WO2006025403A1 - Dispersion type electroluminescence element - Google Patents

Dispersion type electroluminescence element Download PDF

Info

Publication number
WO2006025403A1
WO2006025403A1 PCT/JP2005/015790 JP2005015790W WO2006025403A1 WO 2006025403 A1 WO2006025403 A1 WO 2006025403A1 JP 2005015790 W JP2005015790 W JP 2005015790W WO 2006025403 A1 WO2006025403 A1 WO 2006025403A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light
dielectric
particles
wavelength conversion
Prior art date
Application number
PCT/JP2005/015790
Other languages
French (fr)
Japanese (ja)
Inventor
Tadanobu Sato
Takafumi Noguchi
Koji Kawato
Original Assignee
Fujifilm Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corporation filed Critical Fujifilm Corporation
Publication of WO2006025403A1 publication Critical patent/WO2006025403A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • H05B33/145Arrangements of the electroluminescent material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers

Definitions

  • the present invention relates to a dispersive electoluminescent device having a light emitting particle layer in which an electroluminescent phosphor powder is dispersedly applied.
  • Electric mouth luminescence (hereinafter also referred to as "EL") phosphors are voltage-excited phosphors, and are used as distributed EL devices in which phosphor powder is sandwiched between electrodes to form a light-emitting device. It is known.
  • the general shape of a dispersion-type EL device is a structure in which phosphor powder is dispersed in a high-dielectric-constant inductor and is sandwiched between two electrodes, at least one of which is transparent. Light is emitted by applying an alternating electric field between the electrodes.
  • An EL device which is a light emitting device made using phosphor powder, can be made to a thickness of 1 mm or less, and since it does not use a high-temperature process in the manufacturing process, it is a flexible and lightweight device using a plastic substrate. Since it has many advantages such as being capable of being formed, being able to be manufactured at a low cost with a relatively simple process without using a vacuum device, and being a surface light emitter, a backlight such as an LCD, It can be applied to display elements, and can be used as road signs, lighting for various interiors and exteriors, light sources for flat panel displays such as liquid crystal displays, and illumination light sources for large areas.
  • Dispersion type EL elements that have been proposed to emit white light have a light emission waveform in which light emission intensity is concentrated mainly in two wavelength regions of blue-green and orange to red.
  • a rhodamine-based compound was placed in a light emitting particle layer to form a white light emitting EL.
  • Patent Document 1 Japanese Patent Laid-Open No. 60-25195
  • Patent Document 2 JP-A-60-170194
  • Patent Document 3 Japanese Patent Laid-Open No. 2-78188
  • an object of the present invention is to obtain a dispersive EL element that emits white light and has excellent color rendering (particularly red).
  • the present invention can be realized by the following means.
  • a luminescent particle layer and a dielectric layer are provided between the two electrodes.
  • the content ratio of the wavelength conversion material is 1% by mass or more and 20% by mass or less with respect to the dielectric particles, and the thickness of the dielectric layer is 1 m or more and 25 ⁇ m or less.
  • Toss The electroluminescent device according to (10) above.
  • the maximum wavelength of light emission of the wavelength conversion material is 550 nm or more and 650 nm or less, and the content ratio of the wavelength conversion material is 1% by mass or more and 20% by mass or less with respect to the dielectric particles,
  • the electret luminescence device according to any one of (10) to (13), wherein the dielectric layer has a thickness of 1 ⁇ m to 25 m.
  • the EL element of the present invention is particularly excellent in red color rendering than the conventional EL element.
  • the color rendering property of skin color is greatly improved in the EL device of the present invention.
  • the ideal white light-emitting light source emits uniform light intensity at any wavelength in the visible range. In this case, the color rendering properties are the best.
  • dispersive inorganic EL for example, two large emission bands, namely, electroluminescence (blue-green) of phosphor particles and long-wave emission (orange to red) by a wavelength conversion material that absorbs the light emitted from the phosphor particles. Therefore, how much light is emitted in the vicinity of the wavelength that can best recognize blue, green, and red colors for human vision is a problem.
  • the shape is a shape included in a certain range.
  • the emission spectrum can generally be approximated by a Lorentz type, Gaussian type, or a linear combination type or a point type distribution function thereof.
  • Gaussian distribution function S ( ⁇ ) is expressed by the following equation.
  • represents a measurement wavelength
  • represents a peak height (intensity)
  • u represents a peak wavelength
  • w represents a value of 1Z 2 having a half width.
  • the EL emission spectrum ⁇ ( ⁇ ) of the dispersive EL element is S (
  • ⁇ ) can be expressed as a sum of S ( ⁇ ), and I ( ⁇ ) is a linear combination of S ( ⁇ ).
  • the dispersive EL has two types of luminous power, ie, electroluminescence of phosphor particles and long-wave emission by a wavelength conversion material that absorbs light emitted from the phosphor particles. These emissions give blue-green light and red light.
  • blue-green light emission it is ideal to have a light emission band that stimulates human blue and green sights evenly, with a peak at 490 nm and a single Gaussian distribution. It is ideal that the light emission band be expressed by (having an equal energy distribution centered on 490 nm). Even if it emits red light,
  • the red light emission is preferably expressed as a function of the sum of a Gaussian distribution having a peak at a short wave slightly shorter than 6 lOnm and a Gaussian distribution having a peak at a longer wave and a large half-value width.
  • the intensity ratio of the blue-green and red light-emitting bands or the blue-green, green and red light-emitting bands can be determined within a certain range.
  • the upper limit function f ( ⁇ ) of the spectrum is
  • I ( ⁇ ) obtained by normalizing the spectrum actually measured is in the range of 400 nm to 700 nm which is effective as a spectrum.
  • This invention is referred to as the first invention in this specification.
  • ⁇ ( ⁇ ) is always 1 (e) or more and g () or more and ⁇ ( ⁇ ) or less in a section of 400 nm or more and 700 nm or less.
  • g ( ⁇ ) ⁇ ( ⁇ ) ⁇ ( ⁇ ) may not be satisfied in the wavelength range where the color rendering properties and whiteness are hardly affected, such as the end of the spectrum. For example, even if the shape is cut by absorption of the sealing film covering the outside of the L element, the color rendering property may not be greatly affected.
  • g ( ⁇ ) ⁇ ⁇ ( ⁇ ) ⁇ ⁇ ( ⁇ ) is preferably in the range of 400 nm to 700 nm, but it should be at least 410 nm to 650 nm. This latter invention is referred to as the second invention in this specification.
  • the maximum value on the long wave side from the minimum value is 600 nm or more, which is derived from the fact that the red emission wavelength of the EL element approaches the human red visibility.
  • ⁇ ( ⁇ ) the maximum value on the longer wave side than the minimum value is It is preferable that ⁇ ( ⁇ ) ⁇ 0.95.
  • the color temperature at the time of light emission of the EL element obtained by the spectrum represented by ⁇ ( ⁇ ) is preferably 3500 ° C or more and 85OOK or less, more preferably 5000K or more and 8000K or less.
  • the preferable values of X and y on the chromaticity coordinates are forces that are each in the range of 0.25 force to 0.45, more preferably both are included in the range of 0.28 to 0.40. It is to be.
  • Dispersion EL has the advantage that the spectrum shape can be easily adjusted by mixing a plurality of phosphor particles having different emission colors or using a plurality of wavelength conversion materials.
  • Phosphor particles preferably used in the present invention are particles prepared by various preparation methods such as firing by mixing a base material, an activator, and, if necessary, a coactivator.
  • the matrix material used in this case is specifically composed of one or more elements selected from group II elements and group VI elements, and group III elements and group V elements. It is a semiconductor fine particle composed of one or more elements selected from the group consisting of, and is arbitrarily selected according to a necessary emission wavelength region. Examples thereof include CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, CaS, MgS, SrS, GaP, GaAs, and mixed crystals thereof. ZnS, CdS, CaS, and the like can be preferably used. Furthermore, the base material of the particles includes BaAlS, CaGaS, GaO, ZnSiO, ZnGaO, ZnGaO, ZnGeO, ZnGeO, ZnGeO, ZnGeO, Zn
  • metal ions such as Mn and Cu and rare earth elements can be preferably used.
  • halogen elements such as CI, Br, and I, A1 and the like can be preferably used. Furthermore, in the present invention, it is more preferable to use the following phosphor particles.
  • Phosphor particles having an average particle size of 0.1 ⁇ m or more and 20 m or less and having multiple twin structures inside the particles and having 10 or more layers at intervals of 5 nm or less in one particle .
  • the phosphor particles usable in the present invention can be formed by a firing method (solid phase method) widely used in the industry.
  • a firing method solid phase method
  • a fine particle powder usually called raw powder
  • a crystallite size in the range of 10 nm to 50 nm
  • an activator in the case of zinc sulfate, a fine particle powder (usually called raw powder) with a crystallite size in the range of 10 nm to 50 nm is prepared by the liquid phase method, and this is used as a primary particle, which is called an activator.
  • Impurities are mixed, and particles are obtained by first firing in a crucible with a flux at a high temperature in the range of 900 ° C to 1300 ° C for 30 minutes to 10 hours.
  • the intermediate phosphor powder obtained by the first firing is repeatedly washed with ion exchange water to remove alkali metal, alkaline earth metal, excess activator, and coactivator.
  • second baking is performed on the obtained intermediate phosphor powder.
  • heating annealing
  • heating is performed at a temperature lower than that of the first baking in the range of 500 ° C. to 800 ° C. and in a short time of 30 minutes to 3 hours.
  • the density of stacking faults without breaking the particles can be greatly increased.
  • a method of applying impact force a method of contacting and mixing particles of the intermediate phosphor powder, a sphere such as alumina, etc.
  • a method of mixing and mixing (ball mill), a method of accelerating and colliding particles, a method of irradiating ultrasonic waves, and the like can be preferably used.
  • etching is performed with an acid such as HC1 to remove metal oxides adhering to the surface, and copper sulfide adhering to the surface is removed by washing with KCN and dried to obtain phosphor particles.
  • a method for forming phosphor particles usable in the present invention it is preferable to use a hydrothermal synthesis method, a urea melting method, or a spray pyrolysis method. Further, a laser 'ablation method, a CVD method is used. Gas phase methods such as methods combining plasma, chemical vapor deposition, sputtering, resistance heating, electron beam method, fluid oil surface deposition, metathesis method, precursor thermal decomposition method, reverse micelle method It can also be formed by using a method combining calcination with high temperature and a liquid phase method such as freeze-drying.
  • the luminescent particle layer can be formed by applying a coating solution containing EL phosphor particles.
  • the EL phosphor particle-containing coating solution is a coating solution containing at least EL phosphor particles, a binder, and a solvent that dissolves the binder.
  • binders include polymers having a relatively high dielectric constant such as cyanoethyl cellulose resin, polyethylene, polypropylene, polystyrene resin, silicone resin, epoxy resin, and vinylidene fluoride. It is preferable to use fat. To these binders, fine particles with high dielectric constant such as BaTiO and SrTiO
  • the dielectric constant can be adjusted by mixing 5 to 50 parts by mass with respect to 100 parts by mass of the binder.
  • a dispersion method a homogenizer, a planetary kneader, a roll kneader, an ultrasonic disperser, or the like can be used.
  • the solvent any solvent having a high polarity can be used without limitation, and alcohols, ketones, esters, polyhydric alcohols and derivatives thereof, plasticizers, and the like can be preferably used.
  • the viscosity of the coating solution containing EL phosphor particles at room temperature is preferably in the range of 0.1 lPa's or more and 10. OPa's or less. 0.3 or more Pa's or more 8. The range of OPa's or less More preferable 1. OPa-s or more 6. OPa's or less is particularly preferable. If the viscosity of the coating solution containing EL phosphor particles is within the above-mentioned range, coating film thickness unevenness hardly occurs, and phosphor particles do not separate and settle with the passage of time after dispersion. It is also possible to apply with the above method.
  • the viscosity is a value measured at 20 ° C. which is the same as the coating temperature.
  • the luminescent particle layer is made of a transparent material such as a slide coater or an etrusion coater. It is preferable to apply continuously on a plastic support or the like provided with a bright electrode so that the dry film thickness of the coating film is in the range of 0.5 m or more and 6 O / zm or less. At this time, the film thickness variation of the luminescent particle layer is preferably 12.5% or less, particularly preferably 5% or less.
  • the filling rate of the phosphor particles in the luminescent particle layer is not limited !, but is preferably in the range of 60% by mass to 95% by mass, more preferably in the range of 75% by mass to 85% by mass. It is.
  • the uniformity of the coating film thickness of the luminescent particle layer is improved, and the smoothness of the coating film surface is simultaneously achieved. improves. Furthermore, when the number of particles per unit area is greatly increased, fine light emission unevenness can be remarkably improved.
  • the decrease in the particle size leads to an increase in the applied voltage of the phosphor particles, and in addition to an increase in the electric field strength to the luminescent particle layer due to the thinner luminescent particle layer, it is favorable for improving the luminance of the EL element. It is also preferable for suppressing vibrations that cause noise.
  • Examples of the wavelength conversion material preferably used in the present invention include fluorescent pigments and fluorescent dyes.
  • these compounds that form these luminescent centers compounds having rhodamine, latathone, xanthene, quinoline, benzothiazole, triethylindoline, perylene, triphennin, and dicyanomethylene as skeletons are preferred, as well as cyanine dyes. It is also preferable to use an azo dye, a poly-ethylene bi-ylene polymer, a disilane oligo-chelen polymer, a ruthenium complex, a europium complex, or an erbium complex. These compounds may be used alone or in combination.
  • these compounds may be used as a wavelength conversion material after further being dispersed in a polymer or the like.
  • those having the maximum value of the emission spectrum in the range of 550 ⁇ m to 650 nm are preferred, more preferably those having the emission maximum in the range of 600 nm to 650 nm, particularly preferably 61 Onm force and 630 nm. It has a light emission maximum in the range.
  • the EL device of the present invention preferably has a layer containing these wavelength conversion materials. These wavelength conversion materials can be contained in the luminescent particle layer and the Z or dielectric layer, and are preferably contained in the dielectric layer.
  • the EL element of the present invention may have a wavelength conversion material-containing layer containing a plurality of dielectric layers and containing a wavelength conversion material at a position sandwiched between the two dielectric layers. Furthermore, these wavelength conversion material-containing layers are not provided between the transparent electrode and the back electrode, and as a wavelength conversion film layer on the outside of the transparent electrode and the back electrode. It is also preferable to have it.
  • the wavelength conversion material-containing layer may be provided around the luminescent particle layer, between the luminescent particle layer and the transparent electrode, or between the luminescent particle layer and the dielectric layer. It is also possible to install in the position.
  • the wavelength conversion material is contained in the dielectric layer, or that the wavelength conversion material layer is disposed at a position sandwiched between the two dielectric layers.
  • the wavelength converting material is a material that absorbs light emitted from the phosphor particles contained in the light emitting particle layer and emits light having a longer wavelength than the light emitted from the phosphor particles
  • the wavelength converting material is used at these positions. It is preferable. That is, when the material performs wavelength conversion, if there is an overlap in wavelength between the emission band of the wavelength conversion material and the absorption band of the material, the light itself will be absorbed, Apparently, the shape on the short wave side of the emission band changes, and it is observed that no light is emitted.
  • the position of the light emission maximum of the material can be changed by changing the way light is applied to the material without changing the wavelength conversion material, and by changing the amount of light absorption of the material.
  • the emission maximum wavelength (red emission maximum wavelength) of the wavelength conversion material can be adjusted to a desired wavelength.
  • an EL device having a light emitting particle layer, a light scattering layer, a wavelength conversion material layer, and a dielectric layer in this order between a transparent electrode and a back electrode is more preferable. More preferably, an EL element having a luminescent particle layer, a light scattering layer, a wavelength conversion material layer, and a dielectric layer in this order from the transparent electrode side between the transparent electrode and the back electrode is used.
  • the light scattering layer can be formed of the same material as the dielectric layer, and is preferably provided as a thin dielectric layer under the light emitting particle layer.
  • the light scattering function by the light scattering layer located on the light emitting particle layer side from the wavelength conversion material layer, and the lower side of the wavelength conversion material layer that is, the back electrode side, the wavelength conversion material.
  • the light scattering state around the wavelength conversion material layer can be controlled by the light reflecting function of the dielectric layer located on the opposite side of the light scattering layer across the layer.
  • the light incident from the light emitting particle layer is subjected to multiple reflection Z multiple scattering, and this light is absorbed by a wavelength conversion material such as a pigment in the wavelength conversion material layer, thereby
  • the emission wavelength can be controlled by increasing the self-absorption of the material, controlling the degree of the increase, and adjusting the red emission maximum wavelength to a desired wavelength.
  • the light scattering layer The light incident from the light emitting particle layer is subjected to multiple reflection Z multiple scattering between the light emitting layer and the dielectric layer, and the light emitted from the light emitting particle layer is emitted from the light emitting particle layer by the light. Can be kept to a minimum by absorption of
  • the thickness of the light scattering layer is thinner than the thickness of the dielectric layer.
  • the thickness of the light scattering layer is preferably 1 ⁇ m or more and 10 ⁇ m or less.
  • the light scattering layer contains particles capable of obtaining white reflection with a high visible light reflectance.
  • Such materials are selected from sulfates, metal oxides, nitrides, for example MgS
  • the particles used in the light scattering layer are preferably dielectrics.
  • Examples of the dielectric particles used in the light scattering layer include dielectric particles used in the dielectric layer described later.
  • the light scattering layer is a dielectric
  • the light scattering layer can be formed in the same manner as the dielectric layer.
  • the average size of the particles used in the light-scattering layer is an average particle size, preferably not more than 0. m, more preferably not less than 0.01 ⁇ m but not more than 0.5 ⁇ m, most preferably not more than 0 ⁇ m. .05 ⁇ m or more and 0.5 m or less. From the viewpoint of reducing the thickness of the light scattering layer, it is also preferable to use a mixture of dielectric particles having different particle sizes. For example, the average particle size is an average particle size of 0 .: m or more and 0.5 m or less.
  • particles also referred to as large size particles
  • particles having an average particle size of 0.01 ⁇ m or more and less than 0.1 ⁇ m may be mixed. preferable.
  • the average particle size is measured with HORIBALA-920, and is measured when the light transmittance of the measurement sample is 94.5% to 95.4%.
  • the wavelength at which incident light is received from the light emitting particle layer By setting the thickness of the light scattering layer in the above range, and setting the average size of the dielectric particles used in the light scattering layer in the above range, the wavelength at which incident light is received from the light emitting particle layer. Light emitted from the pigment or the like in the conversion material layer passes through the light scattering layer and is suitably emitted outside the EL element.
  • the thickness of the wavelength conversion material layer is preferably 3 m or more and 20 m or less. More preferably, it is 3 ⁇ m or more and 15 m or less.
  • the concentration of the material in the wavelength conversion material layer is possible As high as possible is preferable. In other words, it is particularly preferable that the wavelength conversion material layer also has a force only for the wavelength conversion material. “Substantially” means that the concentration of the wavelength converting material in the wavelength converting material layer is 50 mass% to 100 mass%.
  • the wavelength conversion material layer it is preferable to form the material layer without using a binder. It is preferable that the wavelength converting material is contained in the coating solution and applied. As a dispersion solvent for the wavelength conversion material contained in the coating solution, when a pigment is used for the wavelength conversion material, the pigment used does not dissolve, or the solvent penetrates into the pigment and the fluorescence in the pigment penetrates. It is preferable to use a solvent so that the substance does not elute.
  • hydrocarbons such as hexane and toluene
  • alcohols having 3 or more carbon atoms in the main chain such as cyclohexanol and 2-ethylhexanol
  • glycerin glycerin
  • ethylene glycol ethylene glycol
  • plasticizers such as polyhydric alcohols, halogenated hydrocarbons such as carbon tetrachloride, dioctyl adipate, and dioctyl sebacate.
  • plasticizers such as polyhydric alcohols, halogenated hydrocarbons such as carbon tetrachloride, dioctyl adipate, and dioctyl sebacate.
  • a wavelength conversion material in the dielectric layer. More preferably, an EL element having a light emitting particle layer and a dielectric layer containing a wavelength conversion material in this order between a transparent electrode and a back electrode is used. More preferably, the EL element has a light emitting particle layer and a dielectric layer containing a wavelength conversion material in this order from the transparent electrode side between the transparent electrode and the back electrode. As in the case of providing the light scattering layer described above, a wavelength conversion material is placed in a portion where the light scattering is large, and the apparent maximum wavelength of the wavelength conversion material is lengthened by the effect of multiple reflection Z multiple scattering. Is intended.
  • the dielectric particles may be formed using any material as long as the dielectric material has a high dielectric constant and a high reflectance. I can do it.
  • Such materials are selected from metal oxides and nitrides, for example TiO, BaTiO
  • binders include polymers having a relatively high dielectric constant such as cyanoethyl cellulose resin, polyethylene, polypropylene, polystyrene resin, silicone resin, epoxy resin, vinylidene fluoride, and the like. Fat is preferred.
  • a dispersion method of the dielectric material it is preferable to disperse using a homogenizer, a planetary kneader, a roll kneader, an ultrasonic disperser, or the like.
  • the dielectric layer that also serves as the wavelength conversion material layer is preferably 1 m force to 25 ⁇ m, more preferably 5 ⁇ m force to 20 ⁇ m.
  • the preferred concentration of the wavelength conversion material when the dielectric particles are mixed with the wavelength conversion material is 1% by mass to 20% by mass, more preferably 2% by mass to 10% by mass with respect to the dielectric particles. .
  • the EL element More preferably, there are two dielectric layers contained in the EL element, one layer being a dielectric layer containing a wavelength converting material and the other layer being a dielectric layer not containing a wavelength converting material.
  • either layer may be placed on the back electrode side.
  • the dielectric layer containing the wavelength conversion material is on the luminescent particle layer side, and the dielectric layer not containing the wavelength conversion material is on the back electrode side. It is to install in each.
  • the layer thickness of the layer containing the wavelength conversion material is made as thin as possible, and the wavelength in the layer is reduced. Increasing the concentration of the conversion material is also a preferable means.
  • the thickness of the conversion film layer is 0.5 ⁇ m or more and 20 ⁇ m or less, and the concentration of the wavelength conversion material in the layer is preferably 30% by mass to 100% by mass. ⁇ m or more and 15 ⁇ m or less, and material concentration is 40% or more and 100% or less by mass.
  • This layer can be formed using a binder.
  • the noinder any binder having a high light transmittance can be used. It is also preferable to use a binder used in the luminescent particle layer or dielectric layer in the present invention. High dielectric constant, no need to use polymer, It is also preferable to use olefin resin, such as acrylic resin.
  • phosphor particles that emit red light that is not as strong as the wavelength conversion material can be used as the red light-emitting material.
  • the phosphor that emits red light calcium sulfide, strontium sulfide, or a phosphor in which europium or the like is activated using a mixed crystal thereof as a base is preferably used.
  • These red light emitting materials are preferably contained in a light emitting particle layer that emits blue-green light, placed between the light emitting particle layer and the transparent electrode, or between the light emitting particle layer and the dielectric layer. When formed as a layer different from the light emitting particle layer, it can be formed in the same manner as the light emitting particle layer.
  • the dielectric layer preferably includes dielectric particles.
  • the dielectric particles suitably used for the dielectric layer and the light scattering layer are dielectric materials having a high dielectric breakdown voltage and a high dielectric breakdown voltage with high dielectric constant and insulation properties.
  • Any dielectric material can be used as long as it has a constant rate.
  • Such materials are selected from metal oxides and nitrides, such as TiO, BaTiO, SrTiO, Pb
  • the average size of the particles used in these dielectric layers is preferably an average particle size of ⁇ to 2.0 ⁇ m or less, more preferably ⁇ to 0.01 ⁇ m to 1.0 ⁇ m, most preferably 0. .05 111 or more and 0.5 / zm or less.
  • These dielectric materials are preferably dispersed in the binder.
  • binders include polymers with relatively high dielectric constants such as cyanoethyl cellulose resin, polyethylene, polypropylene, polystyrene resin, silicone resin, epoxy resin, and vinylidene fluoride. A cocoa is preferred.
  • As a dispersion method of the dielectric material it is preferable to disperse using a homogenizer, a planetary kneader, a roll kneader, an ultrasonic disperser, or the like.
  • the dielectric layer is preferably set as a uniform film or a film having a particle structure. A combination thereof may also be used. “The film is uniform” means that the dielectric layer itself is an amorphous layer or a layer having a crystal structure, and examples of the uniform film include a thin film crystal layer.
  • a vapor phase method such as sputtering or vacuum deposition is preferably exemplified.
  • the thickness of the dielectric layer is preferably in the range of 0.1 ⁇ m to 10 ⁇ m.
  • the EL device of the present invention may have one or more dielectric layers.
  • the dielectric layer may be provided on one side of the luminescent particle layer or on both sides of the luminescent particle layer.
  • the dielectric layer on the transparent electrode side may be a film having a particle structure or a dielectric layer consisting only of a high dielectric constant binder.
  • the dielectric layer is formed by coating, it is preferable to use a slide coater or an etatrusion coater as in the case of the luminescent particle layer.
  • a thin film crystal layer it may be a thin film formed on a substrate by a vapor phase method such as sputtering, or a sol-gel film using an alkoxide such as Ba or Sr.
  • the dielectric layer is preferably formed by applying a coating solution containing dielectric particles.
  • the dielectric particle-containing coating solution is a coating solution containing at least dielectric particles, a binder, and a solvent that dissolves the binder.
  • the binder and the solvent are the same as those used for the light emitting particle layer.
  • the viscosity of the coating solution containing dielectric particles at normal temperature is preferably in the range of 0. OlPa's to lOPa's, more preferably in the range of 0.08 Pa's to 8. OPa's. Particularly preferably, it is in the range of 1. OPa's to 6. OPa's. If the viscosity of the coating solution containing dielectric particles is within the above range, the coating film thickness unevenness is difficult to occur, and the dielectric particles do not separate and settle with the passage of time after dispersion. Application is also possible and preferable.
  • the viscosity is a value measured at 20 ° C. which is the same as the coating temperature.
  • the transparent electrode used in the EL device of the present invention an electrode formed using any commonly used transparent electrode material is used.
  • transparent electrode materials include tin oxides such as tin-doped oxide tin, antimony-doped tin oxide, and zinc-doped oxide oxide tin, a multilayer structure in which a silver thin film is sandwiched between high refractive index layers, and poly-phosphorus. And ⁇ -conjugated polymers such as polypyrrole.
  • a metal wire such as a comb or grid to improve the conductivity.
  • the specific resistivity of the transparent electrode is preferably in the range of 0.01 ⁇ to 30 ⁇ .
  • the back electrode is the side from which light is not extracted, and any conductive material can be used.
  • it can be selected from metal such as gold, silver, platinum, copper, iron, and aluminum, graphite, etc. according to the form of the element to be created, the temperature of the creation process, etc. Conductivity If possible, you can use transparent electrodes such as ITO.
  • a conductive material-containing coating solution in which the conductive fine particle material is dispersed together with a binder is prepared and applied using a slide coater or an etatrusion coater. You can also
  • a transparent electrode on a support.
  • a support any support that is flexible and highly transparent can be used without limitation.
  • Each functional layer coated on the support is preferably formed as a continuous process including at least a coating step and a drying step.
  • the drying process is divided into a constant rate drying process until the coating film is dried and solidified, and a decreasing rate drying process for reducing the residual solvent of the coating film.
  • Benard cell is likely to occur, and pre-expansion due to rapid solvent expansion. Star failure is likely to occur, and the uniformity of the coating is significantly impaired.
  • the drying process is performed slowly at a constant rate, and is performed at a temperature sufficient for the solvent to dry.
  • a method for carrying out the constant rate drying process gently it is preferable to divide the drying chamber where the support travels into several zones and gradually increase the drying temperature after completion of the coating process.
  • the light emitting particle layer may be subjected to a force render process using a calendar processor.
  • the smoothness of both main surfaces of the luminescent particle layer formed by calendering is preferably in the range of 0.5 m or less, more preferably 0.2 m or less.
  • the calendar processor to be used is not particularly limited, and can be appropriately selected from among the known devices. A pair of rolls, at least one of which is heated to, for example, 50 ° C to 200 ° C In the meantime, a smoothing process is performed by passing a luminescent particle layer in which phosphor particles are dispersed in a binder while applying pressure as an object.
  • the heating temperature of the calender roll is preferably higher than the softening temperature of the binder contained in the light emitting particle layer.
  • the calendar pressure and the conveying speed are not necessary to destroy the phosphor particles or extend the luminescent particle layer more than necessary. It is preferable to select appropriately so that the degree can be obtained.
  • the conductive material described above can also be used when providing a compensation electrode to suppress vibration of the EL element.
  • a compensation electrode when a compensation electrode is provided outside the transparent electrode from which light is extracted, an oxide such as tin-doped tin oxide, antimony-doped tin oxide, or zinc-doped ichtin tin, or a silver thin film is formed with a high refractive index layer.
  • transparent electrode materials such as sandwiched multilayer structures, ⁇ -conjugated polymers such as polyaline and polypyrrole.
  • any conductive material such as metal such as gold, silver, platinum, copper, iron, and aluminum, or graphite is used.
  • a transparent electrode such as a bag may be used as long as it has conductivity.
  • the compensation electrode is attached to the transparent electrode and the back electrode through an insulating layer.
  • the insulating layer material is an insulating inorganic material or polymer material, a dispersion liquid in which inorganic material powder is dispersed in a polymer material, or the like. Can be formed by vapor deposition or coating.
  • a conductive material-containing coating solution in which the conductive fine particle material is dispersed together with a binder can be prepared and applied using a slide coater or an etatrusion coater.
  • an insulating material-containing coating solution in which the insulating material is dispersed together with a binder can be prepared and applied simultaneously with the conductive material-containing coating solution.
  • a voltage is applied to the compensation electrode provided from the driving power source, and at this time, the vibration generated in the luminescent particle layer can be canceled by setting the phase opposite to that of the voltage applied to the luminescent particle layer.
  • the compensation electrode has the same effect even if it is attached to either the outer side of the transparent electrode or the outer side of the back electrode with an insulating layer sandwiched between them.
  • the dielectric constant of the light emitting particle layer (the light emitting particle layer and the dielectric layer, if a dielectric layer is provided) and the dielectric constant of the insulating layer inside the compensation electrode are substantially equal. This is preferable for effective suppression.
  • a buffer layer used for the EL element As another method for suppressing vibration of the EL element, a buffer layer used for the EL element is provided.
  • a polymer material having a high impact absorbing ability or a polymer material foamed by adding a foaming agent as the buffer material layer.
  • the polymer material having high impact absorbing ability include natural rubber, styrene butadiene rubber, polyisoprene rubber, polybutadiene rubber, nitrile rubber, chloroprene rubber, butyl rubber, hibaron, silicon rubber, urethane rubber, ethylene propylene rubber, and fluorine rubber. Etc. can be used.
  • the hardness of these polymer materials is preferably 50 or less, more preferably 30 or less, from the viewpoint of vibration absorption ability.
  • butyl rubber, silicon rubber, fluororubber, and the like are more preferable because they have a low water absorption and function as a protective film for protecting the EL element from moisture.
  • the buffer material layer using these buffer materials can be attached by adhering the buffer material layer to the EL element with an adhesive, but the buffer material is dissolved in a solvent to prepare a buffer material-containing coating solution, It can also be applied using a slide coater or an etrusion coater.
  • the thickness of the buffer layer depends on the hardness of the polymer material, it needs to be 20 ⁇ m or more and preferably 50 ⁇ m or more in order to sufficiently absorb vibration. If it exceeds 200 ⁇ m, the thickness of the element increases greatly, which is not preferable in terms of mass and flexibility. Further, the combined use of the compensation electrode and the buffer layer is preferable because it can further suppress vibration.
  • the dispersion-type EL element of the present invention is preferably processed so as to eliminate the influence of humidity and oxygen from the external environment using a sealing film.
  • Sealing the fill arm for sealing the EL element, and more preferably not more than 40 ° C-water vapor permeability at 90% RH is preferably is 0. 05gZm 2 Zday following instrument 0. 01gZm 2 Zday. Further oxygen permeability at 40 ° C- 90% RH 0. Lcm 3 Zm 2 ZdayZatm is preferably less instrument 0. 01cm 3 Zm 2 ZdayZatm less and more favorable preferable.
  • a sealing film a laminated film of an organic film and an inorganic film is preferably used.
  • polyethylene-based resin, polypropylene-based resin, polycarbonate-based resin, polyvinyl alcohol-based resin, and the like are preferably used, and particularly, polyvinyl alcohol-based resin is more preferably used. be able to. Since polyvinyl alcohol resins and the like have water absorption properties, it is more preferable to use those that have been completely dried by intensive treatment such as vacuum heating. A sheet form by applying such resin. An inorganic film is deposited on the processed material by vapor deposition, sputtering, CVD method or the like.
  • the inorganic film to be deposited silicon oxide, silicon nitride, silicon oxynitride, acid silicate, zinc oxyaluminum, aluminum nitride or the like is preferably used.
  • the formation of the organic film and the inorganic film is repeated, or the organic film deposited with the inorganic film is used as the adhesive layer. It is preferable to laminate a plurality of films through a multi-layer film.
  • the thickness of the organic material film is preferably in the range of 5 m to 300 m, more preferably in the range of 10 m to 200 m.
  • the thickness of the inorganic film is preferably in the range of lOnm or more and 300 nm or less, and more preferably in the range of 20 nm or more and 200 nm or less.
  • the film thickness of the laminated sealing film is preferably in the range of 30 m to 1000 m, more preferably in the range of 50 ⁇ m to 300 ⁇ m.
  • two layers of the above organic film and inorganic film are laminated. With the construction as described above, a force of 50 ⁇ : L00 ⁇ m is sufficient.
  • Polyethylene trifluoride chilled titanium used as a sealing film conventionally requires a film thickness of 200 m or more. The thinner the sealing film, the better in terms of light transmission and device flexibility.
  • the sealing film is folded in half and sealed.
  • the part where the films overlap may be adhesively sealed.
  • the EL cell sealed with the sealing film only the EL cell may be prepared separately, or the EL cell may be directly formed on the sealing film. In this case, the support can be used instead.
  • the sealing step is preferably performed in a dry atmosphere with vacuum or dew point control.
  • a desiccant layer around the EL cell.
  • the desiccant used in the desiccant layer alkaline earth metal oxides such as CaO, SrO, BaO, acid aluminum, zeolite, activated carbon, silica gel, paper and highly hygroscopic resin are preferably used.
  • alkaline earth metal oxides are more preferable in terms of moisture absorption performance.
  • These hygroscopic agents can be used even in powder form.
  • the hygroscopic agent can be used by mixing it with a resin material and processing it into a sheet by coating or molding.
  • a desiccant layer by applying a coating liquid mixed with a fat material around the EL element using a dispenser or the like. Furthermore, it is more preferable to cover not only the periphery of the EL cell but also the lower and upper surfaces of the EL cell with a desiccant. In this case, it is preferable to select a highly transparent desiccant layer for the light extraction surface.
  • a highly transparent desiccant layer polyamide-based resin can be used as the highly transparent desiccant layer.
  • FIG. 1 is a schematic view of one embodiment of an EL device of the present invention.
  • FIG. 2 A diagram showing the relationship between the emission spectrum (A. U. stands for normalized intensity) of each EL element of the normalized comparative example and f (e) and g ( ⁇ ).
  • FIG. 3 is a diagram showing the relationship between the emission spectrum (A. U. stands for normalized intensity) of each EL element of the present invention normalized, and f (e) and g ( ⁇ ).
  • the aluminum sheet coated with a dielectric layer is coated on a 75 ⁇ m thick aluminum sheet so that the layer thickness is 30 ⁇ m and dried at 110 ° C. for 5 hours. Obtained.
  • This coated product is thermocompression-bonded with a film of 100 ⁇ m thick polyethylene terephthalate with a spider sprinkled uniformly to a thickness of 40 nm using a sputter, and a lead piece is placed and sealed with a moisture-proof film.
  • the EL element of Example 1 was used.
  • a red pigment (Sinloihi FA-007) manufactured by Sinloihi to 8% of the BaTiO mass
  • an EL device (2) according to the present invention was obtained in the same manner as the method for producing an EL device (1) according to the present invention.
  • This coated material was thermocompression bonded with a film in which ITO was uniformly deposited to a thickness of 40 nm on a 100 m thick polyethylene terephthalate by sputtering. Finally, a lead piece was placed and sealed with a moisture-proof film between them to make an EL element (3) according to the present invention.
  • the Xia Bruno ethylcellulose solution ⁇ I ⁇ lead particles and 30 mass 0/0 having an emission maximum at 498nm with an average particle size was activated with copper and chlorine 15 m 1.
  • ITO was applied onto polyethylene terephthalate having a thickness of 100 ⁇ m by sputtering so that the luminous particle layer had a thickness of 45 m on a film having a uniform thickness of 40 nm.
  • the coated material was dried at 110 ° C. for 5 hours using a hot air dryer, and then a solution in which BaTiO fine particles having an average particle size of 0.2 ⁇ m were dispersed in a 30 mass% cyanoethyl cellulose solution was prepared.
  • This layer was applied to a thickness of 3 m and dried at 110 ° C. for 5 hours to form a light scattering layer.
  • a layer was formed.
  • the coated product thus obtained has an average particle size of 0.2. dispersed ⁇ particles 30 mass 0/0 Xia Bruno ethylcellulose solution of BaTiO 3 m, the induction
  • An EL element (4) according to the present invention was obtained by mounting a lead piece on the EL sheet obtained as described above and sealing it with a moisture-proof film sandwiched between them.
  • the aluminum sheet coated with a dielectric layer is coated on a 75 ⁇ m thick aluminum sheet so that the layer thickness is 30 ⁇ m and dried at 110 ° C. for 5 hours. Obtained. Subsequently, the average particle size Xia Bruno ethylcellulose solution ⁇ I ⁇ zinc particles and 30 mass 0/0 with an emission maximum copper and chlorine 15 m to 498nm was activated 1.2: mixed • 1 ratio After the dispersion, it was coated on the aluminum sheet coated with the dielectric layer so that the thickness of the luminescent particle layer was 45 m. This coating was dried at 110 ° C. for 5 hours using a hot air dryer.
  • a film in which ⁇ is evenly deposited to a thickness of 40 nm on polyethylene terephthalate with a thickness of 100 ⁇ m by sputtering is placed on the surface opposite to the one on which ITO is sputtered.
  • the red luminescent pigment used in 3 3) was dispersed and applied to a solution of Zeonex made by Nippon Zeon Co., Ltd., and dried at 110 ° C for 3 hours to form a pigment film layer with a thickness of 10 / zm. .
  • the EL device (5) of the present invention was obtained by thermocompression bonding these two coatings so that the luminescent particle layer and ITO were adjacent to each other, mounting a lead piece, and sealing with a moisture-proof film interposed therebetween.
  • "Production of EL device according to the present invention (6)" (Example 6)
  • the aluminum sheet coated with a dielectric layer is coated on a 75 ⁇ m thick aluminum sheet so that the layer thickness is 30 ⁇ m and dried at 110 ° C. for 5 hours. Obtained. Subsequently, the average particle size Xia Bruno ethylcellulose solution ⁇ I ⁇ zinc particles and 30 mass 0/0 with an emission maximum copper and chlorine 15 m to 498nm was activated 1.2: mixed • 1 ratio After the dispersion, it was coated on the aluminum sheet coated with the dielectric layer so that the thickness of the luminescent particle layer was 45 m. This coating was dried at 110 ° C. for 5 hours using a hot air dryer.
  • a film in which ITO is uniformly deposited to a thickness of 40 nm by sputtering on polyethylene terephthalate having a thickness of 100 ⁇ m is made of poly (2-methoxy-5- ⁇ 2′-ethylhexyloxy).
  • Xy) 1,4-Ferene biylene (molecular weight 70000-100,000) was dispersed in cyanoethyl cellulose solution, coated and dried at 110 ° C. for 3 hours to form a 10 m thick layer.
  • the EL device (6) of the present invention was obtained by thermocompression bonding these two coatings, placing a lead piece, and sealing with a moisture-proof film sandwiched between them.
  • FIGS. 2 and 3 show the spatter when the EL element of the present invention prepared as described above and the EL element of the comparative example emit light, and Table 1 shows a comparison of the color rendering properties at that time.
  • the average color rendering index of the EL device of the present invention is superior to the conventional EL device of the comparative example, and in particular, it is excellent in red color rendering.
  • the color rendering property of skin color which is important when observing a transparent medium such as a transparent positive image on the EL element, is greatly improved in the EL element of the present invention.
  • the solution was obtained by applying the solution on an aluminum sheet having a thickness of 75 ⁇ m so that the dielectric layer had a thickness of 25 ⁇ m and drying it at 110 ° C. for 5 hours.
  • the EL device of Comparative Example 1 was obtained by thermocompression bonding these two coated and dried products, mounting lead pieces, and sealing with a moisture-proof film sandwiched between them.
  • a solution obtained by dispersing 30% by mass of a red pigment (Sinleuhi FA-007) made by Sinlohi Co., in cyclohexanol was applied onto the dried product and dried at 1 10 ° C for 2 hours to form a wavelength conversion material layer. Formed. The amount of red pigment applied was adjusted so that the coordinates on the chromaticity diagram of the finished device were between 0.32 and 0.34 for both x and y.
  • the sheet thus obtained was mixed with 30% by mass of BaTiO fine particles having an average particle size of 0.2 ⁇ m.
  • EL elements (1) to (6) of the present invention were prepared by placing lead pieces on the EL sheet obtained by these methods and sealing them with a moisture-proof film.
  • BaTiO coated between the luminescent particle layer and the wavelength converting material layer has an average particle size of 0.2 ⁇ m.
  • the EL elements obtained in the same manner as the EL element preparation (1) except for the above were used as EL elements (7) to (12) of the present invention.
  • the spectrum of the EL device of the present invention satisfies the curve ⁇ ( ⁇ ) described in claim 1, and the EL device prepared by the conventional technique (the spectrum does not satisfy the curve I ( ⁇ )).
  • the emission maximum wavelength of red light emission was longer than that of,), and the red color was vividly expressed, and the color rendering was excellent.
  • the EL device of the present invention was higher in luminance than the EL device of the comparative example.
  • an EL element which is particularly excellent in red color rendering and greatly improved in skin color rendering than conventional EL elements.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

A white-light-emitting dispersion type EL element excellent in color rendering property (especially, red). A dispersion type electroluminescence element comprising a transparent electrode, a rea-surface electrode, and a light emitting particle layer held between the both electrodes, wherein a curve I(λ) obtained by normalizing spectrum when the element emits light is set to satisfy, in a wavelength region of 410nm through 650nm, g(λ)≤ I(λ)≤ f(λ). [Expression 1] g(λ)=0.9exp(-ln(2)((λ-490)/25))2)+0.25exp(-ln(2)((λ-550)/25))2 )+0.4exp(-ln(2)((λ-610)/20))2 )+0.15exp(-ln(2)(( λ-625)/40))2) f(λ)=1.1exp(-ln(2)((λ-490)/55))2)+0.8exp(-ln(2)((λ-605)/25))2 )+0.5exp(-ln(2)(( λ-640)/40))2)

Description

分散型エレクト口ルミネッセンス素子  Dispersive electoluminescence device
技術分野  Technical field
[0001] 本発明は、エレクト口ルミネッセンス蛍光体粉末を分散塗布した発光粒子層を有す る分散型エレクト口ルミネッセンス素子に関するものである。  [0001] The present invention relates to a dispersive electoluminescent device having a light emitting particle layer in which an electroluminescent phosphor powder is dispersedly applied.
背景技術  Background art
[0002] エレクト口ルミネッセンス(以下、「EL」ともよぶ。)蛍光体は電圧励起型の蛍光体で あり、蛍光体粉末を電極の間に挟んで発光素子とした分散型 EL素子として用いられ ることが知られている。分散型 EL素子の一般的な形状は、蛍光体粉末を高誘電率の ノ インダ一中に分散したものを、少なくとも一方が透明な二枚の電極の間に挟み込 んだ構造であり、両電極間に交流電場を印加することにより発光する。蛍光体粉末を 用いて作成された発光素子である EL素子は lmm以下の厚さとすることが可能であり 、製造プロセスにおいて高温プロセスを用いないため、プラスチックを基板としたフレ キシブルで軽量な素子の形成が可能であること、真空装置を使用することなく比較的 簡便な工程で、低コストで製造が可能であること、面発光体であるなど数多くの利点 を有するため、 LCDなどのバックライト、表示素子へ応用が可能であり、道路標識、 各種インテリアやエクステリア用の照明、液晶ディスプレイ等のフラットパネルディスプ レイ用の光源、大面積の広告用の照明光源等としての用途がある。  [0002] Electric mouth luminescence (hereinafter also referred to as "EL") phosphors are voltage-excited phosphors, and are used as distributed EL devices in which phosphor powder is sandwiched between electrodes to form a light-emitting device. It is known. The general shape of a dispersion-type EL device is a structure in which phosphor powder is dispersed in a high-dielectric-constant inductor and is sandwiched between two electrodes, at least one of which is transparent. Light is emitted by applying an alternating electric field between the electrodes. An EL device, which is a light emitting device made using phosphor powder, can be made to a thickness of 1 mm or less, and since it does not use a high-temperature process in the manufacturing process, it is a flexible and lightweight device using a plastic substrate. Since it has many advantages such as being capable of being formed, being able to be manufactured at a low cost with a relatively simple process without using a vacuum device, and being a surface light emitter, a backlight such as an LCD, It can be applied to display elements, and can be used as road signs, lighting for various interiors and exteriors, light sources for flat panel displays such as liquid crystal displays, and illumination light sources for large areas.
[0003] これまでに提案されてきた白色発光する分散型 EL素子は、主として青緑と橙〜赤 色周辺の 2つの波長域に発光強度が集中した発光波形を有していた。例えば、特許 文献 1〜3など、多くの特許にある様に、ローダミン系の化合物を発光粒子層に入れ 、白色発光 ELとしていた。  [0003] Dispersion type EL elements that have been proposed to emit white light have a light emission waveform in which light emission intensity is concentrated mainly in two wavelength regions of blue-green and orange to red. For example, as described in many patents such as Patent Documents 1 to 3, a rhodamine-based compound was placed in a light emitting particle layer to form a white light emitting EL.
特許文献 1:特開昭 60 - 25195号公報  Patent Document 1: Japanese Patent Laid-Open No. 60-25195
特許文献 2:特開昭 60— 170194号公報  Patent Document 2: JP-A-60-170194
特許文献 3:特開平 2 - 78188号公報  Patent Document 3: Japanese Patent Laid-Open No. 2-78188
発明の開示  Disclosure of the invention
発明が解決しょうとする課題 [0004] これらの白色発光する分散型 EL素子は、上記のとおり、フレキシブルな面状発光 光源として種々の利点を有するが、蛍光灯などの他の白色光源と比べて演色性が劣 る点に大きな問題があった。透明陽画等の透過媒体を EL素子に載せて観察した場 合、その色再現性は、蛍光灯等を平面光源とした従来の照明下に比べると大きく劣 つていた。例えば、特許文献 1〜3の ELではローダミンの発光に由来する橙色発光 が赤色発光として使われており、白色発光であっても、透明陽画等の透過媒体をの せた時には赤色を再現することは出来なかった。 Problems to be solved by the invention [0004] As described above, these dispersed EL elements that emit white light have various advantages as a flexible planar light source, but are inferior in color rendering properties compared to other white light sources such as fluorescent lamps. There was a big problem. When a transparent medium such as a transparent positive image was placed on an EL element and observed, its color reproducibility was greatly inferior to that under conventional illumination using a fluorescent light or the like as a flat light source. For example, in ELs of Patent Documents 1 to 3, orange light emission derived from rhodamine light emission is used as red light emission, and red light is reproduced even when white light emission is placed on a transparent medium such as a transparent positive image. I couldn't.
[0005] そこで、本発明は、白色に発光し、かつ演色性 (特に赤色の)に優れた分散型 EL 素子を得ることを課題とする。  [0005] Therefore, an object of the present invention is to obtain a dispersive EL element that emits white light and has excellent color rendering (particularly red).
課題を解決するための手段  Means for solving the problem
[0006] 本発明は、以下の手段で実現することができる。 [0006] The present invention can be realized by the following means.
[0007] (1) 透明電極と、背面電極と、それら両電極間に挟持された発光粒子層を有する 分散型エレクト口ルミネッセンス素子にぉ 、て、素子が発光した時のスペクトルを規格 化した曲線 Ι( λ )力 波長 410nm以上 650nm以下の区間において、  [0007] (1) A curve obtained by standardizing a spectrum when a device emits light, compared with a dispersive electoluminescence device having a transparent electrode, a back electrode, and a luminescent particle layer sandwiched between the two electrodes. Ι (λ) force Wavelength 410nm or more and 650nm or less,
&(λ)≤ΐ(λ)≤ί(λ)  & (λ) ≤ΐ (λ) ≤ί (λ)
を満たすことを特徴とする分散型エレクト口ルミネッセンス素子。  A dispersive electoluminescent element characterized by satisfying
[0008] 上記式中、 g (え)、 ί(λ)は  [0008] In the above formula, g (e) and ί (λ) are
[0009] [数 1]
Figure imgf000004_0001
[0009] [Equation 1]
Figure imgf000004_0001
[0010] で表される曲線である。  [0010] is a curve represented by
[0011] (2) 透明電極と、背面電極と、それら両電極間に挟持された発光粒子層を有する 分散型エレクト口ルミネッセンス素子にぉ 、て、素子が発光した時のスペクトルを規格 化した曲線 Ι( λ )力 波長 400nm以上 700nm以下の区間において、  [0011] (2) A curve obtained by standardizing a spectrum when a device emits light for a dispersive electoluminescence device having a transparent electrode, a back electrode, and a luminescent particle layer sandwiched between the two electrodes. Ι (λ) force Wavelength 400nm to 700nm
&(λ)≤ΐ(λ)≤ί(λ)  & (λ) ≤ΐ (λ) ≤ί (λ)
を満たすことを特徴とする分散型エレクト口ルミネッセンス素子。  A dispersive electoluminescent element characterized by satisfying
[0012] 上記式中、 g (え)、 ί(λ)は、 [0013] [数 2] g{X) = 0.9exp(-ln(2)(^-^)2) + 0.25exp(— ln®^50)2) + 0.4exp(— ln(2)(^^)2) + 0.15exp(-ln(2)(^^)2)
Figure imgf000005_0001
[0012] In the above formula, g (e) and ί (λ) are [0013] [Equation 2] g {X) = 0.9exp (-ln (2) (^-^) 2 ) + 0.25 ex p (— ln® ^ 50 ) 2 ) + 0.4exp (— ln (2) ( ^^) 2 ) + 0.15exp (-ln (2) (^^) 2 )
Figure imgf000005_0001
[0014] で表される曲線である。  [0014] is a curve represented by
[0015] (3) 前記 Ι ( λ )において、極小値より長波側にある極大値が 600nm以上にあるこ とを特徴とする前記(1)または(2)に記載の分散型エレクト口ルミネッセンス素子。  [0015] (3) The dispersion-type electroluminescent device according to (1) or (2), wherein, in Ι (λ), a maximum value on a longer wave side than a minimum value is 600 nm or more.
[0016] (4) 前記 Ι ( λ )において、極小値より長波側にある極大値が Ι ( λ )≤0. 95である ことを特徴とする前記(1)から(3)の 、ずれかに記載の分散型エレクト口ルミネッセン ス素子。  [0016] (4) In Ι (λ), the maximum value on the long wave side from the minimum value is Ι (λ) ≤ 0.95. A dispersive electo-luminescence element as described in 1.
[0017] (5) 透明電極と、背面電極と、それら両電極間に挟持された発光粒子層を有する エレクト口ルミネッセンス素子において、それら両電極間に、発光粒子層、光散乱層、 波長変換材料層および誘電体層をこの順で有することを特徴とする前記(1)カゝら (4) のいずれかに記載の分散型エレクト口ルミネッセンス素子。  [0017] (5) In an electoluminescence device having a transparent electrode, a back electrode, and a luminescent particle layer sandwiched between the two electrodes, a luminescent particle layer, a light scattering layer, and a wavelength conversion material between the two electrodes The dispersion-type electroluminescent device according to any one of (1) and others (4), comprising a layer and a dielectric layer in this order.
[0018] (6) 前記光散乱層の厚みが誘電体層より薄いことを特徴とする前記(5)に記載の 分散型エレクト口ルミネッセンス素子。 [0018] (6) The dispersion-type electroluminescent device according to (5), wherein the light scattering layer is thinner than the dielectric layer.
[0019] (7) 前記光散乱層に使用する平均サイズが 0. 7 m以下であることを特徴とする 前記(5)又は(6)に記載の分散型エレクト口ルミネッセンス素子。 [0019] (7) The dispersion type electroluminescent device according to (5) or (6) above, wherein an average size used in the light scattering layer is 0.7 m or less.
[0020] (8) 前記波長変換材料層の厚みが 3 μ m以上 20 μ m以下であることを特徴とする 前記(5)から(7)の 、ずれかに記載の分散型エレクト口ルミネッセンス素子。 [0020] (8) The dispersion-type electroluminescent device according to any one of (5) to (7), wherein the wavelength conversion material layer has a thickness of 3 μm to 20 μm. .
[0021] (9) 前記(5)から(8)のいずれかに記載の分散型エレクト口ルミネッセンス素子の 製造方法。 [0021] (9) A method for producing a dispersive electoluminescent element according to any one of (5) to (8).
[0022] (10) 透明電極と、背面電極と、それら両電極間に挟持された発光粒子層を有す るエレクト口ルミネッセンス素子において、それら両電極間に、発光粒子層、誘電体層 をこの順序でこの順序で有し、該誘電体層が、誘電体粒子および波長変換材料を含 むことを特徴とする前記(1)または(2)記載の分散型エレクト口ルミネッセンス素子。  [0022] (10) In an electoluminescence device having a transparent electrode, a back electrode, and a luminescent particle layer sandwiched between the two electrodes, a luminescent particle layer and a dielectric layer are provided between the two electrodes. The dispersion-type electroluminescent device according to (1) or (2) above, wherein the dielectric layer includes dielectric particles and a wavelength conversion material.
[0023] (11) 前記波長変換材料の含有割合が誘電体粒子に対して 1質量%以上 20質量 %以下であり、前記誘電体層の厚みが 1 m以上 25 μ m以下であることを特徴とす る前記(10)に記載のエレクト口ルミネッセンス素子。 [0023] (11) The content ratio of the wavelength conversion material is 1% by mass or more and 20% by mass or less with respect to the dielectric particles, and the thickness of the dielectric layer is 1 m or more and 25 μm or less. Toss The electroluminescent device according to (10) above.
[0024] (12) 前記波長変換材料の発光極大波長が 550nm以上 650nm以下であること を特徴とする前記(10)に記載のエレクト口ルミネッセンス素子。 [0024] (12) The electoluminescence device according to (10), wherein the wavelength conversion material has a maximum emission wavelength of 550 nm to 650 nm.
[0025] (13) 前記波長変換材料の発光極大波長が 550nm以上 650nm以下であり、前 記波長変換材料の含有割合が誘電体粒子に対して 1質量%以上 20質量%以下で あり、 (13) The maximum wavelength of light emission of the wavelength conversion material is 550 nm or more and 650 nm or less, and the content ratio of the wavelength conversion material is 1% by mass or more and 20% by mass or less with respect to the dielectric particles,
前記誘電体層の厚みが 1 μ m以上 25 m以下であることを特徴とする前記(10)から ( 13)の!、ずれかに記載のエレクト口ルミネッセンス素子。  The electret luminescence device according to any one of (10) to (13), wherein the dielectric layer has a thickness of 1 μm to 25 m.
[0026] (14) 前記波長変換材料が有機化合物をポリマー中に分散した材料であることを 特徴とする前記(10)から(13)の 、ずれかに記載のエレクト口ルミネッセンス素子。 発明の効果 [0026] (14) The electroluminescent device according to any one of (10) to (13), wherein the wavelength converting material is a material in which an organic compound is dispersed in a polymer. The invention's effect
[0027] 本発明の EL素子は、従来型の EL素子より、特に赤色の演色性に優れている。また 肌色の演色性についても本発明の EL素子では大きく改善される。  [0027] The EL element of the present invention is particularly excellent in red color rendering than the conventional EL element. In addition, the color rendering property of skin color is greatly improved in the EL device of the present invention.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0028] 白色の発光光源としては、可視域のどの波長も均一な光の強度を発するものが理 想であり、この場合、演色性も最も良好となる。しかしながら、分散型無機 ELの場合、 例えば、蛍光体粒子の電界発光 (青緑色)とそこで発せられた光を吸収した波長変 換材料による長波の発光 (橙〜赤色)との 2つの大きな発光バンドから白色を作るた め、人間の視覚に対して青、緑、赤の色を最もよく認識できる波長の近傍にどれくら いの発光があるかどうかが問題となる。すなわち、 450nm付近、 530nm付近、 610η m付近にどれだけの発光があるかが演色性に大きな影響を与え、さらには、この様な 2つの大きな発光バンドからなる EL発光の場合、混色を避けるために、例えば緑と赤 の色をはっきりと分離出来る波長分布を持つことが必要となる。つまり、緑と赤を例に とれば、緑と赤の視覚的感度の均衡点(578nm)付近の光が少なければ緑と赤の光 をより区別して認識出来、より良好な演色性を確保できる。また、白色発光との両立を 考えた時には、青、緑、赤の光がバランスよく発光されていることが重要になる。  [0028] The ideal white light-emitting light source emits uniform light intensity at any wavelength in the visible range. In this case, the color rendering properties are the best. However, in the case of dispersive inorganic EL, for example, two large emission bands, namely, electroluminescence (blue-green) of phosphor particles and long-wave emission (orange to red) by a wavelength conversion material that absorbs the light emitted from the phosphor particles. Therefore, how much light is emitted in the vicinity of the wavelength that can best recognize blue, green, and red colors for human vision is a problem. In other words, how much light is emitted in the vicinity of 450 nm, 530 nm, and 610 ηm has a significant effect on the color rendering, and in addition, in the case of EL light emission consisting of these two large light emission bands, color mixing is avoided. In addition, for example, it is necessary to have a wavelength distribution that can clearly separate green and red colors. In other words, taking green and red as an example, if there is little light near the equilibrium point (578nm) of the visual sensitivity of green and red, green and red light can be distinguished and recognized, and better color rendering can be ensured. . When considering compatibility with white light emission, it is important that blue, green, and red light are emitted in a well-balanced manner.
[0029] これらのことを考えると、演色性や白色度の観点からはどの様な形状の ELスぺタト ルを作るかが非常に重要であり、望ましい演色性や白色度を得ようとすれば、スぺタト ルはある範囲に含まれる形状であることになる。 [0029] Considering these, it is very important from the viewpoint of color rendering properties and whiteness to determine the shape of the EL spectrum, and it is necessary to obtain the desired color rendering properties and whiteness. For example, The shape is a shape included in a certain range.
[0030] 発光スペクトルは一般にローレンツ型やガウス型、あるいはこれらの線形結合型、フ オークト型の分布関数で近似できることが知られている。本発明において、いくつもの 分散型 ELの EL発光スペクトルを調べたところ、それらのスペクトルは!、ずれもガウス 型分布関数の線形結合で表すことが可能であることがわ力つた。ガウス型の分布関 数 S ( λ )は以下の式で表される。  [0030] It is known that the emission spectrum can generally be approximated by a Lorentz type, Gaussian type, or a linear combination type or a point type distribution function thereof. In the present invention, when the EL emission spectra of a number of dispersive ELs were examined, it was found that these spectra were! And that the deviation could be expressed by a linear combination of Gaussian distribution functions. The Gaussian distribution function S (λ) is expressed by the following equation.
G  G
[0031] [数 3]
Figure imgf000007_0001
[0031] [Equation 3]
Figure imgf000007_0001
[0032] 式中、 λは測定波長、 Αはピークの高さ(強度)、 uはピーク波長、 wは半値幅の 1Z 2の値を表す。 In the formula, λ represents a measurement wavelength, Α represents a peak height (intensity), u represents a peak wavelength, and w represents a value of 1Z 2 having a half width.
[0033] 分散型 EL素子の EL発光スペクトル Ι ( λ )はいくつかの異なる A、 u、 wを持った S (  [0033] The EL emission spectrum Ι (λ) of the dispersive EL element is S (
G  G
λ )の足し合わせで表すことが出来、この S ( λ )の線形結合が I ( λ )となる。本発明  λ)) can be expressed as a sum of S (λ), and I (λ) is a linear combination of S (λ). The present invention
G  G
においては、実際に測定された EL発光スペクトルの強度の値をその中の最大値で 除した、 "規格化された"スぺ外ルを I ( λ )で表す。  In, the “normalized” width of the measured spectrum of the EL emission spectrum divided by the maximum value is expressed as I (λ).
[0034] 前述の様に、分散型 ELは多くの場合、蛍光体粒子の電界発光と、そこで発せられ た光を吸収した波長変換材料による長波発光の 2種類の発光力 なる。これらの発 光は青緑の光と赤色の光を与える。青緑の発光について、最も好ましくは人間の青 の視感度と緑の視感度を均等に刺激する発光バンドを持つことが理想的であり、即 ち、 490nmにピークを持ち、単一のガウス分布で表される (490nmを中心に左右均 等なエネルギー分布を持つ)発光バンドであることが理想となる。赤発光にっ 、ても、[0034] As described above, in many cases, the dispersive EL has two types of luminous power, ie, electroluminescence of phosphor particles and long-wave emission by a wavelength conversion material that absorbs light emitted from the phosphor particles. These emissions give blue-green light and red light. For blue-green light emission, it is ideal to have a light emission band that stimulates human blue and green sights evenly, with a peak at 490 nm and a single Gaussian distribution. It is ideal that the light emission band be expressed by (having an equal energy distribution centered on 490 nm). Even if it emits red light,
610nm付近にピークを持つことが理想である力 発光バンドの形状については、人 間の赤の視感度と赤色と表現される色 (650nm付近の光)に差異があるため、単一の ガウス分布で表される発光バンドよりも長波の発光成分を含み、長波側に裾を長く引 く形状の方がよい。即ち、赤色発光は 6 lOnmよりやや短波にピークを持つガウス分 布とそれより長波にピークを持ち半値幅の大きなガウス分布の足し合わせの関数とし て表されることが好ましい。一方、青緑の発光バンドが狭くなつた場合や赤色の発光 が弱くなつた場合には、緑の光が弱くなり、緑の演色性が悪ィ匕する。この場合は緑の 光を補うために、緑発光の波長領域にさらにもう一つのガウス分布で表される発光中 心をカ卩える必要がある。 It is ideal to have a peak at around 610 nm. For the shape of the emission band, there is a difference in human red visibility and the color expressed as red (light around 650 nm), so there is a single Gaussian distribution. It is better to have a shape that includes a light emission component of a longer wave than the light emission band represented by That is, the red light emission is preferably expressed as a function of the sum of a Gaussian distribution having a peak at a short wave slightly shorter than 6 lOnm and a Gaussian distribution having a peak at a longer wave and a large half-value width. On the other hand, when the blue-green light emission band becomes narrower or the red light emission becomes weaker, the green light becomes weaker and the color rendering of green deteriorates. In this case green In order to supplement the light, it is necessary to cover another emission center represented by another Gaussian distribution in the green emission wavelength region.
[0035] この考え方に白色発光を満たすという観点を加えると、青緑色と赤色の発光バンド 、あるいは青緑色と緑色と赤色の発光バンドの強度比をある範囲に決めることが出来 、多くの実験結果と併せて、好ましい演色性と白色度を満たすスペクトルの上限と下 限の関数を求めると、スペクトルの上限の関数 f( λ )は、  [0035] By adding the viewpoint of satisfying white light emission to this concept, the intensity ratio of the blue-green and red light-emitting bands or the blue-green, green and red light-emitting bands can be determined within a certain range. In addition, when the upper and lower limit functions of the spectrum satisfying preferable color rendering properties and whiteness are obtained, the upper limit function f (λ) of the spectrum is
[0036] 画  [0036] Painting
/(l) = l eXp(-ln(2)(^^)2) + 0.8exp(-ln(2)(^^)2) + 0.5eXp(-ln(2X^^)2) / (l) = le X p (-l n (2) (^^) 2 ) + 0.8exp (-ln (2) (^^) 2 ) + 0.5e X p (-ln (2X ^^) 2 )
[0037] で表され、下限の関数 g ( λ )は、 [0037] and the lower limit function g (λ) is
[0038] [数 5]
Figure imgf000008_0001
[0038] [Equation 5]
Figure imgf000008_0001
[0039] で表されることがゎカゝつた。従って、実際に測定されるスペクトルを規格化することで 得られる I ( λ )は、スペクトルとして有効な 400nmから 700nmの範囲で  [0039] It was found that Therefore, I (λ) obtained by normalizing the spectrum actually measured is in the range of 400 nm to 700 nm which is effective as a spectrum.
&(λ)≤ΐ(λ)≤ί(λ)  & (λ) ≤ΐ (λ) ≤ί (λ)
を満たすことを特徴とする。この発明を、本明細書において第一発明と言う。  It is characterized by satisfying. This invention is referred to as the first invention in this specification.
[0040] 以上のように、第一発明では、 Ι(λ)は、 400nm以上 700nm以下の区間で常に 1( え)が g( )以上 ί(λ)以下である。一方、実際にはスペクトルの末端など、演色性や 白色度にほとんど影響のない波長範囲では g( λ )≤ΐ(λ)≤ί(λ)が成り立たなくて も良 、場合がある。例えば青色側の裾力 ¾L素子の外側を覆う封止フィルムの吸収に よって切られた形状であっても演色性に大きな影響を与えない場合がある。つまり、 g (λ)≤ΐ(λ)≤ί(λ)は 400nm以上 700nm以下の範囲で成り立つていることが好ま しいが、最低限 410nm以上 650nm以下の範囲で成り立っていればよい。この後者 の発明を、本明細書において第二発明と言う。  [0040] As described above, in the first invention, Ι (λ) is always 1 (e) or more and g () or more and λ (λ) or less in a section of 400 nm or more and 700 nm or less. On the other hand, g (λ) ≤ΐ (λ) ≤ί (λ) may not be satisfied in the wavelength range where the color rendering properties and whiteness are hardly affected, such as the end of the spectrum. For example, even if the shape is cut by absorption of the sealing film covering the outside of the L element, the color rendering property may not be greatly affected. In other words, g (λ) ≤ ΐ (λ) ≤ ί (λ) is preferably in the range of 400 nm to 700 nm, but it should be at least 410 nm to 650 nm. This latter invention is referred to as the second invention in this specification.
[0041] 赤色の演色性を良好に保っためには、上記を満たすことが好ましい。さらに好ましく は、 Ι( λ )において、極小値より長波側にある極大値が 600nm以上にあることであり 、これは人間の赤色の視感度に EL素子の赤色の発光波長が近づくことに由来する [0042] 他方、良好な白色を保つ観点からは、青緑の発色と赤色の発色のバランスが取れ ていることが重要であり、 Ι ( λ )において、極小値より長波側にある極大値が Ι ( λ )≤ 0. 95であることが好ましい。 [0041] In order to maintain good color rendering properties of red, it is preferable to satisfy the above. More preferably, in 値 (λ), the maximum value on the long wave side from the minimum value is 600 nm or more, which is derived from the fact that the red emission wavelength of the EL element approaches the human red visibility. [0042] On the other hand, from the viewpoint of maintaining a good white color, it is important to balance the blue-green coloration and the red coloration. In Ι (λ), the maximum value on the longer wave side than the minimum value is It is preferable that Ι (λ) ≤ 0.95.
[0043] Ι ( λ )で表されるスペクトルで得られる EL素子発光時の色温度は 3500Κ以上、 85 OOK以下であることが好ましいが、より好ましくは 5000K以上、 8000K以下である。 この時、色度座標上で好ましい X, yの値はそれぞれが 0. 25力ら 0. 45の範囲にある ことである力 より好ましくはそれらが共に 0. 28から 0. 40の範囲に含まれることであ る。  [0043] The color temperature at the time of light emission of the EL element obtained by the spectrum represented by Ι (λ) is preferably 3500 ° C or more and 85OOK or less, more preferably 5000K or more and 8000K or less. At this time, the preferable values of X and y on the chromaticity coordinates are forces that are each in the range of 0.25 force to 0.45, more preferably both are included in the range of 0.28 to 0.40. It is to be.
[0044] 分散型 ELは、発光色の異なる複数の蛍光体粒子を混合することや、複数の波長 変換材料を使うこと等でスペクトル形状の調節が容易であると 、う特長を有して 、る。  [0044] Dispersion EL has the advantage that the spectrum shape can be easily adjusted by mixing a plurality of phosphor particles having different emission colors or using a plurality of wavelength conversion materials. The
[0045] 本発明に好ましく用いられる蛍光体粒子は、母体材料と付活剤と必要に応じて共 付活剤とを混合して焼成など種々の調製法により調製してなる粒子が用いられる。  [0045] Phosphor particles preferably used in the present invention are particles prepared by various preparation methods such as firing by mixing a base material, an activator, and, if necessary, a coactivator.
[0046] この際用いられる母体材料としては、具体的には第 II族元素と VI族元素とから成る 群力 選ばれる元素の一つあるいは複数と、第 III族元素と第 V族元素とから成る群か ら選ばれる一つあるいは複数の元素とから成る半導体の微粒子であり、必要な発光 波長領域により任意に選択される。例えば、 CdS, CdSe, CdTe, ZnS, ZnSe, Zn Te, CaS, MgS, SrS, GaP, GaAs,及びそれらの混晶などが挙げられるが、 ZnS, CdS, CaSなどを好ましく用いることができる。さらに、粒子の母体材料としては、 Ba Al S、 CaGa S、 Ga O、 Zn SiO、 Zn GaO、 ZnGa O , ZnGeO , ZnGeO , Zn [0046] The matrix material used in this case is specifically composed of one or more elements selected from group II elements and group VI elements, and group III elements and group V elements. It is a semiconductor fine particle composed of one or more elements selected from the group consisting of, and is arbitrarily selected according to a necessary emission wavelength region. Examples thereof include CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, CaS, MgS, SrS, GaP, GaAs, and mixed crystals thereof. ZnS, CdS, CaS, and the like can be preferably used. Furthermore, the base material of the particles includes BaAlS, CaGaS, GaO, ZnSiO, ZnGaO, ZnGaO, ZnGeO, ZnGeO, Zn
2 4 2 4 2 3 2 4 2 4 2 4 3 42 4 2 4 2 3 2 4 2 4 2 4 3 4
Al O , CaGa O , CaGeO , Ca Ge O , CaO, Ga O , GeO , SrAl O , SrGa OAl O, CaGa O, CaGeO, Ca Ge O, CaO, Ga O, GeO, SrAl O, SrGa O
2 4 2 4 3 2 2 7 2 3 2 2 4 2 42 4 2 4 3 2 2 7 2 3 2 2 4 2 4
, SrP O , MgGa O , Mg GeO , MgGeO , BaAl O , Ga Ge O , BeGa O , Y, SrP O, MgGa O, Mg GeO, MgGeO, BaAl O, Ga Ge O, BeGa O, Y
2 7 2 4 2 4 3 2 4 2 2 7 2 4 22 7 2 4 2 4 3 2 4 2 2 7 2 4 2
SiO , Y GeO , Y Ge O , Y GeO , Y O、 Y O S, SnO及びそれらの混晶などをSiO, Y GeO, Y Ge O, Y GeO, Y O, Y O S, SnO and their mixed crystals
5 2 5 2 2 7 4 8 2 3 2 2 2 5 2 5 2 2 7 4 8 2 3 2 2 2
好ましく用いることができる。  It can be preferably used.
[0047] また、付活剤としては、 Mnや Cuなどの金属イオン及び、希土類元素などを好ましく 用!/、ることができる。  [0047] As the activator, metal ions such as Mn and Cu and rare earth elements can be preferably used.
[0048] また、必要に応じて添加される共付活剤としては、 CI, Br, Iなどのハロゲン元素や A1などを好ましく用いることができる。 [0049] さらに、本発明では、以下の蛍光体粒子を用いることがより好ましい。 [0048] Further, as a coactivator added as necessary, halogen elements such as CI, Br, and I, A1 and the like can be preferably used. Furthermore, in the present invention, it is more preferable to use the following phosphor particles.
(a)平均粒子サイズ (球相当直径)力 0. 1 m以上 20 μ m以下の範囲で粒子サイ ズの変動係数力 0%未満の範囲である蛍光体粒子。  (a) Phosphor particles whose average particle size (sphere equivalent diameter) force is in the range of 0.1 m or more and 20 μm or less and the particle size variation coefficient force is less than 0%.
(b)平均粒子サイズが、 0. 1 μ m以上 20 m以下の範囲で、粒子内部に多重双晶 構造を 1粒子中に 5nm以下の間隔で 10層以上持つことを特徴とする蛍光体粒子。 (b) Phosphor particles having an average particle size of 0.1 μm or more and 20 m or less and having multiple twin structures inside the particles and having 10 or more layers at intervals of 5 nm or less in one particle .
(c) 0. 01 μ m以上の厚みを有する非発光シェル層で被覆されていることを特徴とす る前記 (a)または (b)の 、ずれか一項に記載の蛍光体粒子。 (c) The phosphor particle according to any one of (a) and (b), which is coated with a non-light-emitting shell layer having a thickness of 0.01 μm or more.
(d)付活剤が銅、マンガン、銀、金及び希土類元素から選択された少なくとも一種の イオンである前記 (a)〜(c)の 、ずれか一項に記載の蛍光体粒子。  (d) The phosphor particles according to any one of (a) to (c), wherein the activator is at least one ion selected from copper, manganese, silver, gold, and a rare earth element.
(e)共付活剤が塩素、臭素、ヨウ素、及びアルミニウムカゝら選択された少なくとも一種 のイオンである前記 (a)〜(d)の 、ずれか一項に記載の蛍光体粒子。  (e) The phosphor particles according to any one of (a) to (d), wherein the coactivator is at least one ion selected from chlorine, bromine, iodine, and aluminum.
(f)付活剤が銅イオンであり、共付活剤が塩素イオンである前記 (a)〜 (e)の 、ずれ か一項に記載の蛍光体粒子。  (f) The phosphor particle according to any one of (a) to (e), wherein the activator is copper ion and the coactivator is chloride ion.
[0050] 本発明に利用可能な蛍光体粒子は、当業界で広く用いられる焼成法(固相法)で 形成することができる。例えば、硫ィ匕亜鉛の場合、液相法で結晶子サイズ 10nm以上 50nm以下の範囲の微粒子粉末 (通常生粉と呼ぶ)を作成し、これを一次粒子として 用い、これに付活剤と呼ばれる不純物を混入させて融剤とともに坩堝にて 900°C以 上 1300°C以下の範囲の高温で 30分以上 10時間以下の範囲、第 1の焼成を行い粒 子を得る。第 1の焼成によって得られる中間体蛍光体粉末をイオン交換水で繰り返し 洗浄してアルカリ金属な 、しアルカリ土類金属及び過剰の付活剤、共付活剤を除去 する。次いで、得られた中間体蛍光体粉末に第 2の焼成を施す。第 2の焼成は、第 1 の焼成より低温の 500°C以上 800°C以下の範囲で、また短時間の 30分以上 3時間 以下の範囲の加熱 (アニーリング)をする。これら焼成により蛍光体粒子内には多くの 積層欠陥が発生するが、微粒子でかつより多くの積層欠陥が蛍光体粒子内に含ま れるように、第 1の焼成と第 2の焼成の条件を適宜選択することが好ましい。また、上 記中間体蛍光体粉末に、ある範囲の大きさの衝撃力を加えることにより、粒子を破壊 することなぐ積層欠陥の密度を大幅に増加させることができる。衝撃力を加える方法 としては、中間体蛍光体粉末の粒子同士を接触混合させる方法、アルミナ等の球体 を混ぜて混合させる(ボールミル)方法、粒子を加速させ衝突させる方法、超音波を 照射する方法などを好ましく用いることができる。その後、 HC1等の酸でエッチングし て表面に付着している金属酸ィ匕物を除去し、さらに表面に付着した硫化銅を、 KCN で洗浄して除去、乾燥して蛍光体粒子を得る。 [0050] The phosphor particles usable in the present invention can be formed by a firing method (solid phase method) widely used in the industry. For example, in the case of zinc sulfate, a fine particle powder (usually called raw powder) with a crystallite size in the range of 10 nm to 50 nm is prepared by the liquid phase method, and this is used as a primary particle, which is called an activator. Impurities are mixed, and particles are obtained by first firing in a crucible with a flux at a high temperature in the range of 900 ° C to 1300 ° C for 30 minutes to 10 hours. The intermediate phosphor powder obtained by the first firing is repeatedly washed with ion exchange water to remove alkali metal, alkaline earth metal, excess activator, and coactivator. Next, second baking is performed on the obtained intermediate phosphor powder. In the second baking, heating (annealing) is performed at a temperature lower than that of the first baking in the range of 500 ° C. to 800 ° C. and in a short time of 30 minutes to 3 hours. These firings cause many stacking faults in the phosphor particles, but the conditions of the first firing and the second firing are appropriately set so that fine particles and more stacking faults are included in the phosphor particles. It is preferable to select. In addition, by applying an impact force in a certain range to the intermediate phosphor powder, the density of stacking faults without breaking the particles can be greatly increased. As a method of applying impact force, a method of contacting and mixing particles of the intermediate phosphor powder, a sphere such as alumina, etc. A method of mixing and mixing (ball mill), a method of accelerating and colliding particles, a method of irradiating ultrasonic waves, and the like can be preferably used. Thereafter, etching is performed with an acid such as HC1 to remove metal oxides adhering to the surface, and copper sulfide adhering to the surface is removed by washing with KCN and dried to obtain phosphor particles.
[0051] また、本発明に利用可能な蛍光体粒子の形成方法として、水熱合成法、尿素溶融 法、噴霧熱分解法を用いて形成することも好ましぐさらに、レーザー 'アブレーシヨン 法、 CVD法、プラズマ CVD法、スパッタリングや抵抗加熱、電子ビーム法、流動油面 蒸着を組み合わせた方法などの気相法と、複分解法、プレカーサ一の熱分解反応に よる方法、逆ミセル法ゃこれらの方法と高温焼成を組み合わせた方法、凍結乾燥法 などの液相法などを用いて形成することもできる。  [0051] In addition, as a method for forming phosphor particles usable in the present invention, it is preferable to use a hydrothermal synthesis method, a urea melting method, or a spray pyrolysis method. Further, a laser 'ablation method, a CVD method is used. Gas phase methods such as methods combining plasma, chemical vapor deposition, sputtering, resistance heating, electron beam method, fluid oil surface deposition, metathesis method, precursor thermal decomposition method, reverse micelle method It can also be formed by using a method combining calcination with high temperature and a liquid phase method such as freeze-drying.
[0052] 発光粒子層は、 EL蛍光体粒子含有塗布液を塗布して形成することができる。該 E L蛍光体粒子含有塗布液は、少なくとも EL蛍光体粒子、結合剤、および結合剤を溶 解する溶剤を含有してなる塗布液である。結合剤としては、シァノエチルセルロース 系榭脂のように、比較的誘電率の高いポリマーや、ポリエチレン、ポリプロピレン、ポリ スチレン系榭脂、シリコーン榭脂、エポキシ榭脂、フッ化ビ-リデンなどの榭脂を用い ることが好ましい。これらの結合剤に、 BaTiOや SrTiOなどの高誘電率の微粒子を  [0052] The luminescent particle layer can be formed by applying a coating solution containing EL phosphor particles. The EL phosphor particle-containing coating solution is a coating solution containing at least EL phosphor particles, a binder, and a solvent that dissolves the binder. Examples of binders include polymers having a relatively high dielectric constant such as cyanoethyl cellulose resin, polyethylene, polypropylene, polystyrene resin, silicone resin, epoxy resin, and vinylidene fluoride. It is preferable to use fat. To these binders, fine particles with high dielectric constant such as BaTiO and SrTiO
3 3  3 3
、結合剤 100質量部に対して 5〜50質量部混合して誘電率を調整することもできる。 分散方法としては、ホモジナイザー,遊星型混練機,ロール混練機、超音波分散機 などを用いることができる。溶剤としては極性の高い溶剤であれば限定無く用いること が出来、アルコール、ケトン、エステル、多価アルコールおよびその誘導体、可塑剤 などを好ましく用いることが出来る。  The dielectric constant can be adjusted by mixing 5 to 50 parts by mass with respect to 100 parts by mass of the binder. As a dispersion method, a homogenizer, a planetary kneader, a roll kneader, an ultrasonic disperser, or the like can be used. As the solvent, any solvent having a high polarity can be used without limitation, and alcohols, ketones, esters, polyhydric alcohols and derivatives thereof, plasticizers, and the like can be preferably used.
[0053] 常温における EL蛍光体粒子含有塗布液の粘度は、 0. lPa' s以上 10. OPa' s以 下の範囲が好ましぐ 0. 3Pa' s以上 8. OPa' s以下の範囲がより好ましぐ 1. OPa- s 以上 6. OPa' s以下の範囲が特に好ましい。 EL蛍光体粒子含有塗布液の粘度が、 上述の範囲内にあれば、塗膜の膜厚ムラが生じにくぐまた分散後の時間経過ととも に蛍光体粒子が分離沈降せず、比較的高速での塗布も可能であり、好ましい。なお 、前記粘度は、塗布温度と同じ 20°Cにおいて測定される値である。  [0053] The viscosity of the coating solution containing EL phosphor particles at room temperature is preferably in the range of 0.1 lPa's or more and 10. OPa's or less. 0.3 or more Pa's or more 8. The range of OPa's or less More preferable 1. OPa-s or more 6. OPa's or less is particularly preferable. If the viscosity of the coating solution containing EL phosphor particles is within the above-mentioned range, coating film thickness unevenness hardly occurs, and phosphor particles do not separate and settle with the passage of time after dispersion. It is also possible to apply with the above method. The viscosity is a value measured at 20 ° C. which is the same as the coating temperature.
[0054] 発光粒子層は、スライドコーター又はエタストルージョンコーターなどを用いて、透 明電極を付設したプラスチック支持体等の上に、塗膜の乾燥膜厚が 0. 5 m以上 6 O /z m以下の範囲になるように連続的に塗布することが好ましい。このとき、発光粒子 層の膜厚変動は、 12. 5%以下が好ましぐ特に 5%以下が好ましい。 [0054] The luminescent particle layer is made of a transparent material such as a slide coater or an etrusion coater. It is preferable to apply continuously on a plastic support or the like provided with a bright electrode so that the dry film thickness of the coating film is in the range of 0.5 m or more and 6 O / zm or less. At this time, the film thickness variation of the luminescent particle layer is preferably 12.5% or less, particularly preferably 5% or less.
[0055] 発光粒子層中の蛍光体粒子の充填率に制限しな!、が、好ましくは 60質量%以上 9 5質量%以下の範囲で、より好ましくは 75質量%以上 85質量%以下の範囲である。 本発明の一実施態様にぉ 、て蛍光体粒子の粒子サイズを 20 μ m以下にすることで 、発光粒子層の塗膜の膜厚の均一性が向上し、塗膜表面の平滑性も同時に向上す る。さらに、単位面積当たりの粒子数が大幅に増加することで、微細な発光ムラが著 しく改善できる。さらに、粒子サイズの減少は、蛍光体粒子の印加電圧の増加につな がり、発光粒子層の薄層化による発光粒子層への電界強度の増加と併せて、 EL素 子の輝度向上にとって好ましぐ雑音の原因となる振動の抑制にも好ましい。  [0055] The filling rate of the phosphor particles in the luminescent particle layer is not limited !, but is preferably in the range of 60% by mass to 95% by mass, more preferably in the range of 75% by mass to 85% by mass. It is. In one embodiment of the present invention, by making the particle size of the phosphor particles 20 μm or less, the uniformity of the coating film thickness of the luminescent particle layer is improved, and the smoothness of the coating film surface is simultaneously achieved. improves. Furthermore, when the number of particles per unit area is greatly increased, fine light emission unevenness can be remarkably improved. Furthermore, the decrease in the particle size leads to an increase in the applied voltage of the phosphor particles, and in addition to an increase in the electric field strength to the luminescent particle layer due to the thinner luminescent particle layer, it is favorable for improving the luminance of the EL element. It is also preferable for suppressing vibrations that cause noise.
[0056] 本発明に好ましく用いられる波長変換材料としては、蛍光顔料または蛍光染料が 挙げられる。これらの発光中心をなすィ匕合物としては、ローダミン、ラタトン、キサンテ ン、キノリン、ベンゾチアゾール、トリェチルインドリン、ペリレン、トリフェンニン、ジシァ ノメチレンを骨格として持つ化合物が好ましぐ他にもシァニン系色素、ァゾ染料、ポ リフエ-レンビ-レン系ポリマー、ジシランオリゴチェ-レン系ポリマー、ルテニウム錯 体、ユーロピウム錯体、エルビウム錯体を用いることも好ましい。これらの化合物は単 独で用いても複数種類を用いてもよい。また、これらの化合物はさらにポリマー等に 分散した後に波長変換材料として使用してもよい。これらの化合物の中でも、 550η mから 650nmの範囲に発光スペクトルの極大値をもつものが好ましぐより好ましくは 600nmから 650nmの範囲に発光極大を持つものであり、特に好ましくは 61 Onm力 ら 630nmの範囲に発光極大を持つものである。  [0056] Examples of the wavelength conversion material preferably used in the present invention include fluorescent pigments and fluorescent dyes. Among these compounds that form these luminescent centers, compounds having rhodamine, latathone, xanthene, quinoline, benzothiazole, triethylindoline, perylene, triphennin, and dicyanomethylene as skeletons are preferred, as well as cyanine dyes. It is also preferable to use an azo dye, a poly-ethylene bi-ylene polymer, a disilane oligo-chelen polymer, a ruthenium complex, a europium complex, or an erbium complex. These compounds may be used alone or in combination. Further, these compounds may be used as a wavelength conversion material after further being dispersed in a polymer or the like. Among these compounds, those having the maximum value of the emission spectrum in the range of 550 ηm to 650 nm are preferred, more preferably those having the emission maximum in the range of 600 nm to 650 nm, particularly preferably 61 Onm force and 630 nm. It has a light emission maximum in the range.
[0057] 本発明の EL素子は、これらの波長変換材料を含有する層を有することが好ましい 。これらの波長変換材料は、発光粒子層および Zまたは誘電体層に含有されること ができ、誘電体層に含有されることが好ましい。また、本発明の EL素子は、誘電体層 を複数有して、 2つの誘電体層に挟まれる位置に波長変換材料を含有する波長変換 材料含有層を有することもできる。さらに、透明電極と背面電極の間にこれらの波長 変換材料含有層を有さず、透明電極と背面電極の外側に波長変換フィルム層として 有することも好ましい。波長変換材料含有層は発光粒子層の周辺に有しても、発光 粒子層と透明電極の間に有しても、さらには発光粒子層と誘電体層の間に有してもよ ぐいずれの位置に設置することも可能である。 [0057] The EL device of the present invention preferably has a layer containing these wavelength conversion materials. These wavelength conversion materials can be contained in the luminescent particle layer and the Z or dielectric layer, and are preferably contained in the dielectric layer. In addition, the EL element of the present invention may have a wavelength conversion material-containing layer containing a plurality of dielectric layers and containing a wavelength conversion material at a position sandwiched between the two dielectric layers. Furthermore, these wavelength conversion material-containing layers are not provided between the transparent electrode and the back electrode, and as a wavelength conversion film layer on the outside of the transparent electrode and the back electrode. It is also preferable to have it. The wavelength conversion material-containing layer may be provided around the luminescent particle layer, between the luminescent particle layer and the transparent electrode, or between the luminescent particle layer and the dielectric layer. It is also possible to install in the position.
[0058] 波長変換材料は、前述のとおり、誘電体層に含有されること、または 2つの誘電体 層に挟まれる位置に波長変換材料層を設置することが好ま 、。  [0058] As described above, it is preferable that the wavelength conversion material is contained in the dielectric layer, or that the wavelength conversion material layer is disposed at a position sandwiched between the two dielectric layers.
[0059] 波長変換材料は、発光粒子層に含有される蛍光体粒子が発した光を吸収し、蛍光 体粒子が発した光より長波の光を発する材料であるため、これらの位置に有されるこ とが好ましい。即ち、材料が波長変換を行う際に、波長変換材料の発光バンドと該材 料の吸収バンドの間で、波長の上で重なり合いがあれば、自ら発した光を自らが吸収 することになり、見かけ上、発光バンドの短波側の形状が変化し、発光していない様 に観測されることになる。この現象を利用して、波長変換材料を変えずとも、材料へ の光の与え方を変え、材料の光吸収の大きさを変えることによって、見かけ上の発光 極大の位置を変えて、 EL素子内での波長変換材料の発光極大波長(赤色の発光極 大波長)を所望の波長に調整できる。  [0059] Since the wavelength converting material is a material that absorbs light emitted from the phosphor particles contained in the light emitting particle layer and emits light having a longer wavelength than the light emitted from the phosphor particles, the wavelength converting material is used at these positions. It is preferable. That is, when the material performs wavelength conversion, if there is an overlap in wavelength between the emission band of the wavelength conversion material and the absorption band of the material, the light itself will be absorbed, Apparently, the shape on the short wave side of the emission band changes, and it is observed that no light is emitted. By utilizing this phenomenon, the position of the light emission maximum of the material can be changed by changing the way light is applied to the material without changing the wavelength conversion material, and by changing the amount of light absorption of the material. The emission maximum wavelength (red emission maximum wavelength) of the wavelength conversion material can be adjusted to a desired wavelength.
[0060] 本発明においてより好ましくは、透明電極と背面電極の間に発光粒子層、光散乱 層、波長変換材料層、誘電体層をこの順に有する EL素子とすることである。さらに好 ましくは、透明電極と背面電極の間に、透明電極側から発光粒子層、光散乱層、波 長変換材料層、誘電体層の順に有する EL素子とすることである。光散乱層は、誘電 体層と同様の材料カゝら形成することができ、発光粒子層の下に薄い誘電体層として 設けることが好ましい。  [0060] In the present invention, an EL device having a light emitting particle layer, a light scattering layer, a wavelength conversion material layer, and a dielectric layer in this order between a transparent electrode and a back electrode is more preferable. More preferably, an EL element having a luminescent particle layer, a light scattering layer, a wavelength conversion material layer, and a dielectric layer in this order from the transparent electrode side between the transparent electrode and the back electrode is used. The light scattering layer can be formed of the same material as the dielectric layer, and is preferably provided as a thin dielectric layer under the light emitting particle layer.
[0061] 上記の素子構成にすると、波長変換材料層より発光粒子層側に位置する光散乱層 による光散乱機能と、波長変換材料層の下側 (すなわち背面電極側であり、波長変 換材料層をはさんで光散乱層とは反対側)に位置する誘電体層による光反射機能と により、波長変換材料層周囲の光散乱の状態を制御できる。すなわち、光散乱層と 誘電体層の間で、発光粒子層から入射した光を多重反射 Z多重散乱させ、この光を 波長変換材料層中の顔料等の波長変換材料に吸収させることで、該材料の自己吸 収を増加させ、その増加の程度を制御し、赤色の発光極大波長を所望の波長に調 整することによって、発光波長の制御を可能とすることができる。さらには、光散乱層 と誘電体層の間で、発光粒子層から入射した光を多重反射 Z多重散乱させ、その光 で波長変換材料層中の顔料等を発光させることにより、発光粒子層から発せられる 光が顔料等の吸収により減少するのを最小限に留めることが出来、従来の技術より E[0061] With the above element configuration, the light scattering function by the light scattering layer located on the light emitting particle layer side from the wavelength conversion material layer, and the lower side of the wavelength conversion material layer (that is, the back electrode side, the wavelength conversion material). The light scattering state around the wavelength conversion material layer can be controlled by the light reflecting function of the dielectric layer located on the opposite side of the light scattering layer across the layer. That is, between the light scattering layer and the dielectric layer, the light incident from the light emitting particle layer is subjected to multiple reflection Z multiple scattering, and this light is absorbed by a wavelength conversion material such as a pigment in the wavelength conversion material layer, thereby The emission wavelength can be controlled by increasing the self-absorption of the material, controlling the degree of the increase, and adjusting the red emission maximum wavelength to a desired wavelength. Furthermore, the light scattering layer The light incident from the light emitting particle layer is subjected to multiple reflection Z multiple scattering between the light emitting layer and the dielectric layer, and the light emitted from the light emitting particle layer is emitted from the light emitting particle layer by the light. Can be kept to a minimum by absorption of
L素子を高輝度とすることを可能とすることができる。 It is possible to make the L element have high luminance.
[0062] 光散乱層の厚みは、誘電体層の厚みより薄!、ことが好ま 、。光散乱層の厚みは、 好ましくは 1 μ m以上 10 μ m以下である。 [0062] Preferably, the thickness of the light scattering layer is thinner than the thickness of the dielectric layer. The thickness of the light scattering layer is preferably 1 μm or more and 10 μm or less.
[0063] 光散乱層には可視光の反射率が高ぐ白色の反射が得られる粒子を含むことが好 ましい。このような材料は、硫酸塩、金属酸化物、窒化物から選択され、例えば MgS[0063] It is preferable that the light scattering layer contains particles capable of obtaining white reflection with a high visible light reflectance. Such materials are selected from sulfates, metal oxides, nitrides, for example MgS
O、 BaSO、 TiO , BaTiO , SrTiO , PbTiO , KNbO , PbNbO , Ta Ο , BaTaO, BaSO, TiO, BaTiO, SrTiO, PbTiO, KNbO, PbNbO, Ta Ο, BaTa
4 4 2 3 3 3 3 3 2 3 24 4 2 3 3 3 3 3 2 3 2
Ο , LiTaO , Υ Ο , Α1 Ο , ZrO , ΑΙΟΝ, ZnSなどが挙げられる。これらの中でもΟ, LiTaO, Υ Ο, Α1Ο, ZrO, ΑΙΟΝ, ZnS and the like. Among these
6 3 2 3 2 3 2 6 3 2 3 2 3 2
光散乱層に使用される粒子は、誘電体であることが好ま 、。  The particles used in the light scattering layer are preferably dielectrics.
[0064] 光散乱層に用いられる誘電体粒子としては、後記する誘電体層に用いられる誘電 体粒子が挙げられる。光散乱層が誘電体である場合には、光散乱層は、誘電体層と 同様に形成することができる。 [0064] Examples of the dielectric particles used in the light scattering layer include dielectric particles used in the dielectric layer described later. When the light scattering layer is a dielectric, the light scattering layer can be formed in the same manner as the dielectric layer.
[0065] 光散乱層に用いられる粒子の平均サイズは、平均粒子径で、好ましくは 0. m以 下、より好ましく ίま 0. 01 μ m以上 0. 5 μ m以下、最も好ましく ίま 0. 05 μ m以上 0. 5 m以下である。光散乱層の厚みを薄くする観点から、異なる粒子サイズの誘電体 粒子を混合して用いることも好ましぐ例えば、平均粒子サイズが平均粒子径で、 0. : m以上 0. 5 m以下の粒子(大サイズ粒子とも称する。)を用いた時には、平均 粒子サイズが平均粒子径で、 0. 01 μ m以上 0. 1 μ m未満の粒子 (小サイズ粒子とも 称する。)を混合することが好ましい。平均粒子径は HORIBALA—920で測定し、 測定試料の光透過率が 94. 5%から 95. 4%の時に測定した値を指す。 [0065] The average size of the particles used in the light-scattering layer is an average particle size, preferably not more than 0. m, more preferably not less than 0.01 μm but not more than 0.5 μm, most preferably not more than 0 μm. .05 μm or more and 0.5 m or less. From the viewpoint of reducing the thickness of the light scattering layer, it is also preferable to use a mixture of dielectric particles having different particle sizes. For example, the average particle size is an average particle size of 0 .: m or more and 0.5 m or less. When using particles (also referred to as large size particles), particles having an average particle size of 0.01 μm or more and less than 0.1 μm (also referred to as small size particles) may be mixed. preferable. The average particle size is measured with HORIBALA-920, and is measured when the light transmittance of the measurement sample is 94.5% to 95.4%.
[0066] 光散乱層の厚みを上記の範囲とすることで、また光散乱層に用いられる誘電体粒 子の平均サイズを上記の範囲とすることで、発光粒子層から入射光を受けた波長変 換材料層中の顔料等カゝら発せられた光は光散乱層を通り抜け、 EL素子外へ好適に 放射される。 [0066] By setting the thickness of the light scattering layer in the above range, and setting the average size of the dielectric particles used in the light scattering layer in the above range, the wavelength at which incident light is received from the light emitting particle layer. Light emitted from the pigment or the like in the conversion material layer passes through the light scattering layer and is suitably emitted outside the EL element.
[0067] 波長変換材料層の厚みは、 3 m以上 20 m以下であることが好ましい。より好ま しくは 3 μ m以上 15 m以下である。波長変換材料層における該材料の濃度は可能 な限り高いことが好ましい。即ち、波長変換材料層は、実質的に波長変換材料のみ 力もなることが特に好ましい。「実質的に」とは、波長変換材料層における波長変換材 料の濃度が 50質量%から 100質量%であることを言う。波長変換材料層の厚みを上 記の範囲とすることで、また濃度を高くすることで、波長変換材料の自己吸収を増カロ することができ、好ましい態様となる。波長変換材料層の形成工程において、バイン ダーを用いずに該材料層を形成することが好まし、。波長変換材料は塗布液に含有 され塗布されることが好ま ヽ。塗布液に含有される波長変換材料の分散溶媒として は、波長変換材料に顔料を使用する場合には、使用する顔料が溶解しない、あるい は、溶媒が顔料内に浸透して顔料内の蛍光物質が溶出しな 、溶媒を用いることが好 ましい。顔料にもよるが、具体的には、へキサン、トルエン等の炭化水素、シクロへキ サノール、 2—ェチルへキサノール等の主鎖の炭素数が 3以上のアルコール、グリセ リン、エチレングリコール等の多価アルコール、四塩化炭素等のハロゲン化炭化水素 、アジピン酸ジォクチル、セバチン酸ジォクチル等の可塑剤カゝら選ばれる溶媒を用い ることが好ましい。波長変換材料層にバインダーを使用する場合には、前述の発光 粒子層や後記する誘電体層を形成する際に用いる結合剤を好ましく用いることが出 来る。 [0067] The thickness of the wavelength conversion material layer is preferably 3 m or more and 20 m or less. More preferably, it is 3 μm or more and 15 m or less. The concentration of the material in the wavelength conversion material layer is possible As high as possible is preferable. In other words, it is particularly preferable that the wavelength conversion material layer also has a force only for the wavelength conversion material. “Substantially” means that the concentration of the wavelength converting material in the wavelength converting material layer is 50 mass% to 100 mass%. By setting the thickness of the wavelength conversion material layer in the above range and increasing the concentration, self-absorption of the wavelength conversion material can be increased, which is a preferred embodiment. In the step of forming the wavelength conversion material layer, it is preferable to form the material layer without using a binder. It is preferable that the wavelength converting material is contained in the coating solution and applied. As a dispersion solvent for the wavelength conversion material contained in the coating solution, when a pigment is used for the wavelength conversion material, the pigment used does not dissolve, or the solvent penetrates into the pigment and the fluorescence in the pigment penetrates. It is preferable to use a solvent so that the substance does not elute. Although it depends on the pigment, specific examples include hydrocarbons such as hexane and toluene, alcohols having 3 or more carbon atoms in the main chain such as cyclohexanol and 2-ethylhexanol, glycerin, and ethylene glycol. It is preferable to use a solvent selected from plasticizers such as polyhydric alcohols, halogenated hydrocarbons such as carbon tetrachloride, dioctyl adipate, and dioctyl sebacate. When a binder is used for the wavelength conversion material layer, it is possible to preferably use a binder used when forming the above-described light emitting particle layer or a dielectric layer described later.
[0068] 本発明にお ヽては、波長変換材料を誘電体層に含有させることも好ま ヽ。より好 ましくは、透明電極と背面電極の間に発光粒子層、波長変換材料を含有する誘電体 層をこの順に有する EL素子とすることである。さらに好ましくは、透明電極と背面電 極の間に、透明電極側から発光粒子層、波長変換材料を含有する誘電体層の順に 有する EL素子とすることである。これは前述の光散乱層を設けた場合と同様、光散 乱の多い部分に波長変換材料を置き、多重反射 Z多重散乱の効果によって、波長 変換材料の見かけの発光極大波長を長波化することを意図するものである。  [0068] In the present invention, it is also preferable to include a wavelength conversion material in the dielectric layer. More preferably, an EL element having a light emitting particle layer and a dielectric layer containing a wavelength conversion material in this order between a transparent electrode and a back electrode is used. More preferably, the EL element has a light emitting particle layer and a dielectric layer containing a wavelength conversion material in this order from the transparent electrode side between the transparent electrode and the back electrode. As in the case of providing the light scattering layer described above, a wavelength conversion material is placed in a portion where the light scattering is large, and the apparent maximum wavelength of the wavelength conversion material is lengthened by the effect of multiple reflection Z multiple scattering. Is intended.
[0069] 波長変換材料と誘電体粒子を混合する場合、誘電体粒子としては、誘電率が高ぐ 且つ、高 ヽ反射率を有する誘電体材料であれば任意のものを用いて形成することが 出来る。このような材料は、金属酸化物、窒化物から選択され、例えば TiO , BaTiO  [0069] When the wavelength converting material and the dielectric particles are mixed, the dielectric particles may be formed using any material as long as the dielectric material has a high dielectric constant and a high reflectance. I can do it. Such materials are selected from metal oxides and nitrides, for example TiO, BaTiO
2 3 twenty three
, SrTiO, PbTiO, KNbO, PbNbO, Ta O, BaTa O, LiTaO , Y O , Al O , SrTiO, PbTiO, KNbO, PbNbO, TaO, BaTaO, LiTaO, YO, AlO
3 3 3 3 2 3 2 6 3 2 3 2 3 3 3 3 3 2 3 2 6 3 2 3 2 3
, ZrO , AION, ZnSなどを好ましく使用することが出来る。 [0070] 波長変換材料と誘電体粒子を混合する場合には、波長変換材料と誘電体粒子を 結合剤に分散することが好ましい。結合剤としては、シァノエチルセルロース系榭脂 のように、比較的誘電率の高いポリマーや、ポリエチレン、ポリプロピレン、ポリスチレ ン系榭脂、シリコーン榭脂、エポキシ榭脂、フッ化ビ-リデンなどの榭脂が好ましい。 誘電体材料の分散方法としては、ホモジナイザー,遊星型混練機,ロール混練機、 超音波分散機などを用いて分散することが好まし 、。 , ZrO, AION, ZnS and the like can be preferably used. [0070] When the wavelength conversion material and the dielectric particles are mixed, it is preferable to disperse the wavelength conversion material and the dielectric particles in a binder. Examples of binders include polymers having a relatively high dielectric constant such as cyanoethyl cellulose resin, polyethylene, polypropylene, polystyrene resin, silicone resin, epoxy resin, vinylidene fluoride, and the like. Fat is preferred. As a dispersion method of the dielectric material, it is preferable to disperse using a homogenizer, a planetary kneader, a roll kneader, an ultrasonic disperser, or the like.
[0071] 波長変換材料と誘電体粒子を混合した時には、波長変換材料層を兼ねる誘電体 層は 1 m力ら 25 μ mであることが好ましぐより好ましくは 5 μ m力ら 20 μ mの範囲 である。波長変換材料に誘電体粒子を混合した時に好ま Uヽ波長変換材料の濃度 は、誘電体粒子に対して 1質量%から 20質量%であり、より好ましくは 2質量%から 1 0質量%である。  [0071] When the wavelength conversion material and dielectric particles are mixed, the dielectric layer that also serves as the wavelength conversion material layer is preferably 1 m force to 25 μm, more preferably 5 μm force to 20 μm. The range of. The preferred concentration of the wavelength conversion material when the dielectric particles are mixed with the wavelength conversion material is 1% by mass to 20% by mass, more preferably 2% by mass to 10% by mass with respect to the dielectric particles. .
[0072] EL素子に含有される全ての誘電体層を波長変換材料層と兼ねる態様も好ましい。  An embodiment in which all the dielectric layers contained in the EL element also serve as the wavelength conversion material layer is preferable.
より好ましくは、 EL素子に含有される誘電体層を 2層にし、一方の層を波長変換材料 を含む誘電体層、もう一方の層を波長変換材料を含まない誘電体層にする態様であ る。後者の態様においては、どちらの層を背面電極側に置いてもよぐ好ましくは波 長変換材料を含む誘電体層を発光粒子層側に、波長変換材料を含まない誘電体層 を背面電極側にそれぞれ設置することである。  More preferably, there are two dielectric layers contained in the EL element, one layer being a dielectric layer containing a wavelength converting material and the other layer being a dielectric layer not containing a wavelength converting material. The In the latter embodiment, either layer may be placed on the back electrode side. Preferably, the dielectric layer containing the wavelength conversion material is on the luminescent particle layer side, and the dielectric layer not containing the wavelength conversion material is on the back electrode side. It is to install in each.
[0073] さらに、前述の様に自己吸収によって波長変換材料の見かけの発光極大波長を長 波化する場合、波長変換材料を含む層の層厚みを可能な限り薄くし、その層中の波 長変換材料の濃度を濃くすることも好ましい手段の一つとなる。  [0073] Further, when the apparent maximum wavelength of the wavelength conversion material is increased by self-absorption as described above, the layer thickness of the layer containing the wavelength conversion material is made as thin as possible, and the wavelength in the layer is reduced. Increasing the concentration of the conversion material is also a preferable means.
[0074] その好まし 、具体例としては、透明電極と背面電極の間に波長変換材料を添加せ ず、透明電極と背面電極の外側に波長変換フィルム層として使用する態様が挙げら れ、波長変換フィルム層の厚みを 0. 5 μ m以上 20 μ m以下とし、波長変換材料の該 層中の濃度を 30質量%から 100質量%にすることが好ましぐより好ましくは、層厚が 3 μ m以上 15 μ m以下、材料濃度が 40質量%以上 100質量%以下である。この層 はバインダーを用いて形成することができる。ノインダーとしては、光透過度が高い 任意のバインダーを用いることが出来る。本発明における、発光粒子層や誘電体層 で用いる結合剤を用いることも好ま 、。誘電率の高 、ポリマーを用いる必要はなく、 ォレフィン系の榭脂ゃアクリル系の榭脂などを用いることもまた好ま 、。 [0074] As a preferred example, there is an embodiment in which a wavelength conversion material is not added between the transparent electrode and the back electrode, and the wavelength conversion film layer is used outside the transparent electrode and the back electrode. More preferably, the thickness of the conversion film layer is 0.5 μm or more and 20 μm or less, and the concentration of the wavelength conversion material in the layer is preferably 30% by mass to 100% by mass. μm or more and 15 μm or less, and material concentration is 40% or more and 100% or less by mass. This layer can be formed using a binder. As the noinder, any binder having a high light transmittance can be used. It is also preferable to use a binder used in the luminescent particle layer or dielectric layer in the present invention. High dielectric constant, no need to use polymer, It is also preferable to use olefin resin, such as acrylic resin.
[0075] また、別の態様としては、赤色の発光材料として、波長変換材料ば力りではなぐ赤 色に発光する蛍光体粒子を用いることも出来る。赤色に発光する蛍光体としては、硫 化カルシウムある 、は硫化ストロンチウム、あるいはそれらの混晶を母体としユーロピ ゥム等を付活した蛍光体を好ましく用いる。これらの赤色発光材料は青緑に発光する 発光粒子層に含有させることも、発光粒子層と透明電極の間に置くことも、発光粒子 層と誘電体層の間に置くことも好まし ヽ。発光粒子層とは別の層として形成する場合 、発光粒子層と同様に形成することができる。 [0075] As another embodiment, phosphor particles that emit red light that is not as strong as the wavelength conversion material can be used as the red light-emitting material. As the phosphor that emits red light, calcium sulfide, strontium sulfide, or a phosphor in which europium or the like is activated using a mixed crystal thereof as a base is preferably used. These red light emitting materials are preferably contained in a light emitting particle layer that emits blue-green light, placed between the light emitting particle layer and the transparent electrode, or between the light emitting particle layer and the dielectric layer. When formed as a layer different from the light emitting particle layer, it can be formed in the same manner as the light emitting particle layer.
[0076] 誘電体層は、誘電体粒子を含有して形成されることが好ま ヽ。 [0076] The dielectric layer preferably includes dielectric particles.
[0077] 本発明において、誘電体層および光散乱層に好適に用いられる誘電体粒子は、誘 電率と絶縁性とが高ぐ且つ高い誘電破壊電圧を有する誘電体材料であり、高い反 射率を有する誘電体材料であれば任意のものを用いて形成することが出来る。このよ うな材料は、金属酸化物、窒化物から選択され、例えば TiO , BaTiO , SrTiO , Pb [0077] In the present invention, the dielectric particles suitably used for the dielectric layer and the light scattering layer are dielectric materials having a high dielectric breakdown voltage and a high dielectric breakdown voltage with high dielectric constant and insulation properties. Any dielectric material can be used as long as it has a constant rate. Such materials are selected from metal oxides and nitrides, such as TiO, BaTiO, SrTiO, Pb
2 3 3 2 3 3
TiO, KNbO, PbNbO, Ta O, BaTa O, LiTaO, Y O, Al O, ZrO, AIONTiO, KNbO, PbNbO, TaO, BaTaO, LiTaO, YO, AlO, ZrO, AION
3 3 3 2 3 2 6 3 2 3 2 3 23 3 3 2 3 2 6 3 2 3 2 3 2
, ZnSなどが挙げられる。これら誘電体層に用いられる粒子の平均サイズは、平均粒 子径で、好ましく ίま 2. 0 μ m以下、より好ましく ίま 0. 01 μ m以上 1. 0 μ m以下、最も 好ましくは 0. 05 111以上0. 5 /z m以下である。これらの誘電体材料は結合剤に分 散することが好ましい。結合剤としては、シァノエチルセルロース系榭脂のように、比 較的誘電率の高いポリマーや、ポリエチレン、ポリプロピレン、ポリスチレン系榭脂、シ リコーン榭脂、エポキシ榭脂、フッ化ビ-リデンなどの榭脂が好ましい。誘電体材料の 分散方法としては、ホモジナイザー,遊星型混練機,ロール混練機、超音波分散機 などを用いて分散することが好まし 、。 , ZnS and the like. The average size of the particles used in these dielectric layers is preferably an average particle size of ί to 2.0 μm or less, more preferably ί to 0.01 μm to 1.0 μm, most preferably 0. .05 111 or more and 0.5 / zm or less. These dielectric materials are preferably dispersed in the binder. Examples of binders include polymers with relatively high dielectric constants such as cyanoethyl cellulose resin, polyethylene, polypropylene, polystyrene resin, silicone resin, epoxy resin, and vinylidene fluoride. A cocoa is preferred. As a dispersion method of the dielectric material, it is preferable to disperse using a homogenizer, a planetary kneader, a roll kneader, an ultrasonic disperser, or the like.
[0078] 誘電体層は、均一な膜として設置することも、あるいは粒子構造を有する膜とするこ とも好ましい。またそれらの組み合わせであっても良い。「膜が均一である」とは、誘電 体層そのものがアモルファス、あるいは結晶構造を持った層であることを意味し、均 一な膜としては、例えば、薄膜結晶層が挙げられる。誘電体層を均一な膜として設け る方法としては、スパッター、真空蒸着等の気相法が好ましく挙げられる。均一な膜 の場合、誘電体層の厚みは 0. 1 μ m以上 10 μ m以下の範囲であることが好ましい。 [0079] 本発明の EL素子は、誘電体層を 1層有することも、複数有することもできる。誘電 体層は、発光粒子層の片側に設けてもよぐまた発光粒子層の両側に設けてもよい。 発光粒子層の両側に設ける場合、透明電極側の誘電体層は粒子構造を有する膜と しても、高誘電率バインダーのみカゝらなる誘電体層として設置してもよい。誘電体層 を塗布で形成する場合は、発光粒子層と同様に、スライドコーター又はエタストルー ジョンコーターを用いることが好ましい。薄膜結晶層の場合は、基板にスパッタリング 等の気相法で形成した薄膜であっても、 Baや Srなどのアルコキサイドを用いたゾル ゲル膜であっても良い。 The dielectric layer is preferably set as a uniform film or a film having a particle structure. A combination thereof may also be used. “The film is uniform” means that the dielectric layer itself is an amorphous layer or a layer having a crystal structure, and examples of the uniform film include a thin film crystal layer. As a method for providing the dielectric layer as a uniform film, a vapor phase method such as sputtering or vacuum deposition is preferably exemplified. In the case of a uniform film, the thickness of the dielectric layer is preferably in the range of 0.1 μm to 10 μm. [0079] The EL device of the present invention may have one or more dielectric layers. The dielectric layer may be provided on one side of the luminescent particle layer or on both sides of the luminescent particle layer. When provided on both sides of the light emitting particle layer, the dielectric layer on the transparent electrode side may be a film having a particle structure or a dielectric layer consisting only of a high dielectric constant binder. When the dielectric layer is formed by coating, it is preferable to use a slide coater or an etatrusion coater as in the case of the luminescent particle layer. In the case of a thin film crystal layer, it may be a thin film formed on a substrate by a vapor phase method such as sputtering, or a sol-gel film using an alkoxide such as Ba or Sr.
[0080] 誘電体層は、好ましくは誘電体粒子含有塗布液を塗布して形成することができる。  [0080] The dielectric layer is preferably formed by applying a coating solution containing dielectric particles.
該誘電体粒子含有塗布液は、少なくとも誘電体粒子、結合剤、および結合剤を溶解 する溶剤を含有してなる塗布液である。ここで、結合剤および溶剤は、発光粒子層に 用いられるものと同様のものが挙げられる。  The dielectric particle-containing coating solution is a coating solution containing at least dielectric particles, a binder, and a solvent that dissolves the binder. Here, the binder and the solvent are the same as those used for the light emitting particle layer.
[0081] 常温における誘電体粒子含有塗布液の粘度は、 0. OlPa' s以上 lOPa' s以下の 範囲が好ましぐ 0. 08Pa' s以上 8. OPa' s以下の範囲がより好ましい。特に好ましく は 1. OPa' s以上 6. OPa' s以下の範囲である。誘電体粒子含有塗布液の粘度が、上 述の範囲内にあれば、塗膜の膜厚ムラが生じにくぐまた分散後の時間経過とともに 誘電体粒子が分離沈降せず、比較的高速での塗布も可能であり、好ましい。なお、 前記粘度は、塗布温度と同じ 20°Cにお 、て測定される値である。  [0081] The viscosity of the coating solution containing dielectric particles at normal temperature is preferably in the range of 0. OlPa's to lOPa's, more preferably in the range of 0.08 Pa's to 8. OPa's. Particularly preferably, it is in the range of 1. OPa's to 6. OPa's. If the viscosity of the coating solution containing dielectric particles is within the above range, the coating film thickness unevenness is difficult to occur, and the dielectric particles do not separate and settle with the passage of time after dispersion. Application is also possible and preferable. The viscosity is a value measured at 20 ° C. which is the same as the coating temperature.
[0082] 本発明の EL素子において用いられる透明電極としては、一般的に用いられる任意 の透明電極材料を用いて形成された電極が用いられる。透明電極材料としては、例 えば錫ドープ酸ィ匕錫、アンチモンドープ酸化錫、亜鉛ドープ酸ィ匕錫などの酸ィ匕物、 銀の薄膜を高屈折率層で挟んだ多層構造、ポリア-リン、ポリピロールなどの π共役 系高分子などが挙げられる。透明電極にはこれに櫛型あるいはグリッド型等の金属細 線を配置して通電性を改善することも好まし 、。  [0082] As the transparent electrode used in the EL device of the present invention, an electrode formed using any commonly used transparent electrode material is used. Examples of transparent electrode materials include tin oxides such as tin-doped oxide tin, antimony-doped tin oxide, and zinc-doped oxide oxide tin, a multilayer structure in which a silver thin film is sandwiched between high refractive index layers, and poly-phosphorus. And π-conjugated polymers such as polypyrrole. For the transparent electrode, it is also preferable to arrange a metal wire such as a comb or grid to improve the conductivity.
[0083] 透明電極の比抵抗率は、 0. 01 ΩΖ口以上 30 ΩΖ口以下の範囲が好ましい。  [0083] The specific resistivity of the transparent electrode is preferably in the range of 0.01 Ω to 30 Ω.
[0084] 背面電極は、光を取り出さな 、側であり、導電性の有る任意の材料が使用できる。  [0084] The back electrode is the side from which light is not extracted, and any conductive material can be used.
例えば、金、銀、白金、銅、鉄、アルミニウムなどの金属、グラフアイトなどの中から、 作成する素子の形態、作成工程の温度等により適時選択することができる。導電性さ えあれば ITO等の透明電極を用いても良 、。 For example, it can be selected from metal such as gold, silver, platinum, copper, iron, and aluminum, graphite, etc. according to the form of the element to be created, the temperature of the creation process, etc. Conductivity If possible, you can use transparent electrodes such as ITO.
[0085] また、透明電極、背面電極の両電極とも、導電性の前記微粒子材料を結合剤ととも に分散した導電材料含有塗布液を作製して、スライドコーター又はエタストルージョン コーターを用いて塗布することもできる。 [0085] In addition, for both the transparent electrode and the back electrode, a conductive material-containing coating solution in which the conductive fine particle material is dispersed together with a binder is prepared and applied using a slide coater or an etatrusion coater. You can also
[0086] その他、本発明の素子構成において、各種保護層などを必要に応じて付与するこ とがでさる。 [0086] In addition, in the element configuration of the present invention, various protective layers and the like can be applied as necessary.
[0087] 本発明の EL素子は、支持体上に透明電極を配置するのが好ましい。この際用いる ことができる支持体としては、柔軟であり、透明度の高いものであれば限定無く用いる ことができる。好適には、 PET (ポリエチレンテレフタレート)、 PES (ポリエーテルサル フォン)、 PAr (ポリアリレート)、 PC (ポリカーボネート)、 PEN (ポリエチレンナフタレー ト)などのプラスチックフィルムである。  In the EL device of the present invention, it is preferable to dispose a transparent electrode on a support. As the support that can be used in this case, any support that is flexible and highly transparent can be used without limitation. Preferred are plastic films such as PET (polyethylene terephthalate), PES (polyethersulfone), PAr (polyarylate), PC (polycarbonate), and PEN (polyethylene naphthalate).
[0088] 支持体上に塗布された各機能層は、少なくとも塗布カゝら乾燥工程までを連続工程と して形成することが好ましい。乾燥工程は、塗膜が乾燥固化するまでの恒率乾燥ェ 程と、塗膜の残留溶媒を減少させる減率乾燥工程に分けられる。本発明では、各機 能層の結合剤比率が高いため、急速乾燥させると表面だけが乾燥し塗膜内で対流 が発生し、いわゆるべナードセルが生じやすくなり、また急激な溶媒の膨張によりプリ スター故障を発生しやすくなり、塗膜の均一性を著しく損う。逆に、最終の乾燥温度 が低いと、溶媒が各機能層内に残留してしまい、防湿フィルムのラミネート工程等の E L素子化の後工程に影響を与えてしまう。したがって、乾燥工程は、恒率乾燥工程を 緩やかに実施し、溶媒が乾燥するのに十分な温度で減率乾燥工程を実施することが 好ましい。恒率乾燥工程を緩やかに実施する方法としては、支持体が走行する乾燥 室をいくつかのゾーンに分けて、塗布工程終了後からの乾燥温度を段階的に上昇す ることが好ましい。  [0088] Each functional layer coated on the support is preferably formed as a continuous process including at least a coating step and a drying step. The drying process is divided into a constant rate drying process until the coating film is dried and solidified, and a decreasing rate drying process for reducing the residual solvent of the coating film. In the present invention, since the binder ratio of each functional layer is high, when rapidly dried, only the surface is dried, convection is generated in the coating film, so-called Benard cell is likely to occur, and pre-expansion due to rapid solvent expansion. Star failure is likely to occur, and the uniformity of the coating is significantly impaired. On the other hand, if the final drying temperature is low, the solvent remains in each functional layer, affecting the subsequent process of EL device fabrication such as the lamination process of moisture-proof film. Therefore, it is preferable that the drying process is performed slowly at a constant rate, and is performed at a temperature sufficient for the solvent to dry. As a method for carrying out the constant rate drying process gently, it is preferable to divide the drying chamber where the support travels into several zones and gradually increase the drying temperature after completion of the coating process.
[0089] 本発明の EL素子の製造においては、発光粒子層にカレンダー処理機を用いて力 レンダー処理を施してもよい。カレンダー処理により形成された発光粒子層の両主面 の平滑度は、 0. 5 m以下の範囲が好ましぐ 0. 2 m以下がより好ましい。使用す るカレンダー処理機は特に限定されるものではなぐ公知の装置の中力 適宜選択 することができる。少なくとも一方を例えば 50°C〜200°Cに加熱した一対のロールの 間に、加圧しながら結合剤中に蛍光体粒子を分散させた発光粒子層を対象物として 通すことで平滑化処理を施すものである。カレンダー処理において、カレンダーロー ルの加熱温度は、発光粒子層に含まれる結合剤の軟化温度以上にすることが好まし い。また、カレンダー圧力と搬送速度は、蛍光体粒子を破壊したり、必要以上に発光 粒子層を延伸したりしな 、ように、カレンダー温度と発光粒子層の塗布幅も考慮して 、必要な平滑度が得られるように適宜選択することが好ましい。 [0089] In the manufacture of the EL device of the present invention, the light emitting particle layer may be subjected to a force render process using a calendar processor. The smoothness of both main surfaces of the luminescent particle layer formed by calendering is preferably in the range of 0.5 m or less, more preferably 0.2 m or less. The calendar processor to be used is not particularly limited, and can be appropriately selected from among the known devices. A pair of rolls, at least one of which is heated to, for example, 50 ° C to 200 ° C In the meantime, a smoothing process is performed by passing a luminescent particle layer in which phosphor particles are dispersed in a binder while applying pressure as an object. In the calendering process, the heating temperature of the calender roll is preferably higher than the softening temperature of the binder contained in the light emitting particle layer. In addition, the calendar pressure and the conveying speed are not necessary to destroy the phosphor particles or extend the luminescent particle layer more than necessary. It is preferable to select appropriately so that the degree can be obtained.
[0090] EL素子の振動抑制のために補償電極を付与する場合にも、前述の導電材料を用 いることができる。例えば光を取り出す透明電極の外側に補償電極を付与する場合 には、錫ドープ酸化錫、アンチモンドープ酸化錫、亜鉛ドープ酸ィヒ錫などの酸ィ匕物、 銀の薄膜を高屈折率層で挟んだ多層構造、ポリア-リン、ポリピロールなどの π共役 系高分子などの透明電極材料を用いることが好まし 、。  [0090] The conductive material described above can also be used when providing a compensation electrode to suppress vibration of the EL element. For example, when a compensation electrode is provided outside the transparent electrode from which light is extracted, an oxide such as tin-doped tin oxide, antimony-doped tin oxide, or zinc-doped ichtin tin, or a silver thin film is formed with a high refractive index layer. It is preferable to use transparent electrode materials such as sandwiched multilayer structures, π-conjugated polymers such as polyaline and polypyrrole.
[0091] また、光を取り出さな ヽ背面電極の外側に補償電極を付与する場合には、金、銀、 白金、銅、鉄、アルミニウムなどの金属、グラフアイトなど導電性の有る任意の材料が 使用できるが、導電性さえあれば ΙΤΟ等の透明電極を用いても良い。この補償電極 は前記の透明電極や背面電極と絶縁層を介して付設されるが、絶縁層材料は絶縁 性の無機材料や高分子材料、無機材料粉体を高分子材料に分散した分散液などを 蒸着、塗布などにより形成できる。また、導電性の前記微粒子材料を結合剤とともに 分散した導電材料含有塗布液を作製して、スライドコーター又はエタストルージョンコ 一ターを用いて塗布することもできる。さらに、前記絶縁性材料を結合剤とともに分散 した絶縁材料含有塗布液を作製して、前記導電材料含有塗布液と同時に塗布する こともできる。付設した補償電極に駆動電源より電圧を印加するが、このとき発光粒子 層に印加される電圧と逆位相にすることで、発光粒子層で発生する振動を相殺でき る。補償電極は、透明電極の外側又は背面電極の外側のいずれかに絶縁層を挟ん で付設しても同様の効果があるが、同時に付設して一方を接地させることで、さらなる 振動抑制効果を期待できるので好ましい。また、発光粒子層 (誘電体層を有する場 合には、発光粒子層と誘電体層)の誘電率と補償電極の内側の絶縁層の誘電率が 実質同等であるように調整することが振動抑制を効果的に行うためには好ましい。  [0091] When the compensation electrode is provided outside the back electrode without extracting light, any conductive material such as metal such as gold, silver, platinum, copper, iron, and aluminum, or graphite is used. Although it can be used, a transparent electrode such as a bag may be used as long as it has conductivity. The compensation electrode is attached to the transparent electrode and the back electrode through an insulating layer. The insulating layer material is an insulating inorganic material or polymer material, a dispersion liquid in which inorganic material powder is dispersed in a polymer material, or the like. Can be formed by vapor deposition or coating. In addition, a conductive material-containing coating solution in which the conductive fine particle material is dispersed together with a binder can be prepared and applied using a slide coater or an etatrusion coater. Furthermore, an insulating material-containing coating solution in which the insulating material is dispersed together with a binder can be prepared and applied simultaneously with the conductive material-containing coating solution. A voltage is applied to the compensation electrode provided from the driving power source, and at this time, the vibration generated in the luminescent particle layer can be canceled by setting the phase opposite to that of the voltage applied to the luminescent particle layer. The compensation electrode has the same effect even if it is attached to either the outer side of the transparent electrode or the outer side of the back electrode with an insulating layer sandwiched between them. It is preferable because it is possible. It is also possible to adjust so that the dielectric constant of the light emitting particle layer (the light emitting particle layer and the dielectric layer, if a dielectric layer is provided) and the dielectric constant of the insulating layer inside the compensation electrode are substantially equal. This is preferable for effective suppression.
[0092] EL素子の振動抑制のための別の方法として EL素子に用いる緩衝材層を付与する 場合には、緩衝材層として衝撃吸収能の高い高分子材料や発泡剤を加えて発泡さ せた高分子材料を用いることが好ま ヽ。衝撃吸収能の高 、高分子材料としては、 例えば天然ゴム、スチレンブタジエンゴム、ポリイソプレンゴム、ポリブタジエンゴム、二 トリルゴム、クロロプレンゴム、ブチルゴム、ハイバロン、シリコンゴム、ウレタンゴム、ェ チレンプロピレンゴム、フッ素ゴムなどが使用できる。これら高分子材料の硬度として は、振動吸収能の点から 50以下が好ましぐ 30以下がさらに好ましい。また、ブチル ゴム、シリコンゴム、フッ素ゴムなどは、吸水性が低いため EL素子を水分力も保護す る保護膜としても機能するためより好ましい。上記のゴム材料やポリプロピレン、ポリス チレン、ポリエチレン榭脂に発泡剤を加えて発泡させた材料を緩衝材として用いるこ とも好ましい。これらの緩衝材を用いた緩衝材層は、緩衝材層を接着剤で EL素子に 貼り付けることで付設することができるが、緩衝材料を溶剤に溶解して緩衝材料含有 塗布液を作製し、スライドコーター又はエタストルージョンコーターを用いて塗布する こともできる。緩衝材層の膜厚は、高分子材料の硬度にもよるが、振動を十分に吸収 するためには 20 μ m以上が必要で、 50 μ m以上が好ましい。 200 μ m以上になると 素子厚みが大きく増加して、質量やフレキシビリティの点で好ましくない。また、上記 の補償電極と緩衝材層の併用は、さらに振動を抑制することができるので好まし 、。 [0092] As another method for suppressing vibration of the EL element, a buffer layer used for the EL element is provided. In this case, it is preferable to use a polymer material having a high impact absorbing ability or a polymer material foamed by adding a foaming agent as the buffer material layer. Examples of the polymer material having high impact absorbing ability include natural rubber, styrene butadiene rubber, polyisoprene rubber, polybutadiene rubber, nitrile rubber, chloroprene rubber, butyl rubber, hibaron, silicon rubber, urethane rubber, ethylene propylene rubber, and fluorine rubber. Etc. can be used. The hardness of these polymer materials is preferably 50 or less, more preferably 30 or less, from the viewpoint of vibration absorption ability. In addition, butyl rubber, silicon rubber, fluororubber, and the like are more preferable because they have a low water absorption and function as a protective film for protecting the EL element from moisture. It is also preferable to use as a buffer material a material obtained by adding a foaming agent to the above rubber material, polypropylene, polystyrene, or polyethylene resin. The buffer material layer using these buffer materials can be attached by adhering the buffer material layer to the EL element with an adhesive, but the buffer material is dissolved in a solvent to prepare a buffer material-containing coating solution, It can also be applied using a slide coater or an etrusion coater. Although the thickness of the buffer layer depends on the hardness of the polymer material, it needs to be 20 μm or more and preferably 50 μm or more in order to sufficiently absorb vibration. If it exceeds 200 μm, the thickness of the element increases greatly, which is not preferable in terms of mass and flexibility. Further, the combined use of the compensation electrode and the buffer layer is preferable because it can further suppress vibration.
[0093] 本発明の分散型 EL素子は、最後に封止フィルムを用いて、外部環境からの湿度 や酸素の影響を排除するよう加工するのが好ま 、。 EL素子を封止する封止フィル ムは、 40°C— 90%RHにおける水蒸気透過率が 0. 05gZm2Zday以下が好ましぐ 0. 01gZm2Zday以下がより好ましい。さらに 40°C— 90%RHでの酸素透過率が 0 . lcm3Zm2ZdayZatm以下が好ましぐ 0. 01cm3Zm2ZdayZatm以下がより好 ましい。このような封止フィルムとしては、有機物膜と無機物膜の積層膜が好ましく用 いられる。 [0093] The dispersion-type EL element of the present invention is preferably processed so as to eliminate the influence of humidity and oxygen from the external environment using a sealing film. Sealing the fill arm for sealing the EL element, and more preferably not more than 40 ° C-water vapor permeability at 90% RH is preferably is 0. 05gZm 2 Zday following instrument 0. 01gZm 2 Zday. Further oxygen permeability at 40 ° C- 90% RH 0. Lcm 3 Zm 2 ZdayZatm is preferably less instrument 0. 01cm 3 Zm 2 ZdayZatm less and more favorable preferable. As such a sealing film, a laminated film of an organic film and an inorganic film is preferably used.
[0094] 有機物膜の形成材料としては、ポリエチレン系榭脂、ポリプロピレン系榭脂、ポリ力 ーボネート系榭脂、ポリビニルアルコール系榭脂などが好ましく用いられ、特にポリビ ニルアルコール系榭脂がより好ましく用いることができる。ポリビニルアルコール系榭 脂などは吸水性があるため、あら力じめ真空加熱などの処理を施すことで絶乾状態 にしたものを用いることがより好ましい。これらの榭脂を塗布などの方法によりシート状 に加工したものの上に、無機物膜を蒸着、スパッタリング、 CVD法などを用いて堆積 させる。堆積させる無機物膜としては、酸化ケィ素、窒化珪素、酸窒化珪素、酸ィ匕ケ ィ素 Z酸ィ匕アルミニウム、窒化アルミニウムなどが好ましく用いられ、特に酸化ケィ素 力 り好ましく用いられる。より低い水蒸気透過率や酸素透過率を得たり、無機物膜 が曲げ等によりひび割れることを防止するために、有機物膜と無機物膜の形成を繰り 返したり、無機物膜を堆積した有機物膜を接着剤層を介して複数枚貼り合わせて多 層膜とすることが好ましい。有機物膜の膜厚は、 5 m以上 300 m以下の範囲が好 ましぐ 10 m以上 200 m以下の範囲がより好ましい。無機物膜の膜厚は、 lOnm 以上 300nm以下の範囲が好ましぐ 20nm以上 200nm以下の範囲がより好ましい。 積層した封止フィルムの膜厚は、 30 m以上 1000 m以下の範囲が好ましぐ 50 μ m以上 300 μ m以下の範囲がより好ましい。例えば、 40°C— 90%RH〖こおける水 蒸気透過率が 0. 05g/m2/day以下の封止フィルムを得るためには、上記の有機 物膜と無機物膜とが 2層ずつ積層された構成では 50〜: L00 μ mの膜厚で済んでしま う力 従来から封止フィルムとして使用されているポリ塩化三フッ化工チレンでは 200 m以上の膜厚を必要とする。封止フィルムの膜厚は、薄い方が光透過性や素子の 柔軟性の点で好ましい。 [0094] As the material for forming the organic film, polyethylene-based resin, polypropylene-based resin, polycarbonate-based resin, polyvinyl alcohol-based resin, and the like are preferably used, and particularly, polyvinyl alcohol-based resin is more preferably used. be able to. Since polyvinyl alcohol resins and the like have water absorption properties, it is more preferable to use those that have been completely dried by intensive treatment such as vacuum heating. A sheet form by applying such resin. An inorganic film is deposited on the processed material by vapor deposition, sputtering, CVD method or the like. As the inorganic film to be deposited, silicon oxide, silicon nitride, silicon oxynitride, acid silicate, zinc oxyaluminum, aluminum nitride or the like is preferably used. In order to obtain a lower water vapor transmission rate and oxygen transmission rate, and to prevent the inorganic film from cracking due to bending, etc., the formation of the organic film and the inorganic film is repeated, or the organic film deposited with the inorganic film is used as the adhesive layer. It is preferable to laminate a plurality of films through a multi-layer film. The thickness of the organic material film is preferably in the range of 5 m to 300 m, more preferably in the range of 10 m to 200 m. The thickness of the inorganic film is preferably in the range of lOnm or more and 300 nm or less, and more preferably in the range of 20 nm or more and 200 nm or less. The film thickness of the laminated sealing film is preferably in the range of 30 m to 1000 m, more preferably in the range of 50 μm to 300 μm. For example, in order to obtain a sealing film with a water vapor transmission rate of 0.05 g / m 2 / day or less at 40 ° C—90% RH, two layers of the above organic film and inorganic film are laminated. With the construction as described above, a force of 50 ~: L00 μm is sufficient. Polyethylene trifluoride chilled titanium used as a sealing film conventionally requires a film thickness of 200 m or more. The thinner the sealing film, the better in terms of light transmission and device flexibility.
[0095] この封止フィルムで ELセルを封止する場合、 2枚の封止フィルムで ELセルを挟ん で周囲を接着封止しても、 1枚の封止フィルムを半分に折って封止フィルムが重なる 部分を接着封止しても良い。封止フィルムで封止される ELセルは、 ELセルのみを別 途作成しても良いし、封止フィルム上に直接 ELセルを作成することもできる。この場 合には、支持体の替わりとすることができる。また、封止工程は、真空又は露点管理さ れた乾燥雰囲気中で行うことが好ましい。  [0095] When an EL cell is sealed with this sealing film, even if the EL cell is sandwiched between two sealing films and the periphery is adhesively sealed, the sealing film is folded in half and sealed. The part where the films overlap may be adhesively sealed. For the EL cell sealed with the sealing film, only the EL cell may be prepared separately, or the EL cell may be directly formed on the sealing film. In this case, the support can be used instead. The sealing step is preferably performed in a dry atmosphere with vacuum or dew point control.
[0096] 高度な封止加工を実施した場合でも、 ELセルの周囲に乾燥剤層を配置することが 好ましい。乾燥剤層に用いられる乾燥剤としては、 CaO、 SrO、 BaOなどのアルカリ 土類金属酸化物、酸ィ匕アルミニウム、ゼォライト,活性炭、シリカゲル、紙や吸湿性の 高い榭脂などが好ましく用いられるが、特にアルカリ土類金属酸ィ匕物が吸湿性能の 点でより好ましい。これらの吸湿剤は粉体の状態でも使用することはできるが、例えば 榭脂材料と混合して塗布や成形などによりシート状に加工したものを使用したり、榭 脂材料と混合した塗布液をディスペンサーなどを用いて EL素子の周囲に塗布したり して乾燥剤層を配置することが好ましい。さらに、 ELセルの周囲のみならず、 ELセル の下面や上面を乾燥剤で覆うことがより好ましい。この場合、光を取り出す面には透 明性の高い乾燥剤層を選択することが好ましい。透明性の高い乾燥剤層としては、 ポリアミド系榭脂等を用いることができる。 [0096] Even when an advanced sealing process is performed, it is preferable to dispose a desiccant layer around the EL cell. As the desiccant used in the desiccant layer, alkaline earth metal oxides such as CaO, SrO, BaO, acid aluminum, zeolite, activated carbon, silica gel, paper and highly hygroscopic resin are preferably used. In particular, alkaline earth metal oxides are more preferable in terms of moisture absorption performance. These hygroscopic agents can be used even in powder form. For example, the hygroscopic agent can be used by mixing it with a resin material and processing it into a sheet by coating or molding. It is preferable to dispose a desiccant layer by applying a coating liquid mixed with a fat material around the EL element using a dispenser or the like. Furthermore, it is more preferable to cover not only the periphery of the EL cell but also the lower and upper surfaces of the EL cell with a desiccant. In this case, it is preferable to select a highly transparent desiccant layer for the light extraction surface. As the highly transparent desiccant layer, polyamide-based resin can be used.
図面の簡単な説明  Brief Description of Drawings
[0097] [図 1]本発明の EL素子の一実施態様の概略図である。 FIG. 1 is a schematic view of one embodiment of an EL device of the present invention.
[図 2]規格化された比較例の各 EL素子の発光スペクトル (A. U.は規格化された強 度の意)と、 f (え)、 g ( λ )との関係を表す図である。  [Fig. 2] A diagram showing the relationship between the emission spectrum (A. U. stands for normalized intensity) of each EL element of the normalized comparative example and f (e) and g (λ).
[図 3]規格化された本発明の各 EL素子の発光スペクトル (A. U.は規格化された強 度の意)と、 f (え)、 g ( λ )との関係を表す図である。  FIG. 3 is a diagram showing the relationship between the emission spectrum (A. U. stands for normalized intensity) of each EL element of the present invention normalized, and f (e) and g (λ).
符号の説明  Explanation of symbols
[0098] 1 プラスチックフィルム(支持体) [0098] 1 Plastic film (support)
2 透明電極層  2 Transparent electrode layer
3 発光粒子層  3 Luminescent particle layer
4 波長変換材料層  4 Wavelength conversion material layer
5 誘電体層  5 Dielectric layer
6 背面電極層  6 Back electrode layer
[0099] 以下に、本発明の EL素子を実施例に基づきさらに詳細に説明するが、本発明は 以下の各実施例に制限されるものではない。  Hereinafter, the EL element of the present invention will be described in more detail based on examples, but the present invention is not limited to the following examples.
実施例 1  Example 1
[0100] 「従来技術による EL素子の作成」(比較例 1)  [0100] "Creation of EL device using conventional technology" (Comparative Example 1)
平均粒子サイズが 0. 2 μ mの BaTiOの微粒子を 30質量0 /0シァノエチルセルロー 30 mass BaTiO of fine particles having an average particle size of 0. 2 μ m 0/0 Xia Roh ethyl cell row
3  Three
ス溶液に分散した溶液をこの層厚みが 30 μ mになるように、厚み 75 μ mのアルミシ ート上に塗布、 110°Cで 5時間乾燥することで誘電体層を塗布したアルミシートを得 た。  The aluminum sheet coated with a dielectric layer is coated on a 75 μm thick aluminum sheet so that the layer thickness is 30 μm and dried at 110 ° C. for 5 hours. Obtained.
[0101] 続いて、平均粒子サイズが 15 μ mの銅と塩素を付活した 498nmに発光極大を持 つ硫ィ匕亜鉛粒子と 30質量%のシァノエチルセルロース溶液を 1. 2 : 1の比で混合' 分散し、さらにシンロイヒ社製赤色顔料 (シンロイヒ FA— 001)を硫ィ匕亜鉛粒子に対し て 3質量%を添加、分散した後、誘電体層を塗布したアルミシート上に発光粒子層の 厚みが 45 mになる様に塗布した。この塗布物は温風乾燥機を用いて 110°Cで 5時 間乾燥した。この塗布物を厚さ 100 μ mのポリエチレンテレフタレート上に ΙΤΟをスパ ッターにより 40nmの厚さに均一に付着したフィルムと熱圧着し、リード片を載設、防 湿フィルム挟み封止したものを比較例 1の EL素子とした。 [0101] Subsequently, zinc sulfide particles having an emission maximum at 498 nm activated with copper and chlorine having an average particle size of 15 μm and a 30 mass% cyanoethylcellulose solution were mixed at a ratio of 1.2: 1. Mixed with ' Disperse, and add 3% by weight of Sinloihi's red pigment (Sinloihi FA-001) to zinc oxide particles and disperse. Then, the thickness of the luminescent particle layer is on the aluminum sheet coated with the dielectric layer. It was applied to 45 m. This coating was dried at 110 ° C for 5 hours using a hot air dryer. This coated product is thermocompression-bonded with a film of 100 μm thick polyethylene terephthalate with a spider sprinkled uniformly to a thickness of 40 nm using a sputter, and a lead piece is placed and sealed with a moisture-proof film. The EL element of Example 1 was used.
「従来技術による EL素子の作成」(比較例 2) “Creation of EL device by conventional technology” (Comparative Example 2)
赤色発光顔料をシンロイヒ FA— 007とした以外は比較例 1と同様にして比較例 2の EL素子を得た。  An EL device of Comparative Example 2 was obtained in the same manner as Comparative Example 1 except that the red light-emitting pigment was Sinloich FA-007.
「本発明による EL素子の作成(1)」(実施例 1)  “Preparation of EL device according to the present invention (1)” (Example 1)
平均粒子サイズが 0. 2 μ mの BaTiOの微粒子のみを 30質量%シァノエチルセル  Only 30% by weight Cyanethyl cell with BaTiO fine particles with an average particle size of 0.2 μm
3  Three
ロース溶液に分散し、この層厚みが 20 μ mになるように、厚み 75 μ mのアルミシート 上に塗布、乾燥して誘電体層付きアルミシートを得た。続いて、平均粒子サイズが 0. 2 /z mの BaTiOの微粒子を 30質量0 /0シァノエチルセルロース溶液に分散した後、こ It was dispersed in a rosin solution and coated on a 75 μm thick aluminum sheet so that the layer thickness was 20 μm and dried to obtain an aluminum sheet with a dielectric layer. Subsequently, the average after the particle size obtained by dispersing fine particles of BaTiO of 0. 2 / zm to 30 weight 0/0 Xia Bruno cellulose solution, this
3  Three
の分散液にシンロイヒ社製赤色顔料(シンロイヒ FA— 007)を BaTiOの質量の 8%に A red pigment (Sinloihi FA-007) manufactured by Sinloihi to 8% of the BaTiO mass
3  Three
なる様に添加、分散し、出来上がりの厚みが 10 mになる様に前述の誘電体層付き アルミシートに塗布、再び 110°Cで 5時間乾燥し、波長変換材料層を形成した。さら に、平均粒子サイズが 15 mの銅と塩素を付活した 498nmに発光極大を持つ硫ィ匕 亜鉛粒子と 30質量0 /0のシァノエチルセルロース溶液を 1. 2 : 1の比で混合'分散した 後、波長変換材料層が形成してあるアルミシートに発光粒子層の厚みが 45 mにな る様に塗布し、温風乾燥機を用いて 110°Cで 5時間乾燥した。この塗布物は、厚さ 1 00 μ mのポリエチレンテレフタレート上に ΙΤΟをスパッターにより 40nmの厚さに均一 に付着したフィルムと熱圧着した。最後にリード片を載設、防湿フィルム挟み封止した ものを本発明による EL素子(1)とした。(図 1参照) It was added and dispersed as described above, and applied to the aforementioned aluminum sheet with a dielectric layer so that the final thickness was 10 m, and dried again at 110 ° C. for 5 hours to form a wavelength conversion material layer. In addition, the average particle size Xia Bruno ethylcellulose solution硫I匕zinc particles and 30 mass 0/0 with an emission maximum copper and chlorine 15 m to 498nm was activated 1.2: 1 ratio ' After the dispersion, it was applied to an aluminum sheet having a wavelength conversion material layer so that the thickness of the luminescent particle layer was 45 m and dried at 110 ° C. for 5 hours using a hot air dryer. This coated material was thermocompression bonded to a film having a uniform thickness of 40 nm deposited on a polyethylene terephthalate having a thickness of 100 μm by sputtering. Finally, a lead piece was placed and sealed with a moisture-proof film between them to obtain an EL element (1) according to the present invention. (refer graph1)
「本発明による EL素子の作成(2)」(実施例 2) “Creation of EL device according to the present invention (2)” (Example 2)
本発明による EL素子(1)の作成法において、発光粒子層の硫化亜鉛粒子のうち の 40質量%が 450nmに発光極大を持つ粒子、残りの 60質量%が 498nmに発光 極大を持つ粒子とし、かつ、波長変換材料層の赤色発光顔料の添加量を 10質量% としたことを除 、て本発明による EL素子(1)の作成法と同様にして本発明による EL 素子 (2)を得た。 In the method for producing an EL device (1) according to the present invention, 40% by mass of the zinc sulfide particles in the luminescent particle layer are particles having an emission maximum at 450 nm, and the remaining 60% by mass are particles having an emission maximum at 498 nm. In addition, the amount of red light emitting pigment added to the wavelength conversion material layer is 10% by mass. Except for the above, an EL device (2) according to the present invention was obtained in the same manner as the method for producing an EL device (1) according to the present invention.
「本発明による EL素子の作成(3)」(実施例 3)  “Creation of EL device according to the present invention (3)” (Example 3)
平均粒子サイズが 0. 2 μ mの BaTiOの微粒子のみを 30質量%シァノエチルセル  Only 30% by weight Cyanethyl cell with BaTiO fine particles with an average particle size of 0.2 μm
3  Three
ロース溶液に分散し、この層厚みが 20 μ mになるように、厚み 75 μ mのアルミシート 上に塗布、乾燥して誘電体層付きアルミシートを得た。続いて、平均粒子サイズが 0. 2 /z mの BaTiOの微粒子を 30質量0 /0シァノエチルセルロース溶液に分散した後、こ It was dispersed in a rosin solution and coated on a 75 μm thick aluminum sheet so that the layer thickness was 20 μm and dried to obtain an aluminum sheet with a dielectric layer. Subsequently, the average after the particle size obtained by dispersing fine particles of BaTiO of 0. 2 / zm to 30 weight 0/0 Xia Bruno cellulose solution, this
3  Three
の分散液に 620nmに発光を持つ赤色顔料を BaTiOの質量の 6%になる様に添カロ Add a red pigment that emits light at 620 nm to the dispersion liquid of 6% so that the mass of BaTiO is 6%.
3  Three
、分散し、出来上がりの厚みが 10 mになる様に前述の誘電体層付きアルミシート に塗布、再び 110°Cで 5時間乾燥し、波長変換材料層を形成した。さらに、平均粒子 サイズが 15 mの銅と塩素を付活した 498nmに発光極大を持つ硫ィ匕亜鉛粒子と 3 0質量%のシァノエチルセルロース溶液を 1. 2 : 1の比で混合'分散した後、波長変 換材料層が形成してあるアルミシートに発光粒子層の厚みが 45 μ mになる様に塗布 し、温風乾燥機を用いて 110°Cで 5時間乾燥した。この塗布物は、厚さ 100 mのポ リエチレンテレフタレート上に ITOをスパッター〖こより 40nmの厚さに均一に付着した フィルムと熱圧着した。最後にリード片を載設、防湿フィルム挟み封止したものを本発 明による EL素子(3)とした。  Then, it was applied to the above-mentioned aluminum sheet with a dielectric layer so that the resulting thickness would be 10 m and dried again at 110 ° C. for 5 hours to form a wavelength conversion material layer. Furthermore, zinc sulfide particles having an emission maximum at 498 nm activated with copper and chlorine with an average particle size of 15 m and 30% by mass of cyanocellulose solution were mixed and dispersed at a ratio of 1.2: 1. After that, the aluminum sheet on which the wavelength converting material layer was formed was applied so that the thickness of the luminescent particle layer was 45 μm and dried at 110 ° C. for 5 hours using a hot air dryer. This coated material was thermocompression bonded with a film in which ITO was uniformly deposited to a thickness of 40 nm on a 100 m thick polyethylene terephthalate by sputtering. Finally, a lead piece was placed and sealed with a moisture-proof film between them to make an EL element (3) according to the present invention.
「本発明による EL素子の作成 (4)」(実施例 4) “Production of EL device according to the present invention (4)” (Example 4)
平均粒子サイズが 15 mの銅と塩素を付活した 498nmに発光極大を持つ硫ィ匕亜 鉛粒子と 30質量0 /0のシァノエチルセルロース溶液を 1. 2 : 1の比で混合'分散した後 、厚さ 100 μ mのポリエチレンテレフタレート上に ITOをスパッターにより 40nmの厚さ に均一に付着したフィルム上に発光粒子層の厚みが 45 mになる様に塗布した。こ の塗布物を温風乾燥機を用いて 110°Cで 5時間乾燥した後、平均粒子サイズが 0. 2 μ mの BaTiOの微粒子を 30質量%シァノエチルセルロース溶液に分散した溶液を The Xia Bruno ethylcellulose solution硫I匕亜lead particles and 30 mass 0/0 having an emission maximum at 498nm with an average particle size was activated with copper and chlorine 15 m 1. 2: mixture 'was dispersed in 1 ratio Thereafter, ITO was applied onto polyethylene terephthalate having a thickness of 100 μm by sputtering so that the luminous particle layer had a thickness of 45 m on a film having a uniform thickness of 40 nm. The coated material was dried at 110 ° C. for 5 hours using a hot air dryer, and then a solution in which BaTiO fine particles having an average particle size of 0.2 μm were dispersed in a 30 mass% cyanoethyl cellulose solution was prepared.
3  Three
この層の厚みが 3 mになる様に塗布し、 110°Cで 5時間乾燥し、光散乱層を形成し た。この塗布乾燥物に本発明による EL素子 (3)で使用した赤色発光顔料 30質量% をシクロへキサノールに分散した溶液をその上に塗布し、 110°Cで 2時間乾燥し、波 長変換材料層を形成した。この様にして得られた塗布物を、平均粒子サイズが 0. 2 μ mの BaTiOの微粒子を 30質量0 /0シァノエチルセルロース溶液に分散し、この誘This layer was applied to a thickness of 3 m and dried at 110 ° C. for 5 hours to form a light scattering layer. A solution in which 30% by mass of the red light-emitting pigment used in the EL device (3) according to the present invention was dispersed in cyclohexanol was applied onto the dried product and dried at 110 ° C. for 2 hours to obtain a wavelength conversion material. A layer was formed. The coated product thus obtained has an average particle size of 0.2. dispersed μ particles 30 mass 0/0 Xia Bruno ethylcellulose solution of BaTiO 3 m, the induction
3 Three
電体層厚みが 25 μ mになる様に厚み 75 μ mのアルミシート上に塗布したシートと熱 圧着した。これらによって得た ELシートにリード片を載設、防湿フィルム挟み封止した ものを本発明〖こよる EL素子 (4)とした。 It was thermocompression bonded to a sheet coated on a 75 μm thick aluminum sheet so that the thickness of the electrical layer was 25 μm. An EL element (4) according to the present invention was obtained by mounting a lead piece on the EL sheet obtained as described above and sealing it with a moisture-proof film sandwiched between them.
「本発明による EL素子の作成(5)」(実施例 5) “Production of EL device according to the present invention (5)” (Example 5)
平均粒子サイズが 0. 2 μ mの BaTiOの微粒子を 30質量0 /0シァノエチルセルロー 30 mass BaTiO of fine particles having an average particle size of 0. 2 μ m 0/0 Xia Roh ethyl cell row
3  Three
ス溶液に分散した溶液をこの層厚みが 30 μ mになるように、厚み 75 μ mのアルミシ ート上に塗布、 110°Cで 5時間乾燥することで誘電体層を塗布したアルミシートを得 た。続いて、平均粒子サイズが 15 mの銅と塩素を付活した 498nmに発光極大を 持つ硫ィ匕亜鉛粒子と 30質量0 /0のシァノエチルセルロース溶液を 1. 2 : 1の比で混合 •分散した後、誘電体層を塗布したアルミシート上に発光粒子層の厚みが 45 mに なる様に塗布した。この塗布物は温風乾燥機を用いて 110°Cで 5時間乾燥した。一 方、厚さ 100 μ mのポリエチレンテレフタレート上に ΙΤΟをスパッターにより 40nmの 厚さに均一に付着したフィルムには、 ITOをスパッタしたのとは反対の面に、本発明 〖こよる EL素子 (3)で使用した赤色発光顔料を日本ゼオン製の Zeonexが溶解したト ルェン溶液に分散、塗布し、 110°Cで 3時間乾燥することで、厚さ 10 /z mの顔料フィ ルム層を形成した。これら 2つの塗布物を発光粒子層と ITOが隣り合うように熱圧着し 、リード片を載設、防湿フィルム挟み封止したものを本発明の EL素子(5)とした。 「本発明による EL素子の作成 (6)」(実施例 6) The aluminum sheet coated with a dielectric layer is coated on a 75 μm thick aluminum sheet so that the layer thickness is 30 μm and dried at 110 ° C. for 5 hours. Obtained. Subsequently, the average particle size Xia Bruno ethylcellulose solution硫I匕zinc particles and 30 mass 0/0 with an emission maximum copper and chlorine 15 m to 498nm was activated 1.2: mixed • 1 ratio After the dispersion, it was coated on the aluminum sheet coated with the dielectric layer so that the thickness of the luminescent particle layer was 45 m. This coating was dried at 110 ° C. for 5 hours using a hot air dryer. On the other hand, a film in which ΙΤΟ is evenly deposited to a thickness of 40 nm on polyethylene terephthalate with a thickness of 100 μm by sputtering is placed on the surface opposite to the one on which ITO is sputtered. The red luminescent pigment used in 3) was dispersed and applied to a solution of Zeonex made by Nippon Zeon Co., Ltd., and dried at 110 ° C for 3 hours to form a pigment film layer with a thickness of 10 / zm. . The EL device (5) of the present invention was obtained by thermocompression bonding these two coatings so that the luminescent particle layer and ITO were adjacent to each other, mounting a lead piece, and sealing with a moisture-proof film interposed therebetween. "Production of EL device according to the present invention (6)" (Example 6)
平均粒子サイズが 0. 2 μ mの BaTiOの微粒子を 30質量0 /0シァノエチルセルロー 30 mass BaTiO of fine particles having an average particle size of 0. 2 μ m 0/0 Xia Roh ethyl cell row
3  Three
ス溶液に分散した溶液をこの層厚みが 30 μ mになるように、厚み 75 μ mのアルミシ ート上に塗布、 110°Cで 5時間乾燥することで誘電体層を塗布したアルミシートを得 た。続いて、平均粒子サイズが 15 mの銅と塩素を付活した 498nmに発光極大を 持つ硫ィ匕亜鉛粒子と 30質量0 /0のシァノエチルセルロース溶液を 1. 2 : 1の比で混合 •分散した後、誘電体層を塗布したアルミシート上に発光粒子層の厚みが 45 mに なる様に塗布した。この塗布物は温風乾燥機を用いて 110°Cで 5時間乾燥した。一 方、厚さ 100 μ mのポリエチレンテレフタレート上に ITOをスパッターにより 40nmの 厚さに均一に付着したフィルムにはポリ(2—メトキシ 5— {2' ーェチルへキシルォ キシ) 1, 4—フエ-レンビ-レン(分子量 70000〜 100000)をシァノエチルセルロー ス溶液に分散し、塗布し、 110°Cで 3時間乾燥し、厚さ 10 mの層を形成した。これ ら 2つの塗布物を熱圧着し、リード片を載設、防湿フィルム挟み封止したものを本発 明の EL素子(6)とした。 The aluminum sheet coated with a dielectric layer is coated on a 75 μm thick aluminum sheet so that the layer thickness is 30 μm and dried at 110 ° C. for 5 hours. Obtained. Subsequently, the average particle size Xia Bruno ethylcellulose solution硫I匕zinc particles and 30 mass 0/0 with an emission maximum copper and chlorine 15 m to 498nm was activated 1.2: mixed • 1 ratio After the dispersion, it was coated on the aluminum sheet coated with the dielectric layer so that the thickness of the luminescent particle layer was 45 m. This coating was dried at 110 ° C. for 5 hours using a hot air dryer. On the other hand, a film in which ITO is uniformly deposited to a thickness of 40 nm by sputtering on polyethylene terephthalate having a thickness of 100 μm is made of poly (2-methoxy-5- {2′-ethylhexyloxy). Xy) 1,4-Ferene biylene (molecular weight 70000-100,000) was dispersed in cyanoethyl cellulose solution, coated and dried at 110 ° C. for 3 hours to form a 10 m thick layer. The EL device (6) of the present invention was obtained by thermocompression bonding these two coatings, placing a lead piece, and sealing with a moisture-proof film sandwiched between them.
[0102] 以上により作成した本発明の EL素子および比較例の EL素子を発光させた時のス ベクトルを図 2、 3に、その時の演色性を比較したものを表 1に挙げる。  [0102] FIGS. 2 and 3 show the spatter when the EL element of the present invention prepared as described above and the EL element of the comparative example emit light, and Table 1 shows a comparison of the color rendering properties at that time.
[0103] [表 1] fii料 平均演色評価数(Ra) R9 (赤の演色性) R 1 1 (株の演色性) R 15 (曰本人女性の肌色) 比較例 1の EL素子 6 4 - 1 0 2 4 0 4 5 比較例 2の EL素子 6 9 4 7 0 7 4 本発明の EL素子(1 ) 7 6 3 8 8 2 8 7 本発明の EL素子(2) 7 3 7 8 7 8 8 9 本発明の EL素子(3) 7 6 8 9 7 6 8 5 本発明の EL素子(4) 8 3 9 6 8 7 8 9 本発明の EL素子(5) 7 4 3 4 7 6 7 7 本発明の EL素子(6) 7 4 5 4 8 1 8 0  [0103] [Table 1] fii material Average color rendering index (Ra) R9 (red color rendering) R 1 1 (stock color rendering) R 15 (skinned female skin color) EL device of Comparative Example 1 6 4- 1 0 2 4 0 4 5 EL element of Comparative Example 2 6 9 4 7 0 7 4 EL element of the present invention (1) 7 6 3 8 8 2 8 7 EL element of the present invention (2) 7 3 7 8 7 8 8 9 EL device of the present invention (3) 7 6 8 9 7 6 8 5 EL device of the present invention (4) 8 3 9 6 8 7 8 9 EL device of the present invention (5) 7 4 3 4 7 6 7 7 EL element of the present invention (6) 7 4 5 4 8 1 8 0
[0104] これらの素子を発光させた時、それらの色度図上の座標は比較例で (X, y) = (0. [0104] When these elements were caused to emit light, their coordinates on the chromaticity diagram were (X, y) = (0.
313, 0. 336)、 (x, y) = (0. 324, 0. 326)であるのに対して、本発明の EL素子で ίま X力 SO. 31力ら 0. 33の f¾、y力 SO. 33力ら 0. 37の にあった。  313, 0. 336), (x, y) = (0. 324, 0. 326), whereas in the EL element of the present invention, the X force SO. 31 force et al. 0.33 f¾, y force SO.33 force and others were at 0.37.
[0105] 本発明の EL素子の平均演色評価数は従来型である比較例の EL素子より優れて おり、特に赤色の演色性に優れていることがわかる。透明陽画等の透過媒体を EL素 子に載せて観察する時に重要な肌色の演色性についても本発明の EL素子では大 きく改善されている。  It can be seen that the average color rendering index of the EL device of the present invention is superior to the conventional EL device of the comparative example, and in particular, it is excellent in red color rendering. The color rendering property of skin color, which is important when observing a transparent medium such as a transparent positive image on the EL element, is greatly improved in the EL element of the present invention.
実施例 2  Example 2
[0106] 「従来技術による EL素子の作成」(比較例 1)  [0106] "Creation of EL device by conventional technology" (Comparative Example 1)
平均粒子サイズが 15 mの銅と塩素を付活した硫ィ匕亜鉛粒子と 30質量%のシァノ ェチルセルロース溶液を 1. 2 : 1の比で混合'分散し、さらにシンロイヒ社製赤色顔料 (シンロイヒ FA— 007)を硫ィ匕亜鉛粒子に対して 3質量%を添加、分散した後、厚さ 1 00ミクロンのポリエチレンテレフタレート上に ITOをスパッターにより 40nmの厚さに均 一に付着したフィルム上に発光粒子層の厚みが 50 mになる様に塗布した。この塗 布物は温風乾燥機を用いて 110°Cで 5時間乾燥した。誘電体層は平均粒子サイズ が 0. 2 μ mの BaTiOの微粒子を 30質量0 /0シァノエチルセルロース溶液に分散した Mix and disperse copper / chlorine-activated zinc oxide particles with an average particle size of 15 m and 30% by weight of cyanethyl cellulose solution in a ratio of 1.2: 1, and then a red pigment manufactured by Sinloi ( 3% by weight of Sinroich FA-007) was added to and dispersed in the zinc oxide particles, and then ITO was sputtered onto a polyethylene terephthalate with a thickness of 100 microns to form a uniform film with a thickness of 40 nm. The luminescent particle layer was applied to a thickness of 50 m. This paint The fabric was dried at 110 ° C for 5 hours using a warm air dryer. The dielectric layer is dispersed to an average of 30 mass particles of particle size of 0. 2 μ m BaTiO 0/0 Xia Bruno cellulose solution
3  Three
溶液を誘電体層厚みが 25 μ mになるように、厚み 75 μ mのアルミシート上に塗布、 1 10°Cで 5時間乾燥することで得た。これら 2つの塗布乾燥物を熱圧着し、リード片を 載設、防湿フィルム挟み封止したものを比較例 1の EL素子とした。 The solution was obtained by applying the solution on an aluminum sheet having a thickness of 75 μm so that the dielectric layer had a thickness of 25 μm and drying it at 110 ° C. for 5 hours. The EL device of Comparative Example 1 was obtained by thermocompression bonding these two coated and dried products, mounting lead pieces, and sealing with a moisture-proof film sandwiched between them.
「本発明による EL素子の作成(1)」 “Creation of EL device according to the present invention (1)”
平均粒子サイズが 15 mの銅と塩素を付活した硫ィ匕亜鉛粒子と 30質量%のシァノ ェチルセルロース溶液を 1. 2 : 1の比で混合'分散した後、厚さ 100ミクロンのポリエ チレンテレフタレート上に ITOをスパッターにより 40nmの厚さに均一に付着したフィ ルム上に発光粒子層の厚みが 50 mになる様に塗布した。この塗布物を温風乾燥 機を用いて 110°Cで 5時間乾燥した後、平均粒子サイズが 0. 2 /z mの BaTiOの微  Mix and disperse copper / chlorine-activated zinc oxide particles with an average particle size of 15 m and 30% by weight of cyanethylcellulose solution in a ratio of 1.2: 1, and then a 100 micron thick polyester. ITO was coated on the terephthalate with a uniform thickness of 40 nm by sputtering so that the thickness of the luminescent particle layer was 50 m. This coating was dried at 110 ° C for 5 hours using a hot air dryer, and then BaTiO fine particles with an average particle size of 0.2 / z m were obtained.
3 粒子を 30質量%シァノエチルセルロース溶液に分散した溶液を塗布し、 110°Cで 5 時間乾燥した。この BaTiO層(光散乱層)の厚みは 3 μ mから 15 mの間で変えた  3 A solution in which the particles were dispersed in a 30 mass% cyanoethylcellulose solution was applied and dried at 110 ° C. for 5 hours. The thickness of this BaTiO layer (light scattering layer) was varied between 3 μm and 15 m
3  Three
ものを作成した。この塗布乾燥物にシンロイヒ社製赤色顔料 (シンロイヒ FA— 007)、 30質量%をシクロへキサノールに分散した溶液をその上に塗布し、 1 10°Cで 2時間 乾燥し、波長変換材料層を形成した。赤色顔料の塗布量は出来上がりの素子の色 度図上の座標が x、yともに 0. 32から 0. 34までの間にある様に調整した。この様にし て得られたシートを、平均粒子サイズが 0. 2 μ mの BaTiOの微粒子を 30質量%シ Created something. A solution obtained by dispersing 30% by mass of a red pigment (Sinleuhi FA-007) made by Sinlohi Co., in cyclohexanol was applied onto the dried product and dried at 1 10 ° C for 2 hours to form a wavelength conversion material layer. Formed. The amount of red pigment applied was adjusted so that the coordinates on the chromaticity diagram of the finished device were between 0.32 and 0.34 for both x and y. The sheet thus obtained was mixed with 30% by mass of BaTiO fine particles having an average particle size of 0.2 μm.
3  Three
ァノエチルセルロース溶液に分散して、厚み 75 μ mのアルミシート上に塗布したシー トと熱圧着した。この誘電体層厚みは光散乱層との厚みの合計が 25 mになるよう に調整した。これらによって得た ELシートにリード片を載設、防湿フィルム挟み封止 したものを本発明の EL素子(1)〜(6)とした。 It was dispersed in a cyanoethyl cellulose solution and thermocompression bonded to a sheet coated on a 75 μm thick aluminum sheet. The dielectric layer thickness was adjusted so that the total thickness with the light scattering layer was 25 m. EL elements (1) to (6) of the present invention were prepared by placing lead pieces on the EL sheet obtained by these methods and sealing them with a moisture-proof film.
「本発明による EL素子の作成 (2)」 "Production of EL device according to the present invention (2)"
発光粒子層と波長変換材料層の間に塗布した BaTiOを平均粒子サイズが 0. 2 μ  BaTiO coated between the luminescent particle layer and the wavelength converting material layer has an average particle size of 0.2 μm.
3  Three
mの BaTiOの微粒子と平均粒子サイズが 0. 06 /z mの BaTiOを混合したものとした m BaTiO fine particles mixed with BaTiO with an average particle size of 0.06 / z m
3 3  3 3
以外は EL素子の作成(1)と同様にして得た EL素子を本発明の EL素子(7)〜(12) とした。 The EL elements obtained in the same manner as the EL element preparation (1) except for the above were used as EL elements (7) to (12) of the present invention.
以上により作成した本発明の EL素子を発光させた時の赤色発光の発光極大波長 と輝度を比較例のそれらと比較したものを表 2に挙げる Maximum emission wavelength of red light emission when the EL element of the present invention produced as described above is made to emit light Table 2 lists the brightness and brightness compared with those of the comparative example.
[0108] [表 2] [0108] [Table 2]
Figure imgf000029_0001
Figure imgf000029_0001
* 1 00V、 1 k H zで E L素子を駆動した時の輝度  * Luminance when driving the EL element at 100 V, 1 kHz
[0109] 本発明の EL素子のスペクトルはいずれも請求項 1に記載の曲線 Ι ( λ )を満たし、か つ、従来の技術で作成した EL素子 (スペクトルは曲線 I ( λ )を満たさなレ、)よりも赤色 発光の発光極大波長が長波となり、赤色を鮮やかに表現出来、演色性が優れていた 。また、 EL発光時の輝度についても、本発明の EL素子は比較例の EL素子より、高 い輝度が得られた。  [0109] The spectrum of the EL device of the present invention satisfies the curve の (λ) described in claim 1, and the EL device prepared by the conventional technique (the spectrum does not satisfy the curve I (λ)). The emission maximum wavelength of red light emission was longer than that of,), and the red color was vividly expressed, and the color rendering was excellent. In addition, regarding the luminance during EL emission, the EL device of the present invention was higher in luminance than the EL device of the comparative example.
産業上の利用可能性  Industrial applicability
[0110] 本発明により、従来型の EL素子より、特に赤色の演色性に優れ、肌色の演色性に ついても大きく改善された EL素子が提供される。 [0110] According to the present invention, there is provided an EL element which is particularly excellent in red color rendering and greatly improved in skin color rendering than conventional EL elements.

Claims

請求の範囲 [1] 透明電極と、背面電極と、それら両電極間に挟持された発光粒子層を有する分散 型エレクト口ルミネッセンス素子にぉ 、て、素子が発光した時のスペクトルを規格ィ匕し た曲線 I ( λ )力 波長 410nm以上 650nm以下の区間において、 を満たすことを特徴とする分散型エレクト口ルミネッセンス素子。 上記式中、 g ( )、f ( )は、 Claims [1] A dispersion-type electroluminescent device having a transparent electrode, a back electrode, and a luminescent particle layer sandwiched between the two electrodes is used to standardize the spectrum when the device emits light. Curved I (λ) force Dispersive electoluminescence element characterized by satisfying in the section of wavelength 410 nm or more and 650 nm or less. In the above formula, g () and f () are
[数 1]
Figure imgf000030_0001
[Number 1]
Figure imgf000030_0001
W = l.lexp(-ln(2)(^^)2) + 0.8exp(-ln(2)(^^) 1 ) + 0.5exp(-ln(2)(^^)3) で表される曲線である。 W = l.lexp (-ln (2) (^^) 2 ) + 0.8exp (-ln (2) (^^) 1 ) + 0.5exp (-ln (2) (^^) 3 ) It is a curved line.
[2] 透明電極と、背面電極と、それら両電極間に挟持された発光粒子層を有する分散 型エレクト口ルミネッセンス素子にぉ 、て、素子が発光した時のスペクトルを規格ィ匕し た曲線 I ( λ )力 波長 400nm以上 700nm以下の区間において、 を満たすことを特徴とする分散型エレクト口ルミネッセンス素子。  [2] Curve I which shows the spectrum when the device emits light in a distributed type electroluminescent device having a transparent electrode, a back electrode, and a luminescent particle layer sandwiched between the two electrodes I (λ) force Dispersion type electroluminescent device characterized by satisfying the following conditions in a wavelength range of 400 nm to 700 nm.
上記式中、 g ( )、f ( )は、  In the above formula, g () and f () are
[数 2] gW = 0.9exp (-
Figure imgf000030_0002
[Equation 2] gW = 0.9exp (-
Figure imgf000030_0002
fW = l.lexp(-ln(2)(^^)2) + 0.8exp (一 ln(2)(^^)2) + 0.5exp(-ln(2)(^^)2) で表される曲線である。 Table with fW = l.lexp (-ln (2) (^^) 2) + 0.8exp ( one ln (2) (^^) 2 ) + 0 .5exp (-ln (2) (^^) 2) Is a curved line.
[3] 透明電極と、背面電極と、それら両電極間に挟持された発光粒子層を有するエレク トロルミネッセンス素子において、それら両電極間に、発光粒子層、光散乱層、波長 変換材料層および誘電体層をこの順で有することを特徴とする請求項 1または 2記載 の分散型エレクト口ルミネッセンス素子。  [3] In an electroluminescence device having a transparent electrode, a back electrode, and a luminescent particle layer sandwiched between the two electrodes, a luminescent particle layer, a light scattering layer, a wavelength converting material layer, and a dielectric are interposed between the two electrodes. 3. The dispersion-type electoluminescence device according to claim 1, comprising body layers in this order.
[4] 前記光散乱層の厚みが誘電体層より薄いことを特徴とする請求項 3に記載の分散 型エレクト口ルミネッセンス素子 n 透明電極と、背面電極と、それら両電極間に挟持された発光粒子層を有するエレク トロルミネッセンス素子において、それら両電極間に、発光粒子層、誘電体層をこの 順序でこの順序で有し、該誘電体層が、誘電体粒子および波長変換材料を含むこと を特徴とする請求項 1または 2記載の分散型エレクト口ルミネッセンス素子。 4. The dispersive electoluminescent element n according to claim 3, wherein the light scattering layer is thinner than the dielectric layer. In an electroluminescence element having a transparent electrode, a back electrode, and a luminescent particle layer sandwiched between the two electrodes, the luminescent particle layer and the dielectric layer are provided in this order between the two electrodes. 3. The dispersion type electroluminescent device according to claim 1, wherein the dielectric layer includes dielectric particles and a wavelength conversion material.
PCT/JP2005/015790 2004-08-31 2005-08-30 Dispersion type electroluminescence element WO2006025403A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2004-252245 2004-08-31
JP2004252245 2004-08-31
JP2004-316405 2004-10-29
JP2004315982 2004-10-29
JP2004-315982 2004-10-29
JP2004316405 2004-10-29

Publications (1)

Publication Number Publication Date
WO2006025403A1 true WO2006025403A1 (en) 2006-03-09

Family

ID=36000053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/015790 WO2006025403A1 (en) 2004-08-31 2005-08-30 Dispersion type electroluminescence element

Country Status (1)

Country Link
WO (1) WO2006025403A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2175695A1 (en) * 2008-10-13 2010-04-14 Michel Tramontana Electroluminescent layer configuration and method for production thereof
WO2010106934A1 (en) * 2009-03-17 2010-09-23 Fujifilm Corporation Dispersion-type electroluminescence device
WO2010114157A1 (en) * 2009-03-31 2010-10-07 Fujifilm Corporation Dispersion-type electroluminescence device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06337647A (en) * 1993-05-28 1994-12-06 Nec Kansai Ltd Electric field light emitting lamp display plate and its production
JPH08138424A (en) * 1994-11-11 1996-05-31 Matsushita Electric Ind Co Ltd Illuminating lamp and luminaire
JPH11260561A (en) * 1998-03-10 1999-09-24 Nec Kansai Ltd Electroluminescent lamp
JP2000150155A (en) * 1998-11-16 2000-05-30 Alps Electric Co Ltd Multilyaer electroluminescence element
JP2000236112A (en) * 1996-09-20 2000-08-29 Siemens Ag Usage of cast molding material for wavelength conversion
JP2000252073A (en) * 1999-02-24 2000-09-14 Seiko Precision Inc El lamp
JP2000277259A (en) * 1999-03-23 2000-10-06 Matsushita Electric Ind Co Ltd El lamp and el lamp unit using the same
JP2002062530A (en) * 2000-06-05 2002-02-28 Toshiba Corp Backlight for color liquid crystal, color liquid crystal display device and el (electroluminescence) light- emitting element for backlight for color liquid crystal
JP2004182781A (en) * 2002-11-29 2004-07-02 Nichia Chem Ind Ltd Nitride phosphor and light-emitting equipment using the same
JP2004210921A (en) * 2002-12-27 2004-07-29 Nichia Chem Ind Ltd Oxynitride fluorophor and method for producing the same and light-emitting device using the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06337647A (en) * 1993-05-28 1994-12-06 Nec Kansai Ltd Electric field light emitting lamp display plate and its production
JPH08138424A (en) * 1994-11-11 1996-05-31 Matsushita Electric Ind Co Ltd Illuminating lamp and luminaire
JP2000236112A (en) * 1996-09-20 2000-08-29 Siemens Ag Usage of cast molding material for wavelength conversion
JPH11260561A (en) * 1998-03-10 1999-09-24 Nec Kansai Ltd Electroluminescent lamp
JP2000150155A (en) * 1998-11-16 2000-05-30 Alps Electric Co Ltd Multilyaer electroluminescence element
JP2000252073A (en) * 1999-02-24 2000-09-14 Seiko Precision Inc El lamp
JP2000277259A (en) * 1999-03-23 2000-10-06 Matsushita Electric Ind Co Ltd El lamp and el lamp unit using the same
JP2002062530A (en) * 2000-06-05 2002-02-28 Toshiba Corp Backlight for color liquid crystal, color liquid crystal display device and el (electroluminescence) light- emitting element for backlight for color liquid crystal
JP2004182781A (en) * 2002-11-29 2004-07-02 Nichia Chem Ind Ltd Nitride phosphor and light-emitting equipment using the same
JP2004210921A (en) * 2002-12-27 2004-07-29 Nichia Chem Ind Ltd Oxynitride fluorophor and method for producing the same and light-emitting device using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2175695A1 (en) * 2008-10-13 2010-04-14 Michel Tramontana Electroluminescent layer configuration and method for production thereof
WO2010043608A1 (en) * 2008-10-13 2010-04-22 Calluori, Luigi Egidio Electroluminescent layer configuration and method for production thereof
WO2010106934A1 (en) * 2009-03-17 2010-09-23 Fujifilm Corporation Dispersion-type electroluminescence device
WO2010114157A1 (en) * 2009-03-31 2010-10-07 Fujifilm Corporation Dispersion-type electroluminescence device

Similar Documents

Publication Publication Date Title
US20040119400A1 (en) Electroluminescence device
EP1642952B1 (en) High CRI electroluminescent lamp
JP4867055B2 (en) Dispersive electroluminescence device
US7816862B2 (en) Electroluminescent device with enhanced color rendition
US20090218942A1 (en) Dispersion type electroluminescent element
JPWO2006008863A1 (en) Inorganic dispersion type electroluminescence device
WO2006025403A1 (en) Dispersion type electroluminescence element
JP2006156358A (en) Distributed electroluminescent element
US20060255718A1 (en) Dispersion type electroluminescent element
JP4533775B2 (en) Electroluminescent phosphor particles and dispersive electroluminescence device
US20050052129A1 (en) Electroluminescent material
JP2006156339A (en) Distributed electroluminescent element
JP4433384B2 (en) Electroluminescence element and display device
JP2005322567A (en) Distributed electroluminescent element
WO2006046607A1 (en) Dispersion type electroluminescence element
JP2005281451A (en) Electroluminescent element and production method of phosphor particulate
JP2005228693A (en) Distributed electroluminescent device and its manufacturing method
JP2005158332A (en) Manufacturing method for el surface light emitting sheet
JP2006236924A (en) Inorganic dispersion type electroluminescent element and luminescent element system
JP4409066B2 (en) Blue light emitting electroluminescent phosphor and organic dispersion type electroluminescent device using the same
JP2006310169A (en) Inorganic dispersion type electroluminescent element and transparent positive image system
JP2005325217A (en) Distributed electroluminescence element and method for producing the same
JP4769627B2 (en) Inorganic dispersion type electroluminescence device
JP2005158491A (en) Distributed electroluminescence element
JP2015118820A (en) Dispersion-type inorganic el element and method for manufacturing dispersion-type inorganic el element

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase