WO2006047955A1 - Procede de commutation de protection pour noeud de reseau en anneau souple a commutation par paquet et dispositif associe - Google Patents

Procede de commutation de protection pour noeud de reseau en anneau souple a commutation par paquet et dispositif associe Download PDF

Info

Publication number
WO2006047955A1
WO2006047955A1 PCT/CN2005/001844 CN2005001844W WO2006047955A1 WO 2006047955 A1 WO2006047955 A1 WO 2006047955A1 CN 2005001844 W CN2005001844 W CN 2005001844W WO 2006047955 A1 WO2006047955 A1 WO 2006047955A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
switching
module
data path
node
Prior art date
Application number
PCT/CN2005/001844
Other languages
English (en)
French (fr)
Inventor
Xiang Ge
Fan Zhang
Shaohua Wang
Pengju Liu
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Publication of WO2006047955A1 publication Critical patent/WO2006047955A1/zh
Priority to US11/560,688 priority Critical patent/US7706256B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0228Wavelength allocation for communications one-to-all, e.g. broadcasting wavelengths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0283WDM ring architectures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications

Definitions

  • the invention relates to a Resilient Packet Ring network, in particular to a protection switching method and device for nodes in a resilient packet ring network.
  • RPR Resilient Packet Ring
  • MAC medium access control
  • This new Layer 2 link technology enables service delivery based on any physical layer such as Ethernet, Synchronous Digital Hierarchy/Synchronous Optical Network (SDH/SO ET), Dense Wavelength Division Multiplexing (DWDM).
  • SDH/SO ET Synchronous Digital Hierarchy/Synchronous Optical Network
  • DWDM Dense Wavelength Division Multiplexing
  • RPR based on ring topology will be used to form a data-centric metropolitan area network.
  • RPR technology provides data-optimized bandwidth management, cost-effective multi-service transmission solutions, and provides a relatively complete protection switching mechanism.
  • the RPR ring network uses a dual-fiber structure, and each fiber can transmit data traffic and control information.
  • An RPR node consists of a physical layer entity and a MAC sublayer entity.
  • the MAC layer client sends data traffic in one ring direction through the RPR node, and sends control information in the other ring direction.
  • RPR technology can simultaneously transmit traffic using two optical fibers, and can speed up the transmission of control information for bandwidth adaptation and fast self-healing.
  • RPR has obvious advantages over existing technologies. It not only improves bandwidth utilization, but also distributes bandwidth fairly among nodes. In addition, RPR supports plug-and-play and multiple priority services.
  • the resiliency of the RPR refers to the protection switching. That is, after the loop fails, the service can be automatically protected and switched within 50 ms, and the fault can be recovered after the fault disappears.
  • Two protection switching modes are defined in the RPR protocol, and one is based on the new topology structure. (Steering), a kind of wraparound (Wrapping) that is switched by nodes on both sides of the fault point.
  • the Steering mode is the default protection mode of the RPR ring network.
  • the protocol specifies that the nodes in the network must support the implementation mode. That is, the mode is mandatory.
  • the Wrapping mode is an optional protection mode.
  • the trigger conditions for node switching include line failure, node failure, service degradation, forced switching, and the like.
  • Station 1 ... Station 6 symbolically represents six network nodes, and the inner and outer rings of the RPR are represented by an Inner Ringlet and an Outer Ringlet, respectively, and the fault between the nodes Station5 and Station6 is broken.
  • Fiber Cut indicates that the dotted line in the figure indicates the transmission path of the outer ring data after the switching.
  • the source node Station 4 obtains the information and then transmits the data from the inner ring, and the data passes through the station 3 and the station 2 to reach the destination node Station1. A small portion of the data that has been sent will be discarded at the point of failure.
  • Station 1 ... Station 6 symbolically represents six network nodes, and the inner and outer rings of the RPR are respectively represented by an Inner Ringlet and an Outer Ringlet, and the fault between the stations Station5 and Station6 is broken.
  • Fiber Cut indicates that the dotted line in the figure indicates the transmission route of the outer ring data after the switching.
  • an object of the present invention is to provide a protection switching method for nodes in an elastic packet ring network, so as to implement a node protection switching in a simple and reliable Wrapping manner.
  • Another object of the present invention is to provide a protection switching device for a node in an elastic packet ring network for implementing the above method.
  • a protection switching method for a node in an elastic packet ring network where the elastic packet ring is composed of an inner ring and an outer ring for transmitting data in opposite directions; the method includes the following steps:
  • the node in the ring network samples the switching command, and determines whether the data path needs to be switched; if yes, proceed to step B, otherwise, continue to transmit data through the normal data path;
  • the node After the data transmission on the inner and outer rings reaches the frame boundary, the node switches from the normal data path to the switching data path.
  • step A the switching command is sampled during the frame interval of reading the inner and outer ring data.
  • the step of switching from the normal data path to the switching data path in step B includes the following steps:
  • the switching module that has transmitted the entire frame data stops transmitting data on the original data path, and sets itself to the switch ready state;
  • the node switches from the normal data path to the switched data path.
  • a method for exiting protection switching in a resilient packet ring network the resilient packet ring consisting of an inner ring and an outer ring transmitting data in opposite directions; the method comprising the following steps:
  • the node in the ring network samples the protection switching command, and determines whether it needs to exit the protection switching state; if yes, proceed to step B1; otherwise, continue to transmit data through the switching data path; Bl. After the data transmitted on the switched data path reaches the frame boundary, the node recovers from the switched data path to the normal data path.
  • step A1 the sample protection exit switching command is skipped during the frame interval of reading data.
  • recovering from the switched data path to the normal data path as described in step B1 comprises the following steps:
  • the switching module that has transmitted the entire frame of data stops transmitting data on the original data path, and sets itself to the exit protection switching ready state;
  • the nodes recover from the switched data path to the normal data path.
  • a protection switching device for an elastic packet ring network node wherein the elastic packet ring is composed of an inner ring and an outer ring for transmitting data in opposite directions; the device includes:
  • the first switching module receives the inner ring data and sends data to the outer ring;
  • a second switching module receiving outer ring data and transmitting data to the inner ring
  • each switching module sends the received loop data to another switching module connected thereto, so that the data is transmitted according to the normal data path; when the protection switching is required and the first and second switching modules arrive in the data transmission After the frame boundary, the first and second switching modules respectively switch the received loop data in the module to switch the data path, so that the data is transmitted according to the switched data path.
  • the first and second switching modules respectively include a sending data sub-module and a receiving data sub-module; the sending data sub-module of each switching module sends the received loop data to the receiving data sub-subject in the switching module. Module, or send data submodule to another switching module.
  • the switching module further includes a buffer module for buffering loop data, and the buffer module sends the received data to be sent from the outside to the sending data sub-module.
  • the first and second switching modules are disposed in one chip; or are respectively disposed in different chips.
  • the method and device for applying the Wrapping protection switching method in the RPR protocol provided by the present invention do not require complicated handshake signals and interaction protocols, and thus are simple to implement; the present invention performs data path switching at the frame boundary of data transmission, and thus does not cause Packet loss ensures the reliability of the RPR ring node.
  • Figure 1 is a block diagram of a conventional RPR ring network and nodes.
  • Figure 2 is a schematic diagram of Steering protection.
  • Figure 3 is a schematic diagram of Wrapping protection.
  • FIG. 4 is a schematic diagram showing the structure of an RPR node device and a data path in a normal mode.
  • Figure 5 is a schematic diagram of the RPR node protection switching data path.
  • Figure 6 is a state transition diagram of the switching module.
  • Figure 7 is a block diagram of the structure of the switching module.
  • Figure 8 is a schematic diagram of the logic structure of the switching module switching control.
  • Fig. 9 is a switching switching control step in the transmission direction.
  • Fig. 10 is a switching switching control step of the receiving direction. Mode for carrying out the invention
  • the RPR node chip shown in Figure 4 including the symmetric east-facing unit EAST-RPR-MAC and the west-direction unit WEST-RPR-MAC.
  • Each unit has a user-side interface, a line-side interface, and a switching module.
  • the PWRAP module the PWRAP module in the west-facing unit WEST-RPR-MAC is interfaced with the PWRAP module in the east-facing unit EAST-RPR-MAC.
  • East and west units can be included in one In the chip; the east and west units can also be included in one chip, and the two chips are docked.
  • the structure of the east and west units is symmetrical.
  • the PW AP module design is divided into the transmission direction (hereinafter referred to as the TX direction) and the reception direction (hereinafter referred to as the RX direction).
  • the TX direction of the PWRAP module in one unit directly sends data to the PWRAP module in another unit.
  • the RX direction When the node enters the switching mode WRAP, the TX direction of the PWRAP module changes the data path after the end of the current frame transmission, and the subsequent frame is directly sent to the RX direction of the module in the PWRAP module.
  • Figure 4 also shows the data path of the RPR node in the normal mode NORM.
  • the outer ring data of the ring network enters the chip from the westbound receiving interface, that is, the westbound line side RX interface or the westbound user side TX interface.
  • the normal data path of the switched module is The chip eastbound transmission interface is sent to the east line side TX interface.
  • the inner ring data of the ring network enters the chip from the eastbound receiving interface, that is, the eastbound line side RX interface or the eastward user side TX interface, and the normal data path of the switching module is sent by the chip westward transmitting interface, that is, the westbound line side TX interface.
  • FIG. 5 shows a schematic diagram of the RPR node protection switching data path.
  • the PWRAP module in the east and west units must communicate with each other.
  • the westbound unit receives the switching command to switch the normal data path to the switching path (the outer ring) Data is switched to the inner ring), it is necessary to send the entire frame data currently being transmitted to the east direction unit, and to know that the east direction unit also transmits the complete frame data and then switch the data path, that is, switch at the frame boundary. Data path.
  • the eastward unit also switches the inner loop data to the outer loop at the frame boundary according to the switching command.
  • the protection switching device completes the switching from the normal working mode to the switching working mode, and the RPR ring network can implement the fault protection switching through the switching mode WRAP.
  • the TX direction of the PWRAP returns to the data path in the NORM mode after the end of the current frame transmission, and the subsequent frame is directly sent to the RX direction of the PWRAP module in the other unit.
  • Figure 6 shows the PWRAP module switching state transition diagram.
  • the state machines of the east and west PWRAP modules control the switching of the respective data paths, and the two state machines have handshakes.
  • the state machine of the westward PWRAP module and the eastward PWRAP module includes four states: UNWRAP, WRAP RDY, WRAP, and UNWRAP DY.
  • UNWRAP refers to the non-switching state
  • WRAP RDY refers to the switching ready state
  • WRAP refers to the switching state
  • UNWRAP RDY refers to the non-switching ready state.
  • the state machines of the east and west PWRAP modules enter the UNWRAP state.
  • the PWRA module of one of the cells sends the data directly to the RX direction of the PWRAP module of the other unit.
  • the PWRAP module that has received the switching command instructs the wrap_op and sends the current entire frame of data to the WRAP RDY state first, that is, the data path of the PWRAP module TX has been tangential to the R path of the local side, and the switchover is ready. .
  • the PWRAP module enters the WRAP state, and the state transition at this time is controlled by another PWRAP module state machine.
  • the mechanism for exiting from the switched state to returning to the non-switching state is the same.
  • the unwrap_op command is received, and the TX of the PWRAP module just sends the complete frame data to the RX to enter the UNWRAP RDY state, but only when another P WRAP module of the node enters the UNWRAP RDY state, it can be restored. UNWRAP status.
  • FIG 7 shows the PWRAP module structure.
  • the PWRAP module of the west direction unit and the PWRAP module of the east direction unit are symmetrical, and the structure box of the westward PWRAP module is shown in the figure.
  • the P AP module in the figure consists of a transmit data sub-module PWTX, a receive data sub-module PWRX and a cache module PWFIFO.
  • the PWTX submodule receives the data sent by the scheduling and forwarding module SFD (Schedule Forward Dispatcher).
  • the buffer module PWFIFO is placed between the SFD module and the PWTX submodule to buffer and forward the data transmitted between the two.
  • the PWRX submodule sends the data to the weight fair.
  • the WFA (Weighted Fairness Algorithm) module receives the control signal sent by the CPU interface module MPI (Microprocessor Interface) and returns the status signal to the MPI module.
  • MPI Microprocessor Interface
  • the PWRAP module of the westbound unit and the PWRAP module of the eastbound unit are interconnected, specifically: the transmit data submodule PWTX in the westward unit and the receive data submodule PWRX in the eastbound unit are interconnected, and the transmit data in the eastward unit is connected.
  • the submodule PWTX and the receive data submodule PWR in the westward unit are connected to each other.
  • FIG 8 shows the schematic diagram of the PWRAP module switching control logic structure.
  • the signals in Figures 7 and 8 are as follows:
  • the sfd2pw_val signal is a data valid indication signal sent by the SFD module to the PWRAP module.
  • sfd2pw_data is data sent by the SFD module to the PWRAP module
  • the pw2sfd_rdy signal is an allowable transmission indication signal sent by the PWRAP module to the SFD module
  • the pwtx_val signal is The data valid indication signal output by the PWTX submodule to another PWRAP module.
  • pwtx_data is the data output by the PWTX submodule to another PWRAP module
  • pwtx_rdy is the allowable transmission of another PWRAP module to the PWTX submodule output.
  • Pw2wfa_val is the data valid indication signal sent by the PWRX submodule to the WFA module.
  • pw2wfa_data is the data sent by the PWRX submodule to the WFA module.
  • Wfa2pw_rdy is the allowable sending indication signal sent by the A module to the PWRX submodule;
  • pwrx_val is the data valid indication signal input by the other PWRAP module to the PWRX submodule, and correspondingly, pwrx_data is another PWRAP module input to the FR submodule
  • the data, pwrx_rdy is the allowable sending indication signal output by the PWR submodule to another PWRAP module;
  • Pwtx2rx_val is the data valid indication signal sent by the PWTX submodule to the PWKX submodule.
  • pwtx2rx_data is the data sent by the PWTX submodule to the PWRX submodule
  • pwrx2tx_rdy is sent by the PWRX submodule to the PWTX submodule. Allow to send an indication signal;
  • Wrap-op is the switching command indication signal sent by the MPI module to the PWTX sub-module and the PWR sub-module; pwtx-wrap and pwrx-wrap are the switching status indication signals of the PWTX sub-module and the PWRX sub-module.
  • Pwtx-wrap and pwrx-wrap are determined according to the wrap-op signal and the current frame transmission state. That is, when the wrap_op is valid, the pwtx-wrap is valid when the current frame is sent in the TX direction. Similarly, the current frame is received in the R direction when the wrap_op is valid. Pwrx- wrap is valid at the end.
  • the PWRAP module implements switching between the normal state data path and the WRAP state data path in the sending direction. Since the switching of the data path is frame-based, it is necessary to sample the switching command indication wrap_op at the frame interval of the read data, and the frame interval can be judged according to the transition of the end of the frame indication signal. Since the switching is performed by the TX direction and the RX direction, the switching state indication signals pwtx_wrap and pwrx_wrap are key channel switching control switches.
  • Figure 9 shows the general control steps of the TX direction switching data path of the PWRAP module:
  • the pwtx-wrap signal is set in step 11, specifically (not shown), to determine the PWTX sub-module to another PWRAP module. Whether the transmitted data is in the frame gap, if so, sampling the wrap_op signal, and setting the pwtx-wrap signal to the wrap_op signal; next, setting the pwtx-val signal in step 12, specifically (in the figure) Not Show), determine whether the pwtx-wrap signal is valid, if it needs to be protected, the pwtx-val signal is set to be invalid, that is, the data of the PWTX sub-module is sent to another PWRAP module, otherwise, pwtx – the val signal is set to active and the data in this PWFIFO submodule is sent to another PWRAP module;
  • the pwtx2rx_val signal is set, specifically (not shown), to continue to determine whether the pwtx-wrap signal is valid. If invalid, the pwtx2rx-val signal is set to be invalid, that is, the PWTX sub-segment is aborted. The module sends the data to the PWRX sub-module. Otherwise, the pwtx2rx_val signal is set to be valid, and the data in the PWFIFO is sent to the PWRX sub-module;
  • the pw2sfd-rdy signal is set, specifically (not shown), to determine whether the pwtx-wrap signal is valid. If invalid, the pw2sfd_rdy signal is set to the pwtx-rdy signal, that is, set to normal data. The rdy signal of the path, otherwise, the pw2sfd-rdy signal is set to the pwrx2tx_rdy signal, which is set to the rdy signal of the reverse data path.
  • the above signal can be used to control whether the data path of the TX on the side is tangential to the RX path on the side or tangential to the opposite PWRAP module. Assume that the data path of the TX on the side of the current side is switched to the R path on the side of the current side. However, it is necessary to see whether the TX of the opposite PWRAP module is transmitting data to the RX on the local side. Data, it is necessary to wait until the opposite side sends to the frame gap to switch. When the RX on this side can be switched to receive the data of this side TX is controlled by the pwrx- wrap signal.
  • Figure 10 shows the general control procedure for RX direction switching.
  • the pwrx-wrap signal is set in step 21, specifically (not shown), to determine that the PWRX sub-module receives another PWTX sub-module. Whether the data is in the frame gap, and whether the wrap_op signal is set to be valid.
  • the pwrx_wrap signal is set to be valid, no shell 1 J , ⁇ mouth fruit pwtx — wrap signal is invalid , and the wrap_op signal is also invalid, and the Bay 1 J pwrx- wrap signal is set to be invalid;
  • the pwrx-rdy and pwrx2tx-rdy signals are set, specifically (not shown), and if the pwrx-wrap signal is valid, the pwrx-rdy signal is set to be invalid to abort
  • Another P WRAP module sends data to the PWR submodule, and sets the pwrx2tx_rdy signal to the wfa2pw-rdy signal, ready to receive the data of the PWTX, otherwise the pwrx_rdy signal is set to the wfa2pw_rdy signal, ready to receive data of another PWRAP module, and
  • the pw2wfa_val and pw2wfa_data signals are set, specifically (not shown). If the pwrx_wrap signal is valid, the pw2wfa-val signal is set to the pwtx2rx-val signal to Instructs to receive the information sent by the local side of the switching data path, and sets the pw2wfa_data signal to the pwtx2rx_data signal, that is, receives the data of the switching path, otherwise sets the pw2wfa-val signal to the pwrx-val signal to indicate that the normal data is received. The information sent from the opposite side of the path, and the pw2wfa-data signal is set to pwrx_data, that is, the data of the normal path is received.
  • the above signal can be used to control whether the data path of the RX on the side receives the TX channel data of the current side or receives the data of another PWRAP module.
  • the NORM state data path and the WRAP state data path of the switching module can be switched.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Small-Scale Networks (AREA)

Description

005 001844 弹性分组环网中节点的保护倒换方法及装置 技术领域
本发明涉及弹性分组环 ( Resilient Packet Ring ) 网络, 特别涉及弹 性分组环网中节点的保护倒换方法及装置。 发明背景
弹性分组环(Resilient Packet Ring ), 以下称为 RPR,是 IEEE 802.17 工作组正在标准化的一种新的介质访问控制(MAC )层技术, 以下简称 MAC层。 这种新的二层链路技术, 可基于任何物理层如以太网、 同步 数字体系 /同步光网络(SDH/SO ET )、 密集波分复用 (DWDM )等进 行业务传输。 RPR基于环型拓朴将用以组建以数据为中心的城域网络, RPR技术提供数据优化的带宽管理、 高性价比多业务传输的解决方案, 并提供了比较完善的保护倒换机制。 如附图 1所示, RPR环网采用双纤 结构,每根纤都可以传送数据业务和控制信息。一个 RPR节点由物理层 实体和一个 MAC子层实体构成。 MAC层客户端通过 RPR节点在一个 环向上发送数据业务, 同时在另一个环向上发送控制信息。 通过这种方 式, RPR技术可以同时利用两根光纤发送业务, 并且能够加快控制信息 的发送用于带宽适配和快速自愈。
RPR与现有的技术相比具有明显的优势, 它不仅可以提高带宽的利 用率, 而且可以在节点间公平的分配带宽, 此外, RPR还支持即插即用 以及多种优先级业务。
RPR的弹性(resiliency )就是指保护倒换, 即环路出现故障后能使 业务在 50ms内自动保护倒换, 故障消失后能恢复。 RPR协议中定义了 两种保护倒换方式, 一种是基于新的拓朴结构的导引保护方式 ( Steering ),一种是由故障点两侧节点倒换的环绕保护方式( Wrapping )。 Steering方式是 RPR环网默认的保护方式, 协议规定网络中的节点必须 支持该实现方式, 即该方式为必选的实现方式, Wrapping方式是可选的 保护方式。 本领域的技术人员可以理解, 节点倒换的触发条件有线路失 效、 节点失效、 业务劣化、 强制倒换等。
如图 2所示, 在 Steering方式中, Station 1…… Station6象征性的表 示 6个网络节点, RPR的内环与外环分别用 Inner Ringlet与 Outer Ringlet 表示, 节点 Station5与 Station6间的故障用断纤( Fiber Cut )表示, 图中 的虛线表示倒换后, 外环数据的传输路线。 当网络检测到故障后, 故障 相邻节点并不倒换,而是先进行拓朴发现,根据新的拓朴结构优化路由。 源节点只需要直接按新的拓朴路径发送数据给目的节点即可。 即, 如果 Station5与 Station6之间的线路发生故障后,在环网上广播该信息, 源节 点 Station4得到该信息后改由内环发送数据,数据经过 Station3、 Station2 到达目的节点 Stationl。 而已经发出的小部分数据将在故障点被丢弃。
如图 3所示, 在 Wrapping方式中, Station 1…… Station6象征性的表 示 6个网络节点, RPR的内环与外环分别用 Inner Ringlet与 Outer Ringlet 表示, 节点 Station5与 Station6间的故障用断纤(Fiber Cut )表示, 图中 的虚线表示倒换后, 外环数据的传输路线。 当节点探测到引发倒换的故 障, 故障处相邻节点就会倒换, 同时向环网上其它节点广播保护信息, 业务会通过节点倒换后的路径达到目的节点。 即, 从外环流入的数据流 在 Station5进入内环, 经过内环一圈后, 再继续传输。
虽然 IEEE 802.17工作组提出的 Wrapping方式速度快,无数据丢失, 但目前没有实现 Wrapping方式的具体技术方案, 因此, 如何在 RPR网 中实现 Wrapping保护方式是急待解决的问题。 发明内容
有鉴于此, 本发明的一个目的在于提供弹性分组环网中节点的保护 倒换方法, 以实现简单、 可靠的 Wrapping方式的节点保护倒换。
本发明的另一目的在于提供弹性分组环网中节点的保护倒换装置, 以用于实现上述方法。
为达到上述目的, 本发明的技术方案是这样实现的:
一种弹性分组环网中节点的保护倒换方法, 所述弹性分组环由按相 反方向传输数据的内环与外环组成; 所述方法包括下述步骤:
A、 环网中的节点采样倒换命令, 并判断是否需要进行数据路径倒 换; 如果是, 则进行步骤 B, 否则, 继续通过正常数据路径传输数据;
B、 在内、 外环上的数据传输均到达帧边界后, 该节点从正常数据 路径切换到倒换数据路径。
较佳地, 步骤 A中, 在读取内、 外环数据的帧间隔期间采样倒换命 令。
较佳地, 步骤 B所述从正常数据路径切换到倒换数据路径包括以下 步驟:
传送完毕整帧数据的倒换模块停止在原数据路径上发送数据, 将自 身设置为倒换就緒状态;
在内、 外环路的倒换模块均处于倒换就绪状态时, 所述节点从正常 数据路径切换到倒换数据路径。
一种弹性分组环网中节点退出保护倒换的方法, 所述弹性分组环由 按相反方向传输数据的内环与外环组成; 该方法包括下述步骤:
Al、环网中的节点采样退出保护倒换命令,并判断是否需要退出保护 倒换状态; 如果是, 则进行步骤 B1 , 否则, 继续通过倒换数据路径传输 数据; Bl、 在倒换数据路径上传输的数据均到达帧边界后, 该节点从倒换 数据路径恢复到正常数据路径。
较佳地, 步骤 A1 中, 在读取数据的帧间隔期间采样退出保护倒换 命令。
较佳地, 步骤 B1 所述从倒换数据路径恢复到正常数据路径包括以 下步骤:
传送完毕整帧数据的倒换模块停止在原数据路径上发送数据, 将自 身设置为退出保护倒换就绪状态;
在内、 外环路的倒换模块均处于退出保护倒换就绪状态时, 所述节 点从倒换数据路径恢复到正常数据路径。
一种用于弹性分组环网节点的保护倒换装置, 所述弹性分组环由按 相反方向传输数据的内环与外环组成; 该装置包括:
第一倒换模块, 接收内环数据和向外环发送数据;
第二倒换模块, 接收外环数据和向内环发送数据;
在正常模式时, 各倒换模块将接收的环路数据发送到与其连接的另 一倒换模块, 使数据按正常数据路径传输; 当需要保护倒换并且所述第 一、 第二倒换模块在数据传输到达帧边界后, 该第一、 第二倒换模块将 接收的环路数据直接在本模块内切换数据路径, 使数据按倒换数据路径 传输。
较佳地, 所述第一、 第二倒换模块分别包括发送数据子模块和接收 数据子模块; 各倒换模块的发送数据子模块将接收到的环路数据发送到 本倒换模块内的接收数据子模块, 或者发送到另一倒换模块的接收数据 子模块。
较佳地, 所述倒换模块内还包括用于緩存环路数据的緩冲模块, 该 緩冲模块将接收到的来自外部的待发送数据发送给发送数据子模块。 较佳地, 所述第一、 二倒换模块设置在一个芯片中; 或者分别设置 在不同的芯片中。
本发明提供的在 RPR协议中适用于 Wrapping保护倒换方式的方法 和装置, 不需要复杂的握手信号和交互协议, 因而实现简单; 本发明在 数据传输的帧边界进行数据通路切换, 因此不会造成丢包, 从而保证了 RPR环网节点的可靠性。 附图简要说明
图 1是现有 RPR环网和节点的结构图。
图 2是 Steering保护方式示意图。
图 3是 Wrapping保护方式示意图。
图 4是 RPR节点设备的结构示意和正常模式时的数据路径示意图。 图 5是 RPR节点保护倒换数据路径示意图。
图 6是倒换模块的状态转移图。
图 7是倒换模块的结构框图。
图 8是倒换模块倒换控制逻辑结构示意图。
图 9是发送方向的倒换切换控制步骤。
图 10是接收方向的倒换切换控制步骤。 实施本发明的方式
参阅图 4 所示的 RPR 节点芯片 , 包括对称的东向单元 EAST— RPR— MAC和西向单元 WEST— RPR— MAC , 各单元均具有用户侧 接口、 线路侧接口和倒换模块, 以下将倒换模块称为 PWRAP模块, 西 向 单元 WEST— RPR— MAC 中 的 PWRAP 模块与 东 向 单元 EAST—RPR— MAC中的 PWRAP模块对接。 东、 西向单元可以包含在一 个芯片中; 东、 西向单元也可以分别包含在一个芯片, 两个芯片对接。 东、 西向单元的结构是对称的。
西向单元 WEST_RPR— MAC 中的 PWRAP 模块与东向单元 EAST_RPR_MAC 中的 PWRAP 模块构成了节点的保护倒换装置。 PW AP模块设计分为发送方向 (以下称 TX方向)和接收方向 (以下 称 RX方向), 当节点处于正常模式 NORM时, 一个单元中 PWRAP模 块的 TX方向直接发送数据给另一单元中 PWRAP模块的 RX方向。 当 节点进入倒换模式 WRAP时, PWRAP模块的 TX方向在当前帧发送结 束之后改变数据路径 , 将后续帧在 PWRAP模块内部直接发送给本模块 的 RX方向。
图 4同时显示了 RPR节点在正常模式 NORM时的数据路径示意图, 环网的外环数据由西向接收接口即西向线路侧 RX接口或西向用户侧 TX接口进入芯片, 经倒换模块的正常数据路径由芯片东向发送接口即 东向线路侧 TX接口送出。 同理, 环网内环数据由东向接收接口即东向 线路侧 RX接口或东向用户侧 TX接口进入芯片, 经倒换模块的正常数 据路径由芯片西向发送接口即西向线路侧 TX接口送出。
图 5显示了 RPR节点保护倒换数据路径示意图。在节点发生倒换时, 为了避免发生断帧、 错帧, 因此东、 西向单元中的 PWRAP模块就要互 通信息, 例如, 西向单元收到倒换命令欲将正常数据路径切换为倒换路 径 (将外环数据倒换到内环上), 就要在自己将当前正传送的整帧数据 发送到东向单元, 并且要得知东向单元也发送完整帧数据之后再切换数 据通路, 即在帧边界再切换数据通路。 同理, 东向单元也根据倒换命令 在帧边界将内环数据倒换到外环上。 如此, 保护倒换装置就完成了正常 工作模式到倒换工作模式的切换, RPR环网就可以通过倒换模式 WRAP 实现故障保护倒换。 当需要退出倒换模式 WRAP时, PWRAP的 TX方向在当前帧发送 结束之后回复到 NORM模式下的数据路径, 将后续帧直接发送给另单 元中的 PWRAP模块的 RX方向。
图 6显示了 PWRAP模块倒换切换状态转移图。 东、 西向 PWRAP 模块的状态机分别控制着各自数据通路的倒换切换, 同时两个状态机又 互有握手。 西向 PWRAP模块和东向 PWRAP模块的状态机都包括 4个 状态: UNWRAP、 WRAP RDY, WRAP, UNWRAP DY。其中 UNWRAP 指非倒换状态, WRAP RDY指倒换就绪状态, WRAP 指倒换状态, UNWRAP RDY指非倒换就绪状态。 芯片上电复位后, 东、 西向 PWRAP 模块的状态机都进入 UNWRAP状态。在 UNWRAP状态时, 其中一个单 元的 PWRA 模块 TX方向直接发送数据给另一单元的 PWRAP模块的 RX方向。 当收到倒换命令指示 wrap— op, 且先将当前整帧数据发送完毕 的 PWRAP模块就先进入 WRAP RDY状态, 即此 PWRAP模块 TX的数 据路径已经切向本侧的 R 通路, 已经倒换准备就绪。但本侧的 RX路径 何时能切换过来接收本侧 TX的数据,使 PWRAP模块进入 WRAP状态, 此时的状态转移就要受到另一 PWRAP模块状态机的控制。 必须要等到 另一 PWRAP模块也进入倒换就绪 WRAP RDY状态, 即另一 PWRAP模 块的 TX也将当前整帧数据发送完毕。这样东、西向 PWRAP模块都进入 了 WRAP状态, 完成了正常数据路径到倒换数据路径的切换。
由倒换状态退出回到非倒换状态的机理是一样的。 当收到撤回倒换 命令指示 unwrap—op,且 PWRAP模块的 TX刚好发送完整帧数据到 RX 就进入 UNWRAP RDY状态, 但只有等到本节点的另一 P WRAP模块也 进入 UNWRAP RDY状态时, 才能恢复到 UNWRAP状态。
图 7显示了 PWRAP模块结构。 西向单元的 PWRAP模块和东向单 元的 PWRAP模块是对称的, 图中显示的是西向 PWRAP模块的结构框 图, 但本领域的技术人员, 可以容易的从该框图中推导出与其对称的东 向 PWRAP的结构, 因此, 以下只对西向 F RAP的结构做相应说明。 图中的 P AP模块由发送数据子模块 PWTX,接收数据子模块 PWRX 和緩存模块 PWFIFO 构成。 PWTX 子模块接收转发调度模块 SFD ( Schedule Forward Dispatcher )送来的数据 ,緩存模块 PWFIFO置于 SFD 模块与 PWTX子模块之间, 緩存并转发二者间传递的数据, PWRX子 模块发送数据给权重公平算法模块 WFA ( Weighted Fairness Algorithm ), PWTX与 PWRX子模块共同接收 CPU接口模块 MPI ( Microprocessor Interface )送出的控制信号并将状态信号返回给 MPI模块。 其中, 上述 SFD、 WFA和 MPI均属于节点内 MAC层的模块。
西向单元的 PWRAP模块和东向单元的 PWRAP模块是相互连接的, 具体为:西向单元内的发送数据子模块 PWTX和东向单元内的接收数据 子模块 PWRX相互连接, 东向单元内的发送数据子模块 PWTX和西向 单元内的接收数据子模块 PWR 相互连接。
图 8显示了 PWRAP模块倒换控制逻辑结构示意图。 图 7和图 8中 的信号说明如下:
sfd2pw_val信号是 SFD模块向 PWRAP模块发送的数据有效指示信号 , 相应的, sfd2pw_data是由 SFD模块向 PWRAP模块发送的数据, 而 pw2sfd_rdy信号是 PWRAP模块发送给 SFD模块的允许发送指示信号; pwtx_val信号是本 PWTX子模块向另一 PWRAP模块输出的数据有 效指示信号, 相应的, pwtx— data是本 PWTX子模块向另一 PWRAP模 块输出的数据, pwtx_rdy是另一 PWRAP模块向本 PWTX子模块输出的 允许发送指示信号;
pw2wfa_val是本 PWRX子模块发送给 WFA模块的数据有效指示信 号, 相应的, pw2wfa— data是本 PWRX子模块发送给 WFA模块的数据, wfa2pw_rdy是 A模块发送给 PWRX子模块的允许发送指示信号; pwrx_val是另一 PWRAP模块向本 PWRX子模块输入的数据有效指 示信号, 相应的, pwrx—data是另一 PWRAP模块向本 F R 子模块输 入的数据, pwrx_rdy是本 PWR 子模块向另一 PWRAP模块输出的允 许发送指示信号;
pwtx2rx_val是本 PWTX子模块向本 PWKX子模块发送的数据有效 指示信号, 相应的, pwtx2rx_data是本 PWTX子模块向本 PWRX子模 块发送的数据, pwrx2tx_ rdy是本 PWRX子模块向本 PWTX子模块发送 的允许发送指示信号;
wrap— op是 MPI模块向本 PWTX子模块与本 PWR 子模块共同发 送的倒换命令指示信号; pwtx—wrap与 pwrx— wrap是 PWTX子模块与 PWRX子模块的倒换状态指示信号。 pwtx—wrap 与 pwrx— wrap是根据 wrap— op信号和当前帧的传递状态决定的, 即 wrap— op有效时 TX方向 当前帧发完时 pwtx—wrap有效, 同理 wrap_op有效时 R 方向当前帧收 完时 pwrx— wrap有效。
PWRAP模块实现发送方向的正常状态数据路径和 WRAP状态数据 路径的切换。 因为数据路径的切换是基于帧的, 所以必须在读数据的帧 间隔采样倒换命令指示 wrap— op, 帧间隔可以根据帧尾指示信号的跳变 来判断。 由于切换是由 TX方向和 RX方向配合进行的, 因此倒换状态 指示信号 pwtx_wrap和 pwrx_wrap是关键的通道切换控制开关。
图 9显示了 PWRAP模块的 TX方向倒换数据路径的大体控制步骤: 首先,在步驟 11对 pwtx—wrap信号进行设置, 具体而言(图中未示出), 判断 PWTX子模块向另一 PWRAP模块发送的数据是否处于帧间隙,如 果是, 采样 wrap— op信号 , 并将 pwtx—wrap信号设置为 wrap— op信号; 接下来, 在步骤 12对 pwtx— val信号进行设置, 具体而言 (图中未 示出), 判断 pwtx— wrap信号是否有效, 如果有效即需要进行保护倒换, 将 pwtx一 val信号设置为无效, 即中止将本 PWTX子模块的数据发送到 另一 PWRAP模块中,否则,将 pwtx— val信号设置为有效,并将本 PWFIFO 子模块中的数据送往另一 PWRAP模块;
然后, 在步骤 13对 pwtx2rx— val信号进行设置, 具体而言 (图中未 示出), 继续判断 pwtx— wrap信号是否有效, 如果无效, 将 pwtx2rx— val 信号设置为无效, 即中止本 PWTX子模块将数据发送到本 PWRX子模 块, 否则, 将 pwtx2rx_val信号设置为有效, 并将本 PWFIFO中的数据 送往本 PWRX子模块;
最后, 在步骤 14对 pw2sfd— rdy信号进行设置, 具体而言(图中未示 出), 判断 pwtx— wrap信号是否有效, 如果无效, 将 pw2sfd_rdy信号设置 为 pwtx— rdy信号,即设置为正常数据路径的 rdy信号,否则,将 pw2sfd— rdy 信号设置为 pwrx2tx_rdy信号, 即设置为倒换数据路径的 rdy信号。
利用上述的信号可以控制本侧 TX的数据通路是切向本侧的 RX通 路, 还是切向对侧 PWRAP模块。 假设本例中已控制本侧 TX的数据通 路切向本侧的 R 通路, 但此时还要看对侧 PWRAP模块的 TX是否在 向本侧的 RX发送数据, 如对侧正在向本侧发数据, 就要等到对侧发送 到帧间隙才能倒换切换。 本侧的 RX何时能切换过来接收本侧 TX的数 据是由 pwrx— wrap信号控制的。
图 10显示了 RX方向倒换切换的大体控制步骤, 首先, 在步骤 21 对 pwrx— wrap信号进行设置, 具体而言 (图中未示出), 判断本 PWRX 子模块接收另一 PWTX 子模块发送的数据是否处于帧间隙, 并且 wrap— op信号是否被设置为有效, 如果以上两组判断结果都为是, 则将 pwrx— wrap信号设置为有效, 否贝1 J , ^口果 pwtx— wrap信号无效, 并且 wrap— op信号也是无效, 贝1 J pwrx— wrap信号设置为无效; 接下来,在步骤 22对 pwrx— rdy和 pwrx2tx— rdy信号进行设置,具体 而言 (图中未示出), 如果, pwrx— wrap信号有效, 则将 pwrx— rdy信号 设置为无效, 以中止由另一 P WRAP模块向本 PWR 子模块发送数据, 并将 pwrx2tx_rdy信号设置为 wfa2pw—rdy信号, 准备接收本 PWTX的 数据, 否则将 pwrx_rdy信号设置为 wfa2pw_rdy信号, 准备接收另一 PWRAP模块的数据, 并将 pwrx2tx— rdy信号设置为无效, 以中止接收由 本 PWTX子模块发送的数据;
然后, 在步骤 23对 pw2wfa—val和 pw2wfa— data信号进行设置, 具 体而言 (图中未示出), 如果, pwrx— wrap信号有效, 则将 pw2wfa— val 信号设置为 pwtx2rx— val信号, 以指示接收倒换数据通路本侧发送来的 信息, 并将 pw2wfa— data信号设置为 pwtx2rx— data信号, 即接收倒换通 路的数据, 否则将 pw2wfa— val信号设置为 pwrx— val信号, 以指示接收 正常数据通路对侧发送来的信息, 并将 pw2wfa—data 信号设置为 pwrx— data, 即接收正常通路的数据。
利用上述的信号可以控制本侧 RX的数据通路是接收本侧的 TX通 路数据, 还是接收另一 PWRAP模块的数据。
根据图 9和图 10中的信号控制, 即可实现倒换模块的 NORM状态 数据路径和 WRAP状态数据路径的相互切换。
需要说明的是,尽管本实施例中使用了一个芯片进行说明性描述,但 本领域的技术人员, 在此基础上, 可以理解, 此技术方案并不局限于在 单芯片内实现无损倒换, 同时其也可以应用于两芯片对接的技术方案。
根据上述描述, 通过运用公知技术中的 RPR协议, 无需.附加额外的 解释,本领域的普通技术人员,就可以得到实现本发明的所有必要信息, 以在 RP R环网节点处实现筒单而可靠的数据通路切换。
以上所述的实施例并不能解释为对本发明的限制, 本领域的技术人 员可以据此设计出各式各样的装置, 因此, 任何不偏离本发明实质性内 容的技术方案都被包含在本发明所要表达的内容之中。

Claims

权利要求书
1、一种弹性分组环网中节点的保护倒换方法,所述弹性分组环由按 相反方向传输数据的内环与外环组成; 其特征在于, 所述方法包括下述 步骤:
A、 环网中的节点采样倒换命令, 并判断是否需要进行数据路径倒 换; 如果是, 则进行步骤 B, 否则, 继续通过正常数据路径传输数据;
B、 在内、 外环上的数据传输均到达帧边界后, 该节点从正常数据 路径切换到倒换数据路径。
2、 如权利要求 1所述的方法, 其特征在于, 步驟 A中, 在读取内、 外环数据的帧间隔期间采样倒换命令。
3、 如权利要求 1所述的方法, 其特征在于, 步骤 B所述从正常数 据路径切换到倒换数据路径包括以下步骤:
传送完毕整帧数据的倒换模块停止在原数据路径上发送数据, 将自身 设置为倒换就绪状态;
在内、 外环路的倒换模块均处于倒换就绪状态时, 所述节点从正常 数据路径切换到倒换数据路径。
4、一种弹性分组环网中节点退出保护倒换的方法,所述弹性分组环 由按相反方向传输数据的内环与外环组成; 其特征在于该方法包括下述 步骤:
A1、环网中的节点采样退出保护倒换命令,并判断是否需要退出保护 倒换状态; 如果是, 则进行步骤 B1 , 否则, 继续通过倒换数据路径传输 数据;
Bl、 在倒换数据路径上传输的数据均到达帧边界后, 该节点从倒换 数据路径恢复到正常数据路径。
5、 如权利要求 4所述的方法, 其特征在于, 步骤 A1中, 在读取数 据的帧间隔期间采样退出保护倒换命令。
6、 如权利要求 4所述的方法, 其特征在于, 步骤 B1所述从倒换数 据路径恢复到正常数据路径包括以下步驟:
传送完毕整帧数据的倒换模块停止在原数据路径上发送数据, 将自身 设置为退出保护倒换就绪状态;
在内、 外环路的倒换模块均处于退出保护倒换就绪状态时, 所述节 点从倒换数据路径恢复到正常数据路径。
7、一种用于弹性分组环网节点的保护倒换装置,所述弹性分组环由 按相反方向传输数据的内环与外环组成; 其特征在于该装置包括: 第一倒换模块, 接收内环数据和向外环发送数据;
第二倒换模块, 接收外环数据和向内环发送数据;
在正常模式时, 各倒换模块将接收的环路数据发送到与其连接的另 一倒换模块, 使数据按正常数据路径传输; 当需要保护倒换并且所述第 一、 第二倒换模块在数据传输到达帧边界后, 该第一、 第二倒换模块将 接收的环路数据直接在本模块内切换数据路径, 使数据按倒换数据路径 传输。
8、 如权利要求 7所述的保护倒换装置, 其特征在于, 所述第一、 第 二倒换模块分别包括发送数据子模块和接收数据子模块; 各倒换模块的 发送数据子模块将接收到的环路数据发送到本倒换模块内的接收数据 子模块, 或者发送到另一倒换模块的接收数据子模块。
9、如权利要求 8所述的保护倒换装置, 其特征在于, 所述倒换模块 内还包括用于緩存环路数据的緩冲模块, 该緩冲模块将接收到的来自外 部的待发送数据发送给发送数据子模块。
10、 如权利要求 7、 8或 9所述的保护倒换装置, 其特征在于, 所述第 一、 二倒换模块设置在一个芯片中; 或者分别设置在不同的芯片中。
PCT/CN2005/001844 2004-11-04 2005-11-04 Procede de commutation de protection pour noeud de reseau en anneau souple a commutation par paquet et dispositif associe WO2006047955A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/560,688 US7706256B2 (en) 2004-11-04 2006-11-16 Protection switching method and apparatus for nodes in a resilient packet ring network

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200410090299.0A CN100496009C (zh) 2004-11-04 2004-11-04 弹性分组环网中节点的保护倒换方法及装置
CN200410090299.0 2004-11-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/560,688 Continuation US7706256B2 (en) 2004-11-04 2006-11-16 Protection switching method and apparatus for nodes in a resilient packet ring network

Publications (1)

Publication Number Publication Date
WO2006047955A1 true WO2006047955A1 (fr) 2006-05-11

Family

ID=36318890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2005/001844 WO2006047955A1 (fr) 2004-11-04 2005-11-04 Procede de commutation de protection pour noeud de reseau en anneau souple a commutation par paquet et dispositif associe

Country Status (3)

Country Link
US (1) US7706256B2 (zh)
CN (1) CN100496009C (zh)
WO (1) WO2006047955A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080002729A1 (en) * 2006-06-29 2008-01-03 Lucent Technologies, Inc. Local add traffic exchange between separate East/West line cards in a half-MAC architecture for the resilient packet ring
CN101136838B (zh) * 2006-08-29 2012-07-04 华为技术有限公司 一种桥模式弹性分组环跨环桥设备冗余保护的方法
EP2079195B1 (en) * 2006-11-02 2014-08-27 NEC Corporation Packet ring network system, packet transfer method and interlink node
CN100461737C (zh) * 2007-03-06 2009-02-11 华为技术有限公司 弹性分组环节点内部连接故障处理方法及装置
JP5061748B2 (ja) * 2007-06-21 2012-10-31 日本電気株式会社 パケットリングネットワークシステム、パケット転送方法
CN101170505B (zh) * 2007-12-04 2010-07-21 杭州华三通信技术有限公司 一种弹性分组环站点处理故障的方法及装置
US7801024B2 (en) * 2008-02-12 2010-09-21 At&T Intellectual Property Ii, L.P. Restoring aggregated circuits with circuit integrity checks in a hierarchical network
US20090281581A1 (en) 2008-05-06 2009-11-12 Berg Jeffery H Method and device for securing sutures to bones
US8845725B2 (en) * 2009-04-17 2014-09-30 Lumaca Orthopaedics Pty Ltd Tenodesis system
JP5394283B2 (ja) * 2010-02-25 2014-01-22 株式会社日立産機システム 情報処理装置及び制御用ネットワークシステム
CN108233322B (zh) * 2018-01-26 2019-08-30 南京南瑞继保电气有限公司 一种基于光纤串联的采样系统
CN112188546B (zh) * 2019-07-03 2023-06-27 成都华为技术有限公司 传输数据的方法和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000074318A1 (en) * 1999-06-02 2000-12-07 Marconi Communications, Inc. Transmitter-based path protection switching in a ring network
CA2392942A1 (en) * 2001-07-10 2003-01-10 Tropic Networks Inc. Protection system and method for resilient packet ring (rpr) interconnection
CN1479455A (zh) * 2002-08-29 2004-03-03 华为技术有限公司 弹性分组环网的快速倒换方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3916484A (en) * 1973-10-05 1975-11-04 Raymond A Kennedy Method and apparatus for automatic carcass cutting
US4266293A (en) * 1979-06-01 1981-05-05 Farinon Corporation Protection control unit for a TDM system
JP2578704B2 (ja) * 1991-03-26 1997-02-05 日本電信電話株式会社 リング伝送網のループバック方法およびリング伝送装置
US5205779A (en) * 1991-09-04 1993-04-27 Texas Beef Group Method and apparatus for automatically segmenting animal carcasses
JP2617701B2 (ja) * 1995-06-28 1997-06-04 宮城日本電気株式会社 Vtパス切替時のミスコネクション回避方法
US5611727A (en) * 1995-11-08 1997-03-18 G.-E. Leblanc Inc. Middle splitter
CN1214576C (zh) * 2002-06-22 2005-08-10 华为技术有限公司 光纤节点倒换方法和装置
CN100373825C (zh) * 2002-07-26 2008-03-05 北京邮电大学 高速并行光传输系统中的线路保护倒换方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000074318A1 (en) * 1999-06-02 2000-12-07 Marconi Communications, Inc. Transmitter-based path protection switching in a ring network
CA2392942A1 (en) * 2001-07-10 2003-01-10 Tropic Networks Inc. Protection system and method for resilient packet ring (rpr) interconnection
CN1479455A (zh) * 2002-08-29 2004-03-03 华为技术有限公司 弹性分组环网的快速倒换方法

Also Published As

Publication number Publication date
US20070115805A1 (en) 2007-05-24
US7706256B2 (en) 2010-04-27
CN1770726A (zh) 2006-05-10
CN100496009C (zh) 2009-06-03

Similar Documents

Publication Publication Date Title
WO2006047955A1 (fr) Procede de commutation de protection pour noeud de reseau en anneau souple a commutation par paquet et dispositif associe
US11916722B2 (en) System and method for resilient wireless packet communications
JP3511988B2 (ja) フレーム転送装置、フレーム転送方法、フレーム転送システム
US7065040B2 (en) Ring switching method and node apparatus using the same
US6094439A (en) Arrangement for transmitting high speed packet data from a media access controller across multiple physical links
ES2381748T3 (es) Método y equipo para la recuperación de fallos en un anillo óptico de ráfagas adaptable y un método de gestión de fallos
JP4835422B2 (ja) ネットワーク装置及び通信システム
JP4034782B2 (ja) リング間接続装置、及びデータ転送制御方法
ES2321533T5 (es) Procedimiento y aparato para soportar un acceso a un terminal de PPPoA
JP3777008B2 (ja) 障害復旧制御方法
WO2004036836A1 (fr) Procede d'emission de service de donnees sur un reseau numerique synchrone
JP2005502268A (ja) イーサネット上でsdh/sonet自動保護スイッチングをサポートするための方法
WO2010124557A1 (zh) 环网保护方法、网络节点及环网络
JP3908483B2 (ja) 通信装置
US7848228B2 (en) Communication system, communication card, and communication method
WO2010037324A1 (zh) 传送网络数据传输调整的方法和装置
WO2007098663A1 (fr) Interface de liaison dans une boucle rpr, procédé de mise en oeuvre et appareil
EP2797264B1 (en) Ring network protection realizing method and system
CN101883117A (zh) 接口业务集中处理方法和系统
JP4017985B2 (ja) 第3世代セルラーネットワーク
JP2004253881A (ja) 局側集線装置
US8179785B1 (en) Deterministic switching protection over aggregated links
JP5712586B2 (ja) リンク・アグリゲーションによる多重無線装置及び回線制御方法
JP3769537B2 (ja) 基地局内atmバス無瞬断切替方法及び基地局内atmバス無瞬断切替方式
KR0132954B1 (ko) 링구조하의 1:7 atm 셀분기/결합 다중화기

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11560688

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 11560688

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 05806956

Country of ref document: EP

Kind code of ref document: A1