WO2006046607A1 - Dispersion type electroluminescence element - Google Patents

Dispersion type electroluminescence element Download PDF

Info

Publication number
WO2006046607A1
WO2006046607A1 PCT/JP2005/019702 JP2005019702W WO2006046607A1 WO 2006046607 A1 WO2006046607 A1 WO 2006046607A1 JP 2005019702 W JP2005019702 W JP 2005019702W WO 2006046607 A1 WO2006046607 A1 WO 2006046607A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
phosphor
particles
dielectric layer
dielectric
Prior art date
Application number
PCT/JP2005/019702
Other languages
French (fr)
Japanese (ja)
Inventor
Tadanobu Sato
Original Assignee
Fujifilm Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corporation filed Critical Fujifilm Corporation
Publication of WO2006046607A1 publication Critical patent/WO2006046607A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/636Polysaccharides or derivatives thereof
    • C04B35/6365Cellulose or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/56Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing sulfur
    • C09K11/562Chalcogenides
    • C09K11/565Chalcogenides with zinc cadmium
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9661Colour
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Definitions

  • the present invention relates to a dispersive electoluminescent device having a light emitting particle layer formed by dispersing and applying electoluminescent phosphor particles.
  • Electric mouth luminescence (hereinafter also referred to as "EL") phosphors are voltage-excited phosphors, and are used as distributed EL devices in which phosphor particles are sandwiched between electrodes. It is known.
  • the general shape of a dispersion-type EL device is a structure in which phosphor particles are dispersed in a high-dielectric-constant inductor, and at least one is sandwiched between two transparent electrodes. Light is emitted by applying an alternating electric field between the electrodes.
  • Dispersed EL devices with such a structure can be made to a thickness of lmm or less, and it is possible to form flexible and lightweight devices on plastic substrates without using high-temperature processes in the manufacturing process.
  • Dispersion EL elements that have been proposed to emit white light have a light emission waveform in which the light emission intensity is concentrated mainly in the two wavelength regions of blue-green and orange to red.
  • these dispersive EL elements that emit white light have various advantages as a flexible planar light source, and have a color rendering property, particularly a red color rendering property, compared to other white light sources such as fluorescent lamps.
  • a transmissive medium such as a transparent positive image
  • the red color reproducibility is greatly inferior to the case where a conventional fluorescent light is used as a flat light source, and almost red is expressed. It was impossible.
  • Patent Documents 4 and 5 there has been proposed a technique for obtaining EL elements having different emission colors by providing a color conversion layer or a pigment layer above the phosphor layer (transparent electrode side: viewing side) (for example, Patent Documents 4 and 5). etc). Furthermore, there is a technology for obtaining a red light-emitting EL device by laminating a color conversion layer that has a complementary relationship with the emission color of the light-emitting particle layer and a red filter that passes only a wavelength near 600 nm above the light-emitting particle layer. It has been proposed (Patent Document 6). However, even with these technologies, sufficient red reproducibility (red color rendering) could not be obtained.
  • Patent Document 7 an EL element containing a photoexciter in any one of the layers constituting the EL element has been proposed.
  • Patent Document 1 Japanese Patent Laid-Open No. 60-25195
  • Patent Document 2 JP-A-60-170194
  • Patent Document 3 Japanese Patent Laid-Open No. 2-78188
  • Patent Document 4 JP-A-6-163159
  • Patent Document 5 Japanese Patent Laid-Open No. 3-15191
  • Patent Document 6 Japanese Patent Laid-Open No. 11-67456
  • Patent Document 7 Japanese Patent Laid-Open No. 11-67458
  • An object of the present invention is to obtain a dispersed EL element that emits white light and has excellent color rendering properties, particularly red color rendering properties.
  • a color conversion material that emits red light is used in addition to phosphor particles that emit blue-green light to produce white light emission.
  • a pigment obtained by dispersing an organic dye in a polymer and pulverizing it into particles is used as a red color conversion material dispersed in a light emitting particle layer (hereinafter also referred to as a phosphor layer).
  • a phosphor layer a light emitting particle layer
  • the emission wavelength of the pigment is measured in such a state that the pigment is dispersed in the medium, it shifts to a shorter wavelength side than the emission wavelength when measured with the pigment powder. This shift toward the short wavelength side reduces red color reproducibility.
  • the present inventors add a pigment to the dielectric layer, and use the light scattering of the dielectric particles that occurs in the dielectric layer, thereby making the pigment It has been found that the self-absorption of can be increased and the apparent emission wavelength can be increased.
  • This long wave is obtained by (1) high red reproducibility that is particularly large when the pigment content in the dielectric layer is within a specific range and the thickness of the dielectric layer is within a specific range. I found out that In addition, similar findings could be obtained for other color conversion materials such as dyes.
  • An electoluminescence device containing a transparent electrode, a phosphor layer, a dielectric layer, and a back electrode in this order, and
  • the dielectric layer includes dielectric particles and a color conversion material, the content ratio of the color conversion material is 0.1% by mass or more and 20% by mass or less with respect to the dielectric particles, and the thickness of the dielectric layer is An electroluminescent device having an aperture of 1 ⁇ m to 20 ⁇ m.
  • An electorium luminescence device containing a transparent electrode, a phosphor layer, a dielectric layer and a back electrode in this order, and
  • the electroluminescent device wherein the dielectric layer includes dielectric particles and a color conversion material, and the emission maximum wavelength of the color conversion material is not less than 600 nm and not more than 750 nm
  • the dielectric layer contains dielectric particles and a color conversion material, and the color conversion material
  • the maximum emission wavelength is 600 nm or more and 750 nm or less
  • the content ratio of the color conversion material is 0.1% by mass or more and 20% by mass or less with respect to the dielectric particles
  • the thickness of the dielectric layer is 1 ⁇ m or more.
  • An electoluminescence device comprising a transparent electrode, a phosphor layer, a dielectric layer and a back electrode in this order, wherein the phosphor layer includes phosphor particles having a coating layer
  • the electoluminescence device according to any one of (4) to (4).
  • the coating layer has a wavelength of 280 ⁇ !
  • the electoluminescence device according to (5) comprising a material having an absorption edge at ⁇ 420 nm.
  • the phosphor particles have an average particle size of 0.1 to 20 / zm, a variation coefficient of particle size distribution of less than 35%, and containing 10 or more layers of stacking faults with a spacing of 5 nm or less.
  • the electroluminescent device according to any one of (5) to (7), wherein the electroluminescent phosphor is a ZnS-based electroluminescent phosphor having 30% by volume or more of the entire phosphor particles.
  • the EL element of the present invention it is possible to obtain a dispersed EL element that emits white light and has excellent color rendering properties, particularly red color rendering properties.
  • the EL device of the present invention contains a transparent electrode, a phosphor layer, a dielectric layer, and a back electrode in this order.
  • the dielectric layer includes dielectric particles and a color conversion material.
  • the content ratio of the color conversion material is 0.1% by mass or more and 20% by mass or less with respect to the dielectric particles, and the thickness of the dielectric layer is 1 ⁇ m or more and 20 ⁇ m or less.
  • the dielectric layer includes dielectric particles and a color conversion material, and the emission maximum wavelength of the color conversion material is not less than 600 nm and not more than 750 nm.
  • the content ratio of the color conversion material contained in the dielectric layer is 0.1% by mass or more and 20% by mass or less, preferably 0.1% by mass with respect to the dielectric particles as described above.
  • the range is from 5% by mass to 10% by mass.
  • the thickness of the dielectric layer containing the color conversion material is 1 m or more and 20 m or less as described above, and preferably 3 ⁇ m or more and 18 ⁇ m or less.
  • the EL element can realize white color emission and high color rendering.
  • the emission maximum wavelength of the color conversion material is 600 nm or more and 750 nm or less as described above, preferably 610 nm or more and 650 nm or less, more preferably 61
  • the range is from Onm to 630 nm.
  • the EL device can achieve high color rendering with white light emission.
  • the EL device of the present invention contains a transparent electrode, a phosphor layer, a dielectric layer, and a back electrode in this order, and the color conversion material is below the phosphor layer (on the back electrode side).
  • the peak wavelength of red light emission during white light emission of the dispersion-type EL element can be within a preferable range of 590 nm to 625 nm, and the peak wavelength of blue-green light emission is from 480 to 480 nm. It can be 510nm. Further, at this time, the minimum value between the blue-green light emission band and the red light emission band can be set in the range of 571 nm to 583 nm.
  • the red light emission peak wavelength is more preferably in the range of 595 nm to 620 nm, and most preferably 600 nm to 615 nm.
  • the emission peak wavelength of blue-green light emission is more preferably 483 nm to 505 nm, and more preferably 485 ⁇ ! ⁇ 503nm.
  • the EL element of the present invention has layers in the above order, other layers described later can be provided.
  • the dielectric layer in addition to the above-described dielectric layer containing the color conversion material (hereinafter also referred to as color conversion material-containing dielectric layer or dielectric layer A), the dielectric layer further does not contain a color conversion material. (Hereinafter also referred to as dielectric layer B.
  • the number “dielectric layer B—number” represents the position of dielectric layer B in the EL element.).
  • a dielectric layer A and a dielectric layer B can be stacked to form an EL device having the order of transparent electrode, phosphor layer, dielectric layer A, dielectric layer B, and back electrode.
  • the dielectric layer B is provided on both sides of the dielectric layer A, and the transparent electrode, the phosphor layer, the dielectric layer B-1, the dielectric layer A, the dielectric layer B-2, and the back electrode are arranged in this order.
  • the EL element can be provided.
  • the dielectric layer B is provided on the side opposite to the dielectric layer A (transparent electrode side) across the phosphor layer, and the transparent electrode, dielectric layer B-3, phosphor layer, dielectric layer A and An EL element with the order of the back electrodes can be obtained.
  • the total thickness of the entire dielectric layer For example, the thickness is preferably 5 ⁇ m or more and 40 ⁇ m or less, more preferably 5 ⁇ m or more and 35 m or less.
  • the thickness of the dielectric layer B-1 provided on the phosphor layer side is preferably m or more and 10 m or less, more preferably 7 ⁇ m or less. It is.
  • the color conversion material-containing dielectric layer A includes dielectric particles and a color conversion material.
  • the color conversion material is substantially contained only in the color conversion material-containing dielectric layer A. “Substantially contained only in the dielectric layer A containing the color conversion material” means that 70% by mass or more of the color conversion material contained in the EL element is contained in the dielectric layer A.
  • the dielectric layer A must contain 1Z2 or more of the dye contained in the fluorescent pigment before being added to the dispersion solvent.
  • the color conversion material is substantially contained in the dielectric layer A. Further, the color conversion material is substantially uniformly contained in the color conversion material-containing dielectric layer A.
  • substantially uniformly contained means that molecules and pigment particles of a color conversion material having a concentration gradient when viewed as a whole layer are contained in a state where the distribution as a whole is not biased. At this time, the color conversion material molecules and particles may exist in a state where a plurality of molecules and particles are gathered as long as they are contained substantially uniformly as a whole layer.
  • the color conversion material-containing dielectric layer A is formed including dielectric particles.
  • the dielectric particles can be formed by using any dielectric material that has a high dielectric breakdown voltage and a high dielectric breakdown voltage, and has a high reflectance.
  • dielectric material that has a high dielectric breakdown voltage and a high dielectric breakdown voltage, and has a high reflectance.
  • Such materials are selected from metal oxides and nitrides, such as TiO, BaTiO, Sr
  • the average size of the dielectric particles is the average particle size.
  • the dielectric layer B containing no color conversion material can be formed including dielectric particles.
  • the dielectric particles the same or different particles may be used for the color conversion material-containing dielectric layer A and the dielectric layer B not containing the color conversion material.
  • a fluorescent pigment or a fluorescent dye can be preferably used as the color conversion material used for the color conversion material-containing dielectric layer A. These may be used in combination. Among these compounds that form the emission center, rhodamine, latathone, xanthene, quinoline, benzothiazole, triethylindoline, perylene, triphenine, and compounds having skeletons of dicyanomethylene are preferred, as well as cyanine dyes, It is also preferable to use an azo dye, a polyphenylene vinylene polymer, a disilane oligochelene polymer, a ruthenium complex, a europium complex, or an erbium complex. These compounds may be used alone or in combination.
  • a color conversion material having an emission maximum wavelength of 600 nm or more and 750 nm or less. Such a configuration is preferable because the color rendering property of red is further improved.
  • these compounds may be used after further being dispersed in a polymer or the like.
  • the dielectric particles are preferably dispersed in a binder.
  • binders include polymers having a relatively high dielectric constant, such as cyanoethyl cellulose resin, and resins such as polyethylene, polypropylene, polystyrene resin, silicone resin, epoxy resin, and vinylidene fluoride. Is preferred.
  • a homogenizer a planetary kneader, a single kneader, an ultrasonic disperser, or the like.
  • the dielectric layer B that does not contain a color conversion material can also be formed as a uniform film. Further, as described above, it can be formed including dielectric particles. Alternatively, a combination of these may be used. “The film is uniform” means that the dielectric layer itself is an amorphous layer or a layer having a crystalline structure. Examples of the uniform film include a layer having only a high dielectric constant binder and a thin film crystal layer. When the dielectric layer B is formed as a uniform film, the thickness is preferably in the range of 0.1 ⁇ m to 10 ⁇ m.
  • the dielectric layer is formed by coating, it is preferable to use a slide coater or an etrusion coater.
  • a slide coater or an etrusion coater In the case of a thin film crystal layer, sputtering, vacuum evaporation, etc.
  • a thin film formed by a vapor phase method or a sol-gel film using an alkoxide such as Ba or Sr may be used.
  • the dielectric layer A and when forming the dielectric layer B including dielectric particles it is preferably formed by applying a coating liquid for forming a dielectric layer.
  • the dielectric layer forming coating solution is a coating solution containing at least dielectric particles, a binder, and a solvent for dissolving the binder.
  • the coating liquid for forming the dielectric layer A further contains a color conversion material.
  • examples of the solvent include the same solvents as those used for the phosphor layer.
  • the viscosity of the coating liquid for forming a dielectric layer is preferably in the range of 0.1 Pa's to 5 Pa's, and more preferably in the range of 0.3 Pa's to 1. OPa's. If the viscosity of the coating liquid for forming the dielectric layer is within the above range, the film thickness unevenness of the coating is difficult to occur, and the dielectric particles do not separate and settle with the passage of time after dispersion. Application is also possible and preferable.
  • the viscosity is a value measured at 16 ° C. which is the same as the coating temperature.
  • the phosphor layer is formed including phosphor particles.
  • the phosphor particles preferably used in the present invention particles prepared by various preparation methods such as firing by mixing a base material, an activator and, if necessary, a coactivator are used.
  • the matrix material used in this case is specifically a group force consisting of Group II elements and Group VI elements, or a group consisting of one or more elements selected from Group III elements and Group V elements.
  • the base material of the particles includes BaAlS, CaGaS, GaO, ZnSiO, ZnGaO, ZnGaO, ZnGeO, ZnGeO,
  • metal ions such as Mn and Cu and rare earth elements can be preferably used.
  • halogen elements such as CI, Br, and I, A1 and the like can be preferably used.
  • a phosphor particle having an average particle size of 0.1 ⁇ m or more and 20 ⁇ m or less, and containing 10 or more layers of stacking faults with a spacing of 5 nm or less inside the particle.
  • the phosphor particles preferably have an average particle size in the range of 0.1 to 20 / ⁇ ⁇ , more preferably 1 to 15 / ⁇ ⁇ in order to reduce the thickness of the phosphor layer and increase the electric field strength.
  • the coefficient of variation in particle size is preferably less than 35%, more preferably less than 30%.
  • the inside of the particles has a structure with many planar stacking faults, and the efficiency of light emission is high. Therefore, the number of particles having stacking faults of 10 layers or more with an average spacing of stacking faults of 5 nm or less. Is preferably 30% or more of the total number of phosphor particles, more preferably 50% or more, and even more preferably 70% or more.
  • the phosphor particles are preferably a ZnS-based electoluminescence phosphor. Use of the phosphor particles as described above is preferable because deterioration due to ultraviolet rays can be further reduced and durability can be improved.
  • the phosphor particles that can be used in the present invention can be formed by a firing method (solid phase method) widely used in the industry.
  • a firing method solid phase method
  • a fine particle powder usually called raw powder
  • a crystallite size of lOnm or more and 50nm or less is prepared by the liquid phase method, and this is used as the primary particle, which is called an activator.
  • Impurities are mixed, and particles are obtained by first firing in a crucible with a flux at a high temperature in the range of 900 ° C to 1300 ° C for 30 minutes to 10 hours.
  • the intermediate phosphor particles obtained by the first firing are repeatedly washed with ion-exchanged water to remove alkali metal, alkaline earth metal, excess activator and coactivator.
  • second baking is performed on the obtained intermediate phosphor particles.
  • heating annealing
  • heating is performed at a temperature lower than that of the first baking in the range of 500 to 800 ° C, and in a short time of 30 minutes to 3 hours.
  • the conditions for the first firing and the second firing are set so that fine particles and more stacking faults are included in the phosphor particles. It is preferable to select appropriately.
  • the density of stacking faults without destroying the particles can be greatly increased.
  • the impact force can be applied by contacting and mixing the intermediate phosphor particles, mixing and mixing spheres such as alumina (ball mill), accelerating and colliding the particles, and applying ultrasonic waves. A method or the like can be preferably used. After that, etching with an acid such as HC1 removes the metal oxides adhering to the surface, and the copper sulfide adhering to the surface is removed by washing with KCN and dried to obtain phosphor particles. .
  • a hydrothermal synthesis method a urea melting method, or a spray pyrolysis method as a method for forming phosphor particles that can be used in the present invention.
  • a laser 'ablation method a CVD method, a plasma method is used.
  • Vapor phase methods such as CVD method, sputtering, resistance heating, electron beam method, fluid oil surface vapor deposition combined method, etc., double decomposition method, precursor thermal decomposition method, reverse micelle method and these methods and high temperature firing It can also be formed using a combination of these methods, a liquid phase method such as freeze-drying.
  • the phosphor particles used in the present invention include phosphor particles having a coating layer formed by forming a coating layer on the surface of the core particle as the phosphor particles.
  • the average thickness of the coating layer is preferably from 0.01 to m, and more preferably from 0.05 to 0.5 m.
  • the average film thickness of the coating layer is measured from three cross-sectional SEM photographs of the phosphor particles on which the coating layer was formed. The average value.
  • the average film thickness of the coating layer is within the above range, good moisture proofing and ion barrier properties can be obtained, as well as a decrease in luminance and an increase in emission threshold voltage without reducing the electric field strength to the phosphor particles. It is preferable because it is difficult to cause.
  • the coating layer has a thickness suitable for the average size of the particles.
  • the ratio of the average film thickness of the coating layer to the average particle size of the particles is preferably in the range of 0.001 to 0.1, and more preferably in the range of 0.002 to 0.05. Good.
  • the composition of the coating layer is not particularly limited, but oxides, nitrides, hydroxides, fluorides, phosphates, diamond-like carbon, and organic compounds can be used.
  • the use of a membrane or the like is also preferable. Specifically, SiO, Al 2 O, TiO, ZrO, HfO
  • the coating layer improves the luminous efficiency of the phosphor particles and reduces the deterioration over time. It also provides moisture resistance and ion barrier properties. In addition, by providing a coating layer, it may be possible to add an effect on ultraviolet absorption. As a result, the degradation power over time S can be further reduced, and the color balance deviation can be reduced. preferable. From the viewpoint of ultraviolet absorption, the coating layer has a wavelength of 280 ⁇ ! Those containing a material having an absorption edge at ⁇ 420 nm are preferred.
  • Examples of such a material include the following materials.
  • the coating material itself absorbs ultraviolet rays (TiO, ZnO, CeO, ZrO, My power, force
  • an ultraviolet absorption effect can be obtained simply by coating.
  • the coating material itself does not absorb ultraviolet light (Al 2 O
  • UV-absorbing effects can be obtained by further laminating a cinnamate, cinnamic acid, paraaminobenzoic acid, camphor, benzophenone or benzoylmethan UV absorber.
  • the coating layer is preferably continuous without pinholes or cracks in order to obtain sufficient moisture resistance and ion barrier properties.
  • a coating layer can be formed by using a liquid phase synthesis method such as a sol-gel method, a precipitation method, etc., but a CVD method using a fluidized bed, a stirring bed, a vibrating bed, a rolling bed, etc., a plasma More preferably, it is formed by a CVD method, a sputtering method, a mechanofusion method, or the like.
  • the coating layer in the present invention can be formed, for example, by the following method.
  • a first method of forming the coating layer there is a method of forming the coating layer by supplying the raw material of the coating layer and depositing or reacting on the particle surface in a state where the phosphor particle core particles are fluidized.
  • Fluidization of the phosphor particle core particles can be performed by appropriately adopting a known method, and examples thereof include a method using a fluidized bed, a stirring bed, a vibrating bed, and a rolling bed.
  • the fluidized bed is filled with phosphor particle core particles in a cylindrical container, and floats and flows the phosphor particle core particles filled with the carrier gas introduced through the perforated plate from the bottom of the container.
  • the stirring bed is a method of directly fluidizing the filled phosphor particle core particles with an impeller stirrer, etc.
  • the vibrating bed is shown in FIG. 3, for example.
  • the phosphor particle core particles filled in the container are mechanically or electrically vibrated together with the container, and the rolling bed is, for example, a cylinder installed in a horizontal or inclined position as shown in FIG.
  • the rolling bed is, for example, a cylinder installed in a horizontal or inclined position as shown in FIG.
  • EL phosphor core particles filled in a container are fluidized by rotating a cylindrical container.
  • a fluidized bed In order to obtain a uniform and continuous coating layer, it is preferable to use a fluidized bed.
  • a fluidization accelerator having a particle size larger than that of the phosphor particle core particle is added to the phosphor particle core particle. It is preferable to add.
  • the particle size of the fluidization accelerator is a phosphor particle nucleus. It is preferably about 2 to 5 times the average particle size of the child.
  • the fluidization accelerator phosphor particles and substances that are inert at the reaction temperature are preferred. For example, SiO, Al 2 O, ZrO, etc. are preferably used.
  • the shape of the fluidization accelerator is preferably a spherical shape having the best fluidity.
  • Supply and reaction of the coating layer material to the surface of the fluidized phosphor particle core particle may be performed by, for example, reacting a carrier gas containing a gaseous coating layer raw material and introducing it in the same route or another route. Can be used on the particle surface.
  • the coating layer can be formed by thermally decomposing the gaseous coating layer raw material without using the reaction gas.
  • the raw material for the gaseous coating layer alkoxides, alkyl compounds, chlorides, hydrides, hydrocarbons, and the like can be used.
  • the temperature of each reaction apparatus is usually a temperature in the range of about 100 to 500 ° C. In order to reduce thermal damage to the phosphor particles, the temperature is preferably 300 ° C or less. It is also preferable to supply the liquid coating layer raw material to the fluidized bed by a method such as spraying.
  • a coating layer of oxide, nitride, hydroxide, diamond-like carbon, or the like can be formed by the above method.
  • a TiCl solution can be vaporized by publishing with N gas to contain water vapor.
  • TiO precursor coating layer is formed by reacting with N gas and phosphor particle core particle surface
  • A1N coating layer can be formed by the reaction of alkylaluminum and anhydrous ammonia gas.
  • the phosphor particle core particles are dispersed in a solvent.
  • the phosphor particle core particles can be introduced into a reaction vessel together with a solvent and dispersed using an impeller stirrer or the like.
  • the reaction vessel is preferably cylindrical, and the bottom of the vessel is preferably conical or hemispherical.
  • the shape of the stirring blade can be a screw type, a twisted blade type, a paddle type, or the like, but it is more preferable to use a screw-paddle composite type that can form a stirring flow in a direction perpendicular to the circumferential direction of the stirring shaft. .
  • a stirrer blade strainer to create a stronger vertical stirring flow.
  • the solvent water, an organic solvent, or a mixture thereof can be preferably used. wear.
  • urea melted by heating to the melting point or higher can also be used.
  • a dispersing agent such as a surfactant in the solvent.
  • the coating layer raw material is dissolved in the solvent in which the phosphor particle core particles are dispersed, and the reaction solution is added thereto to form the coating layer on the particle surface.
  • the method or the method of simultaneously adding the coating layer raw material solution and the reaction solution to the solvent in which the phosphor particle core particles are dispersed can be preferably used.
  • the coating layer raw material solution and the reaction solution are preferably added to the region where stirring is most intensely performed.
  • the reactant is not limited to a solution, and can be added as a solid.
  • the reaction temperature can also be controlled by directly heating the reaction vessel with a mantle heater or the like. By providing a jacket around the reaction vessel and supplying hot or cold water. It is preferable to control.
  • the reaction temperature is preferably in the range of 40 to 80 ° C. when the solvent is water or an organic solvent, and is preferably in the range of 130 to 150 ° C. in the case of urea.
  • the reaction temperature can be used up to a critical temperature exceeding 100 ° C. It is preferable to add the solution into the autoclave using a liquid feed pump having a pressure resistance equal to or higher than the autoclave internal pressure.
  • a coating layer of oxide, hydroxide, phosphate, fluoride, or the like can be formed by the above method.
  • phosphor particles are dispersed in an alcohol solution of titanium alkoxide, and water diluted with alcohol as a reaction solution is added in an amount equivalent to about 10 times that of titanium alkoxide, so that the Ti O precursor coating layer becomes phosphor particle core particles.
  • a reaction solution is added in an amount equivalent to about 10 times that of titanium alkoxide, so that the Ti O precursor coating layer becomes phosphor particle core particles.
  • a coating layer can be formed on the phosphor particle core particle surface, and an alcohol solution of Mg (CH COO)
  • the MgF coating layer can be formed on the surface of the phosphor particle core particle.
  • Annealing can be almost completely converted to an acidic product, such as when a partially oxidized hydroxide is generated, and the denseness of the coating layer is improved to improve moisture resistance and ion barrier properties. To do.
  • a third method of forming the coating layer there is a method of forming the coating layer by applying mechanical thermal energy in a state where the phosphor particle core particles and the coating layer material are mixed.
  • the coating layer material can be solidified on the surface of the phosphor particle core particle by receiving mechanical thermal energy due to impact or friction.
  • a hybridizer, a sheeter composer, or the like can be preferably used.
  • the coating material it is preferable to use an organic compound such as high molecular weight resin, but an inorganic compound is also possible. It is also preferable to form a coating layer of an organic compound and then form a multilayer coating layer of the inorganic compound or coat with a mixture of an organic compound and an inorganic compound.
  • the phosphor layer can be formed by applying a phosphor particle-containing coating solution.
  • the phosphor particle-containing coating solution is a coating solution containing at least phosphor particles, a binder, and a solvent for dissolving the binder.
  • the binder use is made of a polymer having a relatively high dielectric constant, such as cyanoethylcellulose resin, or a resin such as polyethylene, polypropylene, polystyrene resin, silicone resin, epoxy resin, or vinylidene fluoride. I prefer that.
  • fine particles with high dielectric constant such as BaTiO and SrTiO are added.
  • the dielectric constant can be adjusted by mixing 5 to 50 parts by mass with respect to parts by mass.
  • a dispersion method a homogenizer, a planetary kneader, a roll kneader, an ultrasonic disperser, or the like can be used.
  • the solvent can be used without limitation as long as it is a highly polar solvent, and alcohols, ketones, esters, polyhydric alcohols and derivatives thereof, plasticizers, and the like can be preferably used.
  • the viscosity of the coating solution containing phosphor particles is preferably in the range of 0.1 Pa's to 5 Pa's, and more preferably in the range of 0.3 Pa's to 1.
  • OPa's Viscosity and strength of coating solution containing phosphor particles If it is within the above range, coating film thickness unevenness hardly occurs, and phosphor particles do not separate and settle with the passage of time after dispersion. Is also possible and preferred.
  • Na The viscosity is a value measured at 16 ° C. which is the same as the coating temperature.
  • the phosphor layer has a dry film thickness of 0.5 m or more and 30 m or less on a plastic support or the like provided with a transparent electrode, using a slide coater or an etrusion coater. It is preferable to apply continuously so that At this time, the thickness variation of the phosphor layer is preferably 12.5% or less, particularly preferably 5% or less.
  • the phosphor layer When the phosphor layer is thinned, the voltage applied to the phosphor layer is higher under the same driving conditions than when the phosphor layer is thick like the conventional EL element, and the luminance is increased. When driving with the same level of brightness as a conventional EL device, the drive voltage and frequency can be lowered, reducing power consumption and further improving vibration and noise. In order to obtain such an effect, the phosphor layer has a thickness of 0.5 / z m or more and 70 m or less, more preferably 10 ⁇ m or more and 60 ⁇ m or less.
  • the phosphor particles used in the present invention are preferably particles having an average particle diameter in the range of 0.1 ⁇ m to 20 ⁇ m. Within this range, even when the phosphor layer is 30 m or less, the layer can be formed uniformly, which is preferable.
  • the filling rate of the phosphor particles in the phosphor layer is not limited, but is preferably in the range of 60% by mass to 95% by mass, more preferably in the range of 70% by mass to 90% by mass. In one embodiment of the present invention, by setting the particle size of the phosphor particles to 20 m or less, the uniformity of the coating film thickness of the phosphor layer is improved and the smoothness of the coating film surface is simultaneously improved.
  • the number of particles per unit area is greatly increased, the fine emission unevenness can be remarkably improved. Furthermore, the decrease in the particle size leads to an increase in the voltage applied to the phosphor particles, and in addition to an increase in the electric field strength to the phosphor layer due to the thin phosphor layer, it is preferable for improving the brightness of the EL element. It is also preferable for suppressing vibrations that cause noise.
  • the transparent electrode used in the EL device of the present invention an electrode formed using any commonly used transparent electrode material is used.
  • transparent electrode materials include tin oxides such as tin-doped oxide tin, antimony-doped tin oxide, and zinc-doped oxide oxide tin, a multilayer structure in which a silver thin film is sandwiched between high refractive index layers, and poly-phosphorus. And ⁇ -conjugated polymers such as polypyrrole.
  • the transparent electrode has a fine metal such as comb or grid. U, also preferred to improve the conductivity by placing the wire.
  • the specific resistivity of the transparent electrode is preferably in the range from 0.01 ⁇ to 30 ⁇ .
  • the back electrode is the side from which light is not extracted, and any conductive material can be used.
  • it can be selected from metal such as gold, silver, platinum, copper, iron, and aluminum, graphite, and the like according to the form of the element to be created, the temperature of the creation process, and the like.
  • a transparent electrode such as ITO may be used if it is conductive.
  • a conductive material-containing coating solution in which the conductive fine particle material is dispersed together with a binder may be prepared and applied using a slide coater or an etatrusion coater. it can.
  • a transparent electrode on a support.
  • a support any support that is flexible and highly transparent can be used without limitation.
  • Each functional layer coated on the support is preferably formed as a continuous process including at least a coating step and a drying step.
  • the drying process is divided into a constant rate drying process until the coating film is dried and solidified, and a decreasing rate drying process for reducing the residual solvent of the coating film.
  • Benard cell is likely to occur, and pre-expansion due to rapid solvent expansion. Star failure is likely to occur, and the uniformity of the coating is significantly impaired.
  • the drying process is performed slowly at a constant rate, and is performed at a temperature sufficient for the solvent to dry.
  • the drying chamber where the support travels is divided into several zones, and the drying temperature after the coating process is increased stepwise. It is preferable.
  • the phosphor layer may be subjected to a calendar process using a calendar processor.
  • the smoothness of both main surfaces of the phosphor layer formed by calendering is preferably in the range of 0.5 / zm or less, more preferably 0.2 / zm or less.
  • Force to be used The render processing machine is not particularly limited, and can be appropriately selected from the known powers of known devices. Smoothing treatment is performed by passing a phosphor layer in which phosphor particles are dispersed in a binder while applying pressure between a pair of rolls heated at least one of, for example, 50 ° C to 200 ° C. It is something to apply.
  • the heating temperature of the calender roll is preferably not less than the softening temperature of the binder contained in the phosphor layer.
  • the calender pressure and the conveyance speed are set to the required smoothness, taking into account the calender temperature and the coating width of the phosphor layer so as not to break the phosphor particles or extend the phosphor layer more than necessary. It is preferable to select as appropriate so as to obtain.
  • the conductive material described above can also be used when a compensation electrode is provided to suppress vibration of the EL element.
  • a compensation electrode is provided outside the transparent electrode from which light is extracted, an oxide such as tin-doped tin oxide, antimony-doped tin oxide, or zinc-doped ichtin tin, or a silver thin film is formed with a high refractive index layer.
  • transparent electrode materials such as sandwiched multilayer structures, ⁇ -conjugated polymers such as polyaline and polypyrrole.
  • any conductive material such as metal such as gold, silver, platinum, copper, iron, aluminum, or graphite may be used.
  • a transparent electrode such as a bag may be used as long as it has conductivity.
  • the compensation electrode is attached to the transparent electrode and the back electrode through an insulating layer.
  • the insulating layer material is an insulating inorganic material or polymer material, a dispersion liquid in which inorganic material powder is dispersed in a polymer material, or the like. Can be formed by vapor deposition or coating.
  • a conductive material-containing coating solution in which the conductive fine particle material is dispersed together with a binder can be prepared and applied using a slide coater or an etatrusion coater.
  • an insulating material-containing coating solution in which the insulating material is dispersed together with a binder can be prepared and applied simultaneously with the conductive material-containing coating solution.
  • a voltage is applied to the compensation electrode provided from the drive power source, and at this time, the vibration generated in the phosphor layer can be canceled by setting the phase opposite to the voltage applied to the phosphor layer.
  • the compensation electrode has the same effect even if it is attached outside the transparent electrode or outside the back electrode with an insulating layer sandwiched between them.
  • the dielectric constant of the phosphor layer (and dielectric layer) and the dielectric constant of the insulating layer inside the compensation electrode are substantially the same! /.
  • the buffer material layer is foamed by adding a polymer material having a high impact absorbing ability or a foaming agent. It is preferable to use high polymer materials.
  • the polymer material having high impact absorbing ability include natural rubber, styrene butadiene rubber, polyisoprene rubber, polybutadiene rubber, nitrile rubber, chloroprene rubber, butyl rubber, hibaron, silicon rubber, urethane rubber, ethylene propylene rubber, and fluorine rubber. Etc. can be used.
  • the hardness of these polymer materials is preferably 50 or less, more preferably 30 or less, from the viewpoint of vibration absorption ability.
  • butyl rubber, silicon rubber, fluororubber, and the like are more preferable because they have a low water absorption and function as a protective film for protecting the EL element from moisture.
  • the buffer material layer using these buffer materials can be attached by adhering the buffer material layer to the EL element with an adhesive, but the buffer material is dissolved in a solvent to prepare a buffer material-containing coating solution, It can also be applied using a slide coater or an etrusion coater.
  • the thickness of the buffer layer depends on the hardness of the polymer material, it needs to be 20 ⁇ m or more and preferably 50 ⁇ m or more in order to sufficiently absorb vibration. If it exceeds 200 ⁇ m, the thickness of the element increases greatly, which is not preferable in terms of mass and flexibility. Further, the combined use of the compensation electrode and the buffer layer is preferable because it can further suppress vibration.
  • the dispersion-type EL element of the present invention is preferably processed using a sealing film so as to eliminate the influence of humidity and oxygen from the external environment.
  • Sealing the fill arm for sealing the EL element is preferably water vapor transmission rate of 0. 05gZm 2 Zday less at 40 ° C- 90% RH, 0. 01gZm 2 Zday less is more preferable.
  • Further 40 ° C-oxygen permeability at 90% RH is 0. lcm 3 Zm 2 ZdayZatm is preferably less instrument 0. 01cm 3 Zm 2 ZdayZatm less is more preferable.
  • a sealing film a laminated film of an organic film and an inorganic film is preferable. Used.
  • polyethylene-based resin, polypropylene-based resin, polycarbonate-based resin, polyvinyl alcohol-based resin, and the like are preferably used, and polyvinyl alcohol-based resin can be more preferably used.
  • polyvinyl alcohol resins and the like have water absorption properties, it is more preferable to use those that have been completely dried by intensive treatment such as vacuum heating.
  • An inorganic film is deposited by vapor deposition, sputtering, CVD method, etc. on a material obtained by processing such a resin into a sheet by a method such as coating.
  • the inorganic film to be deposited silicon oxide, silicon nitride, silicon oxynitride, acid silicate, zinc oxyaluminum, aluminum nitride or the like is preferably used.
  • the formation of the organic film and the inorganic film is repeated, or the organic film deposited with the inorganic film is used as the adhesive layer. It is preferable to laminate a plurality of films through a multi-layer film.
  • the thickness of the organic material film is preferably in the range of 5 m to 300 m, more preferably in the range of 10 m to 200 m.
  • the thickness of the inorganic film is preferably in the range of lOnm or more and 300 nm or less, and more preferably in the range of 20 nm or more and 200 nm or less.
  • the film thickness of the laminated sealing film is preferably in the range of 30 m to 1000 m, more preferably in the range of 50 ⁇ m to 300 ⁇ m.
  • two layers of the above organic film and inorganic film are laminated.
  • 50 ⁇ : L00 ⁇ m film thickness The polychlorinated trifluoride titanium conventionally used as a sealing film requires a film thickness of 200 m or more. The thinner the sealing film, the better in terms of light transmission and device flexibility.
  • the sealing film When sealing an EL cell with this sealing film, even if the EL cell is sandwiched between two sealing films and sealed, the sealing film overlaps by folding one sealing film in half
  • the part may be adhesively sealed.
  • the EL cell sealed with the sealing film only the EL cell may be prepared separately, or the EL cell may be directly formed on the sealing film. In this case, the support can be used instead.
  • the sealing step is preferably performed in a dry atmosphere with vacuum or dew point control. [0058] Even when an advanced sealing process is performed, it is preferable to dispose a desiccant layer around the EL cell.
  • alkaline earth metal oxides such as CaO, SrO, BaO, acid aluminum, zeolite, activated carbon, silica gel, paper and highly hygroscopic resin are preferably used.
  • alkaline earth metal oxides are more preferable in terms of moisture absorption performance.
  • These hygroscopic agents can be used even in powder form.
  • the hygroscopic agent can be used by mixing it with a resin material and processing it into a sheet by coating or molding, or by applying a coating liquid mixed with the resin material. It is preferable to dispose the desiccant layer by applying it around the EL element using a dispenser or the like.
  • the EL cell it is more preferable to cover not only the periphery of the EL cell but also the lower and upper surfaces of the EL cell with a desiccant.
  • a desiccant it is preferable to select a highly transparent desiccant layer for the light extraction surface.
  • the highly transparent desiccant layer polyamide-based resin can be used.
  • the solution dispersed in the glass solution was applied onto a 75 ⁇ m thick aluminum sheet so that the layer thickness was 30 ⁇ m and dried at 110 ° C. for 5 hours to obtain an aluminum sheet on which a dielectric layer was formed.
  • copper / chlorine-activated zinc sulfate particles having an average particle size of 15 m and 30% by weight of cyanethyl cellulose solution were mixed and dispersed at a ratio of 1.2: 1, and further manufactured by Sinloihi Add 3% by weight of red pigment (Sinroich FA-001) to the zinc oxide particles and disperse it, and apply it on the aluminum sheet on which the above-mentioned dielectric layer is formed so that the final layer thickness is 45 ⁇ m.
  • the solution dispersed in the glass solution was coated on a 75 ⁇ m thick aluminum sheet so that the layer thickness was 20 ⁇ m and dried at 110 ° C. for 5 hours to obtain an aluminum sheet on which a dielectric layer was formed. Subsequently, BaTiO fine particles having an average particle size of 0.2 ⁇ m were mixed with 30 mass% cyanoethyl cellulose.
  • the solution dispersed in the glass solution was coated on a 75 ⁇ m thick aluminum sheet so that the layer thickness was 20 ⁇ m and dried at 110 ° C. for 5 hours to obtain an aluminum sheet on which a dielectric layer was formed. Subsequently, BaTiO fine particles having an average particle size of 0.2 ⁇ m were mixed with 30 mass% cyanoethyl cellulose.
  • a film in which ITO is uniformly deposited to a thickness of 40 nm on a 100-micron polyethylene terephthalate film by sputtering is produced, and the ITO surface and the surface on which the phosphor layer of the aluminum sheet is formed are thermocompression bonded.
  • the EL element (1-1) according to the present invention was obtained by placing the piece and sealing it with a moisture-proof film.
  • the solution dispersed in the glass solution was coated on a 75 ⁇ m thick aluminum sheet so that the layer thickness was 20 ⁇ m and dried at 110 ° C. for 5 hours to obtain an aluminum sheet on which a dielectric layer was formed. Subsequently, BaTiO fine particles having an average particle size of 0.2 ⁇ m were mixed with 30 mass% cyanoethyl cellulose.
  • a film in which ITO is uniformly deposited to a thickness of 40 nm on a 100-micron polyethylene terephthalate film by sputtering is produced, and the ITO surface and the surface on which the phosphor layer of the aluminum sheet is formed are thermocompression bonded.
  • the EL element (1-II) according to the present invention was obtained by placing a piece and sealing it with a moisture-proof film.
  • the EL device of the present invention was produced except that Lumogen F Red 200 (BASF) was used as the red light emitting material instead of the red pigment so as to be 5% of the mass of BaTiO (1
  • An EL device (1-III) according to the present invention was obtained in the same manner as II).
  • a film in which ITO is uniformly deposited to a thickness of 40 nm on a 100-micron polyethylene terephthalate film by sputtering is produced, and the ITO surface and the surface on which the phosphor layer of the aluminum sheet is formed are thermocompression bonded.
  • a piece was placed and sealed with a moisture-proof film to obtain an EL device (1 IV) according to the present invention.
  • the solution dispersed in the glass solution was applied onto a 75 ⁇ m thick aluminum sheet so that the layer thickness was 15 m, and dried at 110 ° C. for 5 hours to obtain an aluminum sheet on which a dielectric layer was formed. Subsequently, BaTiO fine particles having an average particle size of 0.5 ⁇ m were mixed with 30 mass% cyanoethyl cellulose.
  • a film in which ITO was uniformly deposited to a thickness of 40 nm by sputtering on polyethylene terephthalate having a thickness of 100 microns was fabricated.
  • the ITO surface and the phosphor layer of the aluminum sheet were formed.
  • the EL element (1-V) according to the present invention was obtained by thermocompression bonding with the surface on which the lead was formed, placing a lead piece and sandwiching and sealing with a moisture-proof film.
  • the solution dispersed in the glass solution was coated on a 75 m thick aluminum sheet so that the layer thickness was 10 m and dried at 110 ° C. for 5 hours to obtain an aluminum sheet on which a dielectric layer was formed. Subsequently, BaTiO fine particles having an average particle size of 0.5 ⁇ m were mixed with 30 mass% cyanoethyl cellulose.
  • a film in which ITO is uniformly deposited to a thickness of 40 nm on a 100-micron polyethylene terephthalate film by sputtering is produced, and the ITO surface and the surface on which the phosphor layer of the aluminum sheet is formed are thermocompression bonded.
  • the EL element (1-VI) according to the present invention was obtained by placing the piece and sealing it with a moisture-proof film.
  • the solution dispersed in the glass solution was applied onto a 75 ⁇ m thick aluminum sheet so that the layer thickness was 15 m, and dried at 110 ° C. for 5 hours to obtain an aluminum sheet on which a dielectric layer was formed. Subsequently, BaTiO fine particles having an average particle size of 0.5 ⁇ m were mixed with 30 mass% cyanoethyl cellulose.
  • a film in which ITO is uniformly deposited to a thickness of 40 nm on a 100-micron polyethylene terephthalate film by sputtering is produced, and the ITO surface and the surface on which the phosphor layer of the aluminum sheet is formed are thermocompression bonded.
  • the EL element (1 VII) according to the present invention was formed by placing the piece and sealing it with a moisture-proof film.
  • Table 1 shows the color rendering properties of the EL element of the present invention prepared as described above and the EL element of the comparative example when emitted at 100 V and 1 kHz.
  • Comparative Examples 1 1 to 1 3 and EL elements (1 I) to (1 VII) of the present invention had a white emission color. It can be seen that the average color rendering index Ra of the EL element of the present invention is superior to the conventional EL element of the comparative example, and particularly excellent in the color rendering property R9 of red. It can be seen that the skin color rendering R15 is greatly improved in the EL device of the present invention. R15 cannot be expressed well when the color rendering property R9 of red is poor, and is an important factor when observing a transmission medium such as a transparent positive image on an EL element.
  • Each phosphor particle of Example 1 was provided with an Al 2 O coating layer using a fluidized bed reactor using trimethyl aluminum as a raw material and O as a reaction gas. Layer thickness of coating layer
  • Example 2 was prepared in the same manner as Example 1, and used as a comparative example and an EL element of the present invention, respectively.
  • the change in the color rendering index was about 5 in the comparative example, which was reduced by about 10, and improved by about 6 in the present invention.
  • the electoluminescence device that is effective in the present invention emits white light and has excellent color rendering properties, particularly red color rendering properties, and is suitable for use as a backlight or a display device.
  • FIG. 1 is a schematic explanatory diagram of a fluidized bed reactor for forming a coating layer on phosphor particles.
  • FIG. 2 is a schematic explanatory diagram of a stirred bed reaction apparatus for forming a coating layer on phosphor particles.
  • FIG. 3 is a schematic explanatory diagram of a vibrating bed reactor for forming a coating layer on phosphor particles.
  • FIG. 4 is a schematic explanatory diagram of a rolling bed reactor for forming a coating layer on phosphor particles.
  • FIG. 5 is a schematic explanatory diagram of a liquid phase reaction apparatus for forming a coating layer on phosphor particles.

Abstract

An electroluminescence (EL) element containing, in the following order, a transparent electrode, a phosphor layer, a dielectric layer and a back electrode, characterized in that the dielectric layer comprises dielectric particles and a color conversion material, wherein (1) the dielectric layer contains the color conversion material in a specific content and said dielectric layer has a specific thickness, or (2) the color conversion material has a luminous local maximum wave length in the range of 600 to 750 nm. The above electroluminescence element is a dispersion type electroluminescence element which emits a white light and is excellent in color rendering property, in particular, color rendering property for a red color.

Description

明 細 書  Specification
分散型エレクト口ルミネッセンス素子  Dispersive electoluminescence device
技術分野  Technical field
[0001] 本発明は、エレクト口ルミネッセンス蛍光体粒子を分散塗布して形成された発光粒 子層を有する分散型エレクト口ルミネッセンス素子に関するものである。  [0001] The present invention relates to a dispersive electoluminescent device having a light emitting particle layer formed by dispersing and applying electoluminescent phosphor particles.
背景技術  Background art
[0002] エレクト口ルミネッセンス(以下、「EL」ともよぶ。)蛍光体は電圧励起型の蛍光体で あり、蛍光体粒子を電極の間に挟んで発光素子とした分散型 EL素子として用いられ ることが知られている。分散型 EL素子の一般的な形状は、蛍光体粒子を高誘電率の ノ インダ一中に分散したものを、少なくとも一方が透明な二枚の電極の間に挟み込 んだ構造であり、両電極間に交流電場を印加することにより発光する。このような構造 を持つ分散型 EL素子は lmm以下の厚さとすることが可能であり、製造プロセスにお V、て高温プロセスを用いず、プラスチックを基板としたフレキシブルで軽量な素子の 形成が可能であること、真空装置を使用することなく比較的簡便な工程で、低コスト で製造が可能であること、面発光体であるなど数多くの利点を有するため、 LCDなど のバックライト、表示素子へ応用が可能であり、具体的には道路標識、各種インテリア やエクステリア用の照明、液晶ディスプレイ等のフラットパネルディスプレイ用の光源 [0002] Electric mouth luminescence (hereinafter also referred to as "EL") phosphors are voltage-excited phosphors, and are used as distributed EL devices in which phosphor particles are sandwiched between electrodes. It is known. The general shape of a dispersion-type EL device is a structure in which phosphor particles are dispersed in a high-dielectric-constant inductor, and at least one is sandwiched between two transparent electrodes. Light is emitted by applying an alternating electric field between the electrodes. Dispersed EL devices with such a structure can be made to a thickness of lmm or less, and it is possible to form flexible and lightweight devices on plastic substrates without using high-temperature processes in the manufacturing process. It can be manufactured at a low cost with a relatively simple process without using a vacuum device, and has many advantages such as being a surface light emitter. Applications are possible, specifically road signs, lighting for various interiors and exteriors, and light sources for flat panel displays such as liquid crystal displays.
、大面積の広告用の照明光源等としての用途がある。 There is a use as an illumination light source for advertising in a large area.
[0003] 分散型 EL素子の光源としての用途力 発光色は白色が望ましいが、単独で白色 に発光する蛍光体がな 、ため、分散型 EL素子にお 、て白色光を得るために種々の 技術が提案されてきた。これまでに提案されてきた白色発光する分散型 EL素子は、 主として青緑と橙〜赤色周辺の 2つの波長域に発光強度が集中した発光波形を有し ている。これらの白色発光する分散型 EL素子は、上記のとおり、フレキシブルな面状 発光光源として種々の利点を有する力 他の、例えば蛍光灯などの白色光源と比べ て演色性、特に赤色の演色性が大きく劣る点に重大な問題があった。例えば、透明 陽画等の透過媒体を EL素子に載せて観察した場合、赤色の色再現性は、従来の蛍 光灯等を平面光源とした場合に比べると大きく劣っており、ほとんど赤色を表現する ことが出来ないものであった。 [0003] Application power as a light source of a dispersion-type EL element White color is desirable, but since there is no phosphor that emits white light alone, there are various types of dispersion-type EL elements for obtaining white light. Technology has been proposed. Dispersion EL elements that have been proposed to emit white light have a light emission waveform in which the light emission intensity is concentrated mainly in the two wavelength regions of blue-green and orange to red. As described above, these dispersive EL elements that emit white light have various advantages as a flexible planar light source, and have a color rendering property, particularly a red color rendering property, compared to other white light sources such as fluorescent lamps. There was a serious problem in that it was greatly inferior. For example, when a transmissive medium such as a transparent positive image is placed on an EL element and observed, the red color reproducibility is greatly inferior to the case where a conventional fluorescent light is used as a flat light source, and almost red is expressed. It was impossible.
[0004] 例えば、従来の分散型 ELの多くは、ローダミン系化合物を発光粒子層に入れ、白 色発光 EL素子として 、た (例えば特許文献 1〜3等)。これらの EL素子ではローダミ ン系化合物の発光に由来する橙色発光が赤色発光として使われている。しかしなが ら、これらの EL素子は、白色発光ではあるが、透明陽画等の透過媒体をのせた時に 赤色を再現性することが出来な力つた。  [0004] For example, many of the conventional dispersion-type ELs have been used as white light-emitting EL elements by putting a rhodamine-based compound in a light-emitting particle layer (for example, Patent Documents 1 to 3). In these EL devices, orange light emission derived from the light emission of rhodamine compounds is used as red light emission. However, although these EL devices emit white light, they have the power to reproduce red when a transmission medium such as a transparent positive image is placed.
[0005] また、蛍光体層より上 (透明電極側:視認側)に色変換層や顔料層を設けて、発光 色の異なる EL素子を得る技術が提案されている(例えば特許文献 4、 5等)。さらには 、発光粒子層の発光色と補色の関係にある色変換層と 600nm近傍の波長のみを通 過する赤色フィルタを発光粒子層より上に積層することで赤色発光 EL素子を得る技 術が提案されている (特許文献 6)。しかしながら、これらの技術でも、充分な赤色の 再現性 (赤色の演色性)を得ることが出来な力つた。  [0005] Further, there has been proposed a technique for obtaining EL elements having different emission colors by providing a color conversion layer or a pigment layer above the phosphor layer (transparent electrode side: viewing side) (for example, Patent Documents 4 and 5). etc). Furthermore, there is a technology for obtaining a red light-emitting EL device by laminating a color conversion layer that has a complementary relationship with the emission color of the light-emitting particle layer and a red filter that passes only a wavelength near 600 nm above the light-emitting particle layer. It has been proposed (Patent Document 6). However, even with these technologies, sufficient red reproducibility (red color rendering) could not be obtained.
[0006] 一方、特許文献 7にお ヽて、光励起材を EL素子を構成する ヽずれかの層に含有 する EL素子が提案されて 、る。  [0006] On the other hand, in Patent Document 7, an EL element containing a photoexciter in any one of the layers constituting the EL element has been proposed.
特許文献 1:特開昭 60 - 25195号公報  Patent Document 1: Japanese Patent Laid-Open No. 60-25195
特許文献 2:特開昭 60— 170194号公報  Patent Document 2: JP-A-60-170194
特許文献 3:特開平 2 - 78188号公報  Patent Document 3: Japanese Patent Laid-Open No. 2-78188
特許文献 4:特開平 6— 163159号公報  Patent Document 4: JP-A-6-163159
特許文献 5:特開平 3— 15191号公報  Patent Document 5: Japanese Patent Laid-Open No. 3-15191
特許文献 6:特開平 11— 67456号公報  Patent Document 6: Japanese Patent Laid-Open No. 11-67456
特許文献 7:特開平 11— 67458号公報  Patent Document 7: Japanese Patent Laid-Open No. 11-67458
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] 本発明は、白色に発光し、かつ演色性、特に赤色の演色性に優れた分散型 EL素 子を得ることを目的とする。 [0007] An object of the present invention is to obtain a dispersed EL element that emits white light and has excellent color rendering properties, particularly red color rendering properties.
課題を解決するための手段  Means for solving the problem
[0008] 従来の分散型 EL素子は、白色発光はするが、いずれの場合も赤発光の波長が短 波 (橙色発光)であり、透明陽画等の透過媒体をのせた時の赤色の色再現性 (赤色の 演色性)が極めて悪力つた。本発明者らは、従来の技術において赤色の色再現性が 悪いのは、従来の分散型 EL素子には、本来の赤色の光の波長がほとんど含まれて いないことに着目し、赤色の演色性を改善するためには、白色発光時の赤色光成分 の発光波長を橙色から赤色に長波化する必要があると考えた。 [0008] Conventional dispersive EL devices emit white light, but in all cases, the wavelength of red light is short wave (orange light emission), and red color reproduction when a transparent medium or other transmissive medium is placed Sex (red Color rendering) was extremely bad. The present inventors noticed that the red color reproducibility is poor in the conventional technology, because the conventional dispersion-type EL element hardly contains the wavelength of the original red light. In order to improve the performance, we thought that it was necessary to increase the emission wavelength of the red light component during white light emission from orange to red.
[0009] 分散型 EL素子においては、白色発光を作るために青緑色に発光する蛍光体粒子 の他に赤色に発光する色変換材料を使用する。従来の分散型 EL素子では、有機染 料をポリマーに分散し粒子状に粉砕した顔料を赤色の色変換材料として発光粒子層 (以下、蛍光体層ともいう。 )内に分散して使用する。しかし、この様に媒体中に顔料 が分散した状態において顔料の発光波長を測定すると、顔料粉末において測定した 時の発光波長に比べ、より短波長側にシフトする。この短波長側へのシフトは赤色の 色再現性を低くする。 In the dispersive EL element, a color conversion material that emits red light is used in addition to phosphor particles that emit blue-green light to produce white light emission. In a conventional dispersion-type EL device, a pigment obtained by dispersing an organic dye in a polymer and pulverizing it into particles is used as a red color conversion material dispersed in a light emitting particle layer (hereinafter also referred to as a phosphor layer). However, when the emission wavelength of the pigment is measured in such a state that the pigment is dispersed in the medium, it shifts to a shorter wavelength side than the emission wavelength when measured with the pigment powder. This shift toward the short wavelength side reduces red color reproducibility.
[0010] 本発明者らは、前述の短波長側へのシフトを防ぐために、顔料を誘電体層に添カロ し、誘電体層中で起こる誘電体粒子の光散乱を利用することで、顔料の自己吸収を 増加させ、見かけの発光波長を長波化できることを見出した。この長波化は、(1)誘 電体層における顔料の含有割合が特定の範囲内にあり、該誘電体層の厚みが特定 の範囲内にあるときに特に大きぐ高い赤色の再現性が得られることを知見した。また 、染料等の他の色変換材料についても同様の知見を得ることができた。さらには、 (2 )誘電体層に含有される色変換材料の発光極大波長が 600nm以上 750nm以下で ある場合にも、高い赤色の再現性が得られることを知見した。さらに、蛍光体層より下 に色変換材料が含まれる誘電体層を設けることで、 EL発光からの光吸収を最小限 に留め、輝度を維持した EL素子を得られることも知見した。本発明者らはこれらの知 見から以下の構成の EL素子が上記目的を達成しうることを見出し、本発明を完成す るに至った。  [0010] In order to prevent the shift to the short wavelength side described above, the present inventors add a pigment to the dielectric layer, and use the light scattering of the dielectric particles that occurs in the dielectric layer, thereby making the pigment It has been found that the self-absorption of can be increased and the apparent emission wavelength can be increased. This long wave is obtained by (1) high red reproducibility that is particularly large when the pigment content in the dielectric layer is within a specific range and the thickness of the dielectric layer is within a specific range. I found out that In addition, similar findings could be obtained for other color conversion materials such as dyes. Furthermore, (2) it has been found that high red reproducibility can be obtained even when the emission maximum wavelength of the color conversion material contained in the dielectric layer is 600 nm or more and 750 nm or less. Furthermore, we have found that by providing a dielectric layer containing a color conversion material below the phosphor layer, it is possible to obtain an EL device that maintains the brightness while minimizing light absorption from EL emission. Based on these findings, the present inventors have found that an EL element having the following configuration can achieve the above object, and has completed the present invention.
[0011] 一方、従来の EL素子は、耐久性が不十分であり、蛍光体粒子の劣化による発光輝 度の低下が少なぐ耐久性に優れた EL素子の開発が要望されているのが現状であ る。 EL素子の耐久性を向上させる方策の 1つとして、水分を蛍光体粒子に触れさせ ない様にすることにより、長い時間に亘り白色と良好な演色性を保ち、かつ輝度も維 持できる EL素子を得るに至った。 すなわち、本発明は、以下の構成を有するものである。 [0011] On the other hand, conventional EL devices are insufficient in durability, and there is a demand for the development of EL devices with excellent durability in which the decrease in emission brightness due to deterioration of phosphor particles is small. It is. As one of the measures to improve the durability of EL elements, EL elements that maintain white and good color rendering for a long time and maintain brightness by preventing moisture from touching phosphor particles I came to get. That is, the present invention has the following configuration.
(1) 透明電極、蛍光体層、誘電体層および背面電極をこの順序で含有するエレクト 口ルミネッセンス素子にぉ 、て、  (1) An electoluminescence device containing a transparent electrode, a phosphor layer, a dielectric layer, and a back electrode in this order, and
該誘電体層が、誘電体粒子および色変換材料を含み、該色変換材料の含有割合 が誘電体粒子に対して 0. 1質量%以上 20質量%以下であり、該誘電体層の厚みが 1 μ m以上 20 μ m以下であることを特徴とするエレクト口ルミネッセンス素子。  The dielectric layer includes dielectric particles and a color conversion material, the content ratio of the color conversion material is 0.1% by mass or more and 20% by mass or less with respect to the dielectric particles, and the thickness of the dielectric layer is An electroluminescent device having an aperture of 1 μm to 20 μm.
(2) 透明電極、蛍光体層、誘電体層および背面電極をこの順序で含有するエレクト 口ルミネッセンス素子にぉ 、て、  (2) An electorium luminescence device containing a transparent electrode, a phosphor layer, a dielectric layer and a back electrode in this order, and
該誘電体層が、誘電体粒子および色変換材料を含み、該色変換材料の発光極大 波長が 600nm以上 750nm以下であることを特徴とするエレクト口ルミネッセンス素子  The electroluminescent device, wherein the dielectric layer includes dielectric particles and a color conversion material, and the emission maximum wavelength of the color conversion material is not less than 600 nm and not more than 750 nm
(3) 透明電極、蛍光体層、誘電体層および背面電極をこの順序で含有するエレクト 口ルミネッセンス素子において、該誘電体層が、誘電体粒子および色変換材料を含 み、該色変換材料の発光極大波長が 600nm以上 750nm以下であり、該色変換材 料の含有割合が誘電体粒子に対して 0. 1質量%以上 20質量%以下であり、該誘電 体層の厚みが 1 μ m以上 20 μ m以下であることを特徴とするエレクト口ルミネッセンス 素子。 (3) In an electoluminescence device containing a transparent electrode, a phosphor layer, a dielectric layer and a back electrode in this order, the dielectric layer contains dielectric particles and a color conversion material, and the color conversion material The maximum emission wavelength is 600 nm or more and 750 nm or less, the content ratio of the color conversion material is 0.1% by mass or more and 20% by mass or less with respect to the dielectric particles, and the thickness of the dielectric layer is 1 μm or more. An electoluminescence device having a size of 20 μm or less.
(4) 色変換材料が有機化合物をポリマー中に分散した材料であることを特徴とする (3)に記載のエレクト口ルミネッセンス素子。  (4) The electroluminescent device according to (3), wherein the color conversion material is a material in which an organic compound is dispersed in a polymer.
(5) 透明電極、蛍光体層、誘電体層および背面電極をこの順序で含有するエレクト 口ルミネッセンス素子において、該蛍光体層が、被覆層を有する蛍光体粒子を含む ことを特徴とする(1)から (4)のいずれかに記載のエレクト口ルミネッセンス素子。 (5) An electoluminescence device comprising a transparent electrode, a phosphor layer, a dielectric layer and a back electrode in this order, wherein the phosphor layer includes phosphor particles having a coating layer (1 The electoluminescence device according to any one of (4) to (4).
(6) 上記被覆層が波長 280ηπ!〜 420nmに吸収端を有する材料を含むことを特徴 とする(5)に記載のエレクト口ルミネッセンス素子。 (6) The coating layer has a wavelength of 280ηπ! The electoluminescence device according to (5), comprising a material having an absorption edge at ˜420 nm.
(7) 可視域に 2つの発光極大を有し、該 2つの発光極大のうち、短波側発光極大を 480nm〜510nmの範囲に有し、長波側発光極大を 590nm〜625nmの範囲に有 し、発光極小を 571nm〜583nmの範囲に有することを特徴とする(1)から(6)の!ヽ ずれかに記載のエレクト口ルミネッセンス素子。 (8) 該蛍光体粒子が、平均粒子サイズが 0. l〜20 /z mで、粒子サイズ分布の変動 係数が 35%未満であり、 5nm以下の面間隔の積層欠陥を 10層以上含有する粒子 を蛍光体粒子全体の 30体積%以上有する ZnS系エレクト口ルミネッセンス蛍光体で あることを特徴とする(5)〜(7)の 、ずれかに記載のエレクト口ルミネッセンス素子。 発明の効果 (7) It has two emission maxima in the visible range, of which the short wave side emission maxima is in the range of 480 nm to 510 nm, and the long wave side emission maxima is in the range of 590 nm to 625 nm, (1) to (6), wherein the emission minimum is in the range of 571 nm to 583 nm. (8) The phosphor particles have an average particle size of 0.1 to 20 / zm, a variation coefficient of particle size distribution of less than 35%, and containing 10 or more layers of stacking faults with a spacing of 5 nm or less. The electroluminescent device according to any one of (5) to (7), wherein the electroluminescent phosphor is a ZnS-based electroluminescent phosphor having 30% by volume or more of the entire phosphor particles. The invention's effect
[0013] 本発明の EL素子によれば、白色に発光し、かつ演色性、特に赤色の演色性に優 れた分散型 EL素子を得ることができる。  [0013] According to the EL element of the present invention, it is possible to obtain a dispersed EL element that emits white light and has excellent color rendering properties, particularly red color rendering properties.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0014] 以下、本発明の EL素子について、詳細に説明する。 Hereinafter, the EL element of the present invention will be described in detail.
本発明の EL素子は、透明電極、蛍光体層、誘電体層および背面電極をこの順序 で含有する。  The EL device of the present invention contains a transparent electrode, a phosphor layer, a dielectric layer, and a back electrode in this order.
[0015] <誘電体層 > [0015] <Dielectric layer>
誘電体層は、誘電体粒子および色変換材料を含む。  The dielectric layer includes dielectric particles and a color conversion material.
そして、(1)該色変換材料の含有割合が誘電体粒子に対して 0. 1質量%以上 20 質量%以下であり、該誘電体層の厚みが 1 μ m以上 20 μ m以下である。  (1) The content ratio of the color conversion material is 0.1% by mass or more and 20% by mass or less with respect to the dielectric particles, and the thickness of the dielectric layer is 1 μm or more and 20 μm or less.
または、(2)該誘電体層が、誘電体粒子および色変換材料を含み、該色変換材料 の発光極大波長が 600nm以上 750nm以下である。  Or (2) the dielectric layer includes dielectric particles and a color conversion material, and the emission maximum wavelength of the color conversion material is not less than 600 nm and not more than 750 nm.
以上の構成にすることにより、白色に発光し、かつ演色性、特に赤色の演色性に優 れた分散型 EL素子とすることができる。  With the above configuration, a dispersed EL element that emits white light and has excellent color rendering properties, particularly red color rendering properties, can be obtained.
上記(1)において、誘電体層に含まれる色変換材料の含有割合は誘電体粒子に 対しての質量%で、前述のとおり 0. 1質量%以上 20質量%以下であり、好ましくは 0 . 5質量%以上 10質量%以下の範囲である。  In the above (1), the content ratio of the color conversion material contained in the dielectric layer is 0.1% by mass or more and 20% by mass or less, preferably 0.1% by mass with respect to the dielectric particles as described above. The range is from 5% by mass to 10% by mass.
また、色変換材料を含む誘電体層の厚みは、前述のとおり 1 m以上 20 m以下 であり、好ましくは 3 μ m以上 18 μ m以下の範囲である。  The thickness of the dielectric layer containing the color conversion material is 1 m or more and 20 m or less as described above, and preferably 3 μm or more and 18 μm or less.
誘電体層に含まれる色変換材料の含有割合および該誘電体層の厚みを上記の範 囲内とすることで、 EL素子を、白色発光で、高い演色性を実現することができる。 上記(2)において、色変換材料の発光極大波長は、前述のとおり 600nm以上 750 nm以下であり、好ましくは 610nm以上 650nm以下の範囲であり、より好ましくは 61 Onm以上 630nm以下の範囲である。 By setting the content ratio of the color conversion material contained in the dielectric layer and the thickness of the dielectric layer within the above ranges, the EL element can realize white color emission and high color rendering. In the above (2), the emission maximum wavelength of the color conversion material is 600 nm or more and 750 nm or less as described above, preferably 610 nm or more and 650 nm or less, more preferably 61 The range is from Onm to 630 nm.
誘電体層に含まれる色変換材料の発光極大波長を上記の範囲内とすることで、 EL 素子を、白色発光で、高い演色性を実現することができる。  By setting the light emission maximum wavelength of the color conversion material contained in the dielectric layer within the above range, the EL device can achieve high color rendering with white light emission.
また、前述のとおり、本発明の EL素子は、透明電極、蛍光体層、誘電体層および 背面電極をこの順序で含有しており、色変換材料を蛍光体層より下側 (背面電極側) に設けることで、 EL発光力もの光吸収を最小限に留め、輝度を維持することができる  Further, as described above, the EL device of the present invention contains a transparent electrode, a phosphor layer, a dielectric layer, and a back electrode in this order, and the color conversion material is below the phosphor layer (on the back electrode side). By installing it in the EL, it is possible to minimize light absorption and maintain brightness
[0016] 以上の構成とすることで、分散型 EL素子の白色発光時の赤色発光のピーク波長を 、 590nm以上 625nm以下の好ましい範囲内にすることが出来、青緑発光のピーク 波長を 480〜510nmとすることが出来る。さらに、この時、青緑発光バンドと赤色発 光バンドの間極小値を 571nm〜583nmの範囲にすることが出来る。赤色の発光ピ ーク波長として、より好ましくは 595nm以上 620nm以下、最も好ましくは 600nm以 上 615nm以下の範囲である。青緑発光の発光ピーク波長としては、 483nm〜505n mであることがより好ましぐさらに好ましくは 485ηπ!〜 503nmである。 With the above-described configuration, the peak wavelength of red light emission during white light emission of the dispersion-type EL element can be within a preferable range of 590 nm to 625 nm, and the peak wavelength of blue-green light emission is from 480 to 480 nm. It can be 510nm. Further, at this time, the minimum value between the blue-green light emission band and the red light emission band can be set in the range of 571 nm to 583 nm. The red light emission peak wavelength is more preferably in the range of 595 nm to 620 nm, and most preferably 600 nm to 615 nm. The emission peak wavelength of blue-green light emission is more preferably 483 nm to 505 nm, and more preferably 485ηπ! ~ 503nm.
[0017] 本発明の EL素子は前記の順序で層を有していれば、後述する他の層を設けること ができる。  [0017] If the EL element of the present invention has layers in the above order, other layers described later can be provided.
また、本発明においては、前述の色変換材料を含む誘電体層(以下、色変換材料 含有誘電体層または誘電体層 Aとも称する。)の他に、さらに色変換材料を含まない 誘電体層(以下、誘電体層 Bとも称する。また「誘電体層 B—数字」の数字は、 EL素 子における誘電体層 Bの位置を表す。)を設けてもよい。例えば、誘電体層 Aと誘電 体層 Bを積層して、透明電極、蛍光体層、誘電体層 A、誘電体層 Bおよび背面電極 の順序を有する EL素子とすることができる。さらには、誘電体層 Bを誘電体層 Aの両 側に設けて、透明電極、蛍光体層、誘電体層 B— 1、誘電体層 A、誘電体層 B— 2お よび背面電極の順序を有する EL素子とすることができる。さらにまた、誘電体層 Bを 蛍光体層を挟んで誘電体層 Aとは反対側 (透明電極側)に設けて、透明電極、誘電 体層 B— 3、蛍光体層、誘電体層 Aおよび背面電極の順序を有する EL素子とするこ とがでさる。  In the present invention, in addition to the above-described dielectric layer containing the color conversion material (hereinafter also referred to as color conversion material-containing dielectric layer or dielectric layer A), the dielectric layer further does not contain a color conversion material. (Hereinafter also referred to as dielectric layer B. The number “dielectric layer B—number” represents the position of dielectric layer B in the EL element.). For example, a dielectric layer A and a dielectric layer B can be stacked to form an EL device having the order of transparent electrode, phosphor layer, dielectric layer A, dielectric layer B, and back electrode. Furthermore, the dielectric layer B is provided on both sides of the dielectric layer A, and the transparent electrode, the phosphor layer, the dielectric layer B-1, the dielectric layer A, the dielectric layer B-2, and the back electrode are arranged in this order. The EL element can be provided. Furthermore, the dielectric layer B is provided on the side opposite to the dielectric layer A (transparent electrode side) across the phosphor layer, and the transparent electrode, dielectric layer B-3, phosphor layer, dielectric layer A and An EL element with the order of the back electrodes can be obtained.
誘電体層 Aの他に誘電体層 Bを有する構成とする場合、誘電体層全体の合計の厚 みとしては 5 μ m以上 40 μ m以下であることが好ましぐより好ましくは 5 μ m以上 35 m以下である。誘電体層 Bを誘電体層 Aの両側に設ける場合、蛍光体層側に設け る誘電体層 B—1の厚みは、: m以上 10 m以下が好ましぐより好ましくは 以上 7 μ m以下である。 When the dielectric layer B is included in addition to the dielectric layer A, the total thickness of the entire dielectric layer For example, the thickness is preferably 5 μm or more and 40 μm or less, more preferably 5 μm or more and 35 m or less. When the dielectric layer B is provided on both sides of the dielectric layer A, the thickness of the dielectric layer B-1 provided on the phosphor layer side is preferably m or more and 10 m or less, more preferably 7 μm or less. It is.
[0018] 色変換材料含有誘電体層 Aは、誘電体粒子および色変換材料を含む。本発明に おいては、色変換材料は実質的に色変換材料含有誘電体層 Aのみに含まれる。実 質的に色変換材料含有誘電体層 Aのみに含まれるとは、 EL素子に含まれる色変換 材料の 70質量%以上が誘電体層 Aに含まれることを言う。色変換材料として用いる 蛍光顔料が分散溶媒に対する耐性が低いものを使用した場合には、分散溶媒に添 加する前の蛍光顔料中に含有される染料の 1Z2以上が誘電体層 Aに含まれることも 、実質的に色変換材料が誘電体層 Aに含まれる、と言う。また、色変換材料は色変換 材料含有誘電体層 Aにお 、て実質的に均一に含まれる。実質的に均一に含まれる とは、層全体としてみたときに濃度勾配がなぐ色変換材料の分子や顔料粒子が層 全体として分布に偏りがない状態で含まれていることを言う。このとき、色変換材料分 子や粒子は、層全体として実質的に均一に含まれていれば、複数の分子や粒子が 集まった状態で存在して 、てもよ 、。  [0018] The color conversion material-containing dielectric layer A includes dielectric particles and a color conversion material. In the present invention, the color conversion material is substantially contained only in the color conversion material-containing dielectric layer A. “Substantially contained only in the dielectric layer A containing the color conversion material” means that 70% by mass or more of the color conversion material contained in the EL element is contained in the dielectric layer A. When the fluorescent pigment used as the color conversion material has low resistance to the dispersion solvent, the dielectric layer A must contain 1Z2 or more of the dye contained in the fluorescent pigment before being added to the dispersion solvent. However, the color conversion material is substantially contained in the dielectric layer A. Further, the color conversion material is substantially uniformly contained in the color conversion material-containing dielectric layer A. The phrase “substantially uniformly contained” means that molecules and pigment particles of a color conversion material having a concentration gradient when viewed as a whole layer are contained in a state where the distribution as a whole is not biased. At this time, the color conversion material molecules and particles may exist in a state where a plurality of molecules and particles are gathered as long as they are contained substantially uniformly as a whole layer.
[0019] [誘電体粒子]  [0019] [Dielectric particle]
色変換材料含有誘電体層 Aは、誘電体粒子を含んで形成される。  The color conversion material-containing dielectric layer A is formed including dielectric particles.
誘電体粒子は、誘電率と絶縁性とが高ぐ高い誘電破壊電圧を有する誘電体材料 で、かつ高い反射率を有するものであれば任意のものを用いて形成することが出来 る。このような材料は、金属酸化物、窒化物から選択され、例えば TiO , BaTiO , Sr  The dielectric particles can be formed by using any dielectric material that has a high dielectric breakdown voltage and a high dielectric breakdown voltage, and has a high reflectance. Such materials are selected from metal oxides and nitrides, such as TiO, BaTiO, Sr
2 3 twenty three
TiO , PbTiO , KNbO , PbNbO , Ta O , BaTa O , LiTaO , Y O , Al O , Zr TiO, PbTiO, KNbO, PbNbO, Ta O, BaTa O, LiTaO, Y O, Al O, Zr
3 3 3 3 2 3 2 6 3 2 3 2 3 3 3 3 3 2 3 2 6 3 2 3 2 3
O , AION, ZnSなどが挙げられる。誘電体粒子の平均サイズは、平均粒子径で、好O, AION, ZnS etc. are mentioned. The average size of the dielectric particles is the average particle size.
2 2
ましくは 2. 0 μ m以下、より好ましくは 0. 01 μ m以上 1. 0 μ m以下、最も好ましくは 0 . 05 m以上 0. 5 m以下である。色変換材料を含まない誘電体層 Bは、色変換材 料含有誘電体層 Aと同様に、誘電体粒子を含んで形成することができる。誘電体粒 子は色変換材料含有誘電体層 Aと色変換材料を含まない誘電体層 Bとで同じ粒子 を用いても異なる粒子を用いてもよい。 [0020] [色変換材料] It is preferably 2.0 μm or less, more preferably 0.01 μm or more and 1.0 μm or less, and most preferably 0.05 m or more and 0.5 m or less. Similarly to the color conversion material-containing dielectric layer A, the dielectric layer B containing no color conversion material can be formed including dielectric particles. As the dielectric particles, the same or different particles may be used for the color conversion material-containing dielectric layer A and the dielectric layer B not containing the color conversion material. [0020] [Color conversion material]
色変換材料含有誘電体層 Aに用いられる色変換材料としては、蛍光顔料または蛍 光染料を好ましく用いることが出来る。また、これらは併用してもよい。これらの発光中 心をなすィ匕合物としては、ローダミン、ラタトン、キサンテン、キノリン、ベンゾチアゾー ル、トリェチルインドリン、ペリレン、トリフェンニン、ジシァノメチレンを骨格として持つ 化合物が好ましぐ他にもシァニン系色素、ァゾ染料、ポリフエ-レンビ-レン系ポリマ 一、ジシランオリゴチェ-レン系ポリマー、ルテニウム錯体、ユーロピウム錯体、ェルビ ゥム錯体を用いることも好ま ヽ。これらの化合物は単独で用いても複数種類を用い てもよい。  As the color conversion material used for the color conversion material-containing dielectric layer A, a fluorescent pigment or a fluorescent dye can be preferably used. These may be used in combination. Among these compounds that form the emission center, rhodamine, latathone, xanthene, quinoline, benzothiazole, triethylindoline, perylene, triphenine, and compounds having skeletons of dicyanomethylene are preferred, as well as cyanine dyes, It is also preferable to use an azo dye, a polyphenylene vinylene polymer, a disilane oligochelene polymer, a ruthenium complex, a europium complex, or an erbium complex. These compounds may be used alone or in combination.
また、前記(1)の実施態様において、色変換材料として発光極大波長が 600nm以 上 750nm以下であるものを使用することも好ましい。このような構成とすることで、赤 色の演色性がさらに優れたものとなり、好ましい。  In the embodiment of (1), it is also preferable to use a color conversion material having an emission maximum wavelength of 600 nm or more and 750 nm or less. Such a configuration is preferable because the color rendering property of red is further improved.
また、これらの化合物はさらにポリマー等に分散した後に使用してもよい。  Further, these compounds may be used after further being dispersed in a polymer or the like.
[0021] [結合剤] [0021] [Binder]
誘電体粒子は結合剤に分散することが好ましい。結合剤としては、シァノエチルセ ルロース系榭脂のように、比較的誘電率の高いポリマーや、ポリエチレン、ポリプロピ レン、ポリスチレン系榭脂、シリコーン榭脂、エポキシ榭脂、フッ化ビ-リデンなどの榭 脂が好ましい。誘電体粒子の分散方法としては、ホモジナイザー、遊星型混練機、口 一ル混練機、超音波分散機などを用いて分散することが好まし 、。  The dielectric particles are preferably dispersed in a binder. Examples of binders include polymers having a relatively high dielectric constant, such as cyanoethyl cellulose resin, and resins such as polyethylene, polypropylene, polystyrene resin, silicone resin, epoxy resin, and vinylidene fluoride. Is preferred. As a method for dispersing the dielectric particles, it is preferable to use a homogenizer, a planetary kneader, a single kneader, an ultrasonic disperser, or the like.
[0022] 色変換材料を含まな 、誘電体層 Bは、均一な膜として形成することもできる。また、 前述のとおり、誘電体粒子を含んで形成することもできる。あるいはこれらの組み合わ せであっても良い。「膜が均一である」とは、誘電体層そのものがアモルファス、あるい は結晶構造を持った層であることを意味する。均一な膜としては、例えば、高誘電率 バインダーのみ力もなる層や薄膜結晶層等が挙げられる。誘電体層 Bを均一な膜と して形成する場合、その厚みは 0. 1 μ m以上 10 μ m以下の範囲であることが好まし い。 [0022] The dielectric layer B that does not contain a color conversion material can also be formed as a uniform film. Further, as described above, it can be formed including dielectric particles. Alternatively, a combination of these may be used. “The film is uniform” means that the dielectric layer itself is an amorphous layer or a layer having a crystalline structure. Examples of the uniform film include a layer having only a high dielectric constant binder and a thin film crystal layer. When the dielectric layer B is formed as a uniform film, the thickness is preferably in the range of 0.1 μm to 10 μm.
[0023] 誘電体層を塗布で形成する場合は、スライドコーター又はエタストルージョンコータ 一を用いることが好ましい。薄膜結晶層の場合は、基板にスパッター、真空蒸着等の 気相法で形成した薄膜であっても、 Baや Srなどのアルコキサイドを用いたゾルゲル 膜であっても良い。 [0023] When the dielectric layer is formed by coating, it is preferable to use a slide coater or an etrusion coater. In the case of a thin film crystal layer, sputtering, vacuum evaporation, etc. A thin film formed by a vapor phase method or a sol-gel film using an alkoxide such as Ba or Sr may be used.
[0024] 誘電体層 Aを形成する場合および誘電体層 Bを誘電体粒子を含んで形成する場 合には、誘電体層形成用塗布液を塗布して形成することが好ましい。該誘電体層形 成用塗布液は、少なくとも誘電体粒子、結合剤、および結合剤を溶解する溶剤を含 有してなる塗布液である。誘電体層 Aを形成するための塗布液には、さらに色変換材 料が含有される。ここで、溶剤は、蛍光体層に用いられるものと同様のものが挙げら れる。  [0024] When forming the dielectric layer A and when forming the dielectric layer B including dielectric particles, it is preferably formed by applying a coating liquid for forming a dielectric layer. The dielectric layer forming coating solution is a coating solution containing at least dielectric particles, a binder, and a solvent for dissolving the binder. The coating liquid for forming the dielectric layer A further contains a color conversion material. Here, examples of the solvent include the same solvents as those used for the phosphor layer.
[0025] 誘電体層形成用塗布液の粘度は、 0. lPa' s以上 5Pa' s以下の範囲が好ましぐ 0 . 3Pa' s以上 1. OPa' s以下の範囲が特に好ましい。誘電体層形成用塗布液の粘度 力 上述の範囲内にあれば、塗膜の膜厚ムラが生じにくぐまた分散後の時間経過と ともに誘電体粒子が分離沈降せず、比較的高速での塗布も可能であり、好ましい。な お、前記粘度は、塗布温度と同じ 16°Cにおいて測定される値である。  [0025] The viscosity of the coating liquid for forming a dielectric layer is preferably in the range of 0.1 Pa's to 5 Pa's, and more preferably in the range of 0.3 Pa's to 1. OPa's. If the viscosity of the coating liquid for forming the dielectric layer is within the above range, the film thickness unevenness of the coating is difficult to occur, and the dielectric particles do not separate and settle with the passage of time after dispersion. Application is also possible and preferable. The viscosity is a value measured at 16 ° C. which is the same as the coating temperature.
[0026] <蛍光体層 >  [0026] <Phosphor layer>
蛍光体層は蛍光体粒子を含んで形成される。  The phosphor layer is formed including phosphor particles.
[蛍光体粒子]  [Phosphor particles]
本発明に好ましく用いられる蛍光体粒子は、母体材料と付活剤と必要に応じて共 付活剤とを混合して焼成など種々調製法により調製してなる粒子が用いられる。 この際用いられる母体材料としては、具体的には第 II族元素と VI族元素とから成る 群力 選ばれる元素の一つあるいは複数と、第 III族元素と第 V族元素とから成る群か ら選ばれる一つあるいは複数の元素とから成る半導体の微粒子であり、必要な発光 波長領域により任意に選択される。例えば、 CdS, CdSe, CdTe, ZnS, ZnSe, Zn Te, CaS, MgS, SrS, GaP, GaAs,及びそれらの混晶などが挙げられるが、 ZnS, CdS, CaSなどを好ましく用いることができる。さらに、粒子の母体材料としては、 Ba Al S、 CaGa S、 Ga O、 Zn SiO、 Zn GaO、 ZnGa O , ZnGeO , ZnGeO , As the phosphor particles preferably used in the present invention, particles prepared by various preparation methods such as firing by mixing a base material, an activator and, if necessary, a coactivator are used. The matrix material used in this case is specifically a group force consisting of Group II elements and Group VI elements, or a group consisting of one or more elements selected from Group III elements and Group V elements. Fine particles of a semiconductor composed of one or a plurality of elements selected from the above, and are arbitrarily selected depending on the necessary emission wavelength region. Examples thereof include CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, CaS, MgS, SrS, GaP, GaAs, and mixed crystals thereof. ZnS, CdS, CaS, and the like can be preferably used. Furthermore, the base material of the particles includes BaAlS, CaGaS, GaO, ZnSiO, ZnGaO, ZnGaO, ZnGeO, ZnGeO,
2 4 2 4 2 3 2 4 2 4 2 4 3 42 4 2 4 2 3 2 4 2 4 2 4 3 4
ZnAl O , CaGa O , CaGeO , Ca Ge O , CaO, Ga O , GeO , SrAl O , SrZnAl O, CaGa O, CaGeO, Ca Ge O, CaO, Ga O, GeO, SrAl O, Sr
2 4 2 4 3 2 2 7 2 3 2 2 42 4 2 4 3 2 2 7 2 3 2 2 4
Ga O , SrP O , MgGa O , Mg GeO , MgGeO , BaAl O , Ga Ge O , BeGaGa O, SrP O, MgGa O, Mg GeO, MgGeO, BaAl O, Ga Ge O, BeGa
2 4 2 7 2 4 2 4 3 2 4 2 2 72 4 2 7 2 4 2 4 3 2 4 2 2 7
O , Y SiO , Y GeO , Y Ge O , Y GeO , Y O、 Y O S, SnO及びそれらの 混晶なども好ましく用いることができる。 O, Y SiO, Y GeO, Y Ge O, Y GeO, YO, YOS, SnO and their Mixed crystals and the like can also be preferably used.
また、付活剤としては、 Mnや Cuなどの金属イオン及び、希土類元素などを好ましく 用!/、ることができる。  As the activator, metal ions such as Mn and Cu and rare earth elements can be preferably used.
また、必要に応じて添加される共付活剤としては、 CI, Br, Iなどのハロゲン元素や A1などを好ましく用いることができる。  Moreover, as a coactivator added as necessary, halogen elements such as CI, Br, and I, A1 and the like can be preferably used.
[0027] さらに、本発明では、以下の蛍光体粒子を用いることがより好ましい。 Furthermore, in the present invention, it is more preferable to use the following phosphor particles.
(a)平均粒子サイズ (球相当直径)力 0. 1 m以上 20 μ m以下の範囲で粒子サイ ズの変動係数が 35%未満の範囲である蛍光体粒子。  (a) Phosphor particles whose average particle size (sphere equivalent diameter) force is in the range of 0.1 m or more and 20 μm or less and the variation coefficient of the particle size is less than 35%.
(b)平均粒子サイズが 0. 1 μ m以上 20 μ m以下の範囲で、粒子内部に 5nm以下の 面間隔の積層欠陥を 10層以上含有することを特徴とする蛍光体粒子。  (b) A phosphor particle having an average particle size of 0.1 μm or more and 20 μm or less, and containing 10 or more layers of stacking faults with a spacing of 5 nm or less inside the particle.
(c) 0. 01 μ m以上の厚みを有する非発光シェル層で被覆されていることを特徴とす る前記 (a)または (b)の 、ずれか一項に記載の蛍光体粒子。  (c) The phosphor particle according to any one of (a) and (b), which is coated with a non-light-emitting shell layer having a thickness of 0.01 μm or more.
(d)付活剤が銅、マンガン、銀、金及び希土類元素から選択された少なくとも一種の イオンである前記 (a)〜(c)の 、ずれか一項に記載の蛍光体粒子。  (d) The phosphor particles according to any one of (a) to (c), wherein the activator is at least one ion selected from copper, manganese, silver, gold, and a rare earth element.
(e)共付活剤が塩素、臭素、ヨウ素、及びアルミニウムカゝら選択された少なくとも一種 のイオンである前記 (a)〜(d)の 、ずれか一項に記載の蛍光体粒子。  (e) The phosphor particles according to any one of (a) to (d), wherein the coactivator is at least one ion selected from chlorine, bromine, iodine, and aluminum.
(f)付活剤が銅イオンであり、共付活剤が塩素イオンである前記 (a)〜 (e)の 、ずれ か一項に記載の蛍光体粒子。  (f) The phosphor particle according to any one of (a) to (e), wherein the activator is copper ion and the coactivator is chloride ion.
[0028] 特に、本発明では、以下の蛍光体粒子を用いることが好ましい。  [0028] In particular, in the present invention, it is preferable to use the following phosphor particles.
蛍光体粒子は、蛍光体層の膜厚を小さくして電界強度を高めるために、平均粒子 サイズが 0. 1〜20 /ζ πιの範囲が好ましぐ 1〜15 /ζ πιがより好ましい。発光の均一性 や蛍光体層の蛍光体粒子の充填率を高めるために、粒子サイズの変動係数は 35% 未満が好ましぐ 30%未満がより好ましい。その粒子内部は、面状の積層欠陥が多 い構造を有する方力 ¾L発光の効率が高いため、積層欠陥の平均面間隔が 5nm以 下の面間隔で 10層以上の積層欠陥を有する粒子数が全蛍光体粒子数の 30%以上 存在することが好ましぐ 50%以上存在することがより好ましぐ 70%以上存在するこ とがさらに好ましい。  The phosphor particles preferably have an average particle size in the range of 0.1 to 20 / ζ πι, more preferably 1 to 15 / ζ πι in order to reduce the thickness of the phosphor layer and increase the electric field strength. In order to increase the uniformity of light emission and the filling rate of the phosphor particles in the phosphor layer, the coefficient of variation in particle size is preferably less than 35%, more preferably less than 30%. The inside of the particles has a structure with many planar stacking faults, and the efficiency of light emission is high. Therefore, the number of particles having stacking faults of 10 layers or more with an average spacing of stacking faults of 5 nm or less. Is preferably 30% or more of the total number of phosphor particles, more preferably 50% or more, and even more preferably 70% or more.
また、蛍光体粒子は、 ZnS系エレクト口ルミネッセンス蛍光体であることが好ましい。 上記のような蛍光体粒子を用いることで、紫外線による劣化を更に低減させて耐久性 を向上させることができ、好ましい。 The phosphor particles are preferably a ZnS-based electoluminescence phosphor. Use of the phosphor particles as described above is preferable because deterioration due to ultraviolet rays can be further reduced and durability can be improved.
[0029] 本発明に利用可能な蛍光体粒子は、当業界で広く用いられる焼成法(固相法)で 形成することができる。例えば、硫ィ匕亜鉛の場合、液相法で結晶子サイズ lOnm以上 50nm以下の範囲の微粒子粉末 (通常生粉と呼ぶ)を作成し、これを一次粒子として 用い、これに付活剤と呼ばれる不純物を混入させて融剤とともに坩堝にて 900°C以 上 1300°C以下の範囲の高温で 30分以上 10時間以下の範囲、第 1の焼成を行い粒 子を得る。第 1の焼成によって得られる中間体蛍光体粒子をイオン交換水で繰り返し 洗浄してアルカリ金属な 、しアルカリ土類金属及び過剰の付活剤、共付活剤を除去 する。次いで、得られた中間体蛍光体粒子に第 2の焼成を施す。第 2の焼成は、第 1 の焼成より低温の 500以上 800°C以下の範囲で、また短時間の 30分以上 3時間以 下の範囲の加熱 (アニーリング)をする。これら焼成により蛍光体粒子内には多くの積 層欠陥が発生するが、微粒子でかつより多くの積層欠陥が蛍光体粒子内に含まれる ように、第 1の焼成と第 2の焼成の条件を適宜選択することが好ましい。また、上記中 間体蛍光体粒子に、ある範囲の大きさの衝撃力を加えることにより、粒子を破壊する ことなぐ積層欠陥の密度を大幅に増カロさせることができる。衝撃力を加える方法とし ては、中間体蛍光体粒子同士を接触混合させる方法、アルミナ等の球体を混ぜて混 合させる(ボールミル)方法、粒子を加速させ衝突させる方法、超音波を照射する方 法などを好ましく用いることができる。その後、 HC1等の酸でエッチングして表面に付 着している金属酸ィ匕物を除去し、さらに表面に付着した硫化銅を、 KCNで洗浄して 除去、乾燥して蛍光体粒子を得る。  The phosphor particles that can be used in the present invention can be formed by a firing method (solid phase method) widely used in the industry. For example, in the case of zinc sulfate, a fine particle powder (usually called raw powder) with a crystallite size of lOnm or more and 50nm or less is prepared by the liquid phase method, and this is used as the primary particle, which is called an activator. Impurities are mixed, and particles are obtained by first firing in a crucible with a flux at a high temperature in the range of 900 ° C to 1300 ° C for 30 minutes to 10 hours. The intermediate phosphor particles obtained by the first firing are repeatedly washed with ion-exchanged water to remove alkali metal, alkaline earth metal, excess activator and coactivator. Next, second baking is performed on the obtained intermediate phosphor particles. In the second baking, heating (annealing) is performed at a temperature lower than that of the first baking in the range of 500 to 800 ° C, and in a short time of 30 minutes to 3 hours. Although many stacking faults are generated in the phosphor particles by these firings, the conditions for the first firing and the second firing are set so that fine particles and more stacking faults are included in the phosphor particles. It is preferable to select appropriately. Also, by applying an impact force in a certain range to the intermediate phosphor particles, the density of stacking faults without destroying the particles can be greatly increased. The impact force can be applied by contacting and mixing the intermediate phosphor particles, mixing and mixing spheres such as alumina (ball mill), accelerating and colliding the particles, and applying ultrasonic waves. A method or the like can be preferably used. After that, etching with an acid such as HC1 removes the metal oxides adhering to the surface, and the copper sulfide adhering to the surface is removed by washing with KCN and dried to obtain phosphor particles. .
また、本発明に利用可能な蛍光体粒子の形成方法として、水熱合成法、尿素溶融 法、噴霧熱分解法を用いて形成することも好ましぐさらに、レーザー 'アブレーシヨン 法、 CVD法、プラズマ CVD法、スパッタリングや抵抗加熱、電子ビーム法、流動油面 蒸着を組み合わせた方法などの気相法と、複分解法、プレカーサ一の熱分解反応に よる方法、逆ミセル法ゃこれらの方法と高温焼成を組み合わせた方法、凍結乾燥法 などの液相法などを用いて形成することもできる。  In addition, it is preferable to use a hydrothermal synthesis method, a urea melting method, or a spray pyrolysis method as a method for forming phosphor particles that can be used in the present invention. Further, a laser 'ablation method, a CVD method, a plasma method is used. Vapor phase methods such as CVD method, sputtering, resistance heating, electron beam method, fluid oil surface vapor deposition combined method, etc., double decomposition method, precursor thermal decomposition method, reverse micelle method and these methods and high temperature firing It can also be formed using a combination of these methods, a liquid phase method such as freeze-drying.
[0030] [被覆層] 本発明において用いられる蛍光体粒子は、該蛍光体粒子として、核粒子の表面に 被覆層を形成してなる被覆層を有する蛍光体粒子を含むことも好ま ヽ。該被覆層 の平均膜厚は 0. 01〜: mであることが好ましぐ 0. 05〜0. 5 mがより好ましい。 ここで、被覆層の平均膜厚とは、被覆層を形成した蛍光体粒子の断面 SEM写真か ら、 10個以上の粒子に対して被覆層膜厚を 1粒子当たりに任意の 3点を実測し平均 した値をいう。 [0030] [Coating layer] It is also preferred that the phosphor particles used in the present invention include phosphor particles having a coating layer formed by forming a coating layer on the surface of the core particle as the phosphor particles. The average thickness of the coating layer is preferably from 0.01 to m, and more preferably from 0.05 to 0.5 m. Here, the average film thickness of the coating layer is measured from three cross-sectional SEM photographs of the phosphor particles on which the coating layer was formed. The average value.
被覆層の平均膜厚が上記の範囲内において、良好な防湿性やイオンバリア性が得 られるととも〖こ、蛍光体粒子への電界強度を減少させることなぐ輝度低下や発光閾 値電圧の上昇を引き起こし難いため、好ましい。  When the average film thickness of the coating layer is within the above range, good moisture proofing and ion barrier properties can be obtained, as well as a decrease in luminance and an increase in emission threshold voltage without reducing the electric field strength to the phosphor particles. It is preferable because it is difficult to cause.
また、被覆層は、粒子の平均サイズに適した膜厚であることが好ましぐ例えば 1 μ mの粒子に 1 μ mの被覆層を形成した場合には、粒子への電界強度の低下を引き起 こし易い。従って、粒子の平均粒子サイズに対する被覆層の平均膜厚の比は、 0. 00 1〜0. 1の範囲であることが好ましぐ 0. 002-0. 05の範囲であることがより好まし い。  In addition, it is preferable that the coating layer has a thickness suitable for the average size of the particles. For example, when a 1 μm coating layer is formed on a 1 μm particle, the electric field strength to the particles is reduced. Easy to cause. Therefore, the ratio of the average film thickness of the coating layer to the average particle size of the particles is preferably in the range of 0.001 to 0.1, and more preferably in the range of 0.002 to 0.05. Good.
[0031] 被覆層の組成は特に限定されないが、酸化物、窒化物、水酸化物、フッ化物、リン 酸塩、ダイヤモンド状カーボン及び有機化合物を用いることができ、それらの混合物 、混晶、多層膜等の使用も好ましい。具体的には、 SiO、 Al O、 TiO、 ZrO、 HfO  [0031] The composition of the coating layer is not particularly limited, but oxides, nitrides, hydroxides, fluorides, phosphates, diamond-like carbon, and organic compounds can be used. The use of a membrane or the like is also preferable. Specifically, SiO, Al 2 O, TiO, ZrO, HfO
2 2 3 2 2 2 2 2 3 2 2 2
、 Ta O、 Y O、 La O、 CeO、 BaTiO、 SrTiO、 PZT、 Si N、 A1N、 Al(OH)、, Ta O, Y O, La O, CeO, BaTiO, SrTiO, PZT, Si N, A1N, Al (OH),
2 5 2 3 2 3 2 3 3 3 4 32 5 2 3 2 3 2 3 3 3 4 3
MgF、 CaF、 Mg (PO )、 Ca (PO ) 、 Sr (PO ) 、 Ba (PO )、フッ素樹脂等がMgF, CaF, Mg (PO), Ca (PO), Sr (PO), Ba (PO), fluororesin, etc.
2 2 3 4 2 3 4 2 3 4 2 3 4 2 2 2 3 4 2 3 4 2 3 4 2 3 4 2
好ましい。  preferable.
[0032] 被覆層により、蛍光体粒子の発光効率が向上され、経時的な劣化が減少する。ま た防湿性やイオンバリア性も付与される。さら〖こは、被覆層を設けることにより、紫外 線吸収についての作用を付加することができる場合があり、その結果経時的な劣化 力 Sさらに減少でき、さらにはカラーバランスのずれが減少でき、好ましい。この紫外線 吸収の観点からは、該被覆層は、波長 280ηπ!〜 420nmに吸収端を有する材料を 含むものが好ましい。  [0032] The coating layer improves the luminous efficiency of the phosphor particles and reduces the deterioration over time. It also provides moisture resistance and ion barrier properties. In addition, by providing a coating layer, it may be possible to add an effect on ultraviolet absorption. As a result, the degradation power over time S can be further reduced, and the color balance deviation can be reduced. preferable. From the viewpoint of ultraviolet absorption, the coating layer has a wavelength of 280ηπ! Those containing a material having an absorption edge at ˜420 nm are preferred.
このような材料としては、以下の材料が挙げられる。  Examples of such a material include the following materials.
0 被覆材料自体が紫外線を吸収するもの (TiO、 ZnO、 CeO、 ZrO、マイ力、力 ォリン、セリサイトなど)により被覆層を形成した場合には、被覆するだけで紫外線吸 収効果が得られる。 0 The coating material itself absorbs ultraviolet rays (TiO, ZnO, CeO, ZrO, My power, force In the case where the coating layer is formed of olin, sericite, etc., an ultraviolet absorption effect can be obtained simply by coating.
ii) 被覆材料自体は紫外線を吸収しないもの (Al O  ii) The coating material itself does not absorb ultraviolet light (Al 2 O
2 3、 SiOなど)を用いても、有機  2 3, SiO, etc.)
2  2
系、桂皮酸系、パラアミノ安息香酸系、カンフル系、ベンゾフエノン系、ベンゾィルメタ ン系の紫外線吸収物質等を更に積層させることにより紫外線吸収効果が得られる。  UV-absorbing effects can be obtained by further laminating a cinnamate, cinnamic acid, paraaminobenzoic acid, camphor, benzophenone or benzoylmethan UV absorber.
[0033] また、被覆層は、十分な防湿性やイオンバリア性を得るために、ピンホールやクラッ クが無ぐ連続的であることが好ましい。このような被覆層は、ゾルゲル法、沈殿法、等 の液相合成法を用いて形成することができるが、流動床、撹拌床、振動床、転動床、 等を利用した CVD法、プラズマ CVD法、スパッタリング法、及びメカノフュージョン法 、等で形成することがより好ましい。  [0033] The coating layer is preferably continuous without pinholes or cracks in order to obtain sufficient moisture resistance and ion barrier properties. Such a coating layer can be formed by using a liquid phase synthesis method such as a sol-gel method, a precipitation method, etc., but a CVD method using a fluidized bed, a stirring bed, a vibrating bed, a rolling bed, etc., a plasma More preferably, it is formed by a CVD method, a sputtering method, a mechanofusion method, or the like.
[0034] 本発明における被覆層は、例えば、以下の方法で形成することができる。  [0034] The coating layer in the present invention can be formed, for example, by the following method.
被覆層形成の第 1の方法として、蛍光体粒子核粒子を流動化させた状態で、被覆 層の原料を供給して粒子表面に堆積又は反応させることで被覆層を形成する方法が 挙げられる。  As a first method of forming the coating layer, there is a method of forming the coating layer by supplying the raw material of the coating layer and depositing or reacting on the particle surface in a state where the phosphor particle core particles are fluidized.
[0035] 蛍光体粒子核粒子の流動化は、公知の方法を適宜採用することによって行うことが でき、例えば、流動床、撹拌床、振動床、転動床を使用する方法が挙げられる。流動 床は、例えば図 1に示すように、円筒形容器に蛍光体粒子核粒子を充填し、容器底 部から多孔板を通して導入したキャリアガスによって充填した蛍光体粒子核粒子を浮 遊させて流動化させる方法であり、撹拌床は、例えば図 2に示すように、充填した蛍 光体粒子核粒子をインペラ一攪拌機、等で直接流動化させる方法であり、振動床は 、例えば図 3に示すように、容器に充填した蛍光体粒子核粒子を容器ごと機械的又 は電気的に振動させる方法であり、転動床は、例えば図 4に示すように、水平又は傾 斜位置に設置した円筒容器に充填した EL蛍光体核粒子を、円筒容器を回転させる ことで流動化させる方法である。  [0035] Fluidization of the phosphor particle core particles can be performed by appropriately adopting a known method, and examples thereof include a method using a fluidized bed, a stirring bed, a vibrating bed, and a rolling bed. For example, as shown in FIG. 1, the fluidized bed is filled with phosphor particle core particles in a cylindrical container, and floats and flows the phosphor particle core particles filled with the carrier gas introduced through the perforated plate from the bottom of the container. For example, as shown in FIG. 2, the stirring bed is a method of directly fluidizing the filled phosphor particle core particles with an impeller stirrer, etc., and the vibrating bed is shown in FIG. 3, for example. In this method, the phosphor particle core particles filled in the container are mechanically or electrically vibrated together with the container, and the rolling bed is, for example, a cylinder installed in a horizontal or inclined position as shown in FIG. In this method, EL phosphor core particles filled in a container are fluidized by rotating a cylindrical container.
[0036] 特に、均一で連続な被覆層を得るためには、流動床を用いることが好ま U、。ここで 、蛍光体粒子サイズが小さくなると、凝集する傾向が強くなり流動化が困難となること から、蛍光体粒子核粒子に、蛍光体粒子核粒子よりも大きい粒子サイズの流動化促 進剤を添加することが好ましい。該流動化促進剤の粒子サイズは、蛍光体粒子核粒 子の平均粒径の 2〜5倍程度であることが好ましい。流動化促進剤は、蛍光体粒子と 反応温度で不活性な物質が好ましぐ例えば SiO、 Al O、 ZrO、等を好ましく用い [0036] In particular, in order to obtain a uniform and continuous coating layer, it is preferable to use a fluidized bed. Here, as the phosphor particle size becomes smaller, the tendency to aggregate becomes stronger and fluidization becomes difficult. Therefore, a fluidization accelerator having a particle size larger than that of the phosphor particle core particle is added to the phosphor particle core particle. It is preferable to add. The particle size of the fluidization accelerator is a phosphor particle nucleus. It is preferably about 2 to 5 times the average particle size of the child. As the fluidization accelerator, phosphor particles and substances that are inert at the reaction temperature are preferred. For example, SiO, Al 2 O, ZrO, etc. are preferably used.
2 2 3 2  2 2 3 2
ることがでさる。  It can be done.
また、流動化促進剤の形状は、流動性の最も良好な球形であることが好ましい。  The shape of the fluidization accelerator is preferably a spherical shape having the best fluidity.
[0037] 流動化した蛍光体粒子核粒子表面への被覆層材料の供給及び反応は、例えば、 キャリアガスに気体状の被覆層原料を含有させて、同経路又は別経路で導入した反 応ガスと粒子表面で反応させる方法が利用できる。このとき、反応ガスを用いずに気 体状の被覆層原料を熱分解させて被覆層を形成することもできる。気体状の被覆層 原料としては、アルコキシド、アルキル化合物、塩化物、水素化物、炭化水素、等が 利用できる。各反応装置の温度は、通常 100〜500°C程度の範囲で反応が行われ る力 蛍光体粒子への熱的ダメージを低減するためには、 300°C以下の温度である ことが好ましい。また、液体状の被覆層原料を流動床にスプレー、等の方法で供給す ることも好まし 、。 [0037] Supply and reaction of the coating layer material to the surface of the fluidized phosphor particle core particle may be performed by, for example, reacting a carrier gas containing a gaseous coating layer raw material and introducing it in the same route or another route. Can be used on the particle surface. At this time, the coating layer can be formed by thermally decomposing the gaseous coating layer raw material without using the reaction gas. As the raw material for the gaseous coating layer, alkoxides, alkyl compounds, chlorides, hydrides, hydrocarbons, and the like can be used. The temperature of each reaction apparatus is usually a temperature in the range of about 100 to 500 ° C. In order to reduce thermal damage to the phosphor particles, the temperature is preferably 300 ° C or less. It is also preferable to supply the liquid coating layer raw material to the fluidized bed by a method such as spraying.
[0038] 酸化物、窒化物、水酸化物、ダイヤモンド状カーボン、等の被覆層が上記方法で形 成できる。例えば、 TiCl溶液を Nガスでパブリングして気化させて、水蒸気を含有し  [0038] A coating layer of oxide, nitride, hydroxide, diamond-like carbon, or the like can be formed by the above method. For example, a TiCl solution can be vaporized by publishing with N gas to contain water vapor.
4 2  4 2
た Nガスと蛍光体粒子核粒子表面で反応させることで TiO前駆体被覆層を形成す TiO precursor coating layer is formed by reacting with N gas and phosphor particle core particle surface
2 2 twenty two
ることができ、アルキルアルミニウムと無水アンモニアガスとの反応で A1N被覆層が形 成できる。  A1N coating layer can be formed by the reaction of alkylaluminum and anhydrous ammonia gas.
[0039] 被覆層形成の第 2の方法として、蛍光体粒子核粒子を溶媒中に分散させた状態で [0039] As a second method of forming the coating layer, the phosphor particle core particles are dispersed in a solvent.
、被覆層の原料を供給して粒子表面に堆積又は反応させることで被覆層を形成する 方法が挙げられる。 And a method of forming a coating layer by supplying a raw material of the coating layer and depositing or reacting on the particle surface.
この方法では、蛍光体粒子核粒子を、溶媒とともに反応容器に導入し、インペラ一 攪拌機等を用いて分散させることができる。反応容器は、円筒形が好ましぐ容器底 部は円錐形又は半球形が好ましい。攪拌羽根の形状は、スクリュー型、ねじり羽根型 、パドル型、等を利用できるが、撹拌軸の円周方向と垂直方向の撹拌流が形成でき るスクリュ一—パドル複合型を用いることがより好ましい。図 5に示すように、撹拌羽根 の周隨こストレーナーを設けて、垂直方向の撹拌流をより強く形成することが好まし い。また、溶媒としては、水、有機溶媒又はそれらの混合物を好ましく用いることがで きる。特殊な溶媒として、融点以上に加熱して溶融させた尿素を用いることもできる。 さらに、溶媒中に界面活性剤、等の分散剤を添加することも好ましい。 In this method, the phosphor particle core particles can be introduced into a reaction vessel together with a solvent and dispersed using an impeller stirrer or the like. The reaction vessel is preferably cylindrical, and the bottom of the vessel is preferably conical or hemispherical. The shape of the stirring blade can be a screw type, a twisted blade type, a paddle type, or the like, but it is more preferable to use a screw-paddle composite type that can form a stirring flow in a direction perpendicular to the circumferential direction of the stirring shaft. . As shown in Fig. 5, it is preferable to provide a stirrer blade strainer to create a stronger vertical stirring flow. As the solvent, water, an organic solvent, or a mixture thereof can be preferably used. wear. As a special solvent, urea melted by heating to the melting point or higher can also be used. Furthermore, it is also preferable to add a dispersing agent such as a surfactant in the solvent.
[0040] 溶媒中での被覆層の形成は、被覆層原料を蛍光体粒子核粒子が分散する溶媒中 に溶解して、その中に反応溶液を添加することにより粒子表面に被覆層を形成する 方法、または蛍光体粒子核粒子が分散する溶媒中に、被覆層原料溶液と反応溶液 とを同時に添加する方法を好ましく用いることができる。このとき、被覆層原料溶液及 び反応溶液は、撹拌が最も激しく行われている領域に添加することが好ましい。被覆 層原料溶液及び反応溶液の添加方法としては、既知の定量ポンプやオリフィス添カロ を用いることができる力 送液の脈動が少な 、シリンジポンプを用いることが好ま U、 。被覆層原料溶液及び反応溶液の添加において、反応容器中のイオン濃度を検知 して、各溶液の添加速度を個別に制御することが好ましい。溶媒が尿素の場合など には、反応剤は溶液に限らず、固体のまま添加することもできる。  [0040] In the formation of the coating layer in the solvent, the coating layer raw material is dissolved in the solvent in which the phosphor particle core particles are dispersed, and the reaction solution is added thereto to form the coating layer on the particle surface. The method or the method of simultaneously adding the coating layer raw material solution and the reaction solution to the solvent in which the phosphor particle core particles are dispersed can be preferably used. At this time, the coating layer raw material solution and the reaction solution are preferably added to the region where stirring is most intensely performed. As a method for adding the coating layer raw material solution and the reaction solution, it is preferable to use a syringe pump with a small amount of pulsation of the pumped liquid that can use a known quantitative pump or calorie with an orifice. In adding the coating layer raw material solution and the reaction solution, it is preferable to individually control the addition rate of each solution by detecting the ion concentration in the reaction vessel. When the solvent is urea, the reactant is not limited to a solution, and can be added as a solid.
[0041] また、反応温度の制御は、反応容器をマントルヒーター、等で直接加熱することによ つて行うこともできる力 反応容器の周囲にジャケットを設けて、温水や冷水を供給す ることで制御することが好ましい。反応温度は、溶媒が水又は有機溶媒の場合には 4 0〜80°Cの範囲が好ましぐ尿素の場合には 130〜150°Cの範囲が好ましい。また、 これらはすべて常圧下での反応である力 オートクレープを用いることにより加圧下で 反応させることも、被覆層の緻密化や分解'縮合反応の促進の観点から、好ましい。 この場合、反応温度は、 100°Cを超えて臨界温度まで利用できる。オートクレープ中 への溶液の添カ卩は、オートクレープ内部圧力以上の耐圧性を有する送液ポンプを用 いて行うことが好ましい。  [0041] The reaction temperature can also be controlled by directly heating the reaction vessel with a mantle heater or the like. By providing a jacket around the reaction vessel and supplying hot or cold water. It is preferable to control. The reaction temperature is preferably in the range of 40 to 80 ° C. when the solvent is water or an organic solvent, and is preferably in the range of 130 to 150 ° C. in the case of urea. Moreover, it is also preferable from the viewpoints of densification of the coating layer and promotion of decomposition'condensation reaction that these are all reacted under pressure by using a force autoclave which is a reaction under normal pressure. In this case, the reaction temperature can be used up to a critical temperature exceeding 100 ° C. It is preferable to add the solution into the autoclave using a liquid feed pump having a pressure resistance equal to or higher than the autoclave internal pressure.
[0042] 酸化物、水酸化物、リン酸塩、フッ化物、等の被覆層が上記方法で形成できる。例 えば、チタンアルコキシドのアルコール溶液に蛍光体粒子を分散させ、反応溶液とし てアルコールで希釈した水をチタンアルコキシドの 10倍等量程度添加することで Ti O前駆体被覆層が蛍光体粒子核粒子表面に形成できる。また、 Na (PO )水溶液 [0042] A coating layer of oxide, hydroxide, phosphate, fluoride, or the like can be formed by the above method. For example, phosphor particles are dispersed in an alcohol solution of titanium alkoxide, and water diluted with alcohol as a reaction solution is added in an amount equivalent to about 10 times that of titanium alkoxide, so that the Ti O precursor coating layer becomes phosphor particle core particles. Can be formed on the surface. Na (PO) aqueous solution
2 3 4 に蛍光体粒子を分散させ、反応溶液として MgCl水溶液を添加することで Mg (PO By dispersing phosphor particles in 2 3 4 and adding MgCl aqueous solution as reaction solution, Mg (PO
2 3 4 2 3 4
)被覆層が蛍光体粒子核粒子表面に形成でき、 Mg (CH COO) のアルコール溶液) A coating layer can be formed on the phosphor particle core particle surface, and an alcohol solution of Mg (CH COO)
2 3 2 2 3 2
に蛍光体粒子を分散させ、反応溶液としてアルコールで希釈した CF COOHを添加 することで MgF被覆層が蛍光体粒子核粒子表面に形成できる。 Disperse phosphor particles in the solution and add CF COOH diluted with alcohol as the reaction solution. By doing so, the MgF coating layer can be formed on the surface of the phosphor particle core particle.
2  2
[0043] 上記 2つの被覆層形成方法にぉ 、て、形成処理後にァニールすることも好ま 、。  [0043] In addition to the above two coating layer forming methods, it is also preferable to anneal after the forming process.
部分的に水酸ィ匕物が生成している場合など、ァニールによってほぼ完全に酸ィ匕物に 転換することができ、また被覆層の緻密性が向上して耐湿性やイオンバリア性が向上 する。  Annealing can be almost completely converted to an acidic product, such as when a partially oxidized hydroxide is generated, and the denseness of the coating layer is improved to improve moisture resistance and ion barrier properties. To do.
[0044] 被覆層形成の第 3の方法として、蛍光体粒子核粒子と被覆層材料とを混合した状 態で、機械的熱的エネルギーを加えることで被覆層を形成する方法が挙げられる。 被覆層材料は、衝撃や摩擦による機械的熱的エネルギーを受けて蛍光体粒子核 粒子表面に固化できる。このような機械的熱的エネルギーを与える装置として、ハイ ブリダィザ一、シーターコンポーザー、等を好ましく用いることができる。被覆材料は、 高分子榭脂、等の有機化合物を用いることが好ましいが、無機化合物でも可能であ る。また、有機化合物の被覆層を形成した上に、無機化合物の被覆層を多層化した り、有機化合物と無機化合物の混合物で被覆することも好ましい。  [0044] As a third method of forming the coating layer, there is a method of forming the coating layer by applying mechanical thermal energy in a state where the phosphor particle core particles and the coating layer material are mixed. The coating layer material can be solidified on the surface of the phosphor particle core particle by receiving mechanical thermal energy due to impact or friction. As a device for applying such mechanical thermal energy, a hybridizer, a sheeter composer, or the like can be preferably used. As the coating material, it is preferable to use an organic compound such as high molecular weight resin, but an inorganic compound is also possible. It is also preferable to form a coating layer of an organic compound and then form a multilayer coating layer of the inorganic compound or coat with a mixture of an organic compound and an inorganic compound.
[0045] 蛍光体層は、蛍光体粒子含有塗布液を塗布して形成することができる。該蛍光体 粒子含有塗布液は、少なくとも蛍光体粒子、結合剤、および結合剤を溶解する溶剤 を含有してなる塗布液である。結合剤としては、シァノエチルセルロース系榭脂のよう に、比較的誘電率の高いポリマーや、ポリエチレン、ポリプロピレン、ポリスチレン系榭 脂、シリコーン榭脂、エポキシ榭脂、フッ化ビニリデンなどの榭脂を用いることが好まし い。これらの結合剤に、 BaTiOや SrTiOなどの高誘電率の微粒子を、結合剤 100  [0045] The phosphor layer can be formed by applying a phosphor particle-containing coating solution. The phosphor particle-containing coating solution is a coating solution containing at least phosphor particles, a binder, and a solvent for dissolving the binder. As the binder, use is made of a polymer having a relatively high dielectric constant, such as cyanoethylcellulose resin, or a resin such as polyethylene, polypropylene, polystyrene resin, silicone resin, epoxy resin, or vinylidene fluoride. I prefer that. To these binders, fine particles with high dielectric constant such as BaTiO and SrTiO are added.
3 3  3 3
質量部に対して 5〜50質量部混合して誘電率を調整することもできる。分散方法とし ては、ホモジナイザー、遊星型混練機、ロール混練機、超音波分散機などを用いるこ とができる。溶剤としては極性の高い溶剤であれば限定無く用いることが出来、アル コール、ケトン、エステル、多価アルコールおよびその誘導体、可塑剤などを好ましく 用いることが出来る。  The dielectric constant can be adjusted by mixing 5 to 50 parts by mass with respect to parts by mass. As a dispersion method, a homogenizer, a planetary kneader, a roll kneader, an ultrasonic disperser, or the like can be used. The solvent can be used without limitation as long as it is a highly polar solvent, and alcohols, ketones, esters, polyhydric alcohols and derivatives thereof, plasticizers, and the like can be preferably used.
[0046] 蛍光体粒子含有塗布液の粘度は、 0. lPa' s以上 5Pa' s以下の範囲が好ましぐ 0 . 3Pa' s以上 1. OPa' s以下の範囲が特に好ましい。蛍光体粒子含有塗布液の粘度 力 上述の範囲内にあれば、塗膜の膜厚ムラが生じにくぐまた分散後の時間経過と ともに蛍光体粒子が分離沈降せず、比較的高速での塗布も可能であり、好ましい。な お、前記粘度は、塗布温度と同じ 16°Cにおいて測定される値である。 [0046] The viscosity of the coating solution containing phosphor particles is preferably in the range of 0.1 Pa's to 5 Pa's, and more preferably in the range of 0.3 Pa's to 1. OPa's. Viscosity and strength of coating solution containing phosphor particles If it is within the above range, coating film thickness unevenness hardly occurs, and phosphor particles do not separate and settle with the passage of time after dispersion. Is also possible and preferred. Na The viscosity is a value measured at 16 ° C. which is the same as the coating temperature.
[0047] 蛍光体層は、スライドコーター又はエタストルージョンコーターなどを用いて、透明 電極を付設したプラスチック支持体等の上に、塗膜の乾燥膜厚が 0. 5 m以上 30 m以下の範囲になるように連続的に塗布することが好ましい。このとき、蛍光体層 の膜厚変動は、 12. 5%以下が好ましぐ特に 5%以下が好ましい。 [0047] The phosphor layer has a dry film thickness of 0.5 m or more and 30 m or less on a plastic support or the like provided with a transparent electrode, using a slide coater or an etrusion coater. It is preferable to apply continuously so that At this time, the thickness variation of the phosphor layer is preferably 12.5% or less, particularly preferably 5% or less.
蛍光体層を薄層化すると、同一駆動条件では従来の EL素子のような蛍光体層が 厚い場合に比べて蛍光体層に印加させる電圧が高くなるため、輝度が高くなる。従 来の EL素子と同程度の輝度で駆動する場合には、駆動電圧や周波数を低くするこ とができるため、電力消費が少なくなり、さらに振動や騒音を改善することができる。 そのような効果を得るためには、蛍光体層の厚みが 0. 5 /z m以上で 70 m以下の範 囲が好ましぐより好ましくは 10 μ m以上 60 μ m以下である。  When the phosphor layer is thinned, the voltage applied to the phosphor layer is higher under the same driving conditions than when the phosphor layer is thick like the conventional EL element, and the luminance is increased. When driving with the same level of brightness as a conventional EL device, the drive voltage and frequency can be lowered, reducing power consumption and further improving vibration and noise. In order to obtain such an effect, the phosphor layer has a thickness of 0.5 / z m or more and 70 m or less, more preferably 10 μm or more and 60 μm or less.
[0048] 本発明に用いられる蛍光体粒子は、前述の通り平均粒径が 0. 1 μ m以上 20 μ m 以下の範囲の粒子を使用することが好ましい。この範囲内とすることで、蛍光体層を 3 0 m以下とした場合にも、層を均一に形成することができ、好ましい。また蛍光体層 中の蛍光体粒子の充填率に制限はないが、好ましくは 60質量%以上 95質量%以 下の範囲で、より好ましくは 70質量%以上 90質量%以下の範囲である。本発明の一 実施態様において蛍光体粒子の粒子サイズを 20 m以下にすることで、蛍光体層 の塗膜の膜厚の均一性が向上し、塗膜表面の平滑性も同時に向上する。さらに、単 位面積当たりの粒子数が大幅に増加することで、微細な発光ムラが著しく改善できる 。さらに、粒子サイズの減少は、蛍光体粒子の印加電圧の増加につながり、蛍光体 層の薄層化による蛍光体層への電界強度の増加と併せて、 EL素子の輝度向上にと つて好ましぐ雑音の原因となる振動の抑制にも好ましい。 [0048] As described above, the phosphor particles used in the present invention are preferably particles having an average particle diameter in the range of 0.1 µm to 20 µm. Within this range, even when the phosphor layer is 30 m or less, the layer can be formed uniformly, which is preferable. The filling rate of the phosphor particles in the phosphor layer is not limited, but is preferably in the range of 60% by mass to 95% by mass, more preferably in the range of 70% by mass to 90% by mass. In one embodiment of the present invention, by setting the particle size of the phosphor particles to 20 m or less, the uniformity of the coating film thickness of the phosphor layer is improved and the smoothness of the coating film surface is simultaneously improved. Furthermore, since the number of particles per unit area is greatly increased, the fine emission unevenness can be remarkably improved. Furthermore, the decrease in the particle size leads to an increase in the voltage applied to the phosphor particles, and in addition to an increase in the electric field strength to the phosphor layer due to the thin phosphor layer, it is preferable for improving the brightness of the EL element. It is also preferable for suppressing vibrations that cause noise.
[0049] く電極 > [0049] Cu Electrode>
本発明の EL素子において用いられる透明電極としては、一般的に用いられる任意 の透明電極材料を用いて形成された電極が用いられる。透明電極材料としては、例 えば錫ドープ酸ィ匕錫、アンチモンドープ酸化錫、亜鉛ドープ酸ィ匕錫などの酸ィ匕物、 銀の薄膜を高屈折率層で挟んだ多層構造、ポリア-リン、ポリピロールなどの π共役 系高分子などが挙げられる。透明電極にはこれに櫛型あるいはグリッド型等の金属細 線を配置して通電性を改善することも好ま U 、。 As the transparent electrode used in the EL device of the present invention, an electrode formed using any commonly used transparent electrode material is used. Examples of transparent electrode materials include tin oxides such as tin-doped oxide tin, antimony-doped tin oxide, and zinc-doped oxide oxide tin, a multilayer structure in which a silver thin film is sandwiched between high refractive index layers, and poly-phosphorus. And π-conjugated polymers such as polypyrrole. The transparent electrode has a fine metal such as comb or grid. U, also preferred to improve the conductivity by placing the wire.
透明電極の比抵抗率は、 0. 01 ΩΖ口以上 30 ΩΖ口以下の範囲が好ましい。 背面電極は、光を取り出さない側であり、導電性の有る任意の材料が使用できる。 例えば、金、銀、白金、銅、鉄、アルミニウムなどの金属、グラフアイトなどの中から、 作成する素子の形態、作成工程の温度等により適時選択することができる。導電性さ えあれば ITO等の透明電極を用いても良 、。  The specific resistivity of the transparent electrode is preferably in the range from 0.01 Ω to 30 Ω. The back electrode is the side from which light is not extracted, and any conductive material can be used. For example, it can be selected from metal such as gold, silver, platinum, copper, iron, and aluminum, graphite, and the like according to the form of the element to be created, the temperature of the creation process, and the like. A transparent electrode such as ITO may be used if it is conductive.
また、透明電極、背面電極の両電極とも、導電性の前記微粒子材料を結合剤ととも に分散した導電材料含有塗布液を作製して、スライドコーター又はエタストルージョン コーターを用いて塗布することもできる。  In addition, for both the transparent electrode and the back electrode, a conductive material-containing coating solution in which the conductive fine particle material is dispersed together with a binder may be prepared and applied using a slide coater or an etatrusion coater. it can.
[0050] <その他 > [0050] <Others>
その他、本発明の素子構成において、各種保護層、フィルタ一層、光散乱反射層 などを必要に応じて付与することができる。  In addition, in the element configuration of the present invention, various protective layers, filter layers, light scattering reflection layers, and the like can be provided as necessary.
本発明の EL素子は、支持体上に透明電極を配置するのが好ましい。この際用いる ことができる支持体としては、柔軟であり、透明度の高いものであれば限定無く用いる ことができる。好適には、 PET (ポリエチレンテレフタレート)、 PES (ポリエーテルサル フォン)、 PAr (ポリアリレート)、 PC (ポリカーボネート)、 PEN (ポリエチレンナフタレー ト)などのプラスチックフィルムである。  In the EL device of the present invention, it is preferable to dispose a transparent electrode on a support. As the support that can be used in this case, any support that is flexible and highly transparent can be used without limitation. Preferred are plastic films such as PET (polyethylene terephthalate), PES (polyethersulfone), PAr (polyarylate), PC (polycarbonate), and PEN (polyethylene naphthalate).
[0051] 支持体上に塗布された各機能層は、少なくとも塗布カゝら乾燥工程までを連続工程と して形成することが好ましい。乾燥工程は、塗膜が乾燥固化するまでの恒率乾燥ェ 程と、塗膜の残留溶媒を減少させる減率乾燥工程に分けられる。本発明では、各機 能層の結合剤比率が高いため、急速乾燥させると表面だけが乾燥し塗膜内で対流 が発生し、いわゆるべナードセルが生じやすくなり、また急激な溶媒の膨張によりプリ スター故障を発生しやすくなり、塗膜の均一性を著しく損う。逆に、最終の乾燥温度 が低いと、溶媒が各機能層内に残留してしまい、防湿フィルムのラミネート工程等の E L素子化の後工程に影響を与えてしまう。したがって、乾燥工程は、恒率乾燥工程を 緩やかに実施し、溶媒が乾燥するのに十分な温度で減率乾燥工程を実施することが 好ましい。恒率乾燥工程を緩やかに実施する方法としては、支持体が走行する乾燥 室をいくつかのゾーンに分けて、塗布工程終了後からの乾燥温度を段階的に上昇す ることが好ましい。 [0051] Each functional layer coated on the support is preferably formed as a continuous process including at least a coating step and a drying step. The drying process is divided into a constant rate drying process until the coating film is dried and solidified, and a decreasing rate drying process for reducing the residual solvent of the coating film. In the present invention, since the binder ratio of each functional layer is high, when rapidly dried, only the surface is dried, convection is generated in the coating film, so-called Benard cell is likely to occur, and pre-expansion due to rapid solvent expansion. Star failure is likely to occur, and the uniformity of the coating is significantly impaired. On the other hand, if the final drying temperature is low, the solvent remains in each functional layer, affecting the subsequent processes for forming EL elements such as a moisture-proof film laminating process. Therefore, it is preferable that the drying process is performed slowly at a constant rate, and is performed at a temperature sufficient for the solvent to dry. As a method of slowly performing the constant rate drying process, the drying chamber where the support travels is divided into several zones, and the drying temperature after the coating process is increased stepwise. It is preferable.
[0052] 本発明の EL素子の製造においては、蛍光体層にカレンダー処理機を用いてカレ ンダー処理を施してもよい。カレンダー処理により形成された蛍光体層の両主面の平 滑度は、 0. 5 /z m以下の範囲が好ましぐ 0. 2 /z m以下がより好ましい。使用する力 レンダー処理機は特に限定されるものではなぐ公知の装置の中力 適宜選択する ことができる。少なくとも一方を例えば 50°C〜200°Cに加熱した一対のロールの間に 、加圧しながら結合剤中に蛍光体粒子を分散させた蛍光体層を対象物として通すこ とで平滑化処理を施すものである。カレンダー処理において、カレンダーロールの加 熱温度は、蛍光体層に含まれる結合剤の軟化温度以上にすることが好ましい。また、 カレンダー圧力と搬送速度は、蛍光体粒子を破壊したり、必要以上に蛍光体層を延 伸したりしないように、カレンダー温度と蛍光体層の塗布幅も考慮して、必要な平滑 度が得られるように適宜選択することが好ま 、。  In the manufacture of the EL device of the present invention, the phosphor layer may be subjected to a calendar process using a calendar processor. The smoothness of both main surfaces of the phosphor layer formed by calendering is preferably in the range of 0.5 / zm or less, more preferably 0.2 / zm or less. Force to be used The render processing machine is not particularly limited, and can be appropriately selected from the known powers of known devices. Smoothing treatment is performed by passing a phosphor layer in which phosphor particles are dispersed in a binder while applying pressure between a pair of rolls heated at least one of, for example, 50 ° C to 200 ° C. It is something to apply. In the calendering process, the heating temperature of the calender roll is preferably not less than the softening temperature of the binder contained in the phosphor layer. In addition, the calender pressure and the conveyance speed are set to the required smoothness, taking into account the calender temperature and the coating width of the phosphor layer so as not to break the phosphor particles or extend the phosphor layer more than necessary. It is preferable to select as appropriate so as to obtain.
[0053] EL素子の振動抑制のために補償電極を付与する場合にも、前述の導電材料を用 いることができる。例えば光を取り出す透明電極の外側に補償電極を付与する場合 には、錫ドープ酸化錫、アンチモンドープ酸化錫、亜鉛ドープ酸ィヒ錫などの酸ィ匕物、 銀の薄膜を高屈折率層で挟んだ多層構造、ポリア-リン、ポリピロールなどの π共役 系高分子などの透明電極材料を用いることが好まし 、。  [0053] The conductive material described above can also be used when a compensation electrode is provided to suppress vibration of the EL element. For example, when a compensation electrode is provided outside the transparent electrode from which light is extracted, an oxide such as tin-doped tin oxide, antimony-doped tin oxide, or zinc-doped ichtin tin, or a silver thin film is formed with a high refractive index layer. It is preferable to use transparent electrode materials such as sandwiched multilayer structures, π-conjugated polymers such as polyaline and polypyrrole.
[0054] また、光を取り出さな ヽ背面電極の外側に補償電極を付与する場合には、金、銀、 白金、銅、鉄、アルミニウムなどの金属、グラフアイトなど導電性の有る任意の材料が 使用できるが、導電性さえあれば ΙΤΟ等の透明電極を用いても良い。この補償電極 は前記の透明電極や背面電極と絶縁層を介して付設されるが、絶縁層材料は絶縁 性の無機材料や高分子材料、無機材料粉体を高分子材料に分散した分散液などを 蒸着、塗布などにより形成できる。また、導電性の前記微粒子材料を結合剤とともに 分散した導電材料含有塗布液を作製して、スライドコーター又はエタストルージョンコ 一ターを用いて塗布することもできる。さらに、前記絶縁性材料を結合剤とともに分散 した絶縁材料含有塗布液を作製して、前記導電材料含有塗布液と同時に塗布する こともできる。付設した補償電極に駆動電源より電圧を印加するが、このとき蛍光体層 に印加される電圧と逆位相にすることで、蛍光体層で発生する振動を相殺できる。補 償電極は、透明電極の外側又は背面電極の外側の 、ずれか〖こ絶縁層を挟んで付 設しても同様の効果があるが、同時に付設して一方を接地させることで、さらなる振動 抑制効果を期待できるので好ましい。また、蛍光体層(と誘電体層)の誘電率と補償 電極の内側の絶縁層の誘電率が実質同等であるように調整することが振動抑制を効 果的に行うためには好まし!/、。 [0054] Further, when a compensation electrode is provided outside the back electrode without extracting light, any conductive material such as metal such as gold, silver, platinum, copper, iron, aluminum, or graphite may be used. Although it can be used, a transparent electrode such as a bag may be used as long as it has conductivity. The compensation electrode is attached to the transparent electrode and the back electrode through an insulating layer. The insulating layer material is an insulating inorganic material or polymer material, a dispersion liquid in which inorganic material powder is dispersed in a polymer material, or the like. Can be formed by vapor deposition or coating. In addition, a conductive material-containing coating solution in which the conductive fine particle material is dispersed together with a binder can be prepared and applied using a slide coater or an etatrusion coater. Furthermore, an insulating material-containing coating solution in which the insulating material is dispersed together with a binder can be prepared and applied simultaneously with the conductive material-containing coating solution. A voltage is applied to the compensation electrode provided from the drive power source, and at this time, the vibration generated in the phosphor layer can be canceled by setting the phase opposite to the voltage applied to the phosphor layer. Supplement The compensation electrode has the same effect even if it is attached outside the transparent electrode or outside the back electrode with an insulating layer sandwiched between them. However, if one is attached and grounded at the same time, further vibration suppression is achieved. Since an effect can be expected, it is preferable. In order to effectively suppress vibration, it is preferable to adjust the dielectric constant of the phosphor layer (and dielectric layer) and the dielectric constant of the insulating layer inside the compensation electrode to be substantially the same! /.
[0055] EL素子の振動抑制のための別の方法として EL素子に用いる緩衝材層を付与する 場合には、緩衝材層として衝撃吸収能の高い高分子材料や発泡剤を加えて発泡さ せた高分子材料を用いることが好ま ヽ。衝撃吸収能の高 、高分子材料としては、 例えば天然ゴム、スチレンブタジエンゴム、ポリイソプレンゴム、ポリブタジエンゴム、二 トリルゴム、クロロプレンゴム、ブチルゴム、ハイバロン、シリコンゴム、ウレタンゴム、ェ チレンプロピレンゴム、フッ素ゴムなどが使用できる。これら高分子材料の硬度として は、振動吸収能の点から 50以下が好ましぐ 30以下がさらに好ましい。また、ブチル ゴム、シリコンゴム、フッ素ゴムなどは、吸水性が低いため EL素子を水分力も保護す る保護膜としても機能するためより好ましい。上記のゴム材料やポリプロピレン、ポリス チレン、ポリエチレン榭脂に発泡剤を加えて発泡させた材料を緩衝材として用いるこ とも好ましい。これらの緩衝材を用いた緩衝材層は、緩衝材層を接着剤で EL素子に 貼り付けることで付設することができるが、緩衝材料を溶剤に溶解して緩衝材料含有 塗布液を作製し、スライドコーター又はエタストルージョンコーターを用いて塗布する こともできる。緩衝材層の膜厚は、高分子材料の硬度にもよるが、振動を十分に吸収 するためには 20 μ m以上が必要で、 50 μ m以上が好ましい。 200 μ m以上になると 素子厚みが大きく増加して、質量やフレキシビリティの点で好ましくない。また、上記 の補償電極と緩衝材層の併用は、さらに振動を抑制することができるので好まし 、。  [0055] As another method for suppressing vibration of the EL element, when a buffer material layer used for the EL element is provided, the buffer material layer is foamed by adding a polymer material having a high impact absorbing ability or a foaming agent. It is preferable to use high polymer materials. Examples of the polymer material having high impact absorbing ability include natural rubber, styrene butadiene rubber, polyisoprene rubber, polybutadiene rubber, nitrile rubber, chloroprene rubber, butyl rubber, hibaron, silicon rubber, urethane rubber, ethylene propylene rubber, and fluorine rubber. Etc. can be used. The hardness of these polymer materials is preferably 50 or less, more preferably 30 or less, from the viewpoint of vibration absorption ability. In addition, butyl rubber, silicon rubber, fluororubber, and the like are more preferable because they have a low water absorption and function as a protective film for protecting the EL element from moisture. It is also preferable to use as a buffer material a material obtained by adding a foaming agent to the above rubber material, polypropylene, polystyrene, or polyethylene resin. The buffer material layer using these buffer materials can be attached by adhering the buffer material layer to the EL element with an adhesive, but the buffer material is dissolved in a solvent to prepare a buffer material-containing coating solution, It can also be applied using a slide coater or an etrusion coater. Although the thickness of the buffer layer depends on the hardness of the polymer material, it needs to be 20 μm or more and preferably 50 μm or more in order to sufficiently absorb vibration. If it exceeds 200 μm, the thickness of the element increases greatly, which is not preferable in terms of mass and flexibility. Further, the combined use of the compensation electrode and the buffer layer is preferable because it can further suppress vibration.
[0056] 本発明の分散型 EL素子は、最後に封止フィルムを用いて、外部環境からの湿度 や酸素の影響を排除するよう加工するのが好ま 、。 EL素子を封止する封止フィル ムは、 40°C— 90%RHにおける水蒸気透過率が 0. 05gZm2Zday以下が好ましく 、 0. 01gZm2Zday以下がより好ましい。さらに 40°C— 90%RHでの酸素透過率が 0. lcm3Zm2ZdayZatm以下が好ましぐ 0. 01cm3Zm2ZdayZatm以下がより 好ましい。このような封止フィルムとしては、有機物膜と無機物膜の積層膜が好ましく 用いられる。 [0056] The dispersion-type EL element of the present invention is preferably processed using a sealing film so as to eliminate the influence of humidity and oxygen from the external environment. Sealing the fill arm for sealing the EL element is preferably water vapor transmission rate of 0. 05gZm 2 Zday less at 40 ° C- 90% RH, 0. 01gZm 2 Zday less is more preferable. Further 40 ° C-oxygen permeability at 90% RH is 0. lcm 3 Zm 2 ZdayZatm is preferably less instrument 0. 01cm 3 Zm 2 ZdayZatm less is more preferable. As such a sealing film, a laminated film of an organic film and an inorganic film is preferable. Used.
有機物膜の形成材料としては、ポリエチレン系榭脂、ポリプロピレン系榭脂、ポリ力 ーボネート系榭脂、ポリビニルアルコール系榭脂などが好ましく用いられ、特にポリビ ニルアルコール系榭脂がより好ましく用いることができる。ポリビニルアルコール系榭 脂などは吸水性があるため、あら力じめ真空加熱などの処理を施すことで絶乾状態 にしたものを用いることがより好ましい。これらの榭脂を塗布などの方法によりシート状 に加工したものの上に、無機物膜を蒸着、スパッタリング、 CVD法などを用いて堆積 させる。堆積させる無機物膜としては、酸化ケィ素、窒化珪素、酸窒化珪素、酸ィ匕ケ ィ素 Z酸ィ匕アルミニウム、窒化アルミニウムなどが好ましく用いられ、特に酸化ケィ素 力 り好ましく用いられる。より低い水蒸気透過率や酸素透過率を得たり、無機物膜 が曲げ等によりひび割れることを防止するために、有機物膜と無機物膜の形成を繰り 返したり、無機物膜を堆積した有機物膜を接着剤層を介して複数枚貼り合わせて多 層膜とすることが好ましい。有機物膜の膜厚は、 5 m以上 300 m以下の範囲が好 ましぐ 10 m以上 200 m以下の範囲がより好ましい。無機物膜の膜厚は、 lOnm 以上 300nm以下の範囲が好ましぐ 20nm以上 200nm以下の範囲がより好ましい。 積層した封止フィルムの膜厚は、 30 m以上 1000 m以下の範囲が好ましぐ 50 μ m以上 300 μ m以下の範囲がより好ましい。例えば、 40°C— 90%RH〖こおける水 蒸気透過率が 0. 05gZm2Zday以下の封止フィルムを得るためには、上記の有機 物膜と無機物膜とが 2層ずつ積層された構成では 50〜: L00 μ mの膜厚で済んでしま う力 従来から封止フィルムとして使用されているポリ塩化三フッ化工チレンでは 200 m以上の膜厚を必要とする。封止フィルムの膜厚は、薄い方が光透過性や素子の 柔軟性の点で好ましい。 As a material for forming the organic film, polyethylene-based resin, polypropylene-based resin, polycarbonate-based resin, polyvinyl alcohol-based resin, and the like are preferably used, and polyvinyl alcohol-based resin can be more preferably used. . Since polyvinyl alcohol resins and the like have water absorption properties, it is more preferable to use those that have been completely dried by intensive treatment such as vacuum heating. An inorganic film is deposited by vapor deposition, sputtering, CVD method, etc. on a material obtained by processing such a resin into a sheet by a method such as coating. As the inorganic film to be deposited, silicon oxide, silicon nitride, silicon oxynitride, acid silicate, zinc oxyaluminum, aluminum nitride or the like is preferably used. In order to obtain a lower water vapor transmission rate and oxygen transmission rate, and to prevent the inorganic film from cracking due to bending, etc., the formation of the organic film and the inorganic film is repeated, or the organic film deposited with the inorganic film is used as the adhesive layer. It is preferable to laminate a plurality of films through a multi-layer film. The thickness of the organic material film is preferably in the range of 5 m to 300 m, more preferably in the range of 10 m to 200 m. The thickness of the inorganic film is preferably in the range of lOnm or more and 300 nm or less, and more preferably in the range of 20 nm or more and 200 nm or less. The film thickness of the laminated sealing film is preferably in the range of 30 m to 1000 m, more preferably in the range of 50 μm to 300 μm. For example, in order to obtain a sealing film with a water vapor transmission rate of 0.05 gZm 2 Zday or less at 40 ° C—90% RH, two layers of the above organic film and inorganic film are laminated. In 50 ~: L00 μm film thickness The polychlorinated trifluoride titanium conventionally used as a sealing film requires a film thickness of 200 m or more. The thinner the sealing film, the better in terms of light transmission and device flexibility.
この封止フィルムで ELセルを封止する場合、 2枚の封止フィルムで ELセルを挟ん で周囲を接着封止しても、 1枚の封止フィルムを半分に折って封止フィルムが重なる 部分を接着封止しても良い。封止フィルムで封止される ELセルは、 ELセルのみを別 途作成しても良いし、封止フィルム上に直接 ELセルを作成することもできる。この場 合には、支持体の替わりとすることができる。また、封止工程は、真空又は露点管理さ れた乾燥雰囲気中で行うことが好ましい。 [0058] 高度な封止加工を実施した場合でも、 ELセルの周囲に乾燥剤層を配置することが 好ましい。乾燥剤層に用いられる乾燥剤としては、 CaO、 SrO、 BaOなどのアルカリ 土類金属酸化物、酸ィ匕アルミニウム、ゼォライト,活性炭、シリカゲル、紙や吸湿性の 高い榭脂などが好ましく用いられるが、特にアルカリ土類金属酸ィ匕物が吸湿性能の 点でより好ましい。これらの吸湿剤は粉体の状態でも使用することはできるが、例えば 榭脂材料と混合して塗布や成形などによりシート状に加工したものを使用したり、榭 脂材料と混合した塗布液をディスペンサーなどを用いて EL素子の周囲に塗布したり して乾燥剤層を配置することが好ましい。さらに、 ELセルの周囲のみならず、 ELセル の下面や上面を乾燥剤で覆うことがより好ましい。この場合、光を取り出す面には透 明性の高い乾燥剤層を選択することが好ましい。透明性の高い乾燥剤層としては、 ポリアミド系榭脂等を用いることができる。 When sealing an EL cell with this sealing film, even if the EL cell is sandwiched between two sealing films and sealed, the sealing film overlaps by folding one sealing film in half The part may be adhesively sealed. For the EL cell sealed with the sealing film, only the EL cell may be prepared separately, or the EL cell may be directly formed on the sealing film. In this case, the support can be used instead. The sealing step is preferably performed in a dry atmosphere with vacuum or dew point control. [0058] Even when an advanced sealing process is performed, it is preferable to dispose a desiccant layer around the EL cell. As the desiccant used in the desiccant layer, alkaline earth metal oxides such as CaO, SrO, BaO, acid aluminum, zeolite, activated carbon, silica gel, paper and highly hygroscopic resin are preferably used. In particular, alkaline earth metal oxides are more preferable in terms of moisture absorption performance. These hygroscopic agents can be used even in powder form. For example, the hygroscopic agent can be used by mixing it with a resin material and processing it into a sheet by coating or molding, or by applying a coating liquid mixed with the resin material. It is preferable to dispose the desiccant layer by applying it around the EL element using a dispenser or the like. Furthermore, it is more preferable to cover not only the periphery of the EL cell but also the lower and upper surfaces of the EL cell with a desiccant. In this case, it is preferable to select a highly transparent desiccant layer for the light extraction surface. As the highly transparent desiccant layer, polyamide-based resin can be used.
実施例 1  Example 1
[0059] 以下に、本発明の EL素子を実施例に基づきさらに詳細に説明するが、本発明は 以下の各実施例に制限されるものではない。  Hereinafter, the EL device of the present invention will be described in more detail based on examples, but the present invention is not limited to the following examples.
[0060] 「従来技術による EL素子の作成」(比較例 1 1) [0060] “Preparation of EL device by conventional technology” (Comparative Example 1 1)
平均粒子サイズが 0. 2 μ mの BaTiOの微粒子を 30質量0 /0シァノエチルセルロー 30 mass BaTiO of fine particles having an average particle size of 0. 2 μ m 0/0 Xia Roh ethyl cell row
3  Three
ス溶液に分散した溶液を層厚みが 30 μ mになるように、厚み 75 μ mのアルミシート 上に塗布、 110°Cで 5時間乾燥して誘電体層を形成したアルミシートを得た。続いて 、平均粒子サイズが 15 mの銅と塩素を付活した硫ィ匕亜鉛粒子と 30質量%のシァノ ェチルセルロース溶液を 1. 2 : 1の比で混合'分散し、さらにシンロイヒ社製赤色顔料 (シンロイヒ FA— 001)を硫ィ匕亜鉛粒子に対して 3質量%添加、分散し、出来上がり の層厚みが 45 μ mになる様に前述の誘電体層を形成したアルミシート上に塗布し、 温風乾燥機を用いて 110°Cで 5時間乾燥し、顔料含有蛍光体層を形成した。  The solution dispersed in the glass solution was applied onto a 75 μm thick aluminum sheet so that the layer thickness was 30 μm and dried at 110 ° C. for 5 hours to obtain an aluminum sheet on which a dielectric layer was formed. Subsequently, copper / chlorine-activated zinc sulfate particles having an average particle size of 15 m and 30% by weight of cyanethyl cellulose solution were mixed and dispersed at a ratio of 1.2: 1, and further manufactured by Sinloihi Add 3% by weight of red pigment (Sinroich FA-001) to the zinc oxide particles and disperse it, and apply it on the aluminum sheet on which the above-mentioned dielectric layer is formed so that the final layer thickness is 45 μm. Then, it was dried at 110 ° C. for 5 hours using a hot air dryer to form a pigment-containing phosphor layer.
厚さ 100ミクロンのポリエチレンテレフタレート上に ITOをスパッターにより 40nmの 厚さに均一に付着したフィルムを作製し、この ITO面と、上記アルミシートの顔料含有 蛍光体層を形成した面とを熱圧着し、リード片を載設、防湿フィルムで挟み封止して 、比較例 1—1の EL素子とした。  A film in which ITO was uniformly deposited to a thickness of 40 nm on a 100 micron thick polyethylene terephthalate by sputtering was produced, and this ITO surface and the surface on which the pigment-containing phosphor layer of the aluminum sheet was formed were thermocompression bonded. Then, the lead piece was placed, sealed with a moisture-proof film, and the EL element of Comparative Example 1-1 was obtained.
[0061] 「従来技術による EL素子の作成」(比較例 1 2) 赤色顔料をシンロイヒ FA— 007に変えた以外は比較例 1と同様にして比較例 1—2 の EL素子を得た。 [0061] "Preparation of EL device by conventional technology" (Comparative Example 1 2) An EL device of Comparative Example 1-2 was obtained in the same manner as Comparative Example 1 except that the red pigment was changed to Sinloich FA-007.
[0062] 「従来技術による EL素子の作成」(比較例 1 3) [0062] "Preparation of EL device by conventional technology" (Comparative Example 1 3)
平均粒子サイズが 0. 2 μ mの BaTiOの微粒子を 30質量0 /0シァノエチルセルロー 30 mass BaTiO of fine particles having an average particle size of 0. 2 μ m 0/0 Xia Roh ethyl cell row
3  Three
ス溶液に分散した溶液を層厚みが 20 μ mになるように、厚み 75 μ mのアルミシート 上に塗布、 110°Cで 5時間乾燥し、誘電体層を形成したアルミシートを得た。続いて、 平均粒子サイズが 0. 2 μ mの BaTiOの微粒子を 30質量%シァノエチルセルロース  The solution dispersed in the glass solution was coated on a 75 μm thick aluminum sheet so that the layer thickness was 20 μm and dried at 110 ° C. for 5 hours to obtain an aluminum sheet on which a dielectric layer was formed. Subsequently, BaTiO fine particles having an average particle size of 0.2 μm were mixed with 30 mass% cyanoethyl cellulose.
3  Three
溶液に分散し、さらにこの分散液にシンロイヒ社製赤色顔料 (シンロイヒ FA— 007)を BaTiOの質量の 8%になる様に添加、分散し、出来上がりの層厚みが 10 /z mになる Disperse in the solution, and then add and disperse the red pigment (Sinloihi FA-007) made by Sinloi to 8% of the mass of BaTiO and disperse the resulting layer to a final layer thickness of 10 / zm.
3 Three
様に前述の誘電体層を形成したアルミシートに塗布、再び 110°Cで 5時間乾燥し、顔 料含有誘電体層を形成した。続いて、平均粒子サイズが 15 mの銅と塩素を付活し た硫ィ匕亜鉛粒子と 30質量%のシァノエチルセルロース溶液を 1. 2 : 1の比で混合' 分散し、さらに赤色顔料 (FA— 007)を硫ィ匕亜鉛粒子に対して 3質量%を添加、分散 し、出来上がりの層厚みが 45 mになる様に前述の顔料含有誘電体層を形成した アルミシート上に塗布し、温風乾燥機を用いて 110°Cで 5時間乾燥し、顔料含有蛍光 体層を形成した。  In the same manner, it was applied to the aluminum sheet on which the dielectric layer was formed, and dried again at 110 ° C. for 5 hours to form a pigment-containing dielectric layer. Subsequently, zinc sulfate particles activated with copper and chlorine having an average particle size of 15 m and 30 mass% cyanoethylcellulose solution were mixed and dispersed at a ratio of 1.2: 1, and further a red pigment ( FA-007) was added and dispersed in 3% by weight with respect to zinc oxide particles, and applied onto an aluminum sheet on which the above-mentioned pigment-containing dielectric layer was formed so that the final layer thickness was 45 m. The pigment-containing phosphor layer was formed by drying at 110 ° C. for 5 hours using a hot air dryer.
厚さ 100ミクロンのポリエチレンテレフタレート上に ITOをスパッターにより 40nmの 厚さに均一に付着したフィルムを作製し、この ITO面と、上記アルミシートの顔料含有 蛍光体層を形成した面とを熱圧着し、リード片を載設、防湿フィルムで挟み封止して 、比較例 1—3の EL素子とした。  A film in which ITO was uniformly deposited to a thickness of 40 nm on a 100 micron thick polyethylene terephthalate by sputtering was produced, and this ITO surface and the surface on which the pigment-containing phosphor layer of the aluminum sheet was formed were thermocompression bonded. Then, the lead piece was placed, sealed with a moisture-proof film, and the EL element of Comparative Example 1-3 was obtained.
[0063] 「本発明による EL素子の作成(1—1)」 [0063] "Creation of EL device according to the present invention (1-1)"
平均粒子サイズが 0. 2 μ mの BaTiOの微粒子を 30質量0 /0シァノエチルセルロー 30 mass BaTiO of fine particles having an average particle size of 0. 2 μ m 0/0 Xia Roh ethyl cell row
3  Three
ス溶液に分散した溶液を層厚みが 20 μ mになるように、厚み 75 μ mのアルミシート 上に塗布、 110°Cで 5時間乾燥し、誘電体層を形成したアルミシートを得た。続いて、 平均粒子サイズが 0. 2 μ mの BaTiOの微粒子を 30質量%シァノエチルセルロース  The solution dispersed in the glass solution was coated on a 75 μm thick aluminum sheet so that the layer thickness was 20 μm and dried at 110 ° C. for 5 hours to obtain an aluminum sheet on which a dielectric layer was formed. Subsequently, BaTiO fine particles having an average particle size of 0.2 μm were mixed with 30 mass% cyanoethyl cellulose.
3  Three
溶液に分散し、さらにこの分散液にシンロイヒ社製赤色顔料 (シンロイヒ FA— 007)を BaTiOの質量の 8%になる様に添加、分散し、出来上がりの層厚みが 10 /z mになる Disperse in the solution, and then add and disperse the red pigment (Sinloihi FA-007) made by Sinloi to 8% of the mass of BaTiO and disperse the resulting layer to a final layer thickness of 10 / zm.
3 Three
様に前述の誘電体層を形成したアルミシートに塗布、再び 110°Cで 5時間乾燥し、顔 料含有誘電体層を形成した。さらに、平均粒子サイズが 15 mの銅と塩素を付活し た硫ィ匕亜鉛粒子と 30質量%のシァノエチルセルロース溶液を 1. 2 : 1の比で混合' 分散した後、顔料含有誘電体層が形成してあるアルミシートに蛍光体層の層厚みが 45 mになる様に塗布し、温風乾燥機を用いて 110°Cで 5時間乾燥し、蛍光体層を 形成した。 In the same way, apply to the aluminum sheet on which the above dielectric layer is formed, and dry again at 110 ° C for 5 hours. A material-containing dielectric layer was formed. Further, after mixing and dispersing copper / chlorine-activated zinc particles having an average particle size of 15 m and a 30 mass% cyanoethylcellulose solution in a ratio of 1.2: 1, a pigment-containing dielectric The phosphor layer was applied to an aluminum sheet on which the layer had been formed so that the thickness of the phosphor layer was 45 m, and dried at 110 ° C. for 5 hours using a hot air dryer to form a phosphor layer.
厚さ 100ミクロンのポリエチレンテレフタレート上に ITOをスパッターにより 40nmの 厚さに均一に付着したフィルムを作製し、この ITO面と、上記アルミシートの蛍光体層 を形成した面とを熱圧着し、リード片を載設、防湿フィルムで挟み封止して、本発明に よる EL素子(1—1)とした。  A film in which ITO is uniformly deposited to a thickness of 40 nm on a 100-micron polyethylene terephthalate film by sputtering is produced, and the ITO surface and the surface on which the phosphor layer of the aluminum sheet is formed are thermocompression bonded. The EL element (1-1) according to the present invention was obtained by placing the piece and sealing it with a moisture-proof film.
[0064] 「本発明による EL素子の作成(1 Π)」 [0064] “Production of EL device according to the present invention (1)”
平均粒子サイズが 0. 2 μ mの BaTiOの微粒子を 30質量0 /0シァノエチルセルロー 30 mass BaTiO of fine particles having an average particle size of 0. 2 μ m 0/0 Xia Roh ethyl cell row
3  Three
ス溶液に分散した溶液を層厚みが 20 μ mになるように、厚み 75 μ mのアルミシート 上に塗布、 110°Cで 5時間乾燥し、誘電体層を形成したアルミシートを得た。続いて、 平均粒子サイズが 0. 2 μ mの BaTiOの微粒子を 30質量%シァノエチルセルロース  The solution dispersed in the glass solution was coated on a 75 μm thick aluminum sheet so that the layer thickness was 20 μm and dried at 110 ° C. for 5 hours to obtain an aluminum sheet on which a dielectric layer was formed. Subsequently, BaTiO fine particles having an average particle size of 0.2 μm were mixed with 30 mass% cyanoethyl cellulose.
3  Three
溶液に分散し、さらにこの分散液に 620nmに発光を持つ赤色顔料を BaTiOの質量  Disperse it in a solution, and then add a red pigment that emits light at 620 nm to this dispersion.
3 の 6%になる様に添加、分散し、出来上がりの層厚みが 10 mになる様に前述の誘 電体層を形成したアルミシートに塗布、再び 110°Cで 5時間乾燥し、顔料含有誘電 体層を形成した。さらに、平均粒子サイズが 15 mの銅と塩素を付活した硫ィ匕亜鉛 粒子と 30質量0 /0のシァノエチルセルロース溶液を 1. 2 : 1の比で混合'分散した後、 顔料含有誘電体層を形成したアルミシートに出来上がりの層厚みが 45 μ mになる様 に塗布し、温風乾燥機を用いて 110°Cで 5時間乾燥し、蛍光体層を形成した。 Add to and disperse to 6% of 3, and apply to the aluminum sheet on which the above-mentioned dielectric layer is formed so that the final layer thickness is 10 m, and dry again at 110 ° C for 5 hours to contain the pigment A dielectric layer was formed. Furthermore, the average硫I spoon zinc particles and 30 mass particles size was activated with copper and chlorine 15 m 0/0 of Xia Roh cellulose solution 1.2: 1 after mixing 'dispersed in a ratio, pigment-containing dielectric The phosphor layer was formed by coating the aluminum sheet with the body layer so that the final layer thickness was 45 μm and drying at 110 ° C. for 5 hours using a hot air dryer.
厚さ 100ミクロンのポリエチレンテレフタレート上に ITOをスパッターにより 40nmの 厚さに均一に付着したフィルムを作製し、この ITO面と、上記アルミシートの蛍光体層 を形成した面とを熱圧着し、リード片を載設、防湿フィルムで挟み封止して、本発明に よる EL素子(1— II)とした。  A film in which ITO is uniformly deposited to a thickness of 40 nm on a 100-micron polyethylene terephthalate film by sputtering is produced, and the ITO surface and the surface on which the phosphor layer of the aluminum sheet is formed are thermocompression bonded. The EL element (1-II) according to the present invention was obtained by placing a piece and sealing it with a moisture-proof film.
[0065] 「本発明による EL素子の作成(1 111)」 [0065] "Production of EL device according to the present invention (1 111)"
赤色顔料の代わりに赤色発光材料として Lumogen F Red 200 (BASF社製) を BaTiOの質量の 5%になる様に使用したこと以外は本発明の EL素子の作成(1 II)と同様にして本発明による EL素子 ( 1 - III)を得た。 The EL device of the present invention was produced except that Lumogen F Red 200 (BASF) was used as the red light emitting material instead of the red pigment so as to be 5% of the mass of BaTiO (1 An EL device (1-III) according to the present invention was obtained in the same manner as II).
[0066] 「本発明による EL素子の作成(1 IV)」 [0066] "Production of EL device according to the present invention (1 IV)"
平均粒子サイズが 0. 2 μ mの BaTiOの微粒子を 30質量0 /0シァノエチルセルロー 30 mass BaTiO of fine particles having an average particle size of 0. 2 μ m 0/0 Xia Roh ethyl cell row
3  Three
ス溶液に分散し、さらにこの分散液に 620nmに発光を持つ赤色顔料を BaTiOの質  A red pigment that emits light at 620 nm.
3 量の 6%になる様に添加、分散した溶液を層厚みが 15 mになるように、厚み 75 mのアルミシート上に塗布、 110°Cで 5時間乾燥し、顔料含有誘電体層を形成したァ ルミシートを得た。さらに、平均粒子サイズが 15 /z mの銅と塩素を付活した硫ィ匕亜鉛 粒子と 30質量0 /0のシァノエチルセルロース溶液を 1. 2 : 1の比で混合'分散した後、 顔料含有誘電体層を形成したアルミシートに出来上がりの層厚みが 45 μ mになる様 に塗布し、温風乾燥機を用いて 110°Cで 5時間乾燥し、蛍光体層を形成した。 3) Add and disperse the solution to 6% of the amount so that the layer thickness is 15 m.Apply it on a 75 m thick aluminum sheet and dry it at 110 ° C for 5 hours to form the pigment-containing dielectric layer. A formed aluminum sheet was obtained. Further, the average particle size of 15 / zm copper and硫I chlorine was activated spoon zinc particles and 30 mass 0/0 of Xia Roh cellulose solution 1.2: After mixing 'was dispersed in 1 ratio, pigment-containing It was applied to an aluminum sheet with a dielectric layer so that the final layer thickness was 45 μm, and dried at 110 ° C for 5 hours using a hot air dryer to form a phosphor layer.
厚さ 100ミクロンのポリエチレンテレフタレート上に ITOをスパッターにより 40nmの 厚さに均一に付着したフィルムを作製し、この ITO面と、上記アルミシートの蛍光体層 を形成した面とを熱圧着し、リード片を載設、防湿フィルムで挟み封止して、本発明に よる EL素子(1 IV)とした。  A film in which ITO is uniformly deposited to a thickness of 40 nm on a 100-micron polyethylene terephthalate film by sputtering is produced, and the ITO surface and the surface on which the phosphor layer of the aluminum sheet is formed are thermocompression bonded. A piece was placed and sealed with a moisture-proof film to obtain an EL device (1 IV) according to the present invention.
[0067] 「本発明による EL素子の作成(1—V)」 [0067] “Production of EL device according to the present invention (1—V)”
平均粒子サイズが 0. 5 μ mの BaTiOの微粒子を 30質量0 /0シァノエチルセルロー 30 mass BaTiO of fine particles having an average particle size of 0. 5 μ m 0/0 Xia Roh ethyl cell row
3  Three
ス溶液に分散した溶液を層厚みが 15 mになるように、厚み 75 μ mのアルミシート 上に塗布、 110°Cで 5時間乾燥し、誘電体層を形成したアルミシートを得た。続いて、 平均粒子サイズが 0. 5 μ mの BaTiOの微粒子を 30質量%シァノエチルセルロース  The solution dispersed in the glass solution was applied onto a 75 μm thick aluminum sheet so that the layer thickness was 15 m, and dried at 110 ° C. for 5 hours to obtain an aluminum sheet on which a dielectric layer was formed. Subsequently, BaTiO fine particles having an average particle size of 0.5 μm were mixed with 30 mass% cyanoethyl cellulose.
3  Three
溶液に分散し、さらにこの分散液に 610nmに発光を持つ赤色顔料を BaTiOの質量  Disperse it in a solution, and then add a red pigment that emits light at 610 nm to this dispersion.
3 の 2. 8%になる様に添加、分散し、出来上がりの層厚みが 15 mになる様に前述の 誘電体層を形成したアルミシートに塗布、再び 110°Cで 5時間乾燥し、顔料含有誘 電体層を形成した。さらに、平均粒子サイズが 15 mの銅と塩素を付活した硫ィ匕亜 鉛粒子と 30質量0 /0のシァノエチルセルロース溶液を 1. 2 : 1の比で混合'分散した後 、顔料含有誘電体層を形成したアルミシートに出来上がりの層厚みが 45 mになる 様に塗布し、温風乾燥機を用いて 110°Cで 5時間乾燥し、蛍光体層を形成した。 厚さ 100ミクロンのポリエチレンテレフタレート上に ITOをスパッターにより 40nmの 厚さに均一に付着したフィルムを作製し、この ITO面と、上記アルミシートの蛍光体層 を形成した面とを熱圧着し、リード片を載設、防湿フィルムで挟み封止して、本発明に よる EL素子(1—V)とした。 Add to and disperse to 2.8% of 3, and apply to the aluminum sheet on which the above dielectric layer is formed so that the final layer thickness is 15 m, then dry again at 110 ° C for 5 hours, and pigment A containing dielectric layer was formed. Furthermore, the average硫I匕亜lead particles and 30 mass particles size was activated with copper and chlorine 15 m 0/0 of Xia Roh cellulose solution 1.2: After mixing 'was dispersed in 1 ratio, pigment-containing It was applied to an aluminum sheet with a dielectric layer so that the final layer thickness was 45 m and dried at 110 ° C for 5 hours using a hot air dryer to form a phosphor layer. A film in which ITO was uniformly deposited to a thickness of 40 nm by sputtering on polyethylene terephthalate having a thickness of 100 microns was fabricated. The ITO surface and the phosphor layer of the aluminum sheet were formed. The EL element (1-V) according to the present invention was obtained by thermocompression bonding with the surface on which the lead was formed, placing a lead piece and sandwiching and sealing with a moisture-proof film.
[0068] 「本発明による EL素子の作成(1 VI)」 [0068] "Production of EL device according to the present invention (1 VI)"
平均粒子サイズが 0. 5 μ mの BaTiOの微粒子を 30質量0 /0シァノエチルセルロー 30 mass BaTiO of fine particles having an average particle size of 0. 5 μ m 0/0 Xia Roh ethyl cell row
3  Three
ス溶液に分散した溶液を層厚みが 10 mになるように、厚み 75 mのアルミシート 上に塗布、 110°Cで 5時間乾燥し、誘電体層を形成したアルミシートを得た。続いて、 平均粒子サイズが 0. 5 μ mの BaTiOの微粒子を 30質量%シァノエチルセルロース  The solution dispersed in the glass solution was coated on a 75 m thick aluminum sheet so that the layer thickness was 10 m and dried at 110 ° C. for 5 hours to obtain an aluminum sheet on which a dielectric layer was formed. Subsequently, BaTiO fine particles having an average particle size of 0.5 μm were mixed with 30 mass% cyanoethyl cellulose.
3  Three
溶液に分散し、さらにこの分散液に 610nmに発光を持つ赤色顔料を BaTiOの質量  Disperse it in a solution, and then add a red pigment that emits light at 610 nm to this dispersion.
3 の 0. 8%になる様に添加、分散し、出来上がりの層厚みが 20 mになる様に前述の 誘電体層を形成したアルミシートに塗布、再び 110°Cで 5時間乾燥し、顔料含有誘 電体層を形成した。さらに、平均粒子サイズが 15 mの銅と塩素を付活した硫ィ匕亜 鉛粒子と 30質量0 /0のシァノエチルセルロース溶液を 1. 2 : 1の比で混合'分散した後 、顔料含有誘電体層を形成したアルミシートに出来上がりの層厚みが 45 mになる 様に塗布し、温風乾燥機を用いて 110°Cで 5時間乾燥し、蛍光体層を形成した。 厚さ 100ミクロンのポリエチレンテレフタレート上に ITOをスパッターにより 40nmの 厚さに均一に付着したフィルムを作製し、この ITO面と、上記アルミシートの蛍光体層 を形成した面とを熱圧着し、リード片を載設、防湿フィルムで挟み封止して、本発明に よる EL素子(1— VI)とした。 Add to and disperse to 0.8% of 3, and apply to the aluminum sheet on which the above-mentioned dielectric layer is formed so that the final layer thickness is 20 m, and then dry again at 110 ° C for 5 hours. A containing dielectric layer was formed. Furthermore, the average硫I匕亜lead particles and 30 mass particles size was activated with copper and chlorine 15 m 0/0 of Xia Roh cellulose solution 1.2: After mixing 'was dispersed in 1 ratio, pigment-containing It was applied to an aluminum sheet with a dielectric layer so that the final layer thickness was 45 m and dried at 110 ° C for 5 hours using a hot air dryer to form a phosphor layer. A film in which ITO is uniformly deposited to a thickness of 40 nm on a 100-micron polyethylene terephthalate film by sputtering is produced, and the ITO surface and the surface on which the phosphor layer of the aluminum sheet is formed are thermocompression bonded. The EL element (1-VI) according to the present invention was obtained by placing the piece and sealing it with a moisture-proof film.
[0069] 「本発明による EL素子の作成(1 VII)」 [0069] "Production of EL device according to the present invention (1 VII)"
平均粒子サイズが 0. 5 μ mの BaTiOの微粒子を 30質量0 /0シァノエチルセルロー 30 mass BaTiO of fine particles having an average particle size of 0. 5 μ m 0/0 Xia Roh ethyl cell row
3  Three
ス溶液に分散した溶液を層厚みが 15 mになるように、厚み 75 μ mのアルミシート 上に塗布、 110°Cで 5時間乾燥し、誘電体層を形成したアルミシートを得た。続いて、 平均粒子サイズが 0. 5 μ mの BaTiOの微粒子を 30質量%シァノエチルセルロース  The solution dispersed in the glass solution was applied onto a 75 μm thick aluminum sheet so that the layer thickness was 15 m, and dried at 110 ° C. for 5 hours to obtain an aluminum sheet on which a dielectric layer was formed. Subsequently, BaTiO fine particles having an average particle size of 0.5 μm were mixed with 30 mass% cyanoethyl cellulose.
3  Three
溶液に分散し、さらにこの分散液に 630nmに発光を持つ赤色顔料を BaTiOの質量  Disperse in the solution, and then add a red pigment that emits light at 630 nm to this dispersion.
3 の 6%になる様に添加、分散し、出来上がりの層厚みが 15 mになる様に前述の誘 電体層を形成したアルミシートに塗布、再び 110°Cで 5時間乾燥し、顔料含有誘電 体層を形成した。さらに、平均粒子サイズが 15 mの銅と塩素を付活した硫ィ匕亜鉛 粒子と 30質量0 /0のシァノエチルセルロース溶液を 1. 2 : 1の比で混合'分散した後、 顔料含有誘電体層を形成したアルミシートに出来上がりの層厚みが 45 μ mになる様 に塗布し、温風乾燥機を用いて 110°Cで 5時間乾燥し、蛍光体層を形成した。 Add to and disperse to 6% of 3, and apply to the aluminum sheet on which the above-mentioned dielectric layer is formed so that the final layer thickness is 15 m, and dry again at 110 ° C for 5 hours to contain the pigment A dielectric layer was formed. Further, the average particle size of 15硫I spoon zinc particles and 30 mass 0/0 copper and chlorine were activated in m Xia Roh cellulose solution 1.2: 1 ratio 'after dispersing, It was applied to an aluminum sheet with a pigment-containing dielectric layer so that the final layer thickness would be 45 μm, and dried at 110 ° C for 5 hours using a hot air dryer to form a phosphor layer.
厚さ 100ミクロンのポリエチレンテレフタレート上に ITOをスパッターにより 40nmの 厚さに均一に付着したフィルムを作製し、この ITO面と、上記アルミシートの蛍光体層 を形成した面とを熱圧着し、リード片を載設、防湿フィルムで挟み封止して、本発明に よる EL素子(1 VII)とした。  A film in which ITO is uniformly deposited to a thickness of 40 nm on a 100-micron polyethylene terephthalate film by sputtering is produced, and the ITO surface and the surface on which the phosphor layer of the aluminum sheet is formed are thermocompression bonded. The EL element (1 VII) according to the present invention was formed by placing the piece and sealing it with a moisture-proof film.
[0070] 以上により作成した本発明の EL素子および比較例の EL素子を 100V、 1kHzで発 光させた時の演色性を比較し、表 1に示す。  Table 1 shows the color rendering properties of the EL element of the present invention prepared as described above and the EL element of the comparative example when emitted at 100 V and 1 kHz.
[0071] [表 1] 試料 平均演色評価数(Ra) R9(赤の演色性) R15(日本人女性の肌色) 比較例 1一 1 64 -102 45 比較例 1 2 69 4 74 比較例 1― 3 65 9 63 本発明の EL素子(1-1) 76 38 87 本発明の EL素子(1-11) 76 89 85 本発明の EL素子(1-1 II) 74 72 84 本発明の EL素子(1-IV) 81 60 83 本発明の EL素子(1-V) 78 58 80 本発明の EL素子(1- VI) 72 46 79 本発明の EL素子(1-VI 1) 83 90 88  [0071] [Table 1] Sample Average color rendering index (Ra) R9 (color rendering properties of red) R15 (skin color of Japanese women) Comparative Example 1 1 1 64 -102 45 Comparative Example 1 2 69 4 74 Comparative Example 1 3 65 9 63 EL element of the present invention (1-1) 76 38 87 EL element of the present invention (1-11) 76 89 85 EL element of the present invention (1-1 II) 74 72 84 EL element of the present invention ( 1-IV) 81 60 83 EL element of the present invention (1-V) 78 58 80 EL element of the present invention (1-VI) 72 46 79 EL element of the present invention (1-VI 1) 83 90 88
[0072] 比較例 1 1〜1 3、本発明の EL素子( 1 I)〜( 1 VII)とも発光色は白色であ つた。本発明の EL素子の平均演色評価数 Raは従来型である比較例の EL素子より 優れており、特に赤色の演色性 R9に優れていることがわかる。肌色の演色性 R15に ついても本発明の EL素子では大きく改善されていることが分かる。 R15は、赤色の 演色性 R9が悪いものでは良好に表現できず、透明陽画等の透過媒体を EL素子に 載せて観察する時に重要な要素である。 Comparative Examples 1 1 to 1 3 and EL elements (1 I) to (1 VII) of the present invention had a white emission color. It can be seen that the average color rendering index Ra of the EL element of the present invention is superior to the conventional EL element of the comparative example, and particularly excellent in the color rendering property R9 of red. It can be seen that the skin color rendering R15 is greatly improved in the EL device of the present invention. R15 cannot be expressed well when the color rendering property R9 of red is poor, and is an important factor when observing a transmission medium such as a transparent positive image on an EL element.
実施例 2  Example 2
[0073] 実施例 1の各蛍光体粒子に対して、それぞれトリメチルアルミニウムを原料とし、反 応ガスを Oとした流動床反応装置を用いて Al Oの被覆層を設けた。被覆層の層厚  [0073] Each phosphor particle of Example 1 was provided with an Al 2 O coating layer using a fluidized bed reactor using trimethyl aluminum as a raw material and O as a reaction gas. Layer thickness of coating layer
2 2 3  2 2 3
は 170nmであった。蛍光体層の粒子として、この粒子を用いたことを除いて、全て実 施例 1と同様にして実施例 2の各素子を作成し、それぞれ比較例および本発明の EL 素子とした。 Was 170 nm. Except for using this particle as the phosphor layer particle, all Each element of Example 2 was prepared in the same manner as Example 1, and used as a comparative example and an EL element of the present invention, respectively.
これらの EL素子について、 1kHzの交流電場を印加し、 25°C、相対湿度 60%の下 、初期輝度が 300cd/m2となる様に電圧を調整し、点灯したところ、どの素子におい ても輝度半減時間は 15〜20%長くなつた。演色性の変化は、平均演色評価数の変 化について、比較例で約 10低下するものが約 5になり、本発明では約 6低下するもの 力^〜 3に良化した。 For these EL devices, a 1 kHz AC electric field was applied, the voltage was adjusted so that the initial luminance was 300 cd / m 2 at 25 ° C and a relative humidity of 60%. The luminance half-life is 15-20% longer. Regarding the change in the color rendering index, the change of the average color rendering index was about 5 in the comparative example, which was reduced by about 10, and improved by about 6 in the present invention.
産業上の利用可能性  Industrial applicability
[0074] 以上のように、本発明に力かるエレクト口ルミネッセンス素子は、白色に発光し、且 っ演色性、特に赤色の演色性に優れ、バックライトや表示素子として用いるのに適し ている。 [0074] As described above, the electoluminescence device that is effective in the present invention emits white light and has excellent color rendering properties, particularly red color rendering properties, and is suitable for use as a backlight or a display device.
図面の簡単な説明  Brief Description of Drawings
[0075] [図 1]図 1は、蛍光体粒子に被覆層を形成するための流動床反応装置の概略説明図 である。  [0075] FIG. 1 is a schematic explanatory diagram of a fluidized bed reactor for forming a coating layer on phosphor particles.
[図 2]図 2は、蛍光体粒子に被覆層を形成するための撹拌床反応装置の概略説明図 である。  FIG. 2 is a schematic explanatory diagram of a stirred bed reaction apparatus for forming a coating layer on phosphor particles.
[図 3]図 3は、蛍光体粒子に被覆層を形成するための振動床反応装置の概略説明図 である。  FIG. 3 is a schematic explanatory diagram of a vibrating bed reactor for forming a coating layer on phosphor particles.
[図 4]図 4は、蛍光体粒子に被覆層を形成するための転動床反応装置の概略説明図 である。  FIG. 4 is a schematic explanatory diagram of a rolling bed reactor for forming a coating layer on phosphor particles.
[図 5]図 5は、蛍光体粒子に被覆層を形成するための液相反応装置の概略説明図で ある。  FIG. 5 is a schematic explanatory diagram of a liquid phase reaction apparatus for forming a coating layer on phosphor particles.

Claims

請求の範囲 The scope of the claims
[1] 透明電極、蛍光体層、誘電体層および背面電極をこの順序で含有するエレクトロル ミネッセンス素子にぉ 、て、  [1] An electroluminescent element containing a transparent electrode, a phosphor layer, a dielectric layer, and a back electrode in this order, and
該誘電体層が、誘電体粒子および色変換材料を含み、該色変換材料の含有割合 が誘電体粒子に対して 0. 1質量%以上 20質量%以下であり、該誘電体層の厚みが 1 μ m以上 20 μ m以下であることを特徴とするエレクト口ルミネッセンス素子。  The dielectric layer includes dielectric particles and a color conversion material, the content ratio of the color conversion material is 0.1% by mass or more and 20% by mass or less with respect to the dielectric particles, and the thickness of the dielectric layer is An electroluminescent device having an aperture of 1 μm to 20 μm.
[2] 透明電極、蛍光体層、誘電体層および背面電極をこの順序で含有するエレクトロル ミネッセンス素子にぉ 、て、 [2] An electroluminescent element containing a transparent electrode, a phosphor layer, a dielectric layer, and a back electrode in this order, and
該誘電体層が、誘電体粒子および色変換材料を含み、該色変換材料の発光極大 波長が 600nm以上 750nm以下であることを特徴とするエレクト口ルミネッセンス素子  The electroluminescent device, wherein the dielectric layer includes dielectric particles and a color conversion material, and the emission maximum wavelength of the color conversion material is not less than 600 nm and not more than 750 nm
[3] 透明電極、蛍光体層、誘電体層および背面電極をこの順序で含有するエレクトロル ミネッセンス素子において、該蛍光体層が、被覆層を有する蛍光体粒子を含むことを 特徴とする請求項 1または 2に記載のエレクト口ルミネッセンス素子。 [3] In an electroluminescent element containing a transparent electrode, a phosphor layer, a dielectric layer, and a back electrode in this order, the phosphor layer includes phosphor particles having a coating layer. The electoluminescence device according to 1 or 2.
[4] 上記被覆層が波長 280ηπ!〜 420nmに吸収端を有する材料を含むことを特徴とす る請求項 3に記載のエレクト口ルミネッセンス素子。  [4] The coating layer has a wavelength of 280ηπ! The electoluminescence device according to claim 3, comprising a material having an absorption edge at ˜420 nm.
[5] 可視域に 2つの発光極大を有し、該 2つの発光極大のうち、短波側発光極大を 480 nm〜510nmの範囲に有し、長波側発光極大を 590nm〜625nmの範囲に有し、 発光極小を 571nm〜583nmの範囲に有することを特徴とする請求項 1〜4のいず れかに記載のエレクト口ルミネッセンス素子。  [5] It has two emission maxima in the visible range, of which the short wave side emission maxima is in the range of 480 nm to 510 nm, and the long wave side emission maxima is in the range of 590 nm to 625 nm. The electoric luminescence device according to any one of claims 1 to 4, wherein the emission minimum is in the range of 571 nm to 583 nm.
[6] 上記蛍光体粒子が、平均粒子サイズが 0. 1〜20 μ mで、粒子サイズ分布の変動 係数が 35%未満であり、 5nm以下の面間隔の積層欠陥を 10層以上含有する粒子 を蛍光体粒子全体の 30体積%以上有する ZnS系エレクト口ルミネッセンス蛍光体で あることを特徴とする請求項 3〜5のいずれかに記載のエレクト口ルミネッセンス素子。  [6] The above phosphor particles have an average particle size of 0.1 to 20 μm, a variation coefficient of the particle size distribution of less than 35%, and particles containing 10 or more layers of stacking faults with a spacing of 5 nm or less 6. The electroluminescent device according to claim 3, wherein the electroluminescent device is a ZnS-based electroluminescent phosphor having 30% by volume or more of the entire phosphor particles.
PCT/JP2005/019702 2004-10-29 2005-10-26 Dispersion type electroluminescence element WO2006046607A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-316405 2004-10-29
JP2004316405 2004-10-29

Publications (1)

Publication Number Publication Date
WO2006046607A1 true WO2006046607A1 (en) 2006-05-04

Family

ID=36227849

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/019702 WO2006046607A1 (en) 2004-10-29 2005-10-26 Dispersion type electroluminescence element

Country Status (1)

Country Link
WO (1) WO2006046607A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2798016A4 (en) * 2011-12-27 2016-10-19 Shenzhen Byd Auto R&D Co Ltd Ink composition, method of metalizing surface and article obtainable

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60220597A (en) * 1984-04-17 1985-11-05 株式会社東芝 Electric field light emitting element
JPS61158692A (en) * 1984-12-19 1986-07-18 スタンレー電気株式会社 El element
JPH03138890A (en) * 1989-10-23 1991-06-13 Nichia Chem Ind Ltd El lamp
JPH1167458A (en) * 1997-08-27 1999-03-09 Midori Mark:Kk Electroluminescent element
JP2000277259A (en) * 1999-03-23 2000-10-06 Matsushita Electric Ind Co Ltd El lamp and el lamp unit using the same
JP2001223078A (en) * 2000-01-27 2001-08-17 General Electric Co <Ge> Light source provided with organic layer and photo- luminescence layer
JP2003081986A (en) * 2001-09-07 2003-03-19 Kansai Tlo Kk Rare earth complex, optically functional material using the same and emission device
JP2004111344A (en) * 2002-09-19 2004-04-08 Kasei Optonix Co Ltd Light emitting element
JP2004127563A (en) * 2002-09-30 2004-04-22 Fuji Photo Film Co Ltd Organic electroluminescence element and liquid crystal display monitor using the sane
JP2004168996A (en) * 2002-09-24 2004-06-17 General Electric Co <Ge> Phosphor blend and backlight source for liquid crystal display
JP2004265866A (en) * 2003-02-14 2004-09-24 Fuji Photo Film Co Ltd Electroluminescent element

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60220597A (en) * 1984-04-17 1985-11-05 株式会社東芝 Electric field light emitting element
JPS61158692A (en) * 1984-12-19 1986-07-18 スタンレー電気株式会社 El element
JPH03138890A (en) * 1989-10-23 1991-06-13 Nichia Chem Ind Ltd El lamp
JPH1167458A (en) * 1997-08-27 1999-03-09 Midori Mark:Kk Electroluminescent element
JP2000277259A (en) * 1999-03-23 2000-10-06 Matsushita Electric Ind Co Ltd El lamp and el lamp unit using the same
JP2001223078A (en) * 2000-01-27 2001-08-17 General Electric Co <Ge> Light source provided with organic layer and photo- luminescence layer
JP2003081986A (en) * 2001-09-07 2003-03-19 Kansai Tlo Kk Rare earth complex, optically functional material using the same and emission device
JP2004111344A (en) * 2002-09-19 2004-04-08 Kasei Optonix Co Ltd Light emitting element
JP2004168996A (en) * 2002-09-24 2004-06-17 General Electric Co <Ge> Phosphor blend and backlight source for liquid crystal display
JP2004127563A (en) * 2002-09-30 2004-04-22 Fuji Photo Film Co Ltd Organic electroluminescence element and liquid crystal display monitor using the sane
JP2004265866A (en) * 2003-02-14 2004-09-24 Fuji Photo Film Co Ltd Electroluminescent element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2798016A4 (en) * 2011-12-27 2016-10-19 Shenzhen Byd Auto R&D Co Ltd Ink composition, method of metalizing surface and article obtainable
US9758682B2 (en) 2011-12-27 2017-09-12 Shenzhen Byd Auto R&D Company Limited Ink composition, method of metalizing surface and article obtainable

Similar Documents

Publication Publication Date Title
JP4234998B2 (en) Electroluminescence element
JP2005302508A (en) Transparent conductive sheet and electroluminescent element using it
US20060192486A1 (en) Electroluminescent phosphor, method for producing the same and device containing the same
WO2007004577A1 (en) Transparent conductive film and dispersion-type electroluminescent device using such film
JP2006156358A (en) Distributed electroluminescent element
WO2006008863A1 (en) Inorganic dispersion electroluminescence element
WO2006093095A1 (en) Dispersion-type electroluminescent element
JP4740582B2 (en) Electroluminescent device
US20060255718A1 (en) Dispersion type electroluminescent element
US20040262577A1 (en) Phosphor, producing method thereof, and electroluminescence device containing the same
JP2005197234A (en) Electroluminescent element
WO2006046607A1 (en) Dispersion type electroluminescence element
JP2005306713A (en) Method of producing inorganic semiconductor- or phosphor-primary particle and inorganic semiconductor- or phosphor-primary particle
US7326366B2 (en) Method of producing inorganic semiconductor-or phosphor-primary particle and inorganic semiconductor-or phosphor-primary particle
WO2006025403A1 (en) Dispersion type electroluminescence element
US20050052129A1 (en) Electroluminescent material
JP2003249373A (en) Electroluminescence element and its manufacturing method
JP2005322567A (en) Distributed electroluminescent element
JP2004139979A (en) Electroluminescent element
JP2005228693A (en) Distributed electroluminescent device and its manufacturing method
JP2006156339A (en) Distributed electroluminescent element
JP2005281451A (en) Electroluminescent element and production method of phosphor particulate
JP2006008451A (en) Method for producing inorganic semiconductor primary particle
WO2006046564A1 (en) Electroluminescence phosphor and el element using the same
JP2005325217A (en) Distributed electroluminescence element and method for producing the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GM HR HU ID IL IN IS KE KG KM KP KZ LC LK LR LS LT LU LV LY MA MG MK MN MW MX MZ NA NG NI NZ OM PG PH PL PT RO RU SC SD SE SK SL SM SY TJ TM TN TR TT TZ UA US UZ VC VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SZ TZ UG ZM ZW AM AZ BY KG MD RU TJ TM AT BE BG CH CY DE DK EE ES FI FR GB GR HU IE IS IT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05805303

Country of ref document: EP

Kind code of ref document: A1