭化水素基 R2とのモル比 n/mは、 0. 4≤n /m≤2. 5という範囲内である。 n/mが 0. 4未満であると、分子内に芳香族基が少 なくなるため芳香族基含有オノレガノシロキサンィ匕合物の耐熱性が低下して芳香族基 含有オノレガノシロキサンィ匕合物の難燃効果が低下する原因となる。また逆に n/mが 2. 5以上であっても、芳香族基含有オノレガノシロキサン化合物の難燃効果が低下す る原因となる。 n/mのィ直は、好ましくは 0. 43≤n/m≤2. 3、より好ましくは 0. 45≤ n/m≤2. 1、さらに好ましくは 0. 47≤n/m≤2. 0である。 [0031] The molar ratio of a group R 1 selected from a group in which carbon directly bonded to a silicon atom is an aliphatic carbon, a hydroxyl group, and an alkoxy group to an aromatic hydrocarbon group R 2 having 6 to 24 carbon atoms, n / m Is in the range of 0.4 ≤ n / m ≤ 2.5. When n / m is less than 0.4, the aromatic group-containing onoreganosiloxane compound decreases due to the decrease in aromatic groups in the molecule, and the aromatic group-containing onoreganosiloxane compound is reduced. This will cause the flame retardancy effect of the object to decrease. On the other hand, even if n / m is 2.5 or more, the flame retardant effect of the aromatic group-containing onoreganosiloxane compound is reduced. n / m is preferably 0.43≤n / m≤2.3, more preferably 0.45≤n / m≤2.1, and even more preferably 0.47≤n / m≤2. 0.
[0032] このような芳香族基含有オルガノシロキサン化合物は既知のシリコーン合成法によ り容易に合成することができる。すなわち、 R SiXで表される一官能性ケィ素化合物、 [0032] Such an aromatic group-containing organosiloxane compound can be easily synthesized by a known silicone synthesis method. That is, a monofunctional key compound represented by R SiX,
R SiXで表される二官能性ケィ素化合物、 RSiXで表される三官能性ケィ素化合物Bifunctional key compound represented by R SiX, Trifunctional key compound represented by RSiX
、四ハロゲン化ケィ素、テトラアルコキシシラン、およびそれらの縮合物である有機ケ ィ素化合物や、水ガラス、金属ケィ酸塩などの無機ケィ素化合物のなかから必要に 応じて選択した少なくとも 1種、好ましくは少なくとも 2種のケィ素化合物を縮合反応さ せることにより合成できる。なお、式中、 Rは、芳香族炭化水素基又はケィ素原子に 直結する炭素が脂肪族炭素である基を表す。 Xは、ハロゲン、水酸基、アルコキシ基 などの、縮合してシロキサン結合を形成しうる基を表す。 , Tetrahalogenated silicon, tetraalkoxysilane, and organic condensates thereof It can be synthesized by condensation reaction of at least one, preferably at least two, selected from among inorganic compounds such as silicon compounds, water glass and metal silicates. In the formula, R represents an aromatic hydrocarbon group or a group in which the carbon directly bonded to the silicon atom is an aliphatic carbon. X represents a group capable of condensing to form a siloxane bond, such as a halogen, a hydroxyl group or an alkoxy group.
[0033] 反応条件は、用いる基質や目的化合物の組成および分子量によって異なる。反応 は、一般的に、必要により水、酸及び/又はアルカリ、有機溶媒の存在下で、必要に より加熱しながらケィ素化合物を混合することにより行うことができる。各ケィ素化合物 の使用割合は、得られる芳香族基含有オノレガノシロキサンィ匕合物が上記条件を満た すよう、各単位の含量、芳香族炭化水素基と脂肪族炭化水素基の比率を考慮して、 適宜設定すればよい。 [0033] Reaction conditions vary depending on the substrate used and the composition and molecular weight of the target compound. In general, the reaction can be carried out by mixing the silicon compound with heating, if necessary, in the presence of water, an acid and / or an alkali, and an organic solvent as necessary. The usage ratio of each silicon compound takes into account the content of each unit and the ratio of aromatic hydrocarbon groups to aliphatic hydrocarbon groups so that the resulting aromatic group-containing onoreganosiloxane compound satisfies the above conditions. Therefore, it can be set as appropriate.
[0034] さらに、本発明のエポキシ樹脂組成物には、その他の添加剤として、金型離型性を 確保するためにカルナバワックス、モンタン酸、ステアリン酸、高級脂肪酸、高級脂肪 酸金属塩、モンタン酸エステル等のエステル系ワックス、ポリエチレン、酸化ポリェチ レン等の酸化型又は非酸化型のポリオレフイン系ワックスなどの従来公知の離型剤、 シリコーンオイル、シリコーンゴム粉末等の応力緩和剤、カーボンブラック、有機染料 、有機顔料、酸化チタン、鉛丹、ベンガラ等の着色剤などを、必要に応じて配合する こと力 Sできる。  [0034] Further, the epoxy resin composition of the present invention includes, as other additives, carnauba wax, montanic acid, stearic acid, higher fatty acids, higher fatty acid metal salts, montan to ensure mold releasability. Conventionally known release agents such as ester waxes such as acid esters, oxidized or non-oxidized polyolefin waxes such as polyethylene and polyethylene oxide, stress relaxation agents such as silicone oil and silicone rubber powder, carbon black, organic It is possible to mix dyes, organic pigments, colorants such as titanium oxide, red lead, and bengara as necessary.
[0035] 本発明のエポキシ樹脂組成物は、各種原材料を均一に分散混合できるのであれ ば、レ、かなる手法を用いても調製できるが、一般的な手法として、所定の配合量の原 材料をミキサー等によって十分混合して成形に用いる。エポキシ樹脂組成物が固形 の場合はさらにミキシングロール、ニーダ、押出機等によって溶融混練した後、冷却、 粉砕する方法を挙げることができる。また、本発明のエポキシ樹脂組成物は、液状樹 脂を用いて又は各種有機溶剤に溶力、して液状エポキシ樹脂組成物として使用するこ ともでき、この液状エポキシ樹脂組成物を板又はフィルム上に薄く塗布し、樹脂の硬 化反応が余り進まないような条件で有機溶剤を飛散させることによって得られるシート あるいはフィルム状のエポキシ樹脂組成物として使用することもできる。  [0035] The epoxy resin composition of the present invention can be prepared using any of the above methods as long as various raw materials can be uniformly dispersed and mixed. Are mixed well with a mixer or the like and used for molding. In the case where the epoxy resin composition is solid, a method of further melting and kneading with a mixing roll, kneader, extruder, etc., followed by cooling and pulverization can be exemplified. Further, the epoxy resin composition of the present invention can be used as a liquid epoxy resin composition by using a liquid resin or by dissolving in various organic solvents, and the liquid epoxy resin composition can be used on a plate or a film. It can also be used as a sheet or a film-like epoxy resin composition obtained by spreading the organic solvent thinly and spraying the organic solvent under conditions such that the resin curing reaction does not proceed so much.
[0036] 本願発明の樹脂組成物は、エポキシ樹脂 (A)、硬化剤(B)、硬化促進剤(C)、無 機充填剤(D)、金属水和物 (E)、シリコーン化合物(F)合計 100重量部あたり、 エポキシ樹脂 (A)が 2〜50重量部、硬化剤(B):!〜 50重量部、硬化促進剤(C) 0. 0 :!〜 5重量部、無機充填剤(D) 30〜95重量部、金属水和物(E):!〜 30重量部、シリ コーン化合物(F) 0.:!〜 20重量部が例示できる。また、 (F)成分は 0. 2〜: 15重量部 さらには 0. 5〜: 12重量部が好ましい。 [0036] The resin composition of the present invention comprises an epoxy resin (A), a curing agent (B), a curing accelerator (C), 2 to 50 parts by weight of epoxy resin (A) and 100 to 50 parts by weight of curing agent (B) per 100 parts by weight of machine filler (D), metal hydrate (E) and silicone compound (F) Curing accelerator (C) 0.0:! To 5 parts by weight, inorganic filler (D) 30 to 95 parts by weight, metal hydrate (E):! To 30 parts by weight, silicone compound (F) 0. :! ~ 20 parts by weight can be exemplified. The component (F) is preferably 0.2 to 15 parts by weight, more preferably 0.5 to 12 parts by weight.
実施例  Example
[0037] 以下、本発明を実施例によって詳しく説明するが、本発明はこれらに限定されるも のではなレ、。なお、以下では特にことわりがない限り、「部」は重量部を、「%」は重量 %を意味する。  [0037] Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited thereto. In the following, “part” means part by weight and “%” means weight% unless otherwise specified.
[0038] (製造例 1):シリコーン化合物(F1)の製造  [0038] (Production Example 1): Production of silicone compound (F1)
ジクロロジフヱニルシラン(468g)、ジクロロジメチルシラン(80g)、多摩化学工業社 製 Mシリケート 51 (291g)を 5Lフラスコに計りとり、 MIBK (1200g)を加えた後 10°C 以下で水(336g)を滴下した。その後反応混合物を 80°Cに過熱して 3時間反応させ た。その後室温に戻した後クロロトリメチルシラン(268g)、次いで水(44g)を滴下し た後 60°Cで 3時間反応させた。得られた反応混合物は中性になるまで水洗し、分離 した有機相を減圧下溶媒留去することにより目的のシリコーンィ匕合物(F1)を得た。 N MR分析から、平均組成式(1)で表される構成比率が m=0. 82、n=0. 60であり、 従って、 m+n= l . 42、 n/m= l . 37と算出できた。  Dichlorodiphenylsilane (468 g), dichlorodimethylsilane (80 g) and M silicate 51 (291 g) manufactured by Tama Chemical Industry Co., Ltd. are weighed into a 5 L flask, and MIBK (1200 g) is added. ) Was added dropwise. Thereafter, the reaction mixture was heated to 80 ° C. and reacted for 3 hours. After returning to room temperature, chlorotrimethylsilane (268 g) and then water (44 g) were added dropwise, followed by reaction at 60 ° C. for 3 hours. The obtained reaction mixture was washed with water until neutral, and the organic phase separated was evaporated under reduced pressure to obtain the desired silicone compound (F1). From N MR analysis, the composition ratio represented by the average composition formula (1) is m = 0.82, n = 0.60, and therefore, m + n = l .42, n / m = l.37 I was able to calculate.
[0039] (製造例 2):シリコーン化合物(F2)の製造  [0039] (Production Example 2): Production of silicone compound (F2)
トリクロ口フエニルシラン(241g)、ジクロロジメチルシラン(49g)を 2Lフラスコに計りと り、 MIBK (400g)をカ卩えた後 10°C以下で水(112g)を滴下した。その後反応混合物 を 80°Cに過熱して 3時間反応させた。その後室温に戻した後クロロトリメチルシラン(1 24g)、次いで水(15g)を滴下した後 60°Cで 3時間反応させた。得られた反応混合 物は中性になるまで水洗し、分離した有機相を減圧下溶媒留去することにより目的の シリコーン化合物(F2)を得た。 NMR分析から、平均組成式(1)で表される構成比率 力 Sm=0. 70、n = 0. 69であり、従って、 m+n= 1. 39、 n/m = 0. 98と算出できた  Trichloric phenylsilane (241 g) and dichlorodimethylsilane (49 g) were weighed into a 2 L flask, MIBK (400 g) was added, and water (112 g) was added dropwise at 10 ° C or lower. Thereafter, the reaction mixture was heated to 80 ° C. and reacted for 3 hours. After returning to room temperature, chlorotrimethylsilane (124 g) and then water (15 g) were added dropwise, followed by reaction at 60 ° C for 3 hours. The obtained reaction mixture was washed with water until neutral, and the separated organic phase was evaporated under reduced pressure to obtain the desired silicone compound (F2). From NMR analysis, the composition ratio represented by the average composition formula (1) is Sm = 0.70, n = 0.69, and therefore calculated as m + n = 1.39, n / m = 0.98. did it
[0040] (製造例 3):シリコーン化合物中間体の製造 ジクロロジフヱニルシラン(468g)、ジクロロジメチルシラン(80g)、多摩化学工業社 製 Mシリケート 51 (291g)を 5Lフラスコに計りとり、 MIBK ( 1200g)を加えた後 10°C 以下で水(336g)を滴下した。その後反応混合物を 80°Cに過熱して 3時間反応させ た。その後 10°C以下でクロロジメチルシラン(233g)、次いで水 (44g)を滴下した後 3 時間反応させた。得られた反応混合物は中性になるまで水洗し、分離した有機相を 減圧下溶媒留去することにより目的のシリコーンィ匕合物を得た。 [0040] (Production Example 3): Production of silicone compound intermediate Dichlorodiphenylsilane (468 g), dichlorodimethylsilane (80 g), M silicate 51 (291 g) manufactured by Tama Chemical Industries, Ltd. are weighed into a 5 L flask, MIBK (1200 g) is added, and water (336 g at 10 ° C or less is added. ) Was added dropwise. Thereafter, the reaction mixture was heated to 80 ° C. and reacted for 3 hours. Thereafter, chlorodimethylsilane (233 g) and then water (44 g) were added dropwise at 10 ° C. or lower and reacted for 3 hours. The obtained reaction mixture was washed with water until neutral, and the organic phase separated was distilled off under reduced pressure to obtain the desired silicone compound.
[0041] (製造例 4):シリコーン化合物(F3)の製造 [0041] (Production Example 4): Production of silicone compound (F3)
(製造例 3)で得られたシリコーン化合物中間体 200gを測りとり、トルエン 1Lをカ卩えて 、 3%白金—ジビュルシロキサン錯体キシレン溶液(ェヌ、ィー、ケムキャット製 PTV TSC3. 0キシレン) 18. 4 z Lを加えた後ァリルグリシジルエーテル(28g)を滴下して 100°Cで 5時間反応させた。得られた反応混合物は減圧下溶剤を留去することにより 目的のシリコーンィ匕合物(F3)を得た。 NMR分析から、平均組成式(1 )で表される構 成];匕率力 Sm= 0. 82、 n = 0. 58であり、従って、 m+ n= l . 40、 n/m= l . 41と算 出できた。  Weigh 200 g of the silicone compound intermediate obtained in (Production Example 3), cover 1 L of toluene, and prepare a 3% platinum-dibutylsiloxane complex xylene solution (PTV TSC3.0 xylene manufactured by Yen, Yi, Chemcat) 18. After 4 z L was added, allyl glycidyl ether (28 g) was added dropwise and reacted at 100 ° C for 5 hours. The obtained reaction mixture was distilled off the solvent under reduced pressure to obtain the desired silicone compound (F3). From the NMR analysis, the composition represented by the average composition formula (1)]; power ratio Sm = 0.82, n = 0.58, therefore, m + n = l.40, n / m = l. I was able to calculate 41.
[0042] (製造例 5):シリコーン化合物(F4)の製造  [0042] (Production Example 5): Production of silicone compound (F4)
(製造例 4)で得られたシリコーン化合物中間体 200gを測りとり、トルエン 1Lをカ卩えて 、 3%白金—ジビニルシロキサン錯体キシレン溶液(ェヌ、ィー、ケムキャット製 PTV TSC3. 0キシレン) 18. 4 /i Lをカロ免た後 o—ァリノレフエノーノレ(33g)を滴下して 100 °Cで 5時間反応させた。得られた反応混合物は減圧下溶剤を留去することにより目 的のシリコーンィ匕合物(F4)を得た。 NMR分析から、平均組成式(1 )で表される構成 i 率力 Sm= 0. 84、 n = 0. 56であり、従って、 m+ n= l . 40、 n/m= l . 50と算出 できた。  Weigh 200 g of the silicone compound intermediate obtained in (Production Example 4), add 1 L of toluene, and add 3% platinum-divinylsiloxane complex xylene solution (PTV TSC3.0 xylene manufactured by Yen, Yi, Chemcat) 18 After removing 4 / i L of calo, o-aryno-enoenole (33g) was added dropwise and reacted at 100 ° C for 5 hours. The obtained reaction mixture was distilled off the solvent under reduced pressure to obtain the desired silicone compound (F4). From the NMR analysis, the composition represented by the average composition formula (1) i power Sm = 0.84, n = 0.56, and therefore calculated as m + n = l.40, n / m = l.50. did it.
[0043] 実施例、比較例で用いた原料を以下にまとめて示す。  [0043] The raw materials used in Examples and Comparative Examples are summarized below.
エポキシ樹脂:クレゾ一ルノボラック型エポキシ樹脂(大日本インキ化学工業製 EPI CLON N— 637)  Epoxy resin: Cresol monovolak type epoxy resin (EPI CLON N— 637, manufactured by Dainippon Ink and Chemicals, Inc.)
硬化剤:ノボラック型フエノール樹脂(昭和高分子製 ショウノール BRG— 556) 硬化促進剤:トリフエニルホスフィン (和光純薬製)  Curing agent: Novolac-type phenolic resin (Showa High Polymer Shounol BRG-556) Curing accelerator: Triphenylphosphine (Wako Pure Chemical Industries, Ltd.)
無機充填剤:溶融シリカ(電気化学工業製 FB— 74) 金属水和物 El :水酸化アルミニウム(昭和電工製 ノ、イジライト H— 21 ) Inorganic filler: fused silica (FB-74, manufactured by Denki Kagaku Kogyo) Metal Hydrate El: Aluminum hydroxide (NO, Ijirite H-21 made by Showa Denko)
金属水和物 E2:高級脂肪酸表面処理水酸化マグネシウム (神島化学製 マダシーズ W- H25)  Metal Hydrate E2: Higher Fatty Acid Surface Treated Magnesium Hydroxide (Madashiz W-H25 from Kamishima Chemical)
金属水和物 E3:無機物 +エポキシシラン表面処理水酸化マグネシウム (神島化学製 マダシーズ EP1—E)  Metal Hydrate E3: Inorganic + Epoxysilane Surface-treated Magnesium Hydroxide (Madashiz EP1-E)
金属水和物 E4 :無機物表面処理水酸化マグネシウム (神島化学製 マダシーズ E P1 -A)  Metal Hydrate E4: Mineral Surface-treated Magnesium Hydroxide (Madashies E P1-A manufactured by Kamishima Chemical)
シランカップリング剤: β —(3, 4 _エポキシシクロへキシル)ェチルトリメトキシシラン( 日本ュニカー製 A- 186)  Silane coupling agent: β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane (N-UNIKAR A-186)
離型剤:微紛カルナバ S (東亜化成製)  Mold release agent: Fine powder carnauba S (manufactured by Toa Kasei)
(実施例 1 )  (Example 1)
エポキシ榭 成 の言周  Words of epoxy formation
エポキシ樹脂 5部、硬化剤 5部、シリカ 70部、水酸化アルミニウム 10部、製造例 4で 製造したシリコーン化合物(F3) 5部、トリフエニルホスフィン 0. 1部、シランカップリン グ剤 0. 5部、微紛カルナバ SO. 1部を混合したのち、過熱ロールで 100°C、 5分間混 練し 7  5 parts of epoxy resin, 5 parts of curing agent, 70 parts of silica, 10 parts of aluminum hydroxide, 5 parts of silicone compound (F3) produced in Production Example 4, 0.1 part of triphenylphosphine, 0.5 part of silane coupling agent After mixing 1 part of the fine powder carnauba SO., Knead with a superheated roll at 100 ° C for 5 minutes. 7
[0044] 成形体の作成  [0044] Creation of compact
得られた樹脂組成物を粉砕機で粉砕した後、圧縮成形機にて 165°Cで 3分間加熱し て幅 10mm、長さ 100mm、厚み 1. 6mmの試験片を作成し、得られた成形体はさら に 175°Cのオーブンにて 6時間過熱して後硬化させた。  The obtained resin composition was pulverized with a pulverizer and then heated with a compression molding machine at 165 ° C for 3 minutes to prepare a test piece having a width of 10 mm, a length of 100 mm, and a thickness of 1.6 mm. The body was further cured by heating in an oven at 175 ° C for 6 hours.
[0045] 評価方法 [0045] Evaluation method
得られた成形体を UL— 94規格に準じて V試験で難燃性を評価した。  The obtained molded product was evaluated for flame retardancy by V test according to UL-94 standard.
(実施例 2〜 12及び比較例 1〜 5)  (Examples 2 to 12 and Comparative Examples 1 to 5)
金属水和物、シリコーン化合物の種類、添加量を変更して実施例 1と同様にして樹 脂組成物を得て評価した。  Resin compositions were obtained and evaluated in the same manner as in Example 1 except that the types and addition amounts of the metal hydrate and the silicone compound were changed.
[0046] [表 1]
Figure imgf000014_0001
[0046] [Table 1]
Figure imgf000014_0001
[0047] 表 1に示す通り、実施例ではいずれも非常に良好な難燃性が得られた。 [0047] As shown in Table 1, in the Examples, very good flame retardancy was obtained.
[0048] 比較例では本発明のシリコーン化合物が添加されておらず、難燃性が不十分であ つた  [0048] In the comparative example, the silicone compound of the present invention was not added, and the flame retardancy was insufficient.
産業上の利用可能性  Industrial applicability
[0049] 本発明のエポキシ樹脂組成物は、塩素、臭素、リン、等一般に用いられている難燃 剤を用いなくても非常に優れた難燃性を示し、樹脂が本来有する特徴を損なうことも 少ない。このようなエポキシ樹脂組成物は工業的に非常に有用である。 [0049] The epoxy resin composition of the present invention exhibits very excellent flame retardancy without using commonly used flame retardants such as chlorine, bromine and phosphorus, and impairs the inherent characteristics of the resin. Also Few. Such an epoxy resin composition is very useful industrially.

Claims

請求の範囲 The scope of the claims
[1] エポキシ樹脂 (A)、硬化剤 (B)、硬化促進剤 (C)、無機充填剤 (D)、金属水和物( E)、および平均組成式(1)  [1] Epoxy resin (A), curing agent (B), curing accelerator (C), inorganic filler (D), metal hydrate (E), and average composition formula (1)
R1 R2 SiO (1) R 1 R 2 SiO (1)
m n (4-m-n)/2  m n (4-m-n) / 2
(式中、 R1はケィ素原子に直結する炭素が脂肪族炭素である基、水酸基、アルコキシ 基から選ばれる基を表し、 R2は炭素数が 6〜24の芳香族炭化水素基を表す。 R1, R2 はそれぞれ 2種類以上存在していても良い。 mと nは、 1. l≤m + n≤l . 7、及び、 0 . 4≤n/m≤2. 5を満たす数を表す。)で表されるシリコーン化合物(F)を含有する ことを特徴とするエポキシ樹脂組成物。 (In the formula, R 1 represents a group selected from a group in which carbon directly bonded to a carbon atom is an aliphatic carbon, a hydroxyl group, and an alkoxy group, and R 2 represents an aromatic hydrocarbon group having 6 to 24 carbon atoms. There may be two or more types of R 1 and R 2 m and n satisfy 1. l≤m + n≤l .7 and 0.4≤n / m≤2.5 The epoxy resin composition characterized by containing the silicone compound (F) represented by this.
[2] (F)成分のシリコーン化合物の R1がエポキシ基、水酸基、アルコキシ基、アミノ基、 カルボキシ基、カルボン酸無水物基から選ばれる 1種以上の反応性基を有する炭化 水素基であることを特徴とする請求項 1に記載のエポキシ樹脂組成物。 [2] R 1 of the silicone compound of component (F) is a hydrocarbon group having one or more reactive groups selected from an epoxy group, a hydroxyl group, an alkoxy group, an amino group, a carboxy group, and a carboxylic anhydride group. The epoxy resin composition according to claim 1, wherein:
[3] (F)成分のシリコーン化合物が構成する全シロキサン単位のうち SiO単位を 10モ  [3] Of all the siloxane units composed of the silicone compound of component (F), 10 units of SiO units
2  2
ル%以上含有することを特徴とする請求項 1または 2に記載のエポキシ樹脂組成物。  The epoxy resin composition according to claim 1, wherein the epoxy resin composition is contained in an amount of at least 1%.
[4] 金属水和物(E)がアルミニウム化合物、ケィ素化合物から選ばれる表面処理剤で 表面処理されてなることを特徴とする請求項 1乃至 3のいずれか一項に記載のェポキ シ樹脂組成物。 [4] The epoxy resin according to any one of [1] to [3], wherein the metal hydrate (E) is surface-treated with a surface treatment agent selected from an aluminum compound and a silicon compound. Composition.
PCT/JP2005/020192 2004-11-11 2005-11-02 Epoxy resin composition WO2006051731A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006544863A JP5153141B2 (en) 2004-11-11 2005-11-02 Epoxy resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-328281 2004-11-11
JP2004328281 2004-11-11

Publications (1)

Publication Number Publication Date
WO2006051731A1 true WO2006051731A1 (en) 2006-05-18

Family

ID=36336413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/020192 WO2006051731A1 (en) 2004-11-11 2005-11-02 Epoxy resin composition

Country Status (2)

Country Link
JP (1) JP5153141B2 (en)
WO (1) WO2006051731A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012082310A (en) * 2010-10-12 2012-04-26 Shin-Etsu Chemical Co Ltd Flame retardant organopolysiloxane composition
JP2014159531A (en) * 2013-02-20 2014-09-04 Mitsubishi Chemicals Corp Epoxy resin composition, cured product, and semiconductor sealing material
CN109553974A (en) * 2017-09-26 2019-04-02 宜兴市聚金信化工有限公司 Improved organic silicon-type composite flame-retardant agent

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001226465A (en) * 1999-12-08 2001-08-21 Nec Corp Flame retardant epoxy resin composition
JP2002241545A (en) * 2001-02-20 2002-08-28 Kanegafuchi Chem Ind Co Ltd Flame-retardant resin composition and flame-retardant electric wire or cable
JP2003012892A (en) * 2001-06-29 2003-01-15 Hitachi Chem Co Ltd Resin composition and flame-retardant laminate board and printed wiring board using the composition
JP2003147184A (en) * 2001-11-08 2003-05-21 Kanegafuchi Chem Ind Co Ltd Flame-retardant resin composition
JP2005336393A (en) * 2004-05-28 2005-12-08 Shin Etsu Chem Co Ltd Semiconductor-sealing epoxy resin composition

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4196143B2 (en) * 1999-05-20 2008-12-17 日本電気株式会社 Flame retardant resin composition
JP2001040219A (en) * 1999-05-26 2001-02-13 Nec Corp Flame retardant resin composition
JP4377030B2 (en) * 2000-05-11 2009-12-02 株式会社カネカ Flame retardant and flame retardant resin composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001226465A (en) * 1999-12-08 2001-08-21 Nec Corp Flame retardant epoxy resin composition
JP2002241545A (en) * 2001-02-20 2002-08-28 Kanegafuchi Chem Ind Co Ltd Flame-retardant resin composition and flame-retardant electric wire or cable
JP2003012892A (en) * 2001-06-29 2003-01-15 Hitachi Chem Co Ltd Resin composition and flame-retardant laminate board and printed wiring board using the composition
JP2003147184A (en) * 2001-11-08 2003-05-21 Kanegafuchi Chem Ind Co Ltd Flame-retardant resin composition
JP2005336393A (en) * 2004-05-28 2005-12-08 Shin Etsu Chem Co Ltd Semiconductor-sealing epoxy resin composition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012082310A (en) * 2010-10-12 2012-04-26 Shin-Etsu Chemical Co Ltd Flame retardant organopolysiloxane composition
JP2014159531A (en) * 2013-02-20 2014-09-04 Mitsubishi Chemicals Corp Epoxy resin composition, cured product, and semiconductor sealing material
CN109553974A (en) * 2017-09-26 2019-04-02 宜兴市聚金信化工有限公司 Improved organic silicon-type composite flame-retardant agent

Also Published As

Publication number Publication date
JPWO2006051731A1 (en) 2008-05-29
JP5153141B2 (en) 2013-02-27

Similar Documents

Publication Publication Date Title
JP6233307B2 (en) Phenolic resin composition
WO2011074517A1 (en) Epoxy resin, process for production thereof, epoxy resin composition using same, and cured product
JP5664817B2 (en) Phenolic hydroxyl group-containing compound, phenol resin, curable composition, cured product thereof, semiconductor sealing material, and printed wiring board
JP2007326956A (en) Prepreg, laminate, and printed circuit board comprising the same
JP5457304B2 (en) Phenolic resin, epoxy resin, production method thereof, epoxy resin composition and cured product
JP6192523B2 (en) Epoxy resin curing agent, production method, and use thereof
JP6052868B2 (en) Epoxy resin curing agent, production method, and use thereof
WO2006051731A1 (en) Epoxy resin composition
JP5734603B2 (en) Phenolic resin, epoxy resin, production method thereof, epoxy resin composition and cured product
JP2011057588A (en) Polyvalent hydroxy compound, method of producing the same, epoxy resin composition, and cured product thereof
JP5692471B1 (en) Phenolic hydroxyl group-containing compound, phenol resin, curable composition, cured product thereof, semiconductor sealing material, and printed wiring board
JP5056992B1 (en) Phosphorus-containing curable resin composition and resin cured product thereof
JP2016196592A (en) Epoxy resin and thermosetting resin composition comprising the same
JP2008231071A (en) New polyvalent hydroxy compound, and epoxy resin composition and its cured product
JP2004339277A (en) Phenol resin, curing agent for epoxy resin, and epoxy resin composition
JP2022016887A (en) Epoxy resin composition and cured product
JP2003041118A (en) Resin composition for semiconductor-sealing material
JP5390491B2 (en) Epoxy resin, production method thereof, epoxy resin composition and cured product
JPH03221516A (en) Production of epoxy resin and epoxy resin composition
WO2022124405A1 (en) Resin composition for molding and high frequency device
CN113195586A (en) Sealing composition and semiconductor device
JPH0344094B2 (en)
JP6263835B2 (en) Thermosetting resin molding material and electronic component device
CN116891564A (en) Epoxy resin composition and cured product
JP2008222837A (en) New polyhydric hydroxy compound, method for producing the hydroxy compound, and thermosetting resin composition containing the hydroxy compound and its cured product

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006544863

Country of ref document: JP

122 Ep: pct application non-entry in european phase

Ref document number: 05800510

Country of ref document: EP

Kind code of ref document: A1