WO2006050803A1 - Derives de pyrazole bicycliques et tricycliques substitues, procedes de production de ces derives et utilisation de ces derives comme herbicides et comme regulateurs de la croissance des plantes - Google Patents

Derives de pyrazole bicycliques et tricycliques substitues, procedes de production de ces derives et utilisation de ces derives comme herbicides et comme regulateurs de la croissance des plantes Download PDF

Info

Publication number
WO2006050803A1
WO2006050803A1 PCT/EP2005/011329 EP2005011329W WO2006050803A1 WO 2006050803 A1 WO2006050803 A1 WO 2006050803A1 EP 2005011329 W EP2005011329 W EP 2005011329W WO 2006050803 A1 WO2006050803 A1 WO 2006050803A1
Authority
WO
WIPO (PCT)
Prior art keywords
crc
alkyl
amino
substituted
mono
Prior art date
Application number
PCT/EP2005/011329
Other languages
German (de)
English (en)
Inventor
Harald Jakobi
Hendrik Helmke
Thomas Auler
Martin Hills
Heinz Kehne
Dieter Feucht
Kristian Kather
Original Assignee
Bayer Cropscience Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Cropscience Ag filed Critical Bayer Cropscience Ag
Publication of WO2006050803A1 publication Critical patent/WO2006050803A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/90Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having two or more relevant hetero rings, condensed among themselves or with a common carbocyclic ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems

Definitions

  • the invention relates to the technical field of pesticides, such as herbicides and plant growth regulators, in particular the herbicides for the selective control of harmful plants in crops.
  • indazole-3-carboxamides and their derivatives have plant growth-regulating properties whose effect is based on the inhibition of ethylene production, so that such compounds have been proposed for use as grape-release inhibitors or as freshness-preserving agents for various types of fruit.
  • the already known active ingredients have some drawbacks in their application, be it (a) that they have no or insufficient herbicidal activity against harmful plants, (b) too low a spectrum of harmful plants that can be controlled with an active ingredient, or too low Possess selectivity in crops.
  • Other already known active ingredients can not be produced economically on the industrial scale because of difficultly accessible precursors and reagents or have only insufficient chemical stabilities.
  • the present invention relates to compounds of the formula (I) and salts thereof
  • R1, R2 are each independently H, halogen, cyano, (Ci-C 6) -alkyl, (C 2 -C 6) - alkenyl, (C 2 -C 6) -alkynyl, (C 3 -C 6) -cycloalkyl , (C 1 -Ce) -alkoxy, (C 3 -C 6) - cycloalkoxy, (Ci-C 6) alkanoyl, (C r C6) alkenylcarbonyl, (C 2 -C 6) - alkynylcarbonyl, (C -C) alkoxycarbonyl, di- ((C 1 -C 6 ) -alkyl) amino (C 1 -C 6 ) -alkyl, di (C 1 -C 6 ) -alkyl) amino (C 1 -C 6 ) alkenyl or di - ((C 1 -C 6 ) alkyl) amino carbonyl
  • R3 H (Ci-C 6) -alkyl, preferably (Ci-C 3) -alkyl, particularly preferably methyl or ethyl, aryl (dC 6) alkyl, preferably benzyl, (C 2 -C 6) alkenyl, preferably (C 2 -C 3 ) -alkenyl, (C 2 -C 6 ) -alkynyl, preferably (C 2 -C 3 ) -alkynyl, (C 3 -C 6 ) -cycloalkyl, preferably cyclopropyl, and (C 3 - C 6 ) -cycloalkenyl, preferably cyclopropenyl, where the abovementioned alkyls, cycloalkyls, alkenyls, cyclolalkenyls or alkynyls are optionally substituted by one or more, identical or different radicals from the group halogen, nitro, cyano
  • R4 to R9 may be each independently selected from the group H, hydroxy, halogen, nitro, cyano, benzyl, (CrC 6) alkyl, (C 1 -C 6) - Haloalkyl, (C 2 -C 6 ) -alkenyl, (C 2 -C 6 ) -alkynyl, (C 3 -C 6 ) -cycloalkyl, (C 3 -C 6 ) -halocycloalkyl, (C 3 -C 6 ) - cycloalkenyl, mono- (CrC 6) alkylamino, DK (C 1 -C 6) - alkyl) amino, N - ((Ci-C 6) -alkanoyl) amino, (Ci-C7) alkoxy, arylmethyloxy , (C 1 - C 6) haloalkoxy, (Ci-C 6) hydroxyalkoxy, (C 2 -C 6)
  • R1 and R2 are independently H, (dC 4) alkyl, (C 2 -C 4) alkenyl, (C 2 -C 4) -alkynyl or unsubstituted or substituted phenyl or unsubstituted or substituted heterocyclyl having 4 to 7 C atoms and one or more hetero ring atoms, preferably pyridinyl, pyrimidinyl or thienyl, where any of the above carbocyclic or heterocyclic radicals is optionally substituted by halogen, preferably fluorine and chlorine, cyano, (C 1 -Ce) 1 -alkyl (CrC 6) haloalkyl (C 2 -C 6) alkenyl, (C 2 -C 6) -alkynyl, (C 3 - C 6) cycloalkyl, (C 3 -C 6) cycloalkenyl, mono - (Ci
  • R1 and R2 together with the pyrazole to which they are attached form an indazole, a pyrazolopyridine or a pyrazolopyrimidine.
  • radicals R 1 and R 2 together with the pyrazole to which they are attached form an indazole which is substituted by one or more H, halogen, nitro, cyano, (C 1 -Ce) - alkyl, especially methyl, (C 1 -Ce) -AIkOXy, especially methoxy, or (CrC 6 ) -haloalkoxy, preferably halogenated methoxy, particularly preferably trifluoromethoxy.
  • the substituent is a halogen, this is preferably selected from the group F, Cl, Br and I.
  • R 3 is an H, a benzyl, a (C 1 -C 3 ) -alkyl, in particular a methyl, a (C 3 -C 6 ) -cycloalkyl, in particular a cyclopropyl, a ( C 2 -C 3 ) -alkenyl, in particular an allyl, a (C 2 -C 3 ) -alkynyl, in particular a propargyl, where the abovementioned groups are optionally substituted by one or more, identical or different radicals from the group consisting of halogen, ( C 1 -C 3 ) -alkyl, (C 1 -C 3 ) -alkoxy and (C 1 -C 3 ) -alkylthio may be substituted.
  • R5, R6 and R9 denote hydrogen or methyl
  • R 4 can be selected from the group H, (C 1 -C 3 ) -alkyl, (C 1 -C 3 ) -haloalkyl, (C 2 -
  • R 7 may be selected from the group H, hydroxy, halogen, cyano, (CrC 3 ) -
  • Halocycloalkyl (C 3 -C 6) -cycloalkenyl, (C 1 -C T) -alkoxy, arylmethyloxy, (CrC 6) -
  • Haloalkoxy (C 1 -C 4 ) -hydroxyalkoxy, (C 2 -C 6 ) -alkenyloxy, (C 2 -C 6 ) -alkynyloxy, (C 3 -C 9 ) -
  • R8 may be selected from the group H, (Ci-C 3) alkyl, (Ci-C 3) -haloalkyl, (C 2 - C 3) -alkenyl, (C 2 -C 3) alkynyl, (C 3 -C 4 ) -cycloalkyl, (C 3 -C 4 ) -halocycloalkyl, (C 3 -C 6 ) -cycloalkenyl.
  • R5, R6 and R9 are hydrogen
  • R4 and R8 are hydrogen or methyl
  • R 7 may be selected from the group consisting of hydroxy, (C 1 -C 7 ) -alkoxy, benzyloxy, (Cr
  • the compounds of the formula (I) can form salts by addition of a suitable inorganic or organic acid, such as, for example, HCl, HBr, H 2 SO 4 or HNO 3 , but also oxalic acid or sulfonic acids to a basic group, for example amino or alkylamino.
  • a suitable inorganic or organic acid such as, for example, HCl, HBr, H 2 SO 4 or HNO 3
  • oxalic acid or sulfonic acids to a basic group, for example amino or alkylamino.
  • the compounds of the formula (I) can form salts by addition of a suitable inorganic or organic acid, such as, for example, HCl, HBr, H 2 SO 4 or HNO 3 , but also oxalic acid or sulfonic acids to a basic group, for example amino or alkylamino.
  • a suitable substituents which are present in deprotonated form such as, for example, sulfonic acids or carboxylic acids, can form internal salts with groups which can themselves be protonated, such as amino groups. Salts can also be formed by replacing the hydrogen with a suitable cation for agriculture with suitable substituents, such as, for example, sulfonic acids or carboxylic acids.
  • salts are, for example, metal salts, in particular alkali metal salts or alkaline earth metal salts, in particular sodium and potassium salts, or else ammonium salts, salts with organic amines or quaternary (quaternary) ammonium salts with cations of the formula [NRR'R "R '"] + , where R to R each independently represents an organic radical, in particular alkyl, aryl, aralkyl or alkylaryl.
  • radicals alkyl, alkoxy, haloalkyl, haloalkoxy, alkylamino and alkylthio and the corresponding unsaturated and / or substituted radicals in the carbon skeleton may each be straight-chain or branched.
  • these radicals are the lower carbon skeletons, eg having 1 to 6 C atoms, in particular 1 to 4 C atoms, or unsaturated groups having 2 to 6 C atoms, in particular 2 to 4 C atoms , prefers.
  • Alkyl radicals including in the composite meanings such as alkoxy, haloalkyl, etc., mean, for example, methyl, ethyl, n- or i-propyl, n-, i-, t- or 2-butyl, pentyls, hexyls, such as n-hexyl, i -Hexyl and 1, 3-dimethylbutyl, heptyls such as n-heptyl, 1-methylhexyl and 1, 4-dimethylpentyl; Alkenyl and alkynyl radicals have the meaning of the possible unsaturated radicals corresponding to the alkyl radicals; wherein at least one double bond or triple bond, preferably a double bond or triple bond is included.
  • Alkenyl is, for example, allyl, 1-methylprop-2-en-1-yl, 2-methyl-prop-2-en-1-yl, but-2-en-1-yl, but-3-en-1-yl , 1-methylbut-3-en-1-yl and 1-methylbut-2-en-1-yl;
  • Alkynyl means, for example, propargyl, but-2-yn-1-yl, but-3-yn-1-yl, 1-methylbut-3-yn-1-yl.
  • Cycloalkyl denotes a carbocyclic, saturated ring system having preferably 3-8 C atoms, preferably 3 to 6 C atoms, for example cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl.
  • substituted cycloalkyl cyclic systems are included with substituents wherein the substituents have a double bond on the cycloalkyl radical, e.g. As an alkylidene group such as methylidene, are bound.
  • substituted cycloalkyl there are also included polycyclic aliphatic systems such as bicyclo [1,1,0] butan-1-yl, bicyclo [1,1,0] butan-2-yl, bicyclo [2.1.0] pentan-1-yl, Bicyclo [2.1.0] pentan-2-yl, bicyclo [2.1.0] pentan-5-yl, adamantan-1-yl and adamantan-2-yl.
  • Cycloalkenyl means a carbocyclic, non-aromatic, partially unsaturated ring system having preferably 4-8 C atoms, in particular 5 to 7 C atoms, for example 1-cyclobutenyl, 2-cyclobutenyl, 1-cyclopentenyl, 2-cyclopentenyl, 3-cyclopentenyl, or 1-cyclohexenyl, 2-cyclohexenyl, 3-cyclohexenyl, 1, 3-cyclohexadienyl or 1, 4-cyclohexadienyl.
  • substituted cycloalkenyl the explanations for substituted cycloalkyl apply correspondingly.
  • Halogen is, for example, fluorine, chlorine, bromine or iodine.
  • Haloalkoxy is, for example, OCF 3 , OCHF 2 , OCH 2 F, CF 3 CF 2 O, OCH 2 CF 3 and OCH 2 CH 2 Cl; the same applies to haloalkenyl and other halogen-substituted radicals.
  • Aryl means a mono-, bi- or polycyclic aromatic system, for example phenyl, naphthyl, tetrahydronaphthyl, indenyl, indanyl, pentalenyl, fluorenyl and the like, preferably phenyl.
  • a heterocyclic radical or ring may be saturated, unsaturated or heteroaromatic; unless otherwise defined, it preferably contains one or more, in particular 1, 2 or 3 heteroatoms in the heterocyclic ring, preferably from the group N, O, and S; it is preferably an aliphatic heterocyclyl radical having 3 to 7 ring atoms or a heteroaromatic radical having 5 or 6 ring atoms.
  • the heterocyclic radical may be, for example, a heteroaromatic radical or ring (heteroaryl), such as a mono-, bi- or polycyclic aromatic system in which at least one ring contains one or more heteroatoms.
  • a heteroaromatic radical or ring such as a mono-, bi- or polycyclic aromatic system in which at least one ring contains one or more heteroatoms.
  • it is a heteroaromatic ring having a heteroatom from the group N, O and S, for example pyridyl, pyrrolyl, thienyl or furyl;
  • it is preferably a corresponding heteroaromatic ring with 2 or 3 heteroatoms, z.
  • Suitable substituents for a substituted heterocyclic radical are the substituents mentioned below in question, in addition also oxo.
  • the oxo group may also occur on the hetero ring atoms, which may exist in different oxidation states, eg at N and S.
  • Substituted radicals such as a substituted alkyl, alkenyl, alkynyl, aryl, phenyl, benzyl, heterocyclyl and especially heteroaryl radical, are, for example, a substituted radical derived from the unsubstituted radical, wherein the substituents are, for example, one or more, preferably 1 , 2 or 3 radicals from the group halogen, alkoxy, haloalkoxy, alkylthio, hydroxy, amino, nitro, carboxy, cyano, azido, alkoxycarbonyl, alkylcarbonyl, formyl, carbamoyl, mono- and dialkylaminocarbonyl, substituted amino, such as acylamino, mono- and Dialkylamino, and alkylsulfinyl, haloalkylsulfinyl, alkylsulfonyl, haloalkylsulfonyl and, in the case of
  • cyclic systems are also included having such substituents attached to the ring by a double bond, e.g. B. are substituted with an alkylidene group such as methylidene or ethylidene.
  • first substituent level if they contain hydrocarbon-containing moieties, may optionally be further substituted there (“second substituent plane"), for example by one of the substituents as defined for the first substituent level.
  • second substituent plane corresponds further substituent levels.
  • substituted radical includes only one or two substituent levels.
  • Preferred substituents for the substituent planes are, for example, amino, hydroxyl, halogen, nitro, cyano, mercapto, carboxy, carbonamide, SF 5 , aminosulfonyl, alkyl, cycloalkyl, alkenyl, cycloalkenyl, alkynyl, monoalkylamino, dialkylamino, N-alkanoyl- amino, alkoxy, alkenyloxy, alkynyloxy, cycloalkoxy, Cycloalkenyloxy, alkoxycarbonyl, alkenyloxycarbonyl, alkynyloxycarbonyl, aryloxycarbonyl, alkanoyl, alkenylcarbonyl, alkynylcarbonyl, arylcarbonyl, alkylthio, cycloalkylthio, alkenylthio, cycloalkenylthio, alkynylthio, alkylsulfiny
  • radicals with C atoms those having 1 to 6 C atoms, preferably 1 to 4 C atoms, in particular 1 or 2 C atoms, are preferred.
  • substituents from the group halogen for example fluorine and chlorine, (C 1 -C 4 ) -alkyl, preferably methyl or ethyl, (C 1 -C 4 ) -haloalkyl, preferably trifluoromethyl, (C 1 -C 4 ) -alkoxy , preferably methoxy or ethoxy, (C 1 -C 4 ) -haloalkoxy, nitro and cyano.
  • substituents methyl, methoxy and chlorine are particularly preferred.
  • Mono- or disubstituted amino is a chemically stable radical from the group of substituted amino radicals, which are N-substituted by, for example, one or two identical or different radicals from the group consisting of alkyl, alkoxy, acyl and aryl; preferably monoalkylamino, dialkylamino, acylamino, arylamino, N-alkyl-N-arylamino and N-heterocycles; while alkyl radicals having 1 to 4 carbon atoms are preferred;
  • Aryl is preferably phenyl or substituted phenyl; for acyl, the definition given below applies, preferably (C 1 -C 4 ) alkanoyl. The same applies to substituted hydroxyiamino or hydrazino.
  • Optionally substituted phenyl is preferably phenyl which is unsubstituted or substituted one or more times, preferably up to trisubstituted, by identical or different radicals from the group halogen, (CrC 4) alkyl, (Ci-C 4) alkoxy, (Ci-C 4) - haloalkyl, (C- ⁇ -C 4) haloalkoxy and nitro substituted, for example, o-, m- and p-tolyl, Dimethylphenyle, 2-, 3- and 4-chlorophenyl, 2-, 3- and 4-trifluoromethyl - and 2-, 3- and 4-trichloromethyl-phenyl, 2,4-, 3,5-, 2,5- and 2,3-dichlorophenyl, o-, m- and p-methoxyphenyl.
  • Acyl means a residue of an organic acid which is formally formed by separating a hydroxy group on the acid function, wherein the organic residue in the acid may also be linked via a heteroatom to the acid function.
  • acyl are the radical -CO-R of a carboxylic acid HO-CO-R and radicals derived therefrom, such as the thiocarboxylic acid, optionally N-substituted iminocarboxylic acids or the radical of carbonic acid monoesters, N-substituted carbamic acid, sulfonic acids, sulfinic acids, N-substituted sulfonamide acids , Phosphonic acids, phosphinic acids.
  • Acyl is, for example, formyl, alkylcarbonyl such as (C 1 -C 4 ) -alkylcarbonyl, phenylcarbonyl, alkyloxycarbonyl, phenyloxycarbonyl, benzyloxycarbonyl, alkylsulfonyl, alkylsulfinyl, N-alkyl-1-iminoalkyl and other radicals of organic acids.
  • alkylcarbonyl such as (C 1 -C 4 ) -alkylcarbonyl
  • phenylcarbonyl alkyloxycarbonyl
  • phenyloxycarbonyl benzyloxycarbonyl
  • alkylsulfonyl alkylsulfinyl
  • N-alkyl-1-iminoalkyl N-alkyl-1-iminoalkyl and other radicals of organic acids.
  • radicals may each be further substituted in the alkyl or phenyl part, for example in the alkyl part by one or more radicals from the group halogen, alkoxy, phenyl and phenoxy;
  • substituents in the phenyl moiety are the substituents already mentioned above generally for substituted phenyl.
  • Acyl is preferably an acyl radical in the narrower sense, ie a radical of an organic acid in which the acid group is bonded directly to the carbon atom of an organic radical, for example formyl, alkylcarbonyl as Acetyl or (C 1 -C 4 ) alkylcarbonyl, phenylcarbonyl, alkylsulfonyl, alkylsulfinyl and other organic acid residues.
  • the invention also relates to all stereoisomers which are encompassed by formula (I) and mixtures thereof.
  • the possible defined by their specific spatial form possible stereoisomers, such as enantiomers, diastereomers, Z and E isomers are all of the formula (I) and can be obtained by conventional methods from mixtures of stereoisomers or by stereoselective reactions in combination with the use of stereochemically pure starting materials are produced.
  • the present invention also provides methods for the preparation of the compounds of general formula (I) and / or salts thereof.
  • methods for the preparation of the compounds of general formula (I) and / or salts thereof are, for example, the following syntheses: (A)
  • R 1 - R 7 preferably or in particular have those meanings which have already been mentioned above in connection with the description of the compounds of the formula (I) according to the invention preferably for R 1 - R 7.
  • OR 10 represents a suitable leaving group, preferably alkylsulfonyloxy, arylsulfonyloxy, (C 1 -C 4 ) -alkyloxy, more preferably methyloxy and ethyloxy.
  • the reactions are carried out in the presence of proton donors.
  • inorganic or organic acid, acidic catalysts and acidic ion exchangers can be used.
  • para-toluenesulfonic acid hydrate, trifluoroacetic acid and Amberlyst N15 may be mentioned.
  • the reaction may be carried out in the absence or presence of a solvent which favors or at least does not affect the reaction.
  • polar or nonpolar, aprotic or protic solvents such as water, alcohols, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, sulfolanes, dichloromethane, dichloroethane, acetonitrile or ethers, such as dioxane or tetrahydrofuran, or mixtures of the abovementioned solvents.
  • the reactions are carried out at temperatures between room temperature and reflux temperature of the reaction mixture, preferably at elevated temperature, in particular reflux temperature.
  • alcohols are constituents of the solvent and R 6 and / or R 7 are alkoxy, it may possibly lead to a transfer of the Alkoxy group come from the alcohol used as a solvent, so that products are accessible in which R6 and / or R7 have a different meaning than in the educt used.
  • substituted pyrazole-3-carboxamides of the formula (II) used as starting materials can be prepared as described under (b).
  • R 1 and R 2 preferably or in particular have those meanings which have already been mentioned above in connection with the description of the compounds of the formula (I) according to the invention preferably for R 1 and R 2.
  • the amines used as starting materials in process (b) for the preparation of compounds of formula (II) are generally defined by formula (IV).
  • R 3 - R 7 preferably or in particular have those meanings which have already been mentioned above in connection with the description of the compounds of the formula (I) according to the invention preferably for R 3 - R 7.
  • OR10 represents a suitable leaving group, preferably alkylsulfonyloxy, arylsulfonyloxy, (C 1 -C 4 ) -alkyloxy, more preferably methyloxy and ethyloxy.
  • the starting materials of the general formula (III) are known and / or can be prepared by known processes (cf., for example, K. Kirschke, in Methoden der Organic Chemistry (Houben-Weyl, E. Schaumann, Ed.) Vol. E8b, Hetarene IM, Part 2, p. 399 et seq., Georg Thieme Verlag, Stuttgart 1994 and literature cited there, W. Stadibauer, in Methods of Organic Chemistry ( Houben-Weyl, E. Schaumann, Ed.) Vol. E8b, Hetarene IM, Part 2, p. 764 et seq., Georg Thieme Verlag, Stuttgart 1994 and literature cited therein, J. Am. Chem. Soc., 1952, 74, 2009; J.
  • Amines of the formula (IV) as starting materials are commercially available or known and / or can be prepared by known processes (cf., for example, D. Döpp, H. Döpp, in Methods of Organic Chemistry (Houben-Weyl, J. Falbe, Ed. ) Volume E5, Part 2, pp. 934 et seq., Georg Thieme Verlag, Stuttgart 1985 and literature cited therein, J. Am. Chem. Soc., 1955, 77, 32; J. Am. Chem. Soc., 1956, 78, 3087, J. Chem. Soc., 1925, 127, 589).
  • R 1 - R 6 preferably or in particular have those meanings which have already been mentioned above in connection with the description of the compounds of the formula (I) according to the invention preferably for R 1 - R 6.
  • R 10 is preferably (C 1 -C 4 ) -alkyl, more preferably methyl and ethyl.
  • the reactions are carried out in the presence of proton donors.
  • inorganic or organic acid, acidic catalysts and acidic ion exchangers can be used.
  • para-toluenesulfonic acid hydrate, trifluoroacetic acid and Amberlyst N15 may be mentioned.
  • the reaction may be carried out in the absence or presence of a solvent which favors or at least does not affect the reaction.
  • polar or nonpolar, aprotic or protic solvents such as water, N, N-dimethylformamide, N, N-dimethylacetamide, dimethylsulfoxide, sulfolanes, dichloromethane, dichloroethane, acetonitrile or ethers, such as dioxane or tetrahydrofuran, or mixtures of the solvents mentioned.
  • the reactions are carried out at temperatures between room temperature and reflux temperature of the reaction mixture, preferably at elevated temperature, in particular reflux temperature.
  • the reactions can be carried out in the presence or absence of silica gel.
  • R 1 - R 6 preferably or in particular have those meanings which have already been mentioned above in connection with the description of the compounds of the formula (I) according to the invention preferably for R 1 - R 6.
  • LG is a suitable leaving group, preferably hydroxy, alkylcarbonyloxy, alkylsulfonyloxy, arylsulfonyloxy, particularly preferably acetyloxy.
  • bases or basic catalysts are alkali metal carbonates, alkali metal alkoxides, alkaline earth metal carbonates, alkaline earth metal alkoxides or organic bases such as triethylamine, 1, 8-diazabicyclo [5.4.0] undec-7-ene (DBU) or 4-dimethylaminopyridine (DMAP).
  • the optional conversion of the amide to the thioamide proceeds according to literature methods, e.g. with phosphorus pentasulfide (see Synthesis 1982, 853, Synthesis 1987, 256.) or Lawesson's reagent (see Tetrahedron 1985, 41, 2567)
  • customary racemate resolution methods are also suitable (see manuals of stereochemistry), eg. B. following procedures for the separation of mixtures into diastereomers, eg. As physical processes such as crystallization, chromatography, especially column chromatography and high pressure liquid chromatography, distillation, optionally under reduced pressure, extraction and other methods, remaining mixtures of enantiomers can be separated by chromatographic separation on chiral solid phases usually.
  • methods such as the crystallization of diastereomeric salts which can be obtained from the compounds of the formula (I) with optically active acids and, if appropriate, in the presence of acidic groups having optically active bases are suitable.
  • optically active acid z For racemate separation by crystallization of diastereomeric salts come as optically active acid z. Camphorsulfonic acid, camphorsic acid, bromocamphorsulfonic acid, quinic acid, tartaric acid, dibenzoyltartaric acid and others analogous acid into consideration; as optically active bases come z. Quinine, cinchonine, quinidine, brucine, 1-phenylethylamine and other analogous bases. The crystallizations are then usually carried out in aqueous or aqueous-organic solvents, wherein the diastereomer with the lower solubility, if appropriate after inoculation, first fails. The one enantiomer of the compound of formula (I) is then released from the precipitated salt or the other from the crystals by acidification or with base.
  • hydrohalic acids such as hydrochloric acid or hydrobromic acid, furthermore phosphoric acid, nitric acid, sulfuric acid, mono- or bifunctional carboxylic acids and hydroxycarboxylic acids such as acetic acid, maleic acid, succinic acid, fumaric acid, tartaric acid, citric acid, Salicylic acid, sorbic acid or lactic acid, and sulfonic acids such as p-toluenesulfonic acid or 1, 5-Naphtalindisulfonkla.
  • hydrohalic acids such as hydrochloric acid or hydrobromic acid, furthermore phosphoric acid, nitric acid, sulfuric acid, mono- or bifunctional carboxylic acids and hydroxycarboxylic acids
  • acetic acid maleic acid, succinic acid, fumaric acid, tartaric acid, citric acid, Salicylic acid, sorbic acid or lactic acid
  • sulfonic acids such as p-toluenesulfonic acid or 1, 5-N
  • the acid addition compounds of the formula (I) can be prepared in a simple manner by the usual salt formation methods, for example by dissolving a compound of the formula (I) in a suitable organic solvent such as methanol, acetone, methylene chloride or benzene and adding the acid at temperatures of 0 to 100 0 C are obtained and in a known manner, for example by filtration, isolated and optionally purified by washing with an inert organic solvent.
  • a suitable organic solvent such as methanol, acetone, methylene chloride or benzene
  • the base addition salts of the compounds of formula (I) are preferably prepared in inert polar solvents such as water, methanol or acetone at temperatures of 0 to 100 0 C.
  • Suitable bases for preparing the salts according to the invention are, for example, alkali metal carbonates, such as potassium carbonate, alkali metal and alkaline earth metal hydroxides, eg NaOH or KOH, alkali metal and alkaline earth metal hydrides, eg NaH, alkali metal and alkaline alcoholates, for example sodium methoxide or potassium tert-butylate, or ammonia, ethanolamine or quaternary ammonium hydroxide of the formula [NRR'R "R '"] + OK.
  • inert solvents denoted in the above process variants are meant in each case solvents which are inert under the respective reaction conditions, but need not be inert under any reaction conditions.
  • a collection of compounds of formula (I) which can be synthesized by the above methods may be prepared in a parallelized manner, which may be done in a manual, partially automated or fully automated manner. It is possible to automate both the reaction, the work-up or the purification of the products or intermediates. Overall, this is understood to mean a procedure as described, for example, by S. H. DeWitt in "Annual Reports in Combinatorial Chemistry and Molecular Diversity: Automated Synthesis", Volume 1, published by Escom, 1997, pages 69 to 77.
  • Such automation systems may be obtained, for example, from Zymark Corporation, Zymark Center, Hopkinton, MA 01748, USA.
  • preparation of compounds of the formula (I) can be carried out completely or partially by methods supported by solid phases.
  • individual intermediates or all intermediates of the synthesis or adapted for the appropriate approach synthesis are bound to a synthetic resin.
  • Solid-phase assisted synthesis methods are well described in the literature, eg. For example, Barry A. Bunin in "The Combinatorial Index," Academic Press, 1998.
  • the use of solid-phase assisted synthetic methods allows a series of protocols known from the literature, which in turn can be carried out manually or automatically.
  • the "teabag method" (Houghten, US 4,631,211; Houghten et al., Proc. Natl. Acad. Sei., 1985, 82, 5131-5135) can be used with products of IRORI, 11149 North Torrey Pines Road, La JoIIa, CA 92037, USA.
  • the automation of solid-phase assisted parallel synthesis succeeds, for example, by equipment of the companies Argonaut Technologies, Inc., 887 Industrial Road, San Carlos, CA 94070, USA or MultiSynTech GmbH, Wullener Feld 4, 58454 Wirten, Germany.
  • the preparation according to the methods described herein provides compounds of formula (I) in the form of substance collections or libraries.
  • the present invention therefore also provides libraries of the compounds of the formula (I) which contain at least two compounds of the formula (I) and their precursors.
  • the compounds of the formula (I) according to the invention and their salts, referred to hereinafter together as compounds of the formula (I) according to the invention, have excellent herbicidal activity against a broad spectrum of economically important monocotyledonous and dicotyledonous harmful plants. Even difficult to control perennial weeds, which expel from rhizomes, rhizomes or other permanent organs, are well detected by the active ingredients. It does not matter whether the substances are applied in the pre-sowing, pre-emergence or postemergence process. Specifically, by way of example, some representatives of the monocotyledonous and dicotyledonous weed flora can be mentioned, which can be controlled by the compounds according to the invention, without the intention of limiting them to certain species.
  • weeds e.g. Agrostis, Alopecurus, Apera, Avena, Brachicaria, Bromus, Dactyloctenium, Digitaria, Echinochloa, Eleocharis, Eleusine, Festuca, Fimbristylis, Ischaemum, Lolium, Monochoria, Panicum, Paspalum, Phalaris, Phleum, Poa, Sagittaria, Scirpus, Setaria, Sphenoclea, and Cyperus species predominantly from the contendle group and on the part of the perennial species Agropyron, Cynodon, Imperata and Sorghum and also perennial Cyperusart well.
  • the spectrum of activity extends to species such as e.g. Galium, Viola, Veronica, Lamium, Stellaria, Amaranthus, Sinapis, Ipomoea, Matricaria, Abutilon and Sida on the annall side, as well as Convolvulus, Cirsium, Rumex and Artemisia in perennial weeds.
  • herbicidal activity in dicotyledonous weeds such as Ambrosia, Anthemis, Carduus, Centaurea, Chenopodium, Cirsium, Convolvulus, Datura, Emex, Galeopsis, Galinsoga, Lepidium, Lindernia, Papaver, Portlaca, Polygonum, Ranunculus, Rorippa, Rotala, Seneceio, Sesbania, Solanum, Sonchus, Taraxacum, Trifolium, Urtica and Xanthium are observed.
  • the compounds according to the invention are applied to the surface of the earth before germination, then either the emergence of the weed seedlings is completely prevented or the weeds grow up to the cotyledon stage, but then cease their growth and finally die off completely after a lapse of three to four weeks.
  • the compounds of the present invention have excellent herbicidal activity against mono- and dicotyledonous weeds, crops of economically important crops such as e.g. Wheat, barley, rye, rice, maize, sugar beet, cotton and soya only marginally or not at all damaged. For these reasons, the present compounds are very well suited for the selective control of undesired plant growth in agricultural crops.
  • the substances according to the invention have excellent growth-regulatory properties in crop plants. They regulate the plant's metabolism and can thus be used to specifically influence plant constituents and facilitate harvesting, such as be used by triggering desiccation and stunted growth. Furthermore, they are also suitable for the general control and inhibition of undesirable vegetative growth, without killing the plants. Inhibition of vegetative growth plays an important role in many monocotyledonous and dicotyledonous cultures, as storage can be reduced or completely prevented.
  • the active compounds can also be used for controlling harmful plants in crops of known or yet to be developed genetically modified plants.
  • the transgenic plants are usually characterized by particular advantageous properties, for example by resistance to certain pesticides, especially certain herbicides, resistance to plant diseases or pathogens of plant diseases such as certain insects or microorganisms such as fungi, bacteria or viruses.
  • Other special properties relate to z.
  • the compounds of the formula (I) can be used as herbicides in crops which are resistant to the phytotoxic effects of the herbicides or have been made genetically resistant.
  • new plants which have modified properties in comparison to previously occurring plants consist, for example, in classical breeding methods and the production of mutants.
  • new plants with altered properties can be generated by means of genetic engineering methods (see, for example, EP-A-0221044, EP-A-0131624).
  • genetic modifications of crop plants have been described in several cases for the purpose of modifying the starch synthesized in the plants (eg WO 92/11376, WO 92/14827, US Pat.
  • Glufosinate see, for example, EP-A-0242236, EP-A-242246) or glyphosate
  • Bacillus thuringiensis toxins Bacillus thuringiensis toxins (Bt toxins) to produce, which the
  • nucleic acid molecules can be introduced into plasmids that allow mutagenesis or sequence alteration by recombination of DNA sequences.
  • z For example, base substitutions are made, partial sequences are removed, or natural or synthetic sequences are added.
  • adapters or linkers can be attached to the fragments.
  • the production of plant cells having a reduced activity of a gene product can be achieved, for example, by the expression of at least one corresponding antisense RNA, a sense RNA to obtain a cosuppression effect, or the expression of at least one appropriately engineered ribozyme which specifically cleaves transcripts of the above gene product.
  • DNA molecules may be used which comprise the entire coding sequence of a gene product, including any flanking sequences that may be present, as well as DNA molecules which comprise only parts of the coding sequence, which parts must be long enough to be present in the cells to cause an antisense effect. It is also possible to use DNA sequences which have a high degree of homology to the coding sequences of a gene product but are not completely identical.
  • the synthesized protein may be located in any compartment of the plant cell. But to achieve the localization in a particular compartment, z.
  • the coding region can be linked to DNA sequences that ensure localization in a particular compartment.
  • the transgenic plant cells can be regenerated to whole plants by known techniques.
  • the transgenic plants may in principle be plants of any plant species, i. both monocotyledonous and dicotyledonous plants.
  • the compounds of the formula (I) according to the invention can preferably be employed in transgenic cultures which are resistant to herbicides from the group of the sulfonylureas, glufosinate-ammonium or glyphosate isopropylammonium and analogous active compounds.
  • the invention therefore also relates to the use of the compounds of the formula (I) according to the invention as herbicides for controlling harmful plants in transgenic crop plants.
  • the compounds according to the invention can be used in the form of wettable powders, emulsifiable concentrates, sprayable solutions, dusts or granules in the customary formulations.
  • the invention therefore also provides herbicidal and plant growth-regulating agents which contain compounds of the formula (I).
  • the compounds of the formula (I) can be formulated in various ways, depending on which biological and / or chemical-physical parameters are predetermined. Possible formulation options are, for example: wettable powder (WP), water-soluble powders (SP), water-soluble concentrates, emulsifiable concentrates (EC), emulsions (EW), such as oil-in-water and water-in-oil emulsions, sprayable solutions , Suspension concentrates (SC), oil or water based dispersions, oil miscible solutions, capsule suspensions (CS), dusts (DP), mordants, granules for litter and soil application, granules (GR) in the form of micro, spray, elevator and adsorption granules, water-dispersible granules (WG), water-soluble granules (SG), ULV formulations, microcapsules and waxes.
  • WP wettable powder
  • SP water-soluble powders
  • EC emulsifiable concentrates
  • Injectable powders are preparations which are uniformly dispersible in water and contain surfactants of the ionic and / or nonionic type (wetting agents, dispersants) in addition to the active ingredient except a diluent or inert substance.
  • the herbicidal active compounds are finely ground, for example, in customary apparatus such as hammer mills, blower mills and air-jet mills and mixed simultaneously or subsequently with the formulation auxiliaries.
  • Emulsifiable concentrates are prepared by dissolving the active ingredient in an organic solvent, for example butanol, cyclohexanone, dimethylformamide, xylene or else higher-boiling aromatics or hydrocarbons or mixtures the organic solvent with the addition of one or more surfactants of ionic and / or nonionic type (emulsifiers).
  • organic solvent for example butanol, cyclohexanone, dimethylformamide, xylene or else higher-boiling aromatics or hydrocarbons or mixtures the organic solvent with the addition of one or more surfactants of ionic and / or nonionic type (emulsifiers).
  • alkylarylsulfonic acid calcium salts such as calcium dodecylbenzenesulfonate or nonionic emulsifiers
  • fatty acid polyglycol esters alkylaryl polyglycol ethers, fatty alcohol polyglycol ethers, propylene oxide / ethylene oxide condensation products
  • alkyl polyethers sorbitan esters such as sorbitan fatty acid esters or polyoxethylenesorbitan esters such as polyoxyethylene sorbitan fatty acid esters.
  • Dusts are obtained by milling the active ingredient with finely divided solids, e.g. Talc, natural clays such as kaolin, bentonite and pyrophyllite, or diatomaceous earth.
  • finely divided solids e.g. Talc, natural clays such as kaolin, bentonite and pyrophyllite, or diatomaceous earth.
  • Suspension concentrates may be water or oil based. They can be prepared, for example, by wet grinding using commercially available bead mills and, if appropriate, addition of surfactants, as described, for example, in US Pat. are already listed above for the other formulation types.
  • Emulsions e.g. Oil-in-water emulsions (EW) can be prepared, for example, by means of stirrers, colloid mills and / or static mixers using aqueous organic solvents and optionally surfactants, as described e.g. listed above for the other formulation types.
  • EW Oil-in-water emulsions
  • Granules can either be prepared by spraying the active ingredient onto adsorptive, granulated inert material or by applying active substance concentrates by means of adhesives, for example polyvinyl alcohol, sodium polyacrylate or mineral oils, to the surface of carriers such as sand, kaolinites or granulated inert material. It is also possible to granulate suitable active ingredients in the manner customary for the production of fertilizer granules, if desired in admixture with fertilizers. Water-dispersible granules are generally prepared by the usual methods such as spray drying, fluidized bed granulation, plate granulation, mixing with high-speed mixers and extrusion without solid inert material.
  • the agrochemical preparations generally contain from 0.1 to 99% by weight, in particular from 0.1 to 95% by weight, of active compound of the formula (I).
  • the drug concentration is e.g. about 10 to 90 wt .-%, the balance to 100 wt .-% consists of conventional formulation ingredients.
  • the active ingredient concentration may be about 1 to 90, preferably 5 to 80 wt .-%.
  • Dusty formulations contain 1 to 30 wt .-% of active ingredient, preferably usually 5 to 20 wt .-% of active ingredient, sprayable solutions contain about 0.05 to 80, preferably 2 to 50 wt .-% of active ingredient.
  • the active ingredient content depends, in part, on whether the active compound is liquid or solid and which granulating aids, fillers, etc. are used.
  • the content of active ingredient is, for example, between 1 and 95% by weight, preferably between 10 and 80% by weight.
  • the active substance formulations mentioned optionally contain the customary adhesion, wetting, dispersing, emulsifying, penetrating, preserving, antifreeze and solvent, fillers, carriers and dyes, antifoams, evaporation inhibitors and the pH and the Viscosity-influencing agent.
  • the compounds of the formula (I) or salts thereof can be used as such or in the form of their formulations (formulations) with other pesticidally active substances, such as.
  • insecticides, acaricides, nematicides, herbicides, fungicides, safeners, fertilizers and / or growth regulators can be used in combination, eg. B. as a ready-made formulation or as tank mixes.
  • active compounds As a combination partner for the active compounds according to the invention in mixed formulations or in the tank mix, for example, known active compounds which are based on an inhibition of, for example, acetolactate synthase, acetyl-coenzyme A carboxylase, PS I 1 PS II, HPPDO, phytoene desaturase, protoporphyrinogen Oxidase, glutamine synthetase, cellulose biosynthesis, 5-enolpyruvylshikimate-3-phosphate synthetase based, can be used.
  • Such compounds and also other useful compounds with partially unknown or other mechanism of action are, for example, in Weed Research 26, 441-445 (1986), or "The Pesticide Manual", 11th edition 1997 (hereinafter also "PM") and 12.
  • herbicides which can be combined with the compounds of the formula (I) are the following active compounds (note: the compounds are either with the "common name” according to the International Organization for Standardization (ISO) or with the chemical name , optionally together with a common code number): acetochlor; acifluorfen (-sodium); aclonifen; AKH 7088, ie methyl [[[1- [5- [2-chloro-4- (trifluoromethyl) phenoxy] -2-nitrophenyl] -2-methoxyethylidene] amino] oxy] acetic acid and acetic acid; alachlor; alloxydim (-sodium); ametryn; amicarbazone, amidochlor, amidosulfuron; amitrol; AMS, ie ammonium sulfamate; anilofos;
  • cereals wheat, barley, rye, corn, rice, millet
  • sugar beet sugar cane
  • rapeseed cotton and soybeans
  • cotton and soybeans preferably cereals.
  • safeners for the compounds (I) and their combinations with other pesticides are suitable, for example, as safeners for the compounds (I) and their combinations with other pesticides:
  • dichlorophenylpyrazoline-3-carboxylic acid preferably compounds such as 1- (2,4-dichlorophenyl) -5- (ethoxycarbonyl) -5-methyl-2-pyrazolin-3-one carboxylic acid ethyl ester (S1-1) ("Mefenpyr-diethyl", PM, pp. 781-782), and related compounds as described in WO 91/07874, b) derivatives of dichlorophenylpyrazolecarboxylic acid, preferably compounds such as 1- (2 , 4-dichlorophenyl) -5-methyl-pyrazole-3-carboxylic acid ethyl ester (S1-2),
  • Ethyl 1 - (2,4-dichlorophenyl) -5-isopropyl-pyrazole-3-carboxylate (S1 -3), 1- (2,4-dichlorophenyl) -5- (1, 1-dimethyl-ethyl) -pyrazole-3- carboxylic acid ethyl ester (S1-4), 1- (2,4-dichlorophenyl) -5-phenyl-pyrazole-3-carboxylic acid ethyl ester (S1-5) and related compounds as described in EP-A-333 131 and EP-A -269 806 are described.
  • compounds of the type of thazolecarboxylic acids preferably compounds such as fenchlorazole (ethyl), i.
  • active substances of the phenoxyacetic or propionic acid or aromatic carboxylic acid type e.g. 2,4-Dichlorophenoxyacetic acid (ester) (2,4-D), 4-chloro-2-methyl-phenoxy-propionic ester (mecoprop), MCPA or 3,6-dichloro-2-methoxy-benzoic acid (ester) (Dicamba)
  • active substances of the pyrimidines type which are used as soil-active safeners in rice, such as. B.
  • Safener for pretilachlor is known in seeded rice, i) active substances of the type of dichloroacetamides, often as pre-emergence safeners
  • PPG-1292 N-allyl-N - [(1,3-dioxolan-2-yl) -methyl] -dichloroacetamide from the
  • Seizebeizsch are known, such as. B.
  • Naphthalenedicarboxylic anhydride used as a seed dressing safener for maize
  • the weight ratio of herbicide (mixture) to safener generally depends on the application rate of herbicide and the effectiveness of the particular safener and can vary within wide limits, for example in the range from 200: 1 to 1: 200, preferably 100: 1 to 1: 100, in particular 20: 1 to 1:20.
  • the safeners can be formulated analogously to the compounds of the formula (I) or mixtures thereof with further herbicides / pesticides and provided and used as finished formulation or tank mixture with the herbicides.
  • the formulations present in commercial form are optionally diluted in a customary manner, e.g. for wettable powders, emulsifiable concentrates, dispersions and water-dispersible granules by means of water. Dust-like preparations, ground or scattered granules and sprayable solutions are usually no longer diluted with other inert substances before use.
  • Example 7 and Example 8 2-Methyl-1-oxo-1,2,3,4-tetrahydropyrazino [1,2-b] indazole-4-yl acetate and 2-methylpyrazino [1,2-b] indazole-1 (2H) -one
  • a dust is obtained by mixing 10 parts by weight of a compound of formula (I) and 90 parts by weight of talc as an inert material and comminuted in a hammer mill.
  • a wettable powder readily dispersible in water is obtained by mixing 25 parts by weight of a compound of formula (I), 64 parts by weight of kaolin-containing quartz as inert substance, 10 parts by weight of potassium lignosulfonate and 1 part by weight of oleoylmethyltaurine sodium as wetting and dispersing agent and grinded in a pin mill.
  • a dispersion concentrate which is readily dispersible in water is obtained by reacting 20 parts by weight of a compound of the formula (I) with 6% by weight of water. Parts of alkylphenol polyglycol (Triton® X 207), 3 parts by weight isotridecanolpolyglykolether (8 EO) and 71 parts by weight of paraffinic mineral oil (boiling range eg about 255 to about 277 0 C) and mixed in a ball mill to a fineness of less than 5 Mikron mills.
  • An emulsifiable concentrate is obtained from 15 parts by weight of a compound of the formula (I), 75 parts by weight of cyclohexanone as solvent and 10 parts by weight of ethoxylated nonylphenol as emulsifier.
  • a water-dispersible granule is obtained by reacting 75 parts by weight of a compound of the formula (I)
  • a water-dispersible granule is also obtained by reacting 25 parts by weight of a compound of the formula (I)
  • WP wettable powders
  • compounds of the invention have a good herbicidal pre-emergence activity against a broad spectrum of grass weeds and weeds.
  • the compounds 4, A33, C1, C4, C5 and other compounds from Tables A, B and C have very good herbicidal activity against harmful plants such as Sinapis alba, Lolium multiflorum, Stellaria media, Setaria spp. and Amaranthus retroflexus preemergence at a rate of 2 kg and less active ingredient per hectare.
  • Test plants of monocotyledonous or dicotyledonous crops are laid out in sandy loam soil in wood fiber pots, covered with soil and grown in the greenhouse under good growth conditions. 2-3 weeks after sowing, the test plants are treated in the single leaf stage.
  • the test compounds formulated as wettable powders (WP) are sprayed onto the green plant parts in various dosages with a water application rate of approximately 600 l / ha with the addition of 0.2% wetting agent.
  • WP wettable powders
  • Post-emergence compounds of the invention have good herbicidal activity against a broad spectrum of economically important weeds and weeds.
  • the compounds 4, B1, A16, A17, A21, A22, A23, A25, 7, 6, A33 and other compounds from Tables A, B and C have very good herbicidal activity against harmful plants such as Sinapis alba, Echinochloa crus galli , Lolium multiflorum, Cyperus iria, Avena spp., Stellaria media, Setaria spp., Abutilon theophrasti and Amaranthus retroflexus after-run at an application rate of 2 kg and less active substance per hectare.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Dentistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Plant Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Agronomy & Crop Science (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

L'invention concerne des composés de formule (I) et leurs sels, des procédés de production de ces composés, ainsi que l'utilisation desdits composés pour lutter de façon sélective contre les plantes nuisibles dans les cultures de plantes utiles ou pour réguler la croissance des plantes.
PCT/EP2005/011329 2004-11-12 2005-10-21 Derives de pyrazole bicycliques et tricycliques substitues, procedes de production de ces derives et utilisation de ces derives comme herbicides et comme regulateurs de la croissance des plantes WO2006050803A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200410054665 DE102004054665A1 (de) 2004-11-12 2004-11-12 Substituierte bi- und tricyclische Pyrazol-Derivate Verfahren zur Herstellung und Verwendung als Herbizide und Pflanzenwachstumsregulatoren
DE102004054665.7 2004-11-12

Publications (1)

Publication Number Publication Date
WO2006050803A1 true WO2006050803A1 (fr) 2006-05-18

Family

ID=35457955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/011329 WO2006050803A1 (fr) 2004-11-12 2005-10-21 Derives de pyrazole bicycliques et tricycliques substitues, procedes de production de ces derives et utilisation de ces derives comme herbicides et comme regulateurs de la croissance des plantes

Country Status (2)

Country Link
DE (1) DE102004054665A1 (fr)
WO (1) WO2006050803A1 (fr)

Cited By (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011124430A1 (fr) 2010-04-08 2011-10-13 Aziende Chimiche Riunite Angelini Francesco A.C.R.A.F. S.P.A. Composé tricyclique d'indazole, son procédé de préparation et composition pharmaceutique le contenant
WO2013039990A1 (fr) 2011-09-13 2013-03-21 Monsanto Technology Llc Procédés et compositions de lutte contre les mauvaises herbes
WO2013040117A1 (fr) 2011-09-13 2013-03-21 Monsanto Technology Llc Procédés et compositions de lutte contre les mauvaises herbes
WO2013040049A1 (fr) 2011-09-13 2013-03-21 Monsanto Technology Llc Procédés et compositions pour lutter contre les mauvaises herbes
WO2013040021A1 (fr) 2011-09-13 2013-03-21 Monsanto Technology Llc Procédés et compositions de lutte contre les mauvaises herbes
WO2014151255A1 (fr) 2013-03-15 2014-09-25 Monsanto Technology Llc Méthodes et compositions pour lutter contre les mauvaises herbes
WO2015108982A2 (fr) 2014-01-15 2015-07-23 Monsanto Technology Llc Procédés et compositions pour la lutte contre les mauvaises herbes utilisant des polynucléotides epsps
US9121022B2 (en) 2010-03-08 2015-09-01 Monsanto Technology Llc Method for controlling herbicide-resistant plants
WO2015129821A1 (fr) * 2014-02-27 2015-09-03 国立大学法人東京大学 Dérivé de pyrazole condensé ayant une activité inhibitrice d'autotaxine
KR20160015247A (ko) * 2013-06-04 2016-02-12 얀센 파마슈티카 엔.브이. 6,7―디히드로피라졸로[1,5―a]피라진―4(5H)―온 화합물 및 MGLUR2 수용체의 음성 알로스테릭 조절제로서의 그 용도
US9416363B2 (en) 2011-09-13 2016-08-16 Monsanto Technology Llc Methods and compositions for weed control
US9422557B2 (en) 2011-09-13 2016-08-23 Monsanto Technology Llc Methods and compositions for weed control
US9540642B2 (en) 2013-11-04 2017-01-10 The United States Of America, As Represented By The Secretary Of Agriculture Compositions and methods for controlling arthropod parasite and pest infestations
CN106573935A (zh) * 2014-08-01 2017-04-19 詹森药业有限公司 6,7‑二氢吡唑并[1,5‑a]吡嗪‑4(5H)‑酮化合物和其作为MGLUR2受体的负性别构调节物的用途
CN107018662A (zh) * 2014-08-01 2017-08-04 詹森药业有限公司 6,7‑二氢吡唑并[1,5‑a]吡嗪‑4(5H)‑酮化合物和其作为MGLUR2受体的负性别构调节物的用途
JP2017523202A (ja) * 2014-08-01 2017-08-17 ヤンセン ファーマシューティカ エヌ.ベー. 6,7−ジヒドロピラゾロ[1,5−a]ピラジン−4(5H)−オン化合物およびMGLUR2受容体の負のアロステリック調節因子としてのそれらの使用
US9777288B2 (en) 2013-07-19 2017-10-03 Monsanto Technology Llc Compositions and methods for controlling leptinotarsa
US9850496B2 (en) 2013-07-19 2017-12-26 Monsanto Technology Llc Compositions and methods for controlling Leptinotarsa
US10005786B2 (en) 2014-08-01 2018-06-26 Janssen Pharmaceutica Nv Substituted 6,7-dihydropyrazolo[1,5-a]pyrazines as negative allosteric modulators of MGLUR2 receptors
US10041068B2 (en) 2013-01-01 2018-08-07 A. B. Seeds Ltd. Isolated dsRNA molecules and methods of using same for silencing target molecules of interest
US10072014B2 (en) 2014-12-03 2018-09-11 Janssen Pharmaceutica Nv 6,7-dihydropyrazolo[1,5-a]pyrazin-4(5H)-one compounds and their use as negative allosteric modulators of MGLUR2 receptors
CN109336890A (zh) * 2018-11-17 2019-02-15 重庆文理学院 一种吲唑类衍生物的合成方法及抗肿瘤应用
US10240162B2 (en) 2012-05-24 2019-03-26 A.B. Seeds Ltd. Compositions and methods for silencing gene expression
US10308644B2 (en) 2016-12-22 2019-06-04 Incyte Corporation Heterocyclic compounds as immunomodulators
US10378012B2 (en) 2014-07-29 2019-08-13 Monsanto Technology Llc Compositions and methods for controlling insect pests
WO2019219517A1 (fr) 2018-05-17 2019-11-21 Bayer Aktiengesellschaft Dérivés de dihydropyrazolo pyrazine carboxamide substitués
US10557138B2 (en) 2013-12-10 2020-02-11 Beeologics, Inc. Compositions and methods for virus control in Varroa mite and bees
US10609930B2 (en) 2013-03-13 2020-04-07 Monsanto Technology Llc Methods and compositions for weed control
US10612019B2 (en) 2013-03-13 2020-04-07 Monsanto Technology Llc Methods and compositions for weed control
US10618916B2 (en) 2018-05-11 2020-04-14 Incyte Corporation Heterocyclic compounds as immunomodulators
US10655136B2 (en) 2015-06-03 2020-05-19 Monsanto Technology Llc Methods and compositions for introducing nucleic acids into plants
US10669271B2 (en) 2018-03-30 2020-06-02 Incyte Corporation Heterocyclic compounds as immunomodulators
US10683505B2 (en) 2013-01-01 2020-06-16 Monsanto Technology Llc Methods of introducing dsRNA to plant seeds for modulating gene expression
US10760086B2 (en) 2011-09-13 2020-09-01 Monsanto Technology Llc Methods and compositions for weed control
US10793565B2 (en) 2016-12-22 2020-10-06 Incyte Corporation Heterocyclic compounds as immunomodulators
US10801028B2 (en) 2009-10-14 2020-10-13 Beeologics Inc. Compositions for controlling Varroa mites in bees
US10806785B2 (en) 2016-12-22 2020-10-20 Incyte Corporation Immunomodulator compounds and methods of use
US10808249B2 (en) 2011-09-13 2020-10-20 Monsanto Technology Llc Methods and compositions for weed control
US10806146B2 (en) 2011-09-13 2020-10-20 Monsanto Technology Llc Methods and compositions for weed control
US10829828B2 (en) 2011-09-13 2020-11-10 Monsanto Technology Llc Methods and compositions for weed control
US10883103B2 (en) 2015-06-02 2021-01-05 Monsanto Technology Llc Compositions and methods for delivery of a polynucleotide into a plant
US10888579B2 (en) 2007-11-07 2021-01-12 Beeologics Inc. Compositions for conferring tolerance to viral disease in social insects, and the use thereof
US10953008B2 (en) 2017-11-24 2021-03-23 Sumitomo Dainippon Pharma Co., Ltd. Substituted pyrazolo[1,5-a]pyrazines as negative allosteric modulators of group II metabotropic glutamate receptor
US10968449B2 (en) 2015-01-22 2021-04-06 Monsanto Technology Llc Compositions and methods for controlling Leptinotarsa
US10967078B2 (en) 2014-12-03 2021-04-06 Janssen Pharmaceutica Nv Radiolabelled mGluR2 PET ligands
US10988764B2 (en) 2014-06-23 2021-04-27 Monsanto Technology Llc Compositions and methods for regulating gene expression via RNA interference
US11033641B2 (en) 2015-12-18 2021-06-15 Janssen Pharmaceutica Nv Radiolabelled mGluR2/3 pet ligands
US11045562B2 (en) 2015-12-18 2021-06-29 Janssen Pharmaceutica Nv Radiolabelled mGluR2/3 PET ligands
US11091770B2 (en) 2014-04-01 2021-08-17 Monsanto Technology Llc Compositions and methods for controlling insect pests
US11401279B2 (en) 2019-09-30 2022-08-02 Incyte Corporation Pyrido[3,2-d]pyrimidine compounds as immunomodulators
US11407749B2 (en) 2015-10-19 2022-08-09 Incyte Corporation Heterocyclic compounds as immunomodulators
US11465981B2 (en) 2016-12-22 2022-10-11 Incyte Corporation Heterocyclic compounds as immunomodulators
US11535615B2 (en) 2015-12-22 2022-12-27 Incyte Corporation Heterocyclic compounds as immunomodulators
US11572366B2 (en) 2015-11-19 2023-02-07 Incyte Corporation Heterocyclic compounds as immunomodulators
US11608337B2 (en) 2016-05-06 2023-03-21 Incyte Corporation Heterocyclic compounds as immunomodulators
US11613536B2 (en) 2016-08-29 2023-03-28 Incyte Corporation Heterocyclic compounds as immunomodulators
US11673883B2 (en) 2016-05-26 2023-06-13 Incyte Corporation Heterocyclic compounds as immunomodulators
US11718605B2 (en) 2016-07-14 2023-08-08 Incyte Corporation Heterocyclic compounds as immunomodulators
US11753406B2 (en) 2019-08-09 2023-09-12 Incyte Corporation Salts of a PD-1/PD-L1 inhibitor
US11760756B2 (en) 2020-11-06 2023-09-19 Incyte Corporation Crystalline form of a PD-1/PD-L1 inhibitor
US11780836B2 (en) 2020-11-06 2023-10-10 Incyte Corporation Process of preparing a PD-1/PD-L1 inhibitor
US11807857B2 (en) 2014-06-25 2023-11-07 Monsanto Technology Llc Methods and compositions for delivering nucleic acids to plant cells and regulating gene expression
US11866451B2 (en) 2019-11-11 2024-01-09 Incyte Corporation Salts and crystalline forms of a PD-1/PD-L1 inhibitor
US11866434B2 (en) 2020-11-06 2024-01-09 Incyte Corporation Process for making a PD-1/PD-L1 inhibitor and salts and crystalline forms thereof
US11873309B2 (en) 2016-06-20 2024-01-16 Incyte Corporation Heterocyclic compounds as immunomodulators

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4448960A (en) * 1979-12-03 1984-05-15 Basf Aktiengesellschaft Dichloroacetamides, herbicides containing acetanilides as herbicidal active ingredients and the dichloroacetamides as antagonists, and the use of these herbicides in controlling undesired plant growth
WO1991010668A1 (fr) * 1990-01-22 1991-07-25 E.I. Du Pont De Nemours And Company Sulfonylurees a action herbicide
EP1241170A2 (fr) * 2001-03-16 2002-09-18 Pfizer Limited Dérivés de pyrazolopyrimidine
WO2004058176A2 (fr) * 2002-12-20 2004-07-15 Pharmacia Corporation Composes de pyrazole acyclique pour l'inhibition d'une proteine kinase activee par mitogene / d'une proteine kinase 2 activee
WO2005061507A1 (fr) * 2003-12-16 2005-07-07 Pfizer Products Inc. Composes bicycliques de pyrazol-4-one en tant que ligands des recepteurs cannabinoides et leurs utilisations
WO2005105805A1 (fr) * 2004-04-29 2005-11-10 'chemical Diversity Research Institute', Ltd. Carbamoylase-heterocycles anneles, bibliotheque focalisee, compositions pharmaceutiques et procedes de fabrication correspondants

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4448960A (en) * 1979-12-03 1984-05-15 Basf Aktiengesellschaft Dichloroacetamides, herbicides containing acetanilides as herbicidal active ingredients and the dichloroacetamides as antagonists, and the use of these herbicides in controlling undesired plant growth
WO1991010668A1 (fr) * 1990-01-22 1991-07-25 E.I. Du Pont De Nemours And Company Sulfonylurees a action herbicide
EP1241170A2 (fr) * 2001-03-16 2002-09-18 Pfizer Limited Dérivés de pyrazolopyrimidine
WO2004058176A2 (fr) * 2002-12-20 2004-07-15 Pharmacia Corporation Composes de pyrazole acyclique pour l'inhibition d'une proteine kinase activee par mitogene / d'une proteine kinase 2 activee
WO2005061507A1 (fr) * 2003-12-16 2005-07-07 Pfizer Products Inc. Composes bicycliques de pyrazol-4-one en tant que ligands des recepteurs cannabinoides et leurs utilisations
WO2005105805A1 (fr) * 2004-04-29 2005-11-10 'chemical Diversity Research Institute', Ltd. Carbamoylase-heterocycles anneles, bibliotheque focalisee, compositions pharmaceutiques et procedes de fabrication correspondants

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ASKEW B C ET AL: "Non-peptide glycoprotein IIb/IIIa inhibitors. 6. Design and synthesis of rigid, centrally constrained non-peptide fibrinogen receptor antagonists", BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, OXFORD, GB, vol. 5, no. 5, 2 March 1995 (1995-03-02), pages 475 - 480, XP004135728, ISSN: 0960-894X *
CVETOVICH R J ET AL: "Rapid synthesis of tetrahydro-4H-pyrazolo[1,5-a]diazepine-2-carboxylate", TETRAHEDRON LETTERS, ELSEVIER, AMSTERDAM, NL, vol. 44, no. 31, 28 July 2003 (2003-07-28), pages 5867 - 5870, XP004435094, ISSN: 0040-4039 *
M.MÜHLSTÄDT, J. ZSCHIEDRICH: "Alkylierung und Aminomethylierung von 3-Methylpyrazol-5-carbonsäureäthylester", J.PRAKT.CHEMIE, vol. 311, no. 3, 1969, pages 363 - 369, XP009059315 *

Cited By (110)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10888579B2 (en) 2007-11-07 2021-01-12 Beeologics Inc. Compositions for conferring tolerance to viral disease in social insects, and the use thereof
US10801028B2 (en) 2009-10-14 2020-10-13 Beeologics Inc. Compositions for controlling Varroa mites in bees
US9121022B2 (en) 2010-03-08 2015-09-01 Monsanto Technology Llc Method for controlling herbicide-resistant plants
US9988634B2 (en) 2010-03-08 2018-06-05 Monsanto Technology Llc Polynucleotide molecules for gene regulation in plants
US11812738B2 (en) 2010-03-08 2023-11-14 Monsanto Technology Llc Polynucleotide molecules for gene regulation in plants
CN102812028A (zh) * 2010-04-08 2012-12-05 方济各安吉利克化学联合股份有限公司 三环吲唑化合物、制备方法和含有它的药物组合物
WO2011124430A1 (fr) 2010-04-08 2011-10-13 Aziende Chimiche Riunite Angelini Francesco A.C.R.A.F. S.P.A. Composé tricyclique d'indazole, son procédé de préparation et composition pharmaceutique le contenant
US9655906B2 (en) 2010-04-08 2017-05-23 Aziende Chimiche Riunite Angelini Francesco A.C.R.A.F. S.P.A. Tricyclic indazole compound, method of preparation and pharmaceutical composition containing it
JP2013523790A (ja) * 2010-04-08 2013-06-17 アジェンデ・キミケ・リウニテ・アンジェリニ・フランチェスコ・ア・チ・エレ・ア・エフェ・ソシエタ・ペル・アチオニ 3環系インダゾール化合物、その調製方法およびそれを含有する医薬組成物
CN102812028B (zh) * 2010-04-08 2014-11-12 方济各安吉利克化学联合股份有限公司 三环吲唑化合物、制备方法和含有它的药物组合物
EA021417B1 (ru) * 2010-04-08 2015-06-30 Ацьенде Кимике Рьюните Анджелини Франческо А.К.Р.А.Ф. С.П.А. Трициклическое индазольное соединение, способ его получения и содержащая его фармацевтическая композиция
US9120801B2 (en) 2010-04-08 2015-09-01 Aziende Chimiche Riunite Angelini Francesco A.C.R.A.F. S.P.A. Tricyclic indazole compound, method of preparation and pharmaceutical composition containing it
US10829828B2 (en) 2011-09-13 2020-11-10 Monsanto Technology Llc Methods and compositions for weed control
US10760086B2 (en) 2011-09-13 2020-09-01 Monsanto Technology Llc Methods and compositions for weed control
EP3434780A1 (fr) 2011-09-13 2019-01-30 Monsanto Technology LLC Procédés et compositions de lutte contre les mauvaises herbes
US9416363B2 (en) 2011-09-13 2016-08-16 Monsanto Technology Llc Methods and compositions for weed control
US9422558B2 (en) 2011-09-13 2016-08-23 Monsanto Technology Llc Methods and compositions for weed control
US9422557B2 (en) 2011-09-13 2016-08-23 Monsanto Technology Llc Methods and compositions for weed control
EP3434779A1 (fr) 2011-09-13 2019-01-30 Monsanto Technology LLC Procédés et compositions de lutte contre les mauvaises herbes
US10806146B2 (en) 2011-09-13 2020-10-20 Monsanto Technology Llc Methods and compositions for weed control
US10808249B2 (en) 2011-09-13 2020-10-20 Monsanto Technology Llc Methods and compositions for weed control
WO2013040021A1 (fr) 2011-09-13 2013-03-21 Monsanto Technology Llc Procédés et compositions de lutte contre les mauvaises herbes
WO2013040049A1 (fr) 2011-09-13 2013-03-21 Monsanto Technology Llc Procédés et compositions pour lutter contre les mauvaises herbes
EP3382027A2 (fr) 2011-09-13 2018-10-03 Monsanto Technology LLC Procédés et compositions de lutte contre les mauvaises herbes
WO2013039990A1 (fr) 2011-09-13 2013-03-21 Monsanto Technology Llc Procédés et compositions de lutte contre les mauvaises herbes
WO2013040117A1 (fr) 2011-09-13 2013-03-21 Monsanto Technology Llc Procédés et compositions de lutte contre les mauvaises herbes
EP3296402A2 (fr) 2011-09-13 2018-03-21 Monsanto Technology LLC Procédés et compositions pour lutter contre les mauvaises herbes
US10240161B2 (en) 2012-05-24 2019-03-26 A.B. Seeds Ltd. Compositions and methods for silencing gene expression
US10934555B2 (en) 2012-05-24 2021-03-02 Monsanto Technology Llc Compositions and methods for silencing gene expression
US10240162B2 (en) 2012-05-24 2019-03-26 A.B. Seeds Ltd. Compositions and methods for silencing gene expression
US10683505B2 (en) 2013-01-01 2020-06-16 Monsanto Technology Llc Methods of introducing dsRNA to plant seeds for modulating gene expression
US10041068B2 (en) 2013-01-01 2018-08-07 A. B. Seeds Ltd. Isolated dsRNA molecules and methods of using same for silencing target molecules of interest
US10609930B2 (en) 2013-03-13 2020-04-07 Monsanto Technology Llc Methods and compositions for weed control
US10612019B2 (en) 2013-03-13 2020-04-07 Monsanto Technology Llc Methods and compositions for weed control
US10568328B2 (en) 2013-03-15 2020-02-25 Monsanto Technology Llc Methods and compositions for weed control
WO2014151255A1 (fr) 2013-03-15 2014-09-25 Monsanto Technology Llc Méthodes et compositions pour lutter contre les mauvaises herbes
US10584129B2 (en) 2013-06-04 2020-03-10 Janssen Pharmaceuticals Nv Substituted 6,7-dihydropyrazolo[1,5-a]pyrazines as negative allosteric modulators of mGluR2 receptors
KR102223050B1 (ko) 2013-06-04 2021-03-04 얀센 파마슈티카 엔.브이. 6,7―디히드로피라졸로[1,5―a]피라진―4(5H)―온 화합물 및 MGLUR2 수용체의 음성 알로스테릭 조절제로서의 그 용도
US10106542B2 (en) 2013-06-04 2018-10-23 Janssen Pharmaceutica Nv Substituted 6,7-dihydropyrazolo[1,5-a]pyrazines as negative allosteric modulators of mGluR2 receptors
KR20160015247A (ko) * 2013-06-04 2016-02-12 얀센 파마슈티카 엔.브이. 6,7―디히드로피라졸로[1,5―a]피라진―4(5H)―온 화합물 및 MGLUR2 수용체의 음성 알로스테릭 조절제로서의 그 용도
US9850496B2 (en) 2013-07-19 2017-12-26 Monsanto Technology Llc Compositions and methods for controlling Leptinotarsa
US9856495B2 (en) 2013-07-19 2018-01-02 Monsanto Technology Llc Compositions and methods for controlling Leptinotarsa
US11377667B2 (en) 2013-07-19 2022-07-05 Monsanto Technology Llc Compositions and methods for controlling Leptinotarsa
US10597676B2 (en) 2013-07-19 2020-03-24 Monsanto Technology Llc Compositions and methods for controlling Leptinotarsa
US9777288B2 (en) 2013-07-19 2017-10-03 Monsanto Technology Llc Compositions and methods for controlling leptinotarsa
US10100306B2 (en) 2013-11-04 2018-10-16 Monsanto Technology Llc Compositions and methods for controlling arthropod parasite and pest infestations
US9540642B2 (en) 2013-11-04 2017-01-10 The United States Of America, As Represented By The Secretary Of Agriculture Compositions and methods for controlling arthropod parasite and pest infestations
US10927374B2 (en) 2013-11-04 2021-02-23 Monsanto Technology Llc Compositions and methods for controlling arthropod parasite and pest infestations
US10557138B2 (en) 2013-12-10 2020-02-11 Beeologics, Inc. Compositions and methods for virus control in Varroa mite and bees
US10334848B2 (en) 2014-01-15 2019-07-02 Monsanto Technology Llc Methods and compositions for weed control using EPSPS polynucleotides
WO2015108982A2 (fr) 2014-01-15 2015-07-23 Monsanto Technology Llc Procédés et compositions pour la lutte contre les mauvaises herbes utilisant des polynucléotides epsps
WO2015129821A1 (fr) * 2014-02-27 2015-09-03 国立大学法人東京大学 Dérivé de pyrazole condensé ayant une activité inhibitrice d'autotaxine
US10189843B2 (en) 2014-02-27 2019-01-29 The University Of Tokyo Fused pyrazole derivative having autotaxin inhibitory activity
JPWO2015129821A1 (ja) * 2014-02-27 2017-03-30 国立大学法人 東京大学 オートタキシン阻害活性を有する縮合ピラゾール誘導体
US11091770B2 (en) 2014-04-01 2021-08-17 Monsanto Technology Llc Compositions and methods for controlling insect pests
US10988764B2 (en) 2014-06-23 2021-04-27 Monsanto Technology Llc Compositions and methods for regulating gene expression via RNA interference
US11807857B2 (en) 2014-06-25 2023-11-07 Monsanto Technology Llc Methods and compositions for delivering nucleic acids to plant cells and regulating gene expression
US10378012B2 (en) 2014-07-29 2019-08-13 Monsanto Technology Llc Compositions and methods for controlling insect pests
US11124792B2 (en) 2014-07-29 2021-09-21 Monsanto Technology Llc Compositions and methods for controlling insect pests
US10005786B2 (en) 2014-08-01 2018-06-26 Janssen Pharmaceutica Nv Substituted 6,7-dihydropyrazolo[1,5-a]pyrazines as negative allosteric modulators of MGLUR2 receptors
CN106573935B (zh) * 2014-08-01 2020-01-17 詹森药业有限公司 6,7-二氢吡唑并[1,5-a]吡嗪-4(5H)-酮化合物和其作为MGLUR2受体的负性别构调节物的用途
AU2015295313B2 (en) * 2014-08-01 2019-05-02 Janssen Pharmaceutica Nv 6,7-dihydropyrazolo[1,5-a]pyrazin-4(5H)-one compounds and their use as negative allosteric modulators of mGluR2 receptors
JP2017523202A (ja) * 2014-08-01 2017-08-17 ヤンセン ファーマシューティカ エヌ.ベー. 6,7−ジヒドロピラゾロ[1,5−a]ピラジン−4(5H)−オン化合物およびMGLUR2受容体の負のアロステリック調節因子としてのそれらの使用
CN107018662A (zh) * 2014-08-01 2017-08-04 詹森药业有限公司 6,7‑二氢吡唑并[1,5‑a]吡嗪‑4(5H)‑酮化合物和其作为MGLUR2受体的负性别构调节物的用途
AU2015295299B2 (en) * 2014-08-01 2019-05-02 Janssen Pharmaceutica Nv 6,7-dihydropyrazolo[1,5-a]pyrazin-4(5H)-one compounds and their use as negative allosteric modulators of mGluR2 receptors
US10512646B2 (en) 2014-08-01 2019-12-24 Janssen Pharmaceutica Nv Substituted 6,7-dihydropyrazolo[1,5-a]pyrazines as negative allosteric modulators of mGluR2 receptors
CN106573935A (zh) * 2014-08-01 2017-04-19 詹森药业有限公司 6,7‑二氢吡唑并[1,5‑a]吡嗪‑4(5H)‑酮化合物和其作为MGLUR2受体的负性别构调节物的用途
US10519162B2 (en) 2014-08-01 2019-12-31 Janssen Pharmaceutica Nv 6,7-dihydropyrazolo[1,5-α]pyrazin-4(5H)-one compounds and their use as negative allosteric modulators of mGluR2 receptors
US10005785B2 (en) 2014-08-01 2018-06-26 Janssen Pharmaceutica Nv Substituted 6,7-dihydropyrazolo[1,5-a] pyrazines as negative allosteric modulators of mGlUR2 receptors
CN107018662B (zh) * 2014-08-01 2020-01-07 詹森药业有限公司 6,7-二氢吡唑并[1,5-a]吡嗪-4(5H)-酮化合物和其作为MGLUR2受体的负性别构调节物的用途
US10967078B2 (en) 2014-12-03 2021-04-06 Janssen Pharmaceutica Nv Radiolabelled mGluR2 PET ligands
US10072014B2 (en) 2014-12-03 2018-09-11 Janssen Pharmaceutica Nv 6,7-dihydropyrazolo[1,5-a]pyrazin-4(5H)-one compounds and their use as negative allosteric modulators of MGLUR2 receptors
US10968449B2 (en) 2015-01-22 2021-04-06 Monsanto Technology Llc Compositions and methods for controlling Leptinotarsa
US10883103B2 (en) 2015-06-02 2021-01-05 Monsanto Technology Llc Compositions and methods for delivery of a polynucleotide into a plant
US10655136B2 (en) 2015-06-03 2020-05-19 Monsanto Technology Llc Methods and compositions for introducing nucleic acids into plants
US11407749B2 (en) 2015-10-19 2022-08-09 Incyte Corporation Heterocyclic compounds as immunomodulators
US11572366B2 (en) 2015-11-19 2023-02-07 Incyte Corporation Heterocyclic compounds as immunomodulators
US11033641B2 (en) 2015-12-18 2021-06-15 Janssen Pharmaceutica Nv Radiolabelled mGluR2/3 pet ligands
US11045562B2 (en) 2015-12-18 2021-06-29 Janssen Pharmaceutica Nv Radiolabelled mGluR2/3 PET ligands
US11866435B2 (en) 2015-12-22 2024-01-09 Incyte Corporation Heterocyclic compounds as immunomodulators
US11535615B2 (en) 2015-12-22 2022-12-27 Incyte Corporation Heterocyclic compounds as immunomodulators
US11608337B2 (en) 2016-05-06 2023-03-21 Incyte Corporation Heterocyclic compounds as immunomodulators
US11673883B2 (en) 2016-05-26 2023-06-13 Incyte Corporation Heterocyclic compounds as immunomodulators
US11873309B2 (en) 2016-06-20 2024-01-16 Incyte Corporation Heterocyclic compounds as immunomodulators
US11718605B2 (en) 2016-07-14 2023-08-08 Incyte Corporation Heterocyclic compounds as immunomodulators
US11613536B2 (en) 2016-08-29 2023-03-28 Incyte Corporation Heterocyclic compounds as immunomodulators
US10793565B2 (en) 2016-12-22 2020-10-06 Incyte Corporation Heterocyclic compounds as immunomodulators
US11787793B2 (en) 2016-12-22 2023-10-17 Incyte Corporation Heterocyclic compounds as immunomodulators
US10308644B2 (en) 2016-12-22 2019-06-04 Incyte Corporation Heterocyclic compounds as immunomodulators
US10806785B2 (en) 2016-12-22 2020-10-20 Incyte Corporation Immunomodulator compounds and methods of use
US11465981B2 (en) 2016-12-22 2022-10-11 Incyte Corporation Heterocyclic compounds as immunomodulators
US10800768B2 (en) 2016-12-22 2020-10-13 Incyte Corporation Heterocyclic compounds as immunomodulators
US11566026B2 (en) 2016-12-22 2023-01-31 Incyte Corporation Heterocyclic compounds as immunomodulators
US11339149B2 (en) 2016-12-22 2022-05-24 Incyte Corporation Heterocyclic compounds as immunomodulators
US11633395B2 (en) 2017-11-24 2023-04-25 Sumitomo Pharma Co., Ltd. Substituted pyrazolo[1,5-a]pyrazines as negative allosteric modulators of group II metabotropic glutamate receptor
US10953008B2 (en) 2017-11-24 2021-03-23 Sumitomo Dainippon Pharma Co., Ltd. Substituted pyrazolo[1,5-a]pyrazines as negative allosteric modulators of group II metabotropic glutamate receptor
US10669271B2 (en) 2018-03-30 2020-06-02 Incyte Corporation Heterocyclic compounds as immunomodulators
US11124511B2 (en) 2018-03-30 2021-09-21 Incyte Corporation Heterocyclic compounds as immunomodulators
US10618916B2 (en) 2018-05-11 2020-04-14 Incyte Corporation Heterocyclic compounds as immunomodulators
US10906920B2 (en) 2018-05-11 2021-02-02 Incyte Corporation Heterocyclic compounds as immunomodulators
US11414433B2 (en) 2018-05-11 2022-08-16 Incyte Corporation Heterocyclic compounds as immunomodulators
WO2019219517A1 (fr) 2018-05-17 2019-11-21 Bayer Aktiengesellschaft Dérivés de dihydropyrazolo pyrazine carboxamide substitués
CN109336890A (zh) * 2018-11-17 2019-02-15 重庆文理学院 一种吲唑类衍生物的合成方法及抗肿瘤应用
CN109336890B (zh) * 2018-11-17 2020-03-20 重庆文理学院 一种吲唑类衍生物的合成方法及抗肿瘤应用
US11753406B2 (en) 2019-08-09 2023-09-12 Incyte Corporation Salts of a PD-1/PD-L1 inhibitor
US11401279B2 (en) 2019-09-30 2022-08-02 Incyte Corporation Pyrido[3,2-d]pyrimidine compounds as immunomodulators
US11866451B2 (en) 2019-11-11 2024-01-09 Incyte Corporation Salts and crystalline forms of a PD-1/PD-L1 inhibitor
US11780836B2 (en) 2020-11-06 2023-10-10 Incyte Corporation Process of preparing a PD-1/PD-L1 inhibitor
US11760756B2 (en) 2020-11-06 2023-09-19 Incyte Corporation Crystalline form of a PD-1/PD-L1 inhibitor
US11866434B2 (en) 2020-11-06 2024-01-09 Incyte Corporation Process for making a PD-1/PD-L1 inhibitor and salts and crystalline forms thereof

Also Published As

Publication number Publication date
DE102004054665A1 (de) 2006-05-18

Similar Documents

Publication Publication Date Title
EP1478628B1 (fr) 2-amino-4-bicycloamino-6h-1,3,5-triazines, procede permettant de les produire et leur utilisation comme herbicides et regulateurs de croissance de plantes
WO2006050803A1 (fr) Derives de pyrazole bicycliques et tricycliques substitues, procedes de production de ces derives et utilisation de ces derives comme herbicides et comme regulateurs de la croissance des plantes
DE102004054666A1 (de) Substituierte Pyrazol-3-carboxamide, Verfahren zur Herstellung und Verwendung als Herbizide und Pflanzenwachstumsregulatoren
WO2007003294A1 (fr) Derives de 3-[1-halo-1-aryl-methan-sulfonyl]- et 3-[1-halo-1-heteroaryl-methan-sulfonyl]-isoxazoline, procede pour les preparer et leur utilisation en tant qu'herbicides et regulateurs de croissance vegetale
EP2121639A2 (fr) 2,4-diamino-1,3,5-triazines substituées, procédé de production de celles-ci et utilisation de celles-ci comme herbicides et régulateurs de croissance végétale
EP2017264A1 (fr) Liaisons de phénylpropargyle substituées, leur procédé de fabrication et d'utilisation en tant qu'herbicides et régulateurs de croissance des plantes
US20030171218A1 (en) Substituted 3-heteroaryl(amino- or oxy)pyrrolidin-2-ones, their preparation and use as herbicides or plant growth regulators
AU2007236251B2 (en) Diamino-1 ,3,5-triazines N-substituted with bicyclic radicals, process for their preparation, compositions thereof, and their use as herbicides and plant growth regulators
EP1163229A1 (fr) 2,4-diamino-1,3,5-triazines, leur procede de production et leur utilisation comme herbicides et regulateurs de la croissance des plantes
DE10035038A1 (de) Substituierte 2-Amino-1,3,5-triazine, Verfahren zur Herstellung und Verwendung als Herbizide und Pflanzenwachstumsregulatoren
DE102006016884A1 (de) Substituierte Diamino-1,3,5-triazine, Verfahren zu deren Herstellung und deren Verwendung als Herbizide und Pflanzenwachstumsregulatoren
DE19960683A1 (de) Substituierte 2,4-Diamino-1,3,5-triazine, Verfahren zur Herstellung und Verwendung als Herbizide und Pflanzenwachstumsregulatoren
DE19948450A1 (de) Alkyl-amino-1,3,5-triazine, Verfahren zur Herstellung und Verwendung als Herbizide und Pflanzenwachstumsregulatoren
DE10117707A1 (de) Alkyl-amino-1,3,5-triazine, Verfahren zu ihrer Herstellung und Verwendung als Herbizide und Pflanzenwachstumsregulatoren
EP1484324A1 (fr) 2,4-Diamino-1,3,5-triazines subtitutées, leur procédé de préparation et leur utilisation en tant qu'herbicides ou de régulateurs de croissance des plantes
DE102005063066A1 (de) 2-[Pyrazolyl-methan-sulfonyl])-pyridin-N-oxid-Derivate und 2-[Pyrazlyl-methan-sulfinyl])-pyridin-N-oxid-Derivate, Verfahren zu deren Herstellung und Verwendung als Herbizide und Pflanzenwachstumsregulatoren
DE10123845A1 (de) 2,4-Diamino-1,3,5-triazine, Verfahren zur Herstellung und Verwendung als Herbizide und Pflanzenwachstumsregulatoren
DE19960684A1 (de) Kombinationen von herbiziden Alkylazinen und Safenern
EP1361219A1 (fr) Derivés de Indanylalcoylamino-1,3,5-triazine, procédé de leur preparation, composition les comprenant comme ingrédient efficace e leur utilisation comme herbicides

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase

Ref document number: 05798807

Country of ref document: EP

Kind code of ref document: A1