WO2006048919A1 - 最適設計管理装置、最適設計計算システム、最適設計管理方法、最適設計管理プログラム - Google Patents

最適設計管理装置、最適設計計算システム、最適設計管理方法、最適設計管理プログラム Download PDF

Info

Publication number
WO2006048919A1
WO2006048919A1 PCT/JP2004/016227 JP2004016227W WO2006048919A1 WO 2006048919 A1 WO2006048919 A1 WO 2006048919A1 JP 2004016227 W JP2004016227 W JP 2004016227W WO 2006048919 A1 WO2006048919 A1 WO 2006048919A1
Authority
WO
WIPO (PCT)
Prior art keywords
explanatory variable
variable values
optimization
design management
explanatory
Prior art date
Application number
PCT/JP2004/016227
Other languages
English (en)
French (fr)
Inventor
Kazuhiro Matsumoto
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to JP2006542189A priority Critical patent/JP4643586B2/ja
Priority to PCT/JP2004/016227 priority patent/WO2006048919A1/ja
Publication of WO2006048919A1 publication Critical patent/WO2006048919A1/ja
Priority to US11/785,902 priority patent/US7991617B2/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"

Definitions

  • Optimal design management device optimal design calculation system, optimal design management method, optimal design management program
  • the present invention relates to an optimum design management device, an optimum design calculation system, an optimum design management method, and an optimum design management program for performing optimum design for explanatory variables and objective variables.
  • explanatory variables are variables to be designed such as vertical, horizontal, and height dimensions
  • objective variables are variables to be optimized such as stress.
  • the relationship between explanatory variables and objective variables can be investigated by examining objective variable values for combinations of explanatory variable values assuming a large number of cases, and explanatory variables that optimize objective variable values. Optimal design calculation systems that investigate combinations of values have been realized.
  • Patent Document 1 As a related art related to the present invention, for example, Patent Document 1 shown below is known.
  • This equipment reliability design support device assigns design variables of equipment and parts to an orthogonal table based on Taguchi method, and analyzes the design analysis model or inverse problem analysis model based on this orthogonal table. Based on this analysis result, a response surface is obtained, and optimization design is performed using this response surface.
  • Patent Document 1 JP 2001-125933 A (Page 3-10, Fig. 1)
  • response surfaces representing the relationship between explanatory variables and objective variables
  • one or more response surfaces are usually created, and the one that best represents the relationship between explanatory variables and objective variables is selected. And used for optimization.
  • selection of the response surface requires specialized knowledge on statistical analysis, which limits the number of users.
  • the response surface is usually selected so that the relationship between the explanatory variable and the objective variable is appropriately expressed over the entire range of explanatory variable values. It is not always appropriate in the area, and there may be a problem with the accuracy of the response surface. Furthermore, by selecting one response surface and not selecting force, the search range for optimization is narrowed, and optimization accuracy may be insufficient.
  • the present invention has been made to solve the above-described problems, and an optimum design management device, an optimum design calculation system, and an optimum design that improve the accuracy of the optimum design without increasing the degree of difficulty for the user.
  • the purpose is to provide a management method and an optimal design management program.
  • the present invention analyzes an objective variable value from a set of explanatory variable values using at least one external computation node, and performs optimization using the analysis result.
  • a management device that transmits a set of explanatory variable values to be used for analysis to a calculation node and sends an analysis instruction; an objective variable reception unit that receives an objective variable value of an analysis result from the calculation node;
  • a response surface calculation unit that calculates at least one response surface from a set of explanatory variable values and objective variable values, and a set of explanatory variable values that approach a predetermined optimization condition on the response surface are set as new explanatory variable values.
  • An optimization calculation unit that is updated as a set, and a control unit that repeatedly executes the processing that continues from the explanatory variable transmission unit until a predetermined end condition is satisfied.
  • a clustering calculation unit that further combines a set of explanatory variable values calculated by the optimization calculation unit into a predetermined number of representative variable value sets. It is characterized by providing.
  • the response surface calculation unit calculates a plurality of response surfaces using different algorithms.
  • the response surface is an error-free response surface that models the relationship between the explanatory variable and the objective variable so that there is no error. is there.
  • the response surface calculation unit calculates a response surface using a plurality of combinations of explanatory variable values and objective variable values that are allowed to overlap.
  • a plurality of response surfaces are calculated by performing a plurality of processes while changing the way of overlapping, and a response surface represented by a representative value of the plurality of response surfaces is output.
  • the response surface calculation unit calculates a plurality of response surfaces using different algorithms, and is represented by a representative value of the plurality of response surfaces. A response surface is output.
  • the optimization condition is a set of explanatory variable values that optimizes the objective variable value.
  • the optimization condition is a set of explanatory variable values such that the distribution of the objective variable values is uniform.
  • the optimization condition is a set of explanatory variable values such that a deviation between the explanatory variable value and the objective variable value is reduced.
  • the first condition is that the objective variable value is a set of optimal variable values
  • the distribution of the objective variable value and the explanatory variable value is
  • the second condition is a set of explanatory variable values that are uniform, and the optimization condition satisfies the first condition and the second condition at a predetermined ratio.
  • the response surface calculation unit calculates a response surface by omitting a set of non-optimal objective variable values and explanatory variable values corresponding to the objective variable values. It is characterized by this.
  • the optimization calculation unit has a predetermined set of explanatory variables used by the explanatory variable transmission unit and a set of explanatory variable values approaching the predetermined optimization condition. If the degree of similarity is satisfied, the set of explanatory variable values approaching the predetermined optimization condition is set as the set of explanatory variable values used by the explanatory variable transmitting unit, and the objective variable value of the corresponding analysis result is set to the value of the next analysis result. Substituting, and for the substituted objective variable value, the next explanation variable transmitting unit and the objective variable receiving unit are not executed.
  • the present invention is an optimal design management apparatus that analyzes an objective variable value from a set of explanatory variable values using at least one external calculation node and performs optimization using the analysis result.
  • An explanatory variable transmission unit that transmits a set of explanatory variable values used for analysis to the calculation node and instructs the analysis, and an objective variable reception unit that receives the target variable value of the analysis result from the calculation node;
  • a statistical information calculation unit that calculates regression tree data from a set of explanatory variable values and objective variable values, and a display screen generation unit that generates a display screen based on the regression tree data.
  • an explanatory variable value such that the objective variable value satisfies a predetermined objective variable range using the regression tree data is changed to a new explanatory variable value. It is characterized by comprising a centralized calculation unit that is updated as a set, and a control unit that repeatedly executes the processing that continues from the explanation variable transmission unit until a predetermined end condition is satisfied.
  • the present invention is an optimal design management device that analyzes an objective variable value from a set of explanatory variable values using at least one external calculation node, and performs optimization using the analysis result.
  • An explanatory variable transmitting unit that transmits a pair of explanatory variable values to the calculation node and instructing analysis
  • an objective variable receiving unit that receives the objective variable value from the calculation node
  • a principal component from the combination of the explanatory variable value and the objective variable value
  • a statistical information calculation unit that calculates analysis data and a display screen generation unit that generates a display screen based on the principal component analysis data are provided.
  • an explanatory variable value such that the objective variable value satisfies a predetermined objective variable range using the principal component analysis data is changed to a new explanatory variable value. It is characterized by comprising a centralized calculation unit that is updated as a set, and a control unit that repeatedly executes the processing from the explanatory variable transmission unit until a predetermined end condition is satisfied.
  • the present invention is an optimal design management apparatus that analyzes an objective variable value from a set of explanatory variable values using at least one external calculation node and performs optimization using the analysis result.
  • the objective variable receiving unit that receives the objective variable value from the calculation node, and the combination of the explanatory variable value and the objective variable value
  • a statistical information calculation unit for calculating the local network data
  • a display screen generation unit for generating a display screen based on the -eural network data.
  • the present invention is an optimal design calculation system that performs analysis of a target variable value from a set of explanatory variable values using at least one calculation node and performs optimization using the analysis result.
  • Send the explanatory variable value set used in the analysis to the calculation node, and send an analysis variable based on the explanatory variable value of the explanatory variable transmitting unit and the explanatory variable transmitting unit for instructing the analysis, and the objective variable of the analysis result A calculation node for calculating a value, an objective variable receiving unit for receiving the objective variable value of the analysis result from the calculation node, and a response surface calculating unit for calculating at least one response surface from a set of explanatory variable values and objective variable values;
  • a control unit that repeatedly executes the process.
  • the present invention is an optimal design management method in which an objective variable value is analyzed from a set of explanatory variable values using at least one external calculation node, and optimization is performed using the analysis result.
  • the calculation step and the control step of repeatedly executing the process of the explanatory variable transmission step force until the predetermined end condition is satisfied are executed.
  • the present invention is an optimal design management method for analyzing an objective variable value from a set of explanatory variable values using at least one external calculation node and performing optimization using the analysis result.
  • a statistical information calculation step for calculating regression tree data from a set of variable values and a display screen generation step for generating a display screen based on the regression tree data are executed.
  • the present invention is an optimal design management method for analyzing an objective variable value from a set of explanatory variable values using at least one external calculation node and performing optimization using the analysis result.
  • An explanatory variable transmission step for sending a set of explanatory variable values to the calculation node and instructing analysis
  • an objective variable receiving step for receiving the objective variable value from the calculation node
  • an explanatory variable value A statistical information calculation step for calculating principal component analysis data from a set of objective variable values and a display screen generation step for generating a display screen based on the main component analysis data are executed.
  • the present invention is an optimal design management method for analyzing an objective variable value from a set of explanatory variable values using at least one external calculation node and performing optimization using the analysis result, From the explanatory variable sending step to send the explanatory variable value pair to the calculation node and instruct analysis, the objective variable reception step to receive the objective variable value from the calculation node, and the explanatory variable value and objective variable value pair- A statistical information calculation step for calculating the neural network data and a display screen generation step for generating a display screen based on the neural network data are executed.
  • the present invention provides a computer with an optimal design management method for analyzing a target variable value from a set of explanatory variable values using at least one external calculation node and performing optimization using the analysis result.
  • An optimal design management program to be executed which transmits a set of explanatory variable values to be used for analysis to a calculation node and sends an explanatory variable instruction for instructing the analysis, and a purpose for receiving the target variable value of the analysis result from the calculation node
  • the variable reception step, the response surface calculation step for calculating at least one response surface from the combination of the explanatory variable value and the objective variable value, and the explanation variable value set approaching a predetermined optimization condition on the response surface are newly explained.
  • An optimization calculation step for updating as a set of variable values and a control step for repeatedly executing the explanatory variable transmission step force until the predetermined end condition is satisfied. The is intended to be executed by the Konbiyu data.
  • the present invention provides a computer with an optimal design management method for analyzing a target variable value from a set of explanatory variable values using at least one external calculation node and performing optimization using the analysis result.
  • An optimal design management program to be executed which transmits a set of explanatory variable values to be used for analysis to a calculation node and sends an explanatory variable instruction for instructing the analysis, and a purpose for receiving the target variable value of the analysis result from the calculation node
  • a computer executes a variable reception step, a statistical information calculation step for calculating regression tree data from a set of explanatory variable values and objective variable values, and a display screen generation step for generating a display screen based on the regression tree data.
  • ⁇ 3 ⁇ 4 Things.
  • the present invention provides a computer with an optimal design management method for analyzing a target variable value from a set of explanatory variable values using at least one external calculation node and performing optimization using the analysis result.
  • An optimal design management program to be executed an explanatory variable sending step for sending a set of explanatory variable values to a calculation node and instructing analysis, an objective variable receiving step for receiving an objective variable value from the calculation node, and an explanatory variable
  • a computer executes a statistical information calculation step for calculating principal component analysis data from a set of values and objective variable values, and a display screen generation step for generating a display screen based on the principal component analysis data.
  • the present invention provides a computer with an optimal design management method for analyzing an objective variable value from a set of explanatory variable values using at least one external calculation node and performing optimization using the analysis result.
  • An optimal design management program to be executed an explanatory variable sending step for sending a set of explanatory variable values to a calculation node and instructing analysis, an objective variable receiving step for receiving an objective variable value from the calculation node, and an explanatory variable
  • the computer executes a statistical information calculation step for calculating the universal network data from the set of the value and the objective variable value, and a display screen generation step for generating a display screen based on the neural network data.
  • FIG. 1 is a block diagram showing an example of the configuration of an optimal design calculation system according to the present invention.
  • FIG. 2 is a flowchart showing an example of the operation of the optimum design management apparatus according to the present invention.
  • FIG. 3 is a table showing an example of a set of explanatory variable values.
  • FIG. 4 is a table showing an example of objective variable values.
  • FIG. 5 is a table showing an example of a set of explanatory variable values of optimization results.
  • FIG. 6 is a diagram showing an example of a display screen based on regression tree data according to the present invention.
  • FIG. 7 is a diagram showing an example of a display screen based on principal component analysis data according to the present invention.
  • FIG. 8 is a diagram showing an example of a display screen based on neural network data according to the present invention.
  • FIG. 1 shows the optimum according to the present invention. It is a block diagram which shows an example of a structure of a design calculation system.
  • This optimal design calculation system includes an optimal design management device 1, a plurality of calculation nodes 2, and an operation terminal 3.
  • the optimal design calculation system is realized by, for example, a grid computing system or a cluster computer system.
  • the optimal design management device 1 is a management server
  • the operation terminal 3 is a user terminal
  • the calculation node 2 is a PC (Personal Computer). )
  • workstations which are connected via a network.
  • the optimal design management device 1 includes a control unit 11, a storage unit 12, a response surface calculation unit 21, an optimization calculation unit 22, a statistical information calculation unit 31, a centralized calculation unit 32, a clustering calculation unit 41, an analysis result omitting unit 42, An analysis result substitution unit 43 is provided.
  • the operation terminal 3 includes an input unit 51 and a display unit 52.
  • FIG. 2 is a flowchart showing an example of the operation of the optimum design management apparatus according to the present invention.
  • the control unit 11 stores the set value of the optimum design calculation in the storage unit 12 according to the input from the user in the input unit 51 (Sl l).
  • the set values are, for example, the explanatory variable range that represents the range of the explanatory variable value, the objective variable range that represents the range of the objective variable value, the explanatory variable value, the objective variable value, the termination condition, the number of omissions, the number of outputs, the optimization and model The ratio etc. Individual setting values will be described later.
  • the control unit 11 creates a predetermined number of sets of explanatory variable values by sampling initial explanatory variable values in the explanatory variable range, and stores them in the storage unit 12 (S 12 ).
  • the control unit 11 uses the set of explanatory variable values of the initial value stored in the storage unit 12 or the set of explanatory variable values of the optimization result as a set of explanatory variable values used for the analysis. Allotted to each computation node 2 together with an analysis instruction (S13).
  • FIG. 3 is a table showing an example of a set of explanatory variable values.
  • the explanatory variables are vertical, horizontal, and height dimensions, and 8 sets are sampled.
  • each calculation node 2 Upon receiving the analysis instruction and explanatory variable value pairs, each calculation node 2 calculates an objective variable value using an analysis program distributed in advance, and controls the control unit 11 as an objective variable value of the analysis result.
  • FIG. 4 is a table showing an example of the objective variable value.
  • the objective variable is stress
  • the control unit 11 receives the objective variable value of the analysis result from each calculation node 2, associates it with the explanatory variable value used for the analysis, and sets it as a set of the explanatory variable value of the analytical result and the objective variable value.
  • the controller 11 determines whether or not to perform response surface calculation (S15).
  • the control unit 11 passes a set of explanatory variable values and objective variable values of the analysis result and the number of omissions that are set values to the analysis result omitting unit 42, and the analysis result An omission instruction is given (S21).
  • the analysis result omitting unit 42 omits pairs of explanatory variable values and objective variable values corresponding to the number of omissions from the case where the objective variable value of the analysis result is not optimal, and passes it to the control unit 11.
  • the control unit 11 updates the combination of the explanatory variable value and the objective variable value of the analysis result in the storage unit 12 to the combination of the explanatory variable value and the objective variable value from the analysis result omitting unit 42.
  • control unit 11 passes the data such as a set of explanatory variable values of the analysis result and the objective variable stored in the storage unit 12 to the response surface calculation unit 21, and instructs response surface calculation (S22). ).
  • the response surface calculation unit 21 calculates a predetermined number of response surfaces from the set of explanatory variable values and objective variable values of the analysis result, and passes the obtained response surfaces to the control unit 11.
  • the control unit 11 stores the obtained response curved surface in the storage unit 12.
  • FIG. 5 is a table showing an example of a set of explanatory variable values of the optimization result.
  • the explanatory variables are vertical, horizontal, and height dimensions, and four sets are sampled.
  • control unit 11 uses the statistical information calculation unit to store data such as a set of explanatory variable values and objective variables stored in the storage unit 12. 31 and give instructions for statistical information calculation (S31).
  • the statistical information calculation unit 31 generates statistical information from the combination of the explanatory variable value of the analysis result and the objective variable value, and passes the obtained statistical information to the control unit 11.
  • the control unit 11 stores the obtained statistical information in the storage unit 12.
  • the control unit 11 sets the explanatory variable value and the objective variable value of the analysis result stored in the storage unit 12, statistical information, the explanatory variable range that is the set value, the objective variable range, the similarity threshold.
  • An intermediate calculation unit 32 is instructed to perform optimization calculation (S32).
  • the centralized calculation unit 32 performs an optimization calculation that samples a set of explanatory variable values that satisfy a predetermined condition within the range of explanatory variables, and passes the result to the control unit 11 as a set of explanatory variable values of the optimization result.
  • the control unit 11 stores the set of explanatory variable values of the optimization result in the storage unit 12.
  • the control unit 11 passes the set of explanatory variable values of the optimization result and the number of outputs as the set value to the clustering calculation unit 41, and instructs clustering calculation (S41).
  • the clustering calculation unit 41 performs clustering calculation to combine a large number of sets of explanatory variable values of the optimization results into a set of representative explanatory variable values for the number of outputs, and the combined set of explanatory variable values to the control unit 11 To pass.
  • the calculation method of clustering for example, the farthest neighbor method or the Ward method is used.
  • the control unit 11 updates the set of explanatory variable values of the optimization result in the storage unit 12 to the set of explanatory variable values from the clustering calculation unit 41. By using this clustering calculation, it is possible to reduce the resources for the next analysis and improve the accuracy of optimization when performing a wide area search.
  • the control unit 11 stores, from the storage unit 12, a set of explanatory variable values and objective variable values as analysis results, a set of explanatory variable values and objective variable values as optimization results, a response surface, and a set value.
  • the explanatory variable range and the similarity threshold are passed to the analysis result substitute unit 43, and an instruction for substitution of the analysis result is given (S42).
  • the analysis result substitute unit 43 calculates, for each combination, a pair of explanatory variable values of the analysis result, a pair of explanatory variable values of the optimization result, and the similarity.
  • the similarity between two explanatory variable values is calculated, for example, as the reciprocal of the sum of squares of the difference between the two explanatory variable values.
  • the optimization calculation unit 22 sets the combination of the explanatory variable value and the objective variable value of the optimization result corresponding to the maximum similarity value, that is, the next analysis.
  • the pair of explanatory variable values to be used and the objective variable value that is the result of the analysis are replaced with the pair of explanatory variable values and objective variable values that have already been used for the analysis. Do not perform. By substituting this analysis result, it is possible to create a response surface that emphasizes the explanatory variable value area of the optimization result, and to reduce the resources for analysis.
  • the control unit 11 determines whether or not the end condition is satisfied (S51).
  • the end condition is, for example, the upper limit of the number of iterations or the similarity between the explanatory variable value pair of the analysis result and the explanatory variable value pair of the optimization result! Set the saddle value.
  • the termination condition is met ( S51, Y)
  • this flow ends.
  • the termination condition is not satisfied (S51, ⁇ )
  • the process returns to S13.
  • the response surface calculation unit 21 uses any one of the following four response surface calculation methods.
  • the plurality of response surface calculation units 21 may be provided to calculate in parallel.
  • the control unit 11 inputs a set of explanatory variable values and objective variable values of analysis results of ⁇ set ( ⁇ is an integer) to the response surface calculation unit 21.
  • the response surface calculation unit 21 performs response surface calculation using algorithms with different S (L is an integer), and calculates L response surfaces. For example, multiple regression analysis or -Eural network is used to calculate the response surface.
  • the response surface calculation unit 21 outputs L response surfaces to the control unit 11.
  • This response surface calculation method calculates an error-free response surface that models the relationship between the explanatory variable and the objective variable so that there is no error.
  • A1 Y1 / (F2 (XI) — ⁇ 2) / (F3 (XI) — ⁇ 3)
  • ⁇ 2 ⁇ 2 / (F3 ( ⁇ 2) ⁇ 3) / (Fl ( ⁇ 2) Y1)
  • A3 ⁇ 3 ⁇ (Fl ( ⁇ 3) Yl) / (F2 ( ⁇ 3)- ⁇ 2)
  • F (X) Al * (F2 (X) —Y2) * (F3 (X) —Y3)
  • the response surface calculation unit 21 outputs the response surface without error to the control unit 11 as a response surface.
  • M is an integer
  • the response surface calculation unit 21 extracts M sets of explanatory variable values and objective variable values while changing the overlapping method, and repeats the calculation of the response surface M times to calculate M response surfaces. . Finally, the response surface calculation unit 21 calculates a response surface represented by the representative values of the M response surfaces, and outputs this to the control unit 11. According to this response surface calculation method, it is possible to reduce the influence of unreliable pairs of explanatory variable values and objective variable values, and to improve optimization accuracy when there are a small number of analysis results. That's right.
  • the control unit 11 inputs a set of K sets of explanation variable values and objective variable values, the number of algorithms N (N is an integer), and the type of N algorithms to the response surface calculation unit 21.
  • the response surface calculation unit 21 calculates N response surfaces using N different algorithms.
  • the response surface calculation unit 21 calculates a response surface represented by a representative value of N response surfaces, and outputs this to the control unit 11. According to this response surface calculation method, the response surface and the accuracy of optimization using the response surface can be improved.
  • the optimization calculation unit 22 uses any of the following four optimization calculation methods.
  • the second optimization calculation method or the third optimization calculation method is selected at the initial stage of the optimal design, and the first optimization calculation method is selected at the final stage of the optimal design.
  • the fourth optimization calculation method is selected when optimal design is performed with a balance between the two.
  • the first optimization calculation method is used when the user narrows down the set of explanatory variable values.
  • the control unit 11 inputs the explanatory variable range and the response surface to the optimization calculation unit 22.
  • the optimization calculation unit 22 calculates a set of explanatory variable values for which the objective variable value is optimal on the response surface by a steepest descent method or a genetic algorithm, and the control unit 11 sets the set of explanatory variable values for the optimization result.
  • the second optimization calculation method will be described.
  • This optimization calculation method is a model of objective variables, and aims to sample a set of explanatory variable values so that the distribution of objective variable values is uniform, and the user grasps the state of the entire objective variable range.
  • the control unit 11 inputs the explanatory variable range, the response surface, and the objective variable value of the analysis result to the optimization calculation unit 22.
  • the optimization calculation unit 22 sets the intermediate value of the interval with the largest interval between the objective variable values as the optimization target value.
  • the optimization calculation unit 22 performs the optimization calculation with the objective variable value calculated using the response surface being close to the optimization target value, so that the target variable value becomes close to the optimization target value.
  • Such a set of explanatory variable values is passed to the control unit 11 as a set of explanatory variable values for the optimization result.
  • This optimization calculation method is a model of explanatory variables, and aims to sample a pair of explanatory variable values so that the deviation between the explanatory variable value and the objective variable value is reduced. It is used when grasping.
  • the control unit 11 inputs a set of the explanatory variable range, the response surface, and the explanatory variable value to the optimization calculation unit 22.
  • the optimization calculator 22 samples the explanatory variable value pairs in the explanatory variable range, calculates the objective variable value using the response surface, and calculates the similarity between the explanatory variable value pair and the objective variable value. To do.
  • the similarity between the pair of explanatory variable values and the objective variable value is calculated as, for example, the reciprocal of the sum of squares of the difference between each explanatory variable value and the objective variable value.
  • the optimization calculation unit 22 passes a set of explanatory variable values that minimizes the maximum value of the similarity to the control unit 11 as a set of explanatory variable values of the optimization result.
  • the control unit 11 inputs an explanatory variable range, a response surface, a set of explanatory variable values, and a ratio of optimization and modeling to the optimization calculation unit 22.
  • optimization is the first optimization calculation method, which is to find a set of explanatory variable values that optimizes the objective variable value.
  • modeling is the second optimization calculation method or the third optimization calculation method, and it seeks a set of explanatory variable values that makes the distribution of objective variable values and explanatory variable values uniform.
  • the optimization calculation unit 22 executes both optimization and model so as to satisfy the specified optimization and model ratio, and sets the obtained explanatory variable values as the optimization result.
  • the statistical information calculation unit 31 uses any of the following three statistical information calculation methods.
  • the first statistical information calculation method the statistical information calculation unit 31 generates regression tree data from a set of explanatory variable values and objective variable values, and outputs them to the control unit 11 as statistical information.
  • the statistical information calculation unit 31 generates principal component analysis data from a set of explanatory variable values and objective variable values, and outputs the data as statistical information to the control unit 11.
  • the statistical information calculation unit 31 generates neural network data from a set of explanatory variable values and objective variable values, and outputs the neural network data to the control unit 11 as statistical information.
  • the central calculation unit 32 calculates a set of explanatory variable values of the optimization result using the statistical information of regression tree data, principal component analysis data!
  • the control unit 11 inputs the explanatory variable range, the objective variable range, the regression tree data, and the similarity threshold value to the concentration calculation unit 32.
  • the centralized calculation unit 32 is a set of explanatory variable values that satisfies the objective variable range, and the input explanatory variable value that is input as the set of explanatory variable values to be calculated.
  • An explanatory variable value whose similarity with the set of values is equal to or less than the similarity threshold is sampled, and passed to the control unit 11 as a set of explanatory variable values of the optimization result.
  • the control unit 11 inputs the explanatory variable range, each principal component value range, the principal component analysis data, and the similarity threshold value to the concentration calculation unit 32.
  • the centralized calculation unit 32 satisfies the respective principal component value ranges, and the explanatory variable values such that the similarity between the calculated explanatory variable value set and the input explanatory variable value set is equal to or lower than the similarity threshold value.
  • the control unit 11 accepts display instructions from the input unit 51 at any time. When there is a display instruction, the control unit 11 generates a display screen based on the statistical information and outputs it to the display unit 52.
  • the statistical information includes regression tree data, principal component analysis data, and neural network data. Specific examples of display screens based on the respective statistical information are shown.
  • FIG. 6 is a diagram showing an example of a display screen based on regression tree data according to the present invention.
  • vertical, horizontal, and height dimensions are represented as explanatory variables, and stress is represented as an objective variable.
  • stress is represented as an objective variable.
  • FIG. 7 is a diagram showing an example of a display screen based on principal component analysis data according to the present invention. This figure shows the relationship between the first principal component and the objective variable, and the relationship between the second principal component and the objective variable. According to this display screen, when the number of explanatory variables is large, it can be represented by a small number of explanatory variables. Further, FIG.
  • FIG. 8 is a diagram showing an example of a display screen based on neural network data according to the present invention.
  • vertical, horizontal, and height dimensions which are explanatory variables, are represented as input nodes, two intermediate nodes are represented, and stress, an objective variable, is represented as an output node.
  • stress an objective variable
  • the influence of each node can be expressed by expressing the strength of the relationship by the thickness of the arrows connecting the nodes.
  • the response surface calculation unit 21, the optimization calculation unit 22, the statistical information calculation unit 31, the centralized calculation unit 32, the clustering calculation unit 41, the analysis result omitting unit 42, and the analysis result substitute unit 43 are not necessarily all It is not necessary, and individual functions may be omitted depending on the purpose of calculation.
  • the optimal design calculation system is realized by a grid computing system or a cluster type computer system, and each of the calculation nodes 2 is realized by a computer.
  • Type computer computation node 2 may be a CPU
  • the optimal design computation system may be one computer.
  • the objective variable value is calculated from the explanatory variable value set by executing the analysis program in the calculation node 2.
  • the objective variable value is calculated from the explanatory variable value set by the experimental apparatus. Also good.
  • the present invention can be applied to optimum design in the fields of structural analysis, fluid analysis, collision analysis, electromagnetic field analysis, acoustic analysis, etc. by using an analysis program according to the purpose.
  • a program that causes a computer that constitutes the optimum design management apparatus to execute the above steps can be provided as an optimum design management program.
  • the computer constituting the optimum design management apparatus can be executed.
  • Recording media that can be read by a computer include portable storage media such as CD-ROMs, flexible disks, DVD disks, magneto-optical disks, and IC cards, databases that hold computer programs, or other computers and their databases.
  • a transmission medium on a line is also included.
  • explanatory variable transmission unit corresponds to the control unit in the embodiment.
  • the response surface calculation unit corresponds to the response surface calculation unit and the analysis result omission unit in the embodiment.
  • the optimization calculation unit corresponds to the optimization calculation unit and the analysis result substitution unit in the embodiment.
  • the explanatory variable set or the model of the objective variable can be appropriately performed.
  • the accuracy of optimization can be improved when the analysis results are small.
  • the accuracy of optimization can be improved by limiting the explanatory variable range to a region in the vicinity where the objective function value is optimal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Marketing (AREA)
  • Game Theory and Decision Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Development Economics (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Complex Calculations (AREA)

Abstract

 外部の少なくとも1つの計算ノードを用いて説明変数値の組から目的変数値の解析を行い、解析結果を用いて最適化を行う最適設計管理装置1であって、計算ノード2へ解析に用いる説明変数値の組を送信する説明変数送信部と、計算ノード2から解析結果の目的変数値を受信する目的変数受信部と、説明変数値と目的変数値の組から少なくとも1つの応答曲面を算出する応答曲面計算部21と、前記応答曲面において所定の最適化条件に近づく説明変数値の組を、新たな説明変数値の組として更新する最適化計算部22と、所定の終了条件を満たすまで、説明変数送信部から続く処理を繰り返し実行させる制御部11とを備えた。                                                                         

Description

明 細 書
最適設計管理装置、最適設計計算システム、最適設計管理方法、最適 設計管理プログラム
技術分野
[0001] 本発明は、説明変数と目的変数について最適設計を行うための最適設計管理装 置、最適設計計算システム、最適設計管理方法、最適設計管理プログラムに関する ものである。
背景技術
[0002] 従来の計算機シミュレーションにお ヽては、特定の場合を想定した説明変数値を利 用者が指定することにより、目的変数値を検証していた。ここで、説明変数とは、縦、 横、高さの寸法のような設計の対象となる変数であり、目的変数とは、応力のように最 適化の対象となる変数のことである。しかし、近年、計算機能力の向上により、多数の 場合を想定した説明変数値の組み合わせについて目的変数値を調べることにより、 説明変数と目的変数の関係を調べたり、目的変数値が最適になる説明変数値の組 み合わせを調べたりする最適設計計算システムが実現されてきている。
[0003] 従来の最適設計計算システムは、説明変数値の組み合わせについて総当たりで計 算する方式や、線形性を仮定して説明変数値の組み合わせの数を減らす方式が採 用されていた。
[0004] なお、本発明の関連ある従来技術として、例えば、下記に示す特許文献 1が知られ ている。この設備信頼性設計支援装置は、タグチメソッドに基づいて設備と部品の設 計変数を直交表に割り付け、この直交表に基づ!/、て設計解析モデルまたは逆問題 解析モデルの解析を行い、この解析結果に基づいて応答曲面を求め、この応答曲 面を用いて最適化設計を行うものである。
特許文献 1 :特開 2001-125933号公報 (第 3-10頁、第 1図)
発明の開示
発明が解決しょうとする課題
[0005] しかしながら、説明変数の数が多い場合に、現実的な時間の範囲で計算を終了さ せることができな力つたり、非線形の場合に説明変数値の組み合わせの選定が適切 でな力つたりする問題がある。
[0006] 例えば、直交表を用いる場合、均等に説明変数値の組み合わせを設定することは 可能である。しかし、このような方法は、説明変数値の間隔が広すぎたり、線形性を仮 定したりする場合、高精度な最適化に適していない。また、例えば、タグチメソッドは、 SN比を用いて説明変数毎にその重要度を決定する。しかし、このような方法は、説 明変数の組み合わせが目的変数に寄与する場合、十分な情報を利用者に提示でき ない。
[0007] さらに、説明変数と目的変数の関係を表す応答曲面については、通常、 1つまたは 複数の応答曲面を作成し、そのうち説明変数と目的変数の関係を最も適切に表現す るものを選択し、最適化に使用する。応答曲面は例えば重回帰分析を用いて求める ことができ、応力の例の場合、 A、 B、 C、 Dを係数として、応力 =A X縦 +B X横 + C X高さ + Dのように与えられる。しかし、この方法において、応答曲面の選択は統計 解析に関する専門知識を必要とするため、利用者を限定してしまう。また、応答曲面 の選択は通常、説明変数値の範囲全体にわたって説明変数と目的変数の関係を適 切に表現するものを選択するが、選択された応答曲面が目的変数を最適にする説明 変数の領域において適切となっているとは限らず、応答曲面の精度に問題がある場 合がある。さらに、応答曲面を 1つし力選択しないことにより、最適化の探索範囲を狭 くすることになり、最適化の精度が不十分となる場合がある。
[0008] このため、目的変数値を最適とする説明変数値の組み合わせを計算するためには 、利用者が試行錯誤で最適設計の計算を繰り返すことになるため、利用者によって 計算結果の精度がばらつき、さらに利用者によっては計算を諦めてしまう場合がある
[0009] また、近年、複数の CPU (Central Processing Unit)を搭載した SMP (Symmetric
Multiple Processor)型の計算機や、複数の計算機をネットワークで接続したクラスタ 型の計算機システム、より広域の計算機をネットワークで接続したグリッドコンビユーテ イング等の潤沢な計算機能力が利用可能となってきている。しかし、このような潤沢な 計算機能力を、計算精度の向上に活かしていな力つた。 [0010] 本発明は上述した問題点を解決するためになされたものであり、利用者に対する難 易度を上げることなぐ最適設計の精度を向上させる最適設計管理装置、最適設計 計算システム、最適設計管理方法、最適設計管理プログラムを提供することを目的と する。
課題を解決するための手段
[0011] 上述した課題を解決するため、本発明は、外部の少なくとも 1つの計算ノードを用い て説明変数値の組から目的変数値の解析を行い、解析結果を用いて最適化を行う 最適設計管理装置であって、計算ノードへ解析に用いる説明変数値の組を送信し、 解析の指示を行う説明変数送信部と、計算ノードから解析結果の目的変数値を受信 する目的変数受信部と、説明変数値と目的変数値の組から少なくとも 1つの応答曲 面を算出する応答曲面計算部と、前記応答曲面において所定の最適化条件に近づ く説明変数値の組を、新たな説明変数値の組として更新する最適化計算部と、所定 の終了条件を満たすまで、前記説明変数送信部から続く処理を繰り返し実行させる 制御部とを備えたものである。
[0012] また、本発明に係る最適設計管理装置において、さらに前記最適化計算部が算出 した説明変数値の組を、所定の数の代表的な説明変数値の組にまとめるクラスタリン グ計算部を備えることを特徴とするものである。
[0013] また、本発明に係る最適設計管理装置において、前記応答曲面計算部は、それぞ れ異なるアルゴリズムを用いて複数の応答曲面を算出することを特徴とするものであ る。
[0014] また、本発明に係る最適設計管理装置において、前記応答曲面は、説明変数と目 的変数の関係を誤差のないようにモデルィ匕する誤差なし応答曲面であることを特徴 とするちのである。
[0015] また、本発明に係る最適設計管理装置において、前記応答曲面計算部は、説明変 数値と目的変数値の組を重複を許して複数組抜き出したものを用いて応答曲面を算 出する処理を、重複の仕方を変えながら複数行うことにより複数の応答曲面を算出し 、該複数の応答曲面の代表値で表される応答曲面を出力することを特徴とするもの である。 [0016] また、本発明に係る最適設計管理装置において、前記応答曲面計算部は、それぞ れ異なるアルゴリズムを用 、て複数の応答曲面を算出し、該複数の応答曲面の代表 値で表される応答曲面を出力することを特徴とするものである。
[0017] また、本発明に係る最適設計管理装置において、前記最適化条件は、目的変数値 が最適となるような説明変数値の組であることを特徴とするものである。
[0018] また、本発明に係る最適設計管理装置において、前記最適化条件は、目的変数値 の分布が均一になるような説明変数値の組であることを特徴とするものである。
[0019] また、本発明に係る最適設計管理装置において、前記最適化条件は、説明変数値 と目的変数値の偏りが少なくなるような説明変数値の組であることを特徴とするもので ある。
[0020] また、本発明に係る最適設計管理装置において、目的変数値が最適となるような説 明変数値の組であることを第 1の条件と、目的変数値や説明変数値の分布が均一に なるような説明変数値の組であることを第 2の条件とし、前記最適化条件は前記第 1 の条件と前記第 2の条件を所定の割合で満たすことを特徴とするものである。
[0021] また、本発明に係る最適設計管理装置において、前記応答曲面計算部は、最適で ない目的変数値と、該目的変数値に対応する説明変数値の組を省き、応答曲面を 算出することを特徴とするものである。
[0022] また、本発明に係る最適設計管理装置において、前記最適化計算部は、前記説明 変数送信部が用いた説明変数の組と前記所定の最適化条件に近づく説明変数値の 組が所定の類似度を満たす場合、前記所定の最適化条件に近づく説明変数値の組 を前記説明変数送信部が用いた説明変数値の組とし、対応する解析結果の目的変 数値を次回の解析結果の代用とし、前記代用とした目的変数値については次回の 前記説明変数送信部と前記目的変数受信部を実行させないことを特徴とするもので ある。
[0023] また、本発明は、外部の少なくとも 1つの計算ノードを用いて説明変数値の組から 目的変数値の解析を行い、解析結果を用いて最適化を行う最適設計管理装置であ つて、計算ノードへ解析に用いる説明変数値の組を送信し、解析の指示を行う説明 変数送信部と、計算ノードから解析結果の目的変数値を受信する目的変数受信部と 、説明変数値と目的変数値の組から回帰木データを算出する統計情報計算部と、前 記回帰木データに基づいて表示画面を生成する表示画面生成部とを備えたもので ある。
[0024] また、本発明に係る最適設計管理装置において、さらに、前記回帰木データを用 いて目的変数値が所定の目的変数範囲を満足するような説明変数値を、新たな説 明変数値の組として更新する集中計算部と、所定の終了条件を満たすまで、前記説 明変数送信部から続く処理を繰り返し実行させる制御部とを備えることを特徴とする ものである。
[0025] また、本発明は、外部の少なくとも 1つの計算ノードを用いて説明変数値の組から 目的変数値の解析を行い、解析結果を用いて最適化を行う最適設計管理装置であ つて、計算ノードへ説明変数値の組を送信し、解析の指示を行う説明変数送信部と、 計算ノードから目的変数値を受信する目的変数受信部と、説明変数値と目的変数値 の組から主成分分析データを算出する統計情報計算部と、前記主成分分析データ に基づいて表示画面を生成する表示画面生成部とを備えたものである。
[0026] また、本発明に係る最適設計管理装置において、さらに、前記主成分分析データ を用いて目的変数値が所定の目的変数範囲を満足するような説明変数値を、新たな 説明変数値の組として更新する集中計算部と、所定の終了条件を満たすまで、前記 説明変数送信部からの処理を繰り返し実行させる制御部と、を備えることを特徴とす るものである。
[0027] また、本発明は、外部の少なくとも 1つの計算ノードを用いて説明変数値の組から 目的変数値の解析を行い、解析結果を用いて最適化を行う最適設計管理装置であ つて、計算ノードへ説明変数値の組を送信し、解析の指示を行う説明変数送信部と、 計算ノードから目的変数値を受信する目的変数受信部と、説明変数値と目的変数値 の組から-ユーラルネットワークデータを算出する統計情報計算部と、前記-ユーラ ルネットワークデータに基づいて表示画面を生成する表示画面生成部とを備えたも のである。
[0028] また、本発明は、少なくとも 1つの計算ノードを用いて説明変数値の組から目的変 数値の解析を行!ヽ、解析結果を用いて最適化を行う最適設計計算システムであって 、計算ノードへ解析に用いる説明変数値の組を送信し、解析の指示を行う説明変数 送信部と、前記説明変数送信部力もの説明変数値に基づいて解析を行い、解析結 果の目的変数値を算出する計算ノードと、計算ノードから前記解析結果の目的変数 値を受信する目的変数受信部と、説明変数値と目的変数値の組から少なくとも 1つの 応答曲面を算出する応答曲面計算部と、前記応答曲面において所定の最適化条件 に近づく説明変数値の組を、新たな説明変数値の組として更新する最適化計算部と 、所定の終了条件を満たすまで、前記説明変数送信部から続く処理を繰り返し実行 させる制御部とを備えたものである。
[0029] また、本発明は、外部の少なくとも 1つの計算ノードを用いて説明変数値の組から 目的変数値の解析を行い、解析結果を用いて最適化を行う最適設計管理方法であ つて、計算ノードへ解析に用いる説明変数値の組を送信し、解析の指示を行う説明 変数送信ステップと、計算ノードから解析結果の目的変数値を受信する目的変数受 信ステップと、説明変数値と目的変数値の組から少なくとも 1つの応答曲面を算出す る応答曲面計算ステップと、前記応答曲面において所定の最適化条件に近づく説明 変数値の組を、新たな説明変数値の組として更新する最適化計算ステップと、所定 の終了条件を満たすまで、前記説明変数送信ステップ力 続く処理を繰り返し実行さ せる制御ステップとを実行するものである。
[0030] また、本発明は、外部の少なくとも 1つの計算ノードを用いて説明変数値の組から 目的変数値の解析を行い、解析結果を用いて最適化を行う最適設計管理方法であ つて、計算ノードへ解析に用いる説明変数値の組を送信し、解析の指示を行う説明 変数送信ステップと、計算ノードから解析結果の目的変数値を受信する目的変数受 信ステップと、説明変数値と目的変数値の組から回帰木データを算出する統計情報 計算ステップと、前記回帰木データに基づ 、て表示画面を生成する表示画面生成ス テツプとを実行するものである。
[0031] また、本発明は、外部の少なくとも 1つの計算ノードを用いて説明変数値の組から 目的変数値の解析を行い、解析結果を用いて最適化を行う最適設計管理方法であ つて、計算ノードへ説明変数値の組を送信し、解析の指示を行う説明変数送信ステツ プと、計算ノードから目的変数値を受信する目的変数受信ステップと、説明変数値と 目的変数値の組から主成分分析データを算出する統計情報計算ステップと、前記主 成分分析データに基づ 、て表示画面を生成する表示画面生成ステップとを実行す るものである。
[0032] また、本発明は、外部の少なくとも 1つの計算ノードを用いて説明変数値の組から 目的変数値の解析を行い、解析結果を用いて最適化を行う最適設計管理方法であ つて、計算ノードへ説明変数値の組を送信し、解析の指示を行う説明変数送信ステツ プと、計算ノードから目的変数値を受信する目的変数受信ステップと、説明変数値と 目的変数値の組から-ユーラルネットワークデータを算出する統計情報計算ステップ と、前記ニューラルネットワークデータに基づ 、て表示画面を生成する表示画面生成 ステップとを実行するものである。
[0033] また、本発明は、外部の少なくとも 1つの計算ノードを用いて説明変数値の組から 目的変数値の解析を行い、解析結果を用いて最適化を行う最適設計管理方法をコ ンピュータに実行させる最適設計管理プログラムであって、計算ノードへ解析に用い る説明変数値の組を送信し、解析の指示を行う説明変数送信ステップと、計算ノード から解析結果の目的変数値を受信する目的変数受信ステップと、説明変数値と目的 変数値の組から少なくとも 1つの応答曲面を算出する応答曲面計算ステップと、前記 応答曲面において所定の最適化条件に近づく説明変数値の組を、新たな説明変数 値の組として更新する最適化計算ステップと、所定の終了条件を満たすまで、前記 説明変数送信ステップ力 続く処理を繰り返し実行させる制御ステップとをコンビユー タに実行させるものである。
[0034] また、本発明は、外部の少なくとも 1つの計算ノードを用いて説明変数値の組から 目的変数値の解析を行い、解析結果を用いて最適化を行う最適設計管理方法をコ ンピュータに実行させる最適設計管理プログラムであって、計算ノードへ解析に用い る説明変数値の組を送信し、解析の指示を行う説明変数送信ステップと、計算ノード から解析結果の目的変数値を受信する目的変数受信ステップと、説明変数値と目的 変数値の組から回帰木データを算出する統計情報計算ステップと、前記回帰木デー タに基づいて表示画面を生成する表示画面生成ステップとをコンピュータに実行さ ·¾:るものである。 [0035] また、本発明は、外部の少なくとも 1つの計算ノードを用いて説明変数値の組から 目的変数値の解析を行い、解析結果を用いて最適化を行う最適設計管理方法をコ ンピュータに実行させる最適設計管理プログラムであって、計算ノードへ説明変数値 の組を送信し、解析の指示を行う説明変数送信ステップと、計算ノードから目的変数 値を受信する目的変数受信ステップと、説明変数値と目的変数値の組から主成分分 析データを算出する統計情報計算ステップと、前記主成分分析データに基づいて表 示画面を生成する表示画面生成ステップとをコンピュータに実行させるものである。
[0036] また、本発明は、外部の少なくとも 1つの計算ノードを用いて説明変数値の組から 目的変数値の解析を行い、解析結果を用いて最適化を行う最適設計管理方法をコ ンピュータに実行させる最適設計管理プログラムであって、計算ノードへ説明変数値 の組を送信し、解析の指示を行う説明変数送信ステップと、計算ノードから目的変数 値を受信する目的変数受信ステップと、説明変数値と目的変数値の組から-ユーラ ルネットワークデータを算出する統計情報計算ステップと、前記ニューラルネットヮー クデータに基づいて表示画面を生成する表示画面生成ステップとをコンピュータに 実行させるものである。
図面の簡単な説明
[0037] [図 1]本発明に係る最適設計計算システムの構成の一例を示すブロック図である。
[図 2]本発明に係る最適設計管理装置の動作の一例を示すフローチャートである。
[図 3]説明変数値の組の例を表す表である。
[図 4]目的変数値の一例を表す表である。
[図 5]最適化結果の説明変数値の組の一例を示す表である。
[図 6]本発明に係る回帰木データに基づく表示画面の一例を示す図である。
[図 7]本発明に係る主成分分析データに基づく表示画面の一例を示す図である。
[図 8]本発明に係るニューラルネットワークデータに基づく表示画面の一例を示す図 である。
発明を実施するための最良の形態
[0038] 以下、本発明の実施の形態について図面を参照しつつ説明する。
[0039] まず、最適設計計算システムの構成について説明する。図 1は、本発明に係る最適 設計計算システムの構成の一例を示すブロック図である。この最適設計計算システム は、最適設計管理装置 1、複数の計算ノード 2、操作端末 3を備える。最適設計計算 システムは、例えばグリッドコンピューティングシステムやクラスタ型計算機システムで 実現され、最適設計管理装置 1は管理サーバであり、操作端末 3は利用者の端末で あり、計算ノード 2は PC (Personal Computer)やワークステーション等のコンピュータ であり、これらはネットワークを介して接続される。最適設計管理装置 1は、制御部 11 、記憶部 12、応答曲面計算部 21、最適化計算部 22、統計情報計算部 31、集中計 算部 32、クラスタリング計算部 41、解析結果省略部 42、解析結果代用部 43を備え る。操作端末 3は、入力部 51、表示部 52を備える。
[0040] 次に、最適設計管理装置 1の動作について説明する。図 2は、本発明に係る最適 設計管理装置の動作の一例を示すフローチャートである。まず、制御部 11は、入力 部 51における利用者からの入力に従って、最適設計計算の設定値を記憶部 12に格 納する (Sl l)。設定値は例えば、説明変数値の範囲を表す説明変数範囲、目的変 数値の範囲を表す目的変数範囲、説明変数値、目的変数値、終了条件、省略件数 、出力件数、最適化とモデルィ匕の割合等である。個々の設定値については後述する
[0041] 次に、制御部 11は、説明変数範囲において初期値の説明変数値のサンプリングを 行うことにより、説明変数値の組を所定の数だけ作成し、記憶部 12に格納する(S 12 )。次に、制御部 11は、記憶部 12に格納されている初期値の説明変数値の組、また は最適化結果の説明変数値の組を、解析に用いる説明変数値の組として計算ノード 2毎に割り当て、解析の指示と共に各計算ノード 2へ送信する (S13)。図 3は、説明 変数値の組の一例を表す表である。この例において、説明変数は縦、横、高さの寸 法であり、 8組分サンプリングされている。
[0042] 各計算ノード 2は、解析の指示と説明変数値の組を受信すると、あらかじめ配布さ れた解析プログラムを用いて目的変数値を算出し、解析結果の目的変数値として制 御部 11へ送信する。図 4は、目的変数値の一例を表す表である。この例において、 目的変数は応力であり、図 3における説明変数値の組毎に解析プログラムで算出さ れた、 8個の解析結果の目的変数値が示されている。 [0043] 次に、制御部 11は、各計算ノード 2から解析結果の目的変数値を受信し、解析に 用いた説明変数値と対応づけ、解析結果の説明変数値と目的変数値の組として記 憶部 12に格納する(S14)。制御部 11がすべての目的変数値を受信すると、応答曲 面計算を行うか否力の判断を行う(S15)。
[0044] 応答曲面計算を行う場合 (S15, Y)、制御部 11は、解析結果の説明変数値と目的 変数値の組、設定値である省略件数を解析結果省略部 42へ渡し、解析結果省略の 指示を行う(S21)。解析結果省略部 42は、解析結果の目的変数値が最適でない方 から省略件数分の説明変数値と目的変数値の組を省略し、制御部 11へ渡す。制御 部 11は、記憶部 12における解析結果の説明変数値と目的変数値の組を、解析結果 省略部 42からの説明変数値と目的変数値の組に更新する。
[0045] 次に、制御部 11は、記憶部 12に格納された解析結果の説明変数値と目的変数の 組等のデータを応答曲面計算部 21へ渡し、応答曲面計算の指示を行う(S22)。応 答曲面計算部 21は、解析結果の説明変数値と目的変数値の組から所定の数の応 答曲面を算出し、得られた応答曲面を制御部 11へ渡す。制御部 11は、得られた応 答曲面を記憶部 12に格納する。
[0046] 次に、制御部 11は、格納されたデータを最適化計算部 22へ渡し、最適化計算の 指示を行う(S23)。次に、最適化計算部 22は、応答曲面において目的変数値が最 適となる説明変数値の組を算出し、最適化結果の説明変数値の組として制御部 11 へ渡す。制御部 11は、最適化結果の説明変数値の組を記憶部 12へ格納する。図 5 は、最適化結果の説明変数値の組の一例を示す表である。この例において、図 3と 同様、説明変数は縦、横、高さの寸法であり、 4組分サンプリングされている。
[0047] 一方、応答曲面計算を行わない場合 (S 15, N)、制御部 11は記憶部 12に格納さ れた解析結果の説明変数値と目的変数の組等のデータを統計情報計算部 31へ渡 し、統計情報計算の指示を行う(S31)。統計情報計算部 31は、解析結果の説明変 数値と目的変数値の組から統計情報を生成し、得られた統計情報を制御部 11へ渡 す。制御部 11は、得られた統計情報を記憶部 12に格納する。
[0048] 次に、制御部 11は、記憶部 12に格納された解析結果の説明変数値と目的変数値 の組、統計情報、設定値である説明変数範囲、目的変数範囲、類似度しきい値を集 中計算部 32へ渡し、最適化計算の指示を行う(S32)。集中計算部 32は、説明変数 範囲内において所定の条件を満足する説明変数値の組をサンプリングする最適化 計算を行い、最適化結果の説明変数値の組として制御部 11へ渡す。制御部 11は、 最適化結果の説明変数値の組を記憶部 12へ格納する。
[0049] 次に、制御部 11は、最適化結果の説明変数値の組、設定値である出力件数をクラ スタリング計算部 41へ渡し、クラスタリング計算の指示を行う(S41)。クラスタリング計 算部 41は、多数の最適化結果の説明変数値の組を出力件数分の代表的な説明変 数値の組にまとめるクラスタリング計算を行 、、まとめた説明変数値の組を制御部 11 へ渡す。クラスタリングの計算方法としては例えば、最遠隣法や Ward法等を用いる。 制御部 11は、記憶部 12における最適化結果の説明変数値の組を、クラスタリング計 算部 41からの説明変数値の組に更新する。このクラスタリング計算を用いることにより 、次回の解析の資源を削減するとともに、広域探索を行う場合の最適化の精度を向 上させることができる。
[0050] 次に、制御部 11は、記憶部 12から、解析結果の説明変数値と目的変数値の組、 最適化結果の説明変数値と目的変数値の組、応答曲面、設定値である説明変数範 囲、類似度しきい値を解析結果代用部 43へ渡し、解析結果代用の指示を行う (S42 )。解析結果代用部 43は、解析結果の説明変数値の組と最適化結果の説明変数値 の組と類似度を組み合わせ毎に算出する。 2つの説明変数値の類似度とは例えば、 2つの説明変数値の差の二乗和の逆数として計算される。類似度の最大値が類似度 しきい値を超える場合、最適化計算部 22は、類似度の最大値に対応する最適化結 果の説明変数値と目的変数値の組、すなわち次回の解析に用いる説明変数値の組 とその解析結果である目的変数値を、既に解析に用いられた説明変数値と目的変数 値の組に置き換え、この説明変数値と目的変数値の組については次回の解析を行 わない。この解析結果代用により、最適化結果の説明変数値の領域を重視した応答 曲面を作成することができるとともに、解析を行う資源を削減することができる。
[0051] 次に、制御部 11は、終了条件を満たしたか否かの判断を行う(S51)。ここで、終了 条件とは例えば、繰り返し計算回数の上限や、解析結果の説明変数値の組と最適化 結果の説明変数値の組の類似度しき!ヽ値等を設定する。終了条件を満たした場合 ( S51, Y)、このフローを終了する。一方、終了条件を満たさない場合 (S51, Ν)、処 理 S13へ戻る。
[0052] 次に、応答曲面計算の動作の詳細について説明する。応答曲面計算部 21は、次 に示す 4つの応答曲面計算方法までのいずれかを用いる。ここで、複数の応答曲面 を計算する場合、複数の応答曲面計算部 21を備えることにより、並列に計算しても良 い。
[0053] まず、第 1の応答曲面計算方法について説明する。制御部 11は、 Κ組 (Κは整数) の解析結果の説明変数値と目的変数値の組を応答曲面計算部 21へ入力する。次 に、応答曲面計算部 21は、 S (Lは整数)の異なるアルゴリズムを用いて応答曲面 計算を行い、 L個の応答曲面を算出する。応答曲面の算出には例えば、重回帰分析 や-ユーラルネットワーク等を用いる。次に、応答曲面計算部 21は、 L個の応答曲面 を制御部 11へ出力する。
[0054] 次に、第 2の応答曲面計算方法について説明する。この応答曲面計算方法は、説 明変数と目的変数の関係を誤差のないようにモデルィ匕する誤差なし応答曲面を算出 するものである。まず、制御部 11は、 K組の解析結果の説明変数値と目的変数値の 組を応答曲面計算部 21へ入力する。解析結果の説明変数値と目的変数値の組の 番号を i= 1一 K、説明変数を Xi、目的変数を Yi、説明変数と目的変数の関係を Yi= Fi(Xi)とすると、例えば K= 3のとき、 Al, Α2, A3を次の式で定義する。
[0055] A1 =Y1/ (F2 (XI)— Υ2) / (F3 (XI)— Υ3)
Α2 = Υ2/ (F3 (Χ2) Υ3) / (Fl (Χ2) Y1 )
A3 = Υ3Ζ (Fl (Χ3) Yl) / (F2 (Χ3) - Υ2)
[0056] これらの値を用いると、誤差なし応答曲面 F (X)は次の式で求めることができる。
[0057] F (X) = Al * (F2 (X)—Y2) * (F3 (X)—Y3)
+A2 * (F3 (X) - Y3) * (Fl (X)-Yl)
+A3 * (Fl (X)-Yl) * (F2 (X)-Y2)
[0058] 応答曲面計算部 21は、この誤差なし応答曲面を応答曲面として制御部 11に出力 する。なお、ここでは K= 3の例について説明した力 Κが他の値であっても同様にし て F (X)を求めることができる。 [0059] 次に、第 3の応答曲面計算方法について説明する。まず、制御部 11は、 K組の解 析結果の説明変数値と目的変数値の組と、設定値である応答曲面の数 M (Mは整 数)を、応答曲面計算部 21へ入力する。応答曲面計算部 21は、 K組の説明変数値 と目的変数値の組から重複を許して K組の説明変数値と目的変数値の組を抜き出し 、応答曲面を算出する。さらに、応答曲面計算部 21は、重複の仕方を変えながら K 組の説明変数値と目的変数値の組を抜き出し、この応答曲面の算出を M回繰り返す ことにより、 M個の応答曲面を算出する。最後に、応答曲面計算部 21は、 M個の応 答曲面の代表値で表される応答曲面を算出し、これを制御部 11へ出力する。この応 答曲面計算方法によれば、信頼性の低い説明変数値と目的変数値の組の影響を低 減することができるとともに、解析結果が少数である場合の最適化の精度を向上させ ることがでさる。
[0060] 次に、第 4の応答曲面計算方法について説明する。まず、制御部 11は、 K組の説 明変数値と目的変数値の組と、アルゴリズムの数 N (Nは整数)、 N個のアルゴリズム の種類を、応答曲面計算部 21へ入力する。応答曲面計算部 21は、 N個の異なるァ ルゴリズムを用いて、 N個の応答曲面を算出する。次に、応答曲面計算部 21は、 N 個の応答曲面の代表値で表される応答曲面を算出し、これを制御部 11へ出力する。 この応答曲面計算方法によれば、応答曲面とこれを用いる最適化の精度を向上させ ることがでさる。
[0061] 次に、最適化計算の動作の詳細について説明する。最適化計算部 22は、次に示 す 4つの最適化計算方法までのいずれ力を用いる。最適設計の初期では第 2の最適 化計算方法または第 3の最適化計算方法が選択され、最適設計の末期では第 1の 最適化計算方法が選択される。また、両者のバランスを取って最適設計を行う場合、 第 4の最適化計算方法が選択される。
[0062] まず、第 1の最適化計算方法について説明する。この最適化計算方法は、利用者 が説明変数値の組を絞り込む場合に用いられる。まず、制御部 11は、説明変数範囲 、応答曲面を最適化計算部 22へ入力する。最適化計算部 22は、最急降下法や遺 伝的アルゴリズム等により、応答曲面において目的変数値が最適となる説明変数値 の組を算出し、最適化結果の説明変数値の組として制御部 11へ渡す。 [0063] 次に、第 2の最適化計算方法について説明する。この最適化計算方法は、目的変 数のモデルィ匕であり、目的変数値の分布が均一になるような説明変数値の組のサン プリングを目的とし、利用者が目的変数範囲全体の様子を把握する場合に用いられ る。まず、制御部 11は、説明変数範囲、応答曲面、解析結果の目的変数値を最適化 計算部 22へ入力する。最適化計算部 22は、目的変数値の間隔が最大の区間の中 間値を、最適化対象値とする。最適化計算部 22は、応答曲面を用いて算出される目 的変数値が最適化対象値に近いことを評価対象として最適化計算を行うことにより、 目的変数値が最適化対象値に近くなるような説明変数値の組を、最適化結果の説明 変数値の組として制御部 11へ渡す。
[0064] 次に、第 3の最適化計算方法について説明する。この最適化計算方法は、説明変 数のモデルィ匕であり、説明変数値と目的変数値の偏りが少なくなるような説明変数値 の組のサンプリングを目的とし、利用者が説明変数範囲全体の様子を把握する場合 に用いられる。まず、制御部 11は、説明変数範囲、応答曲面、説明変数値の組を最 適化計算部 22へ入力する。次に、最適化計算部 22は、説明変数範囲において説 明変数値の組をサンプリングし、応答曲面を用いて目的変数値を算出し、説明変数 値の組と目的変数値の類似度を算出する。説明変数値の組と目的変数値の類似度 とは例えば、それぞれの説明変数値と目的変数値の差の二乗和の逆数として計算さ れる。次に、最適化計算部 22は、この類似度の最大値を最小にするような説明変数 値の組を、最適化結果の説明変数値の組として制御部 11へ渡す。
[0065] 次に、第 4の最適化計算方法について説明する。まず、制御部 11は、説明変数範 囲、応答曲面、説明変数値の組、最適化とモデル化の割合を最適化計算部 22へ入 力する。ここで、最適化とは第 1の最適化計算方法であり、目的変数値が最適となる ような説明変数値の組を求めるものである。また、モデル化とは第 2の最適化計算方 法または第 3の最適化計算方法であり、目的変数値や説明変数値の分布が均一に なるような説明変数値の組を求めるものである。次に、最適化計算部 22は、指定され た最適化とモデルィ匕の割合を満たすように最適化とモデルィ匕の両方を実行し、得ら れた説明変数値の組を、最適化結果の説明変数値の組として制御部 11へ渡す。こ の最適化計算方法によれば、最適化とモデルィ匕を両立させることができる。 [0066] 次に、統計情報計算の動作の詳細について説明する。統計情報計算部 31は、次 に示す 3つの統計情報計算方法までのいずれかを用いる。第 1の統計情報計算方法 において、統計情報計算部 31は、説明変数値と目的変数値の組から回帰木データ を生成し、統計情報として制御部 11へ出力する。第 2の統計情報計算方法において 、統計情報計算部 31は、説明変数値と目的変数値の組から主成分分析データを生 成し、統計情報として制御部 11へ出力する。第 3の統計情報計算方法において、統 計情報計算部 31は、説明変数値と目的変数値の組からニューラルネットワークデー タを生成し、統計情報として制御部 11へ出力する。
[0067] 次に、集中計算の動作の詳細について説明する。集中計算部 32は、回帰木デー タ、主成分分析データの!/、ずれかの統計情報を用いて最適化結果の説明変数値の 組を算出する。
[0068] まず、回帰木データを用いる場合、制御部 11は、説明変数範囲、目的変数範囲、 回帰木データ、類似度しきい値を集中計算部 32へ入力する。集中計算部 32は、回 帰木データを用いて算出される目的変数値が目的変数範囲を満足するような説明変 数値の組で、かつ、求める説明変数値の組と入力された説明変数値の組との類似度 が類似度しきい値以下となるような説明変数値をサンプリングし、最適化結果の説明 変数値の組として制御部 11へ渡す。
[0069] また、主成分分析データを用いる場合、制御部 11は、説明変数範囲、各主成分値 範囲、主成分分析データ、類似度しきい値を集中計算部 32へ入力する。集中計算 部 32は、各主成分値範囲を満足し、かつ、求める説明変数値の組と入力された説明 変数値の組との類似度が類似度しきい値以下となるような説明変数値の組をサンプリ ングし、最適化結果の説明変数値の組として制御部 11へ渡す。
[0070] 次に、表示の動作について説明する。制御部 11は、入力部 51からの表示の指示 を随時受け付けており、表示の指示があると、統計情報に基づいて表示画面を生成 し、表示部 52へ出力する。ここで、上述したように統計情報には、回帰木データ、主 成分分析データ、ニューラルネットワークデータがあり、それぞれの統計情報に基づ く表示画面の具体例を示す。
[0071] まず、図 6は、本発明に係る回帰木データに基づく表示画面の一例を示す図である 。この図では、説明変数として、縦、横、高さの寸法が表され、目的変数として応力が 表されている。この表示画面によれば、説明変数の領域に対する目的変数の関係に ついて、利用者の理解を促進させることができる。また、図 7は、本発明に係る主成分 分析データに基づく表示画面の一例を示す図である。この図では、第 1主成分と目 的変数の関係、第 2主成分と目的変数の関係が表されている。この表示画面によれ ば、説明変数の数が多い場合に少ない説明変数で表すことができる。さらに、図 8は 、本発明に係るニューラルネットワークデータに基づく表示画面の一例を示す図であ る。この図では、入力ノードとして説明変数である縦、横、高さの寸法が表され、 2つ の中間ノードが表され、出力ノードとして目的変数である応力が表されている。この表 示画面によれば、ノード間を結ぶ矢印の太さで関係の強さを表すことにより、それぞ れのノードの影響を表すことができる。
[0072] なお、応答曲面計算部 21、最適化計算部 22、統計情報計算部 31、集中計算部 3 2、クラスタリング計算部 41、解析結果省略部 42、解析結果代用部 43は、必ずしも 全てを必要とせず、計算の目的によっては個々の機能を省いても良い。
[0073] 本実施の形態において、最適設計計算システムはグリッドコンピューティングシステ ムゃクラスタ型計算機システムで実現され、計算ノード 2はそれぞれコンピュータで実 現されると述べたが、最適設計計算システムを SMP型の計算機とし、計算ノード 2を CPUとし、最適設計計算システムが 1つのコンピュータであっても良い。また、本実施 の形態において、計算ノード 2において解析プログラムを実行することにより説明変 数値の組から目的変数値を算出するとしたが、実験装置により説明変数値の組から 目的変数値を算出しても良い。
[0074] また、本発明は、目的に応じた解析プログラムを用いることにより、構造解析、流体 解析、衝突解析、電磁場解析、音響解析等の分野における最適設計に適用すること ができる。
[0075] 更に、最適設計管理装置を構成するコンピュータに上述した各ステップを実行させ るプログラムを、最適設計管理プログラムとして提供することができる。上述したプログ ラムは、コンピュータにより読取り可能な記録媒体に記憶させることによって、最適設 計管理装置を構成するコンピュータに実行させることが可能となる。ここで、上記コン ピュータにより読取り可能な記録媒体としては、 CD— ROMやフレキシブルディスク、 DVDディスク、光磁気ディスク、 ICカード等の可搬型記憶媒体や、コンピュータプロ グラムを保持するデータベース、或いは、他のコンピュータ並びにそのデータベース や、更に回線上の伝送媒体をも含むものである。
[0076] なお、説明変数送信部と目的変数受信部と制御部と表示画面生成部は、実施の形 態における制御部に対応する。また、応答曲面計算部は、実施の形態における応答 曲面計算部と解析結果省略部に対応する。また、最適化計算部は、実施の形態に おける最適化計算部と解析結果代用部に対応する。
産業上の利用可能性
[0077] 以上説明したように、本発明によれば、複数の応答曲面計算を同時に、平行して行 い、説明変数値の組について広域探索を行うことにより、最適化の精度を向上させる ことができる。また、説明変数の組と目的変数の関係を表示することにより、利用者の 理解を促進することができる。また、目的変数が最適になると推定される領域につい て集中的に計算することにより、説得力のある計算を行うことができる。
[0078] また、説明変数の組または目的変数の分布が均一になるようにサンプリングすること により、説明変数の組または目的変数のモデルィ匕を適切に行うことができる。また、 最適化とモデルィ匕を両立させることにより、説明変数の組と目的変数の関係について の説明力を向上させることができる。また、解析結果が少数である場合の最適化の精 度を向上させることができる。また、説明変数範囲を、目的関数値が最適となる付近 の領域に限定することにより、最適化の精度を向上させることができる。

Claims

請求の範囲
[1] 外部の少なくとも 1つの計算ノードを用いて説明変数値の組から目的変数値の解析 を行 、、解析結果を用いて最適化を行う最適設計管理装置であって、
計算ノードへ解析に用いる説明変数値の組を送信し、解析の指示を行う説明変数 送信部と、
計算ノードから解析結果の目的変数値を受信する目的変数受信部と、 説明変数値と目的変数値の組から少なくとも 1つの応答曲面を算出する応答曲面 十异 Piご、
前記応答曲面において所定の最適化条件に近づく説明変数値の組を、新たな説 明変数値の組として更新する最適化計算部と、
所定の終了条件を満たすまで、前記説明変数送信部から続く処理を繰り返し実行 させる制御部と、
を備えてなる最適設計管理装置。
[2] 請求項 1に記載の最適設計管理装置にお!、て、
さらに前記最適化計算部が算出した説明変数値の組を、所定の数の代表的な説 明変数値の組にまとめるクラスタリング計算部を備えることを特徴とする最適設計管 理装置。
[3] 請求項 1に記載の最適設計管理装置にお!、て、
前記応答曲面計算部は、それぞれ異なるアルゴリズムを用 、て複数の応答曲面を 算出することを特徴とする最適設計管理装置。
[4] 請求項 1に記載の最適設計管理装置にお!、て、
前記応答曲面計算部は、説明変数値と目的変数値の組を重複を許して複数組抜 き出したものを用いて応答曲面を算出する処理を、重複の仕方を変えながら複数行 うことにより複数の応答曲面を算出し、該複数の応答曲面の代表値で表される応答 曲面を出力することを特徴とする最適設計管理装置。
[5] 請求項 1に記載の最適設計管理装置にお!、て、
前記最適化条件は、目的変数値が最適となるような説明変数値の糸且であることを特 徴とする最適設計管理装置。
[6] 請求項 1に記載の最適設計管理装置にお!、て、
前記最適化条件は、目的変数値の分布が均一になるような説明変数値の組である ことを特徴とする最適設計管理装置。
[7] 請求項 1に記載の最適設計管理装置にお!、て、
目的変数値が最適となるような説明変数値の組であることを第 1の条件とするととも に、目的変数値や説明変数値の分布が均一になるような説明変数値の組であること を第 2の条件とし、前記最適化条件は前記第 1の条件と前記第 2の条件を所定の割 合で満たすことを特徴とする最適設計管理装置。
[8] 請求項 1に記載の最適設計管理装置にお!、て、
前記応答曲面計算部は、最適でない目的変数値と、該目的変数値に対応する説 明変数値の組を省き、応答曲面を算出することを特徴とする最適設計管理装置。
[9] 外部の少なくとも 1つの計算ノードを用いて説明変数値の組から目的変数値の解析 を行 、、解析結果を用いて最適化を行う最適設計管理装置であって、
計算ノードへ解析に用いる説明変数値の組を送信し、解析の指示を行う説明変数 送信部と、
計算ノードから解析結果の目的変数値を受信する目的変数受信部と、 説明変数値と目的変数値の組から回帰木データを算出する統計情報計算部と、 前記回帰木データに基づいて表示画面を生成する表示画面生成部と、 を備えてなる最適設計管理装置。
[10] 請求項 9に記載の最適設計管理装置において、
さらに、前記回帰木データを用いて目的変数値が所定の目的変数範囲を満足する ような説明変数値を、新たな説明変数値の組として更新する集中計算部と、 所定の終了条件を満たすまで、前記説明変数送信部から続く処理を繰り返し実行 させる制御部と、
を備えることを特徴とする最適設計管理装置。
[11] 外部の少なくとも 1つの計算ノードを用いて説明変数値の組から目的変数値の解析 を行 、、解析結果を用いて最適化を行う最適設計管理装置であって、
計算ノードへ説明変数値の組を送信し、解析の指示を行う説明変数送信部と、 計算ノードから目的変数値を受信する目的変数受信部と、
説明変数値と目的変数値の組から主成分分析データを算出する統計情報計算部 と、
前記主成分分析データに基づいて表示画面を生成する表示画面生成部と、 を備えてなる最適設計管理装置。
[12] 請求項 11に記載の最適設計管理装置にお!、て、
さらに、前記主成分分析データを用いて目的変数値が所定の目的変数範囲を満 足するような説明変数値を、新たな説明変数値の組として更新する集中計算部と、 所定の終了条件を満たすまで、前記説明変数送信部からの処理を繰り返し実行さ せる制御部と、
を備えることを特徴とする最適設計管理装置。
[13] 少なくとも 1つの計算ノードを用いて説明変数値の組から目的変数値の解析を行い 、解析結果を用いて最適化を行う最適設計計算システムであって、
計算ノードへ解析に用いる説明変数値の組を送信し、解析の指示を行う説明変数 送信部と、
前記説明変数送信部力もの説明変数値に基づいて解析を行い、解析結果の目的 変数値を算出する計算ノードと、
計算ノードから前記解析結果の目的変数値を受信する目的変数受信部と、 説明変数値と目的変数値の組から少なくとも 1つの応答曲面を算出する応答曲面 十异 Piご、
前記応答曲面において所定の最適化条件に近づく説明変数値の組を、新たな説 明変数値の組として更新する最適化計算部と、
所定の終了条件を満たすまで、前記説明変数送信部から続く処理を繰り返し実行 させる制御部と、
を備えてなる最適設計計算システム。
[14] 外部の少なくとも 1つの計算ノードを用いて説明変数値の組から目的変数値の解析 を行 、、解析結果を用いて最適化を行う最適設計管理方法であって、
計算ノードへ解析に用いる説明変数値の組を送信し、解析の指示を行う説明変数 送信ステップと、
計算ノードから解析結果の目的変数値を受信する目的変数受信ステップと、 説明変数値と目的変数値の組から少なくとも 1つの応答曲面を算出する応答曲面 計算ステップと、
前記応答曲面において所定の最適化条件に近づく説明変数値の組を、新たな説 明変数値の組として更新する最適化計算ステップと、
所定の終了条件を満たすまで、前記説明変数送信ステップから続く処理を繰り返し 実行させる制御ステップと、
を実行することを特徴とする最適設計管理方法。
[15] 外部の少なくとも 1つの計算ノードを用いて説明変数値の組から目的変数値の解析 を行い、解析結果を用いて最適化を行う最適設計管理方法をコンピュータに実行さ せる最適設計管理プログラムであって、
計算ノードへ解析に用いる説明変数値の組を送信し、解析の指示を行う説明変数 送信ステップと、
計算ノードから解析結果の目的変数値を受信する目的変数受信ステップと、 説明変数値と目的変数値の組から少なくとも 1つの応答曲面を算出する応答曲面 計算ステップと、
前記応答曲面において所定の最適化条件に近づく説明変数値の組を、新たな説 明変数値の組として更新する最適化計算ステップと、
所定の終了条件を満たすまで、前記説明変数送信ステップから続く処理を繰り返し 実行させる制御ステップと、
をコンピュータに実行させる最適設計管理プログラム。
[16] 請求項 15に記載の最適設計管理プログラムにおいて、
さらに前記最適化計算ステップが算出した説明変数値の組を、所定の数の代表的 な説明変数値の組にまとめるクラスタリング計算ステップを実行させることを特徴とす る最適設計管理プログラム。
[17] 請求項 15に記載の最適設計管理プログラムにおいて、
前記応答曲面計算ステップは、それぞれ異なるアルゴリズムを用いて複数の応答 曲面を算出することを特徴とする最適設計管理プログラム。
[18] 請求項 15に記載の最適設計管理プログラムにおいて、
前記最適化条件は、 目的変数値が最適となるような説明変数値の糸且であることを特 徴とする最適設計管理プログラム。
[19] 請求項 15に記載の最適設計管理プログラムにおいて、
前記最適化条件は、説明変数値と目的変数値の偏りが少なくなるような説明変数 値の組であることを特徴とする最適設計管理プログラム。
PCT/JP2004/016227 2004-11-01 2004-11-01 最適設計管理装置、最適設計計算システム、最適設計管理方法、最適設計管理プログラム WO2006048919A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006542189A JP4643586B2 (ja) 2004-11-01 2004-11-01 最適設計管理装置、最適設計計算システム、最適設計管理方法、最適設計管理プログラム
PCT/JP2004/016227 WO2006048919A1 (ja) 2004-11-01 2004-11-01 最適設計管理装置、最適設計計算システム、最適設計管理方法、最適設計管理プログラム
US11/785,902 US7991617B2 (en) 2004-11-01 2007-04-20 Optimum design management apparatus from response surface calculation and method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/016227 WO2006048919A1 (ja) 2004-11-01 2004-11-01 最適設計管理装置、最適設計計算システム、最適設計管理方法、最適設計管理プログラム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/785,902 Continuation US7991617B2 (en) 2004-11-01 2007-04-20 Optimum design management apparatus from response surface calculation and method thereof

Publications (1)

Publication Number Publication Date
WO2006048919A1 true WO2006048919A1 (ja) 2006-05-11

Family

ID=36318939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/016227 WO2006048919A1 (ja) 2004-11-01 2004-11-01 最適設計管理装置、最適設計計算システム、最適設計管理方法、最適設計管理プログラム

Country Status (3)

Country Link
US (1) US7991617B2 (ja)
JP (1) JP4643586B2 (ja)
WO (1) WO2006048919A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015037133A1 (ja) * 2013-09-13 2015-03-19 株式会社日立製作所 対応情報生成システム及び対応情報生成方法
JP2020144690A (ja) * 2019-03-07 2020-09-10 株式会社ジェイテクト 機械学習装置及び機械学習方法
JP7452443B2 (ja) 2021-01-07 2024-03-19 東芝三菱電機産業システム株式会社 圧延モデルの学習方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8805012B2 (en) * 2009-11-27 2014-08-12 Nec Corporation Monitoring state display apparatus, monitoring state display method, and monitoring state display program
CN103617305A (zh) * 2013-10-22 2014-03-05 芜湖大学科技园发展有限公司 一种自适应的电力仿真云计算平台作业调度算法
WO2016160539A1 (en) 2015-03-27 2016-10-06 Equifax, Inc. Optimizing neural networks for risk assessment
CA3039182C (en) * 2016-11-07 2021-05-18 Equifax Inc. Optimizing automated modeling algorithms for risk assessment and generation of explanatory data
US11468315B2 (en) 2018-10-24 2022-10-11 Equifax Inc. Machine-learning techniques for monotonic neural networks

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11259433A (ja) * 1998-03-09 1999-09-24 Fujitsu Ltd 並列実行システム
JP2001306999A (ja) * 2000-02-18 2001-11-02 Fujitsu Ltd データ解析装置およびデータ解析方法
JP2003114713A (ja) * 2001-10-09 2003-04-18 Nippon Steel Corp 品質不良の原因解析方法
JP2004110470A (ja) * 2002-09-19 2004-04-08 Fujitsu Ltd 最適設計計算装置及びそのプログラム記憶媒体

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5155677A (en) * 1989-11-21 1992-10-13 International Business Machines Corporation Manufacturing process optimizations
US5781430A (en) * 1996-06-27 1998-07-14 International Business Machines Corporation Optimization method and system having multiple inputs and multiple output-responses
EP0865890A4 (en) * 1996-08-08 1999-05-26 Bridgestone Corp MULTI-COMPONENT MATERIAL DESIGN METHOD, OPTIMIZATION ANALYZER, AND INFORMATION MEDIUM ON WHICH THE MULTI-COMPONENT MATERIAL OPTIMIZATION PROGRAM IS RECORDED
US5966527A (en) * 1996-10-28 1999-10-12 Advanced Micro Devices, Inc. Apparatus, article of manufacture, method and system for simulating a mass-produced semiconductor device behavior
US6606612B1 (en) * 1998-08-13 2003-08-12 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method for constructing composite response surfaces by combining neural networks with other interpolation or estimation techniques
US6259389B1 (en) * 1998-11-20 2001-07-10 General Electric Company System for designing and testing a sigma-delta modulator using response surface techniques
US6219649B1 (en) * 1999-01-21 2001-04-17 Joel Jameson Methods and apparatus for allocating resources in the presence of uncertainty
US6636862B2 (en) * 2000-07-05 2003-10-21 Camo, Inc. Method and system for the dynamic analysis of data
US7047505B2 (en) * 2000-10-17 2006-05-16 Pdf Solutions, Inc. Method for optimizing the characteristics of integrated circuits components from circuit specifications
US6980939B2 (en) * 2001-06-18 2005-12-27 Ford Motor Company Method and system for optimizing the design of a mechanical system
US6934666B2 (en) * 2001-10-15 2005-08-23 General Electric Company Method for optimizing strategy for electric machines
US20030086520A1 (en) * 2001-11-07 2003-05-08 Russell William Earl System and method for continuous optimization of control-variables during operation of a nuclear reactor
DE60233312D1 (de) * 2002-06-21 2009-09-24 Honda Res Inst Europe Gmbh Autonome und experimentelle Entwurfsoptimierung
US7469200B2 (en) * 2003-05-14 2008-12-23 Ford Global Technologies, Llc Method and apparatus for predicting belt separation failure in aging tires by computer simulation
US20050004833A1 (en) * 2003-07-03 2005-01-06 Reaction Design, Llc Method and system for integrated uncertainty analysis
US7904281B2 (en) * 2003-08-07 2011-03-08 Panasonic Corporation Mounting process simulation system and method thereof
US7676390B2 (en) * 2003-09-04 2010-03-09 General Electric Company Techniques for performing business analysis based on incomplete and/or stage-based data
US7269517B2 (en) * 2003-09-05 2007-09-11 Rosetta Inpharmatics Llc Computer systems and methods for analyzing experiment design
US7516423B2 (en) * 2004-07-13 2009-04-07 Kimotion Technologies Method and apparatus for designing electronic circuits using optimization
US7389212B2 (en) * 2004-09-22 2008-06-17 Ford Motor Company System and method of interactive design of a product

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11259433A (ja) * 1998-03-09 1999-09-24 Fujitsu Ltd 並列実行システム
JP2001306999A (ja) * 2000-02-18 2001-11-02 Fujitsu Ltd データ解析装置およびデータ解析方法
JP2003114713A (ja) * 2001-10-09 2003-04-18 Nippon Steel Corp 品質不良の原因解析方法
JP2004110470A (ja) * 2002-09-19 2004-04-08 Fujitsu Ltd 最適設計計算装置及びそのプログラム記憶媒体

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015037133A1 (ja) * 2013-09-13 2015-03-19 株式会社日立製作所 対応情報生成システム及び対応情報生成方法
JP2020144690A (ja) * 2019-03-07 2020-09-10 株式会社ジェイテクト 機械学習装置及び機械学習方法
JP7196696B2 (ja) 2019-03-07 2022-12-27 株式会社ジェイテクト 機械学習装置及び機械学習方法
JP7452443B2 (ja) 2021-01-07 2024-03-19 東芝三菱電機産業システム株式会社 圧延モデルの学習方法

Also Published As

Publication number Publication date
JP4643586B2 (ja) 2011-03-02
US20070198252A1 (en) 2007-08-23
US7991617B2 (en) 2011-08-02
JPWO2006048919A1 (ja) 2008-05-22

Similar Documents

Publication Publication Date Title
Frutos et al. A memetic algorithm based on a NSGAII scheme for the flexible job-shop scheduling problem
CN115456160A (zh) 一种数据处理方法和数据处理设备
CN109993299A (zh) 数据训练方法及装置、存储介质、电子装置
US20220036231A1 (en) Method and device for processing quantum data
WO2018025706A1 (ja) テーブル意味推定システム、方法およびプログラム
CN104794527A (zh) 基于卷积神经网络的分类模型构建方法和设备
US7991617B2 (en) Optimum design management apparatus from response surface calculation and method thereof
CN113254716B (zh) 视频片段检索方法、装置、电子设备和可读存储介质
WO2010048758A1 (en) Classification of a document according to a weighted search tree created by genetic algorithms
JPWO2021033338A5 (ja)
CN104679754B (zh) 用于数据预测的模型选择设备和方法
Xu et al. Automatic perturbation analysis on general computational graphs
CN116976461A (zh) 联邦学习方法、装置、设备及介质
CN117273167A (zh) 医疗模型的训练方法、医疗方法、装置、设备及存储介质
Wang et al. Multiobjective optimization algorithm with objective-wise learning for continuous multiobjective problems
KR102574434B1 (ko) 사용자가 요청하는 전문화된 경량 신경망 모델을 실시간으로 생성하는 방법 및 장치
CN116598022A (zh) 智能辅助线上问诊方法和系统、计算机设备及存储介质
van den Boom et al. A modeling framework for model predictive scheduling using switching max-plus linear models
Hong et al. Fast Discrete-Event Simulation of Markovian Queueing Networks through Euler Approximation
Xue et al. AOME: Autonomous optimal mapping exploration using reinforcement learning for NoC-based accelerators running neural networks
Fister et al. Continuous optimizers for automatic design and evaluation of classification pipelines
CN114510351B (zh) 超大规模分布式机器学习装置
JP5942998B2 (ja) 線形制約条件生成装置及び方法、半正定値最適化問題求解装置、計量学習装置、並びにコンピュータ・プログラム
Phan et al. TF-MOPNAS: training-free multi-objective pruning-based neural architecture search
JP2020030702A (ja) 学習装置、学習方法及び学習プログラム

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006542189

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11785902

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 11785902

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 04799433

Country of ref document: EP

Kind code of ref document: A1