WO2006008863A1 - Inorganic dispersion electroluminescence element - Google Patents

Inorganic dispersion electroluminescence element Download PDF

Info

Publication number
WO2006008863A1
WO2006008863A1 PCT/JP2005/008177 JP2005008177W WO2006008863A1 WO 2006008863 A1 WO2006008863 A1 WO 2006008863A1 JP 2005008177 W JP2005008177 W JP 2005008177W WO 2006008863 A1 WO2006008863 A1 WO 2006008863A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
sheet
back electrode
emitting layer
light
Prior art date
Application number
PCT/JP2005/008177
Other languages
French (fr)
Japanese (ja)
Inventor
Masashi Shirata
Original Assignee
Fujifilm Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corporation filed Critical Fujifilm Corporation
Priority to JP2006528385A priority Critical patent/JPWO2006008863A1/en
Publication of WO2006008863A1 publication Critical patent/WO2006008863A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers

Definitions

  • the present invention relates to an inorganic dispersion-type electroluminescent device.
  • Electric mouth luminescence (hereinafter also referred to as "EL") phosphors are voltage-excited phosphors, which are used as inorganic dispersion-type EL devices in which phosphor powders are sandwiched between electrodes. It is known that The general shape of an inorganic dispersion-type EL device is a structural force in which phosphor powder is dispersed in a binder with a high dielectric constant and is sandwiched between two transparent electrodes. Light is emitted by applying an alternating electric field.
  • EL elements made from phosphor powders can be several millimeters or less in thickness, are surface emitters, and have many advantages such as low heat generation, so road signs and various intelligent devices Applications include exterior lighting, light sources for flat panel displays such as liquid crystal displays, and illumination light sources for large-area advertisements.
  • inorganic dispersion type EL elements do not use a high-temperature process, it is possible to form a flexible element using a plastic substrate, and a relatively simple process without using a vacuum apparatus. It can be manufactured at low cost, and it is easy to adjust the luminescent color of the element by mixing multiple phosphor particles with different luminescent colors, and it can be applied to knock lights and display devices such as LCDs. Has been. However, the range of applications is limited because of the low luminance and efficiency of light emission and the necessity of high voltage of 100V or higher for high-luminance light emission. Sign and display use).
  • EL devices generally have a problem of generating heat when a voltage is applied.
  • the EL device cannot emit light for a long time due to the accelerated deterioration of heat-sensitive parts (for example, binders in which phosphor powder is dispersed in the case of inorganic dispersion type EL devices) due to heat generation that is weak to heat. .
  • thermal conductivity is applied to the back surface of the EL element.
  • Patent Document 2 discloses a method for improving the heat dissipation effect of a heat sink by forming a film containing sodium silicate and Z or potassium silicate on a heat sink attached to various devices. Yes.
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-59644
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-309383
  • the present invention has been made in order to solve the above-mentioned problems, and an object of the present invention is to provide an inorganic dispersion having a novel structure that can suppress deterioration due to heat generation and emit light with high brightness for a long time.
  • Type EL elements
  • the present inventors can cause the inorganic dispersion type EL element to emit light with high luminance by increasing the applied voltage or increasing the AC frequency.
  • the inorganic dispersion type EL device consumes most of the input power due to heat generation because the light emission efficiency is particularly low in high luminance light emission, that is, the device is greatly deteriorated during high luminance light emission.
  • An organic dispersion type electroluminescent device having at least a light emitting layer between a pair of electrodes such as a back electrode and a transparent electrode, on the surface of the back electrode opposite to the light emitting layer.
  • An inorganic dispersion-type electroluminescent device having a thermal emissivity of 0.8 or more and a thickness of 50 ⁇ m to 1000 ⁇ m (first embodiment).
  • An inorganic electroluminescent element having at least a light emitting layer between a pair of electrodes such as a back electrode and a transparent electrode, wherein the back electrode is a graphite sheet Dispersion type electoluminescence element.
  • the back electrode is a graphite sheet (second embodiment).
  • the transparent electrode is a transparent conductive sheet having a transparent conductive film portion and a metal and Z or alloy fine wire structure portion.
  • an inorganic dispersion-type EL element having a novel structure capable of suppressing heat generation and emitting light with high brightness for a long time.
  • FIG. 1 is an example of an inorganic dispersion-type EL element according to a first embodiment, and is a schematic cross-sectional view.
  • FIG. 2 is a schematic cross-sectional view of an inorganic dispersion-type EL element having a moisture-proof film as an example of the inorganic dispersion-type EL element of the first embodiment.
  • FIG. 3 is an example of an inorganic dispersion-type EL element according to a second embodiment, and is a schematic plan view.
  • FIG. 4 is an example of an inorganic dispersion-type EL element according to a second embodiment, and is a schematic cross-sectional view.
  • a first embodiment of the inorganic dispersion-type EL device of the present invention is an inorganic dispersion-type electoluminescence device having at least a light-emitting layer between a pair of electrodes consisting of a back electrode and a transparent electrode. On the opposite side, the thermal emissivity is 0.8 or more and the thickness
  • the generated heat can be radiated and the life of the inorganic dispersed EL element can be extended. Monkey.
  • the inorganic dispersion type EL device of the above embodiment is particularly preferable when emitting light with high luminance accompanied by intense heat generation, preferably when emitting light with a luminance of 300 cd / m 2 or more, more preferably 500 cd / m 2 or more. There is a remarkable heat dissipation effect.
  • FIG. 1 is a schematic cross-sectional view showing an example of an inorganic dispersion-type EL element according to the first embodiment.
  • FIG. 2 is a schematic cross-sectional view showing an example of the inorganic dispersion-type EL element of the first embodiment when covered with a moisture-proof film.
  • the inorganic dispersion-type EL element shown in FIG. 1 has a light emitting portion 7 in which a dielectric layer 2, a light emitting layer 3, and a transparent electrode 4 are laminated in this order on a back electrode 1.
  • a conductive power supply unit (pass line) 5 is mounted in an electrically connected state in the vicinity of at least one side of the transparent electrode 4 on the side in contact with the light emitting layer 3.
  • a ceramic sheet 10 excellent in heat radiation is mounted on the back electrode 1.
  • the back electrode 1 and the power supply unit 5 are provided with lead pieces 12a and 12b connected to an AC power source, respectively. Also, lead piece 12a, 12b Are electrically connected to the lead wires 13a and 13b, respectively.
  • FIG. 2 shows an example of the inorganic dispersion type EL element of the first embodiment in which the entire light emitting portion 7 is covered with the moisture-proof film 6.
  • the inorganic dispersion type EL element of the embodiment shown in FIG. 2 has a light emitting portion 7 in which a dielectric layer 2, a light emitting layer 3, and a transparent electrode 4 are laminated in this order on a back electrode 1.
  • a conductive power supply unit (pass line) 5 is mounted in an electrically connected state in the vicinity of at least one side of the transparent electrode 4 on the side in contact with the light emitting layer 3. Furthermore, a ceramic sheet 10 having excellent thermal radiation is placed on the back electrode 1 with a moisture-proof film 6 interposed therebetween.
  • the back electrode 1 and the power supply unit 5 are provided with lead pieces 12a and 12b connected to an AC power source, respectively.
  • the lead pieces 12a and 12b are electrically connected to the lead wires 13a and 13b, respectively.
  • the ceramic sheet used in the present invention has a coating film containing sodium silicate and Z or potassium silicate on a substrate.
  • the thickness of the ceramic sheet is 50 ⁇ m to 1000 ⁇ m, preferably 80 ⁇ m to 800 ⁇ m, more preferably 100 ⁇ m to 500 ⁇ m.
  • the thermal emissivity is lowered, and further, the sheet becomes brittle and the bending strength is lowered.
  • it exceeds 1000 m the heat capacity increases, so it is difficult to radiate heat, and it is difficult to bend it, so it is difficult to say that it is flexible.
  • the thermal emissivity (JIS A 1423) of the ceramic sheet of the present invention is 0.8 or more, preferably 0.85 or more, more preferably 0.9 or more. From the viewpoint of heat retention, the higher the thermal emissivity, the better.
  • Thermal radiation is the heat release due to electromagnetic wave conversion of thermal energy
  • the thermal emissivity is a numerical value representing the intensity of infrared rays emitted when an object is heated. 1. Expressed as a ratio when set to 0 (100%).
  • Examples of the base material include polyethylene terephthalate, polyethylene naphthalate, and polyetherolate.
  • polyetherolate In addition to flexible polymers such as sulfone, polystyrene, polyethylene, polyarylate, polyether ether ketone, polycarbonate, polypropylene, polyimide, triacetyl cellulose, etc., double-sided adhesive tape such as Sumitomo 3M acrylic soft tape 9894FR-10 It is done.
  • the coating film containing sodium silicate and Z or potassium silicate is particularly preferably a mixture of both sodium silicate and potassium silicate.
  • the coating film can also contain an alkali silicate other than sodium or strong sodium, for example, lithium silicate.
  • This coating film can further contain a metal oxide.
  • the metal oxide silicon oxide and aluminum oxide are preferable.
  • the coating film can further contain acid tin. Oxidized tin may be added to sodium silicate and Z or potassium silicate systems, or metal oxides may be added to sodium silicate and Z or potassium silicate systems, and then oxidized tin can be added. You can bark.
  • the metal oxides contained in the coating include aluminum silicate (kaolin), magnesium silicate (talc), silicon oxide, silicon oxide, and tin oxide, as well as titanium oxide, zirconium oxide, and acid oxide. Examples thereof include antimony, acid germanium, boron oxide, calcium oxide, barium oxide, strontium oxide, and acid bismuth.
  • metal nitride can be contained.
  • the metal nitride include boron nitride, zirconium nitride, tin nitride, strontium nitride, titanium nitride, and nitride nitride.
  • the metal oxide, metal nitride and the like contained in the coating film in the present invention are preferably used in a fine powder state. In order to make a fine powder, it is preferable to grind with a ball mill, a jet mill or the like.
  • the ratio of sodium silicate to potassium silicate is preferably 0.5 to 7 (based on solid content) sodium silicate with respect to potassium silicate 1.
  • the content of alkali silicate in the coating is preferably 3 to 30% by weight.
  • the quantitative ratio of the metal oxide is preferably 12 to 92% by weight in the solid content of the coating film.
  • the ratio of tin oxide to the solid content in the coating film is preferably 6 to 45% by weight.
  • the coating material for forming the coating film contains sodium silicate and Z or potassium silicate as basic components.
  • Sodium silicate and potassium silicate are each in the form of an aqueous solution Available at An aqueous solution of sodium silicate is known as water glass.
  • An aqueous solution of sodium silicate and potassium silicate can be used by diluting with water.
  • the aqueous solution containing sodium silicate and Z or potassium silicate is used as a coating material, and coating is performed on the substrate by spraying, applying with a brush, or screen printing. After coating, air dry in the atmosphere. A film forms on the surface of the substrate after air drying. The obtained ceramic sheet exhibits excellent heat dissipation.
  • fine particles of silicon oxide or aluminum oxide can be further added to the coating material for forming the coating film.
  • the coating liquid becomes a suspension.
  • a ceramic sheet obtained by coating the suspension on the substrate in the same manner exhibits a remarkable heat dissipation effect.
  • fine powder of acid tin can be added.
  • the coating material added with acid tin shows further excellent heat dissipation. Since the coating liquid needs to have an appropriate viscosity, it is preferable to adjust the viscosity of the liquid by adding water as appropriate according to the type and amount of the additive.
  • the inorganic dispersion-type EL element in the first embodiment has a ceramic sheet on the surface opposite to the side having the light emitting layer of the back electrode.
  • the EL element of the above embodiment does not necessarily require a moisture-proof film from the viewpoint of heat dissipation, but as in the embodiment shown in FIG. 2, the entire light emitting unit 7 or the entire light emitting unit 7 and power supply unit 5 Can be mounted on the back electrode 1 with the moisture-proof film 6 sandwiched therebetween.
  • the area of the ceramic sheet is not particularly limited, but if the area is too large, the light weight, flexibility, It is not preferable from the viewpoint of the degree of freedom of installation location.
  • the area of the ceramic sheet is preferably 0.7 to 2 times, more preferably 0.9 to 1.5 times the area of the light emitting portion of the inorganic dispersion type EL element.
  • the method of placing the ceramic sheet on the inorganic dispersion-type EL device there are no particular restrictions on the method of placing the ceramic sheet on the inorganic dispersion-type EL device.For example, there are methods such as attachment with an adhesive, embedding in a moisture-proof film 6, and application to a substrate with grease. .
  • the ceramic sheet is provided with a mechanism for cooling the ceramic sheet for the purpose of enhancing the heat dissipation effect. It is also preferable. Specifically, a method of installing a cooling fin on a ceramic sheet, a method of installing an electronic cooling element such as a Bercher element, and the like can be mentioned.
  • the back electrode 1 on the side can be manufactured using any material having conductivity.
  • any material having conductivity For example, gold, silver, copper, aluminum, beryllium, connort, chromium, iron, germanium, iridium, potassium, lithium, magnesium, molybdenum, sodium, nickel, platinum, silicon, tin, tantalum, tungsten, zinc, etc.
  • graphite sheets, etc. which can be selected as appropriate according to the form of the inorganic dispersion-type EL element to be manufactured and the temperature of the manufacturing process. Among them, it is preferable to use a graphite sheet.
  • the graphite sheet is excellent in electrical conductivity and thermal conductivity, and is lighter and more flexible than metals such as copper, which are generally used as a back electrode, and thus is suitable as an electrode material.
  • the graphite sheet By using the graphite sheet as the back electrode, heat generation in the light emitting layer is effectively diffused and dissipated, and light emission with high brightness and long time is possible.
  • the graphite sheet used here is a sheet containing graphite as a main component.
  • carbon atoms are preferably 98.0% by mass or more, more preferably 99.0%. It contains at least 9 mass%, more preferably at least 99.5 mass%.
  • the graphite sheet used in the present invention is particularly preferably a highly oriented graphite sheet excellent in electrical conductivity and thermal conductivity.
  • the force S described for the method for producing a highly oriented dullite sheet is not limited to these.
  • a highly oriented graphite sheet can be obtained by treating a stretched aromatic imide film at 2600 degrees in an inert gas atmosphere. By stretching the film, it is considered that the aromatic unit force S is oriented parallel to the film surface, and it becomes easier to obtain orientation graphite.
  • a highly oriented graphite sheet can also be obtained by heating and pressure-curing a mixture of carbon powder and phenol resin in a predetermined shape.
  • the carbon powder here is applicable as long as it contains carbon as a main component, and examples thereof include carbon black, graphite, and charcoal powder.
  • the shape of the carbon powder is particularly limited However, spherical carbon powder is preferred because of its high reliability when forming an element that is easily dispersed uniformly in phenolic resin. As phenol rosin, novolac type and resol type are known depending on the synthesis conditions. Any of the present inventions can be applied.
  • the higher the electrical conductivity of the graphite sheet the more preferable it is 1000 SZcm or more, and it is more preferable that it is 5000 SZcm or more.
  • the thermal conductivity of the graphite sheet is high. Specifically, it is preferably 200 WZm'K or more, more preferably 300. WZm′K or more, more preferably 400 WZm′K or more.
  • the thickness of the graphite sheet is preferably 50 m to 5 nm, more preferably 80 / ⁇ ⁇ to 3 nm, and even more preferably 100 m to lnm! /.
  • the light emitting layer 3 included in the light emitting part 7 is a layer formed by dispersing and containing EL phosphor particles.
  • the EL phosphor particles used in the present invention preferably have an average sphere equivalent diameter of 0.1 to 15 / ⁇ ⁇ , and more preferably 1 to L0 m. By setting the average average sphere equivalent diameter to the above size, an element capable of emitting light with high luminance can be obtained.
  • the coefficient of variation of the equivalent sphere diameter is preferably 5 to 20%, more preferably 30% or less.
  • sphere equivalent diameter means the diameter of a sphere when the EL phosphor particle size is converted to a sphere having the same volume as the EL phosphor particle size.
  • a firing method, a urea melting method, a spray pyrolysis method, or a hydrothermal method can be preferably used.
  • the prepared EL phosphor particles preferably have a multiple twin structure.
  • the plane spacing of the multiple twins is preferably 1 to: LOnm, more preferably 2 to 5 nm.
  • the EL phosphor particles used in the present invention can be prepared by a firing method (solid phase method) widely used in the art.
  • a firing method solid phase method
  • 10-50 nm particle powder generally This is used as primary particles, and an impure substance called activator is mixed in it and mixed with the flux in a crucible at a high temperature of 900 to 1300 ° C for 30 minutes to 10 hours. 1 is fired to obtain an intermediate fluorescent powder.
  • the obtained intermediate phosphor powder is repeatedly washed with ion-exchanged water to remove alkali metal or alkaline earth metal, excess activator and coactivator.
  • second baking is performed on the obtained intermediate phosphor powder. The second baking is performed at a temperature lower than that of the first baking at 500 to 800 ° C., and the baking time is 30 minutes to 12 hours and the heating (annealing) is performed for a short time.
  • the first firing is performed so that the particle size is smaller and more stacking faults are included in the particles. And, it is preferable to select the second firing conditions appropriately.
  • an impact force in a certain range By applying an impact force in a certain range to the first fired product, the density of stacking faults without destroying the particles can be greatly increased.
  • a method of applying an impact force a method of contacting and mixing intermediate fluorescent particles, a method of mixing and mixing spheres such as alumina (ball mill), a method of accelerating and colliding intermediate phosphor particles, and irradiating ultrasonic waves. A method or the like can be preferably used.
  • particles having 10 or more stacking faults having a stacking fault density of 5 nm or less can be formed.
  • 10 layers of stacking faults of 5 nm or less were observed when the particles were ground with a mortar and crushed into fragments of thickness of approximately 0.2 m or less with an electron microscope with an acceleration voltage of 200 KV. It can be evaluated by the frequency of the fragment particles contained above. When the particle size is less than 0.2 m, the crushing is not necessary.
  • the above frequency is preferably over 50%, more preferably over 70%. The higher the frequency, the better the narrower the interval.
  • the intermediate phosphor particles are etched with an acid such as HC1 to remove the metal oxides adhering to the surface, and the copper sulfide adhering to the surface is removed by washing with a KCN solution. The Subsequently, the intermediate phosphor is dried to obtain EL phosphor particles.
  • hydrothermal synthesis method As a method for forming phosphor particles because a multiple twin structure is introduced into the phosphor crystal.
  • particles Is dispersed in a well-stirred aqueous solvent, and zinc ions and Z or sulfur ions that cause particle growth are added at a flow rate controlled by the reaction vessel external force aqueous solution for a predetermined time. Therefore, in this system, the particles can move freely in an aqueous solvent, and the added ions can diffuse in water and cause particle growth uniformly.
  • the concentration distribution of the activator or coactivator inside the particles can be changed, and particles that cannot be obtained by the firing method can be obtained.
  • the nucleation process and the growth process can be clearly separated, and the particle size distribution can be adjusted by freely controlling the degree of supersaturation during particle growth. It is possible to obtain powdered zinc oxide particles.
  • An Ostwald ripening step is preferred between the nucleation process and the growth process to adjust the grain size and achieve a multiple twin structure!
  • the particle preparation temperature is preferably 100 to 375 ° C, more preferably 200 to 375 ° C.
  • the time required for particle size adjustment is preferably within 100 hours, more preferably 5 minutes to 12 hours.
  • a chelating agent is preferably used in the present invention.
  • chelating agents for Zn ions those having an amino group or a carboxyl group are preferred.
  • ethylenediamine amine acetic acid EDTA
  • N-2-hydroxyhexyl ethylenediamine amine acetic acid EDTA
  • diethylenetriaminepentaacetic acid 2-aminoethylethyleneglycoltetraacetic acid, 1,3-diamino-1-hydroxypropyltetraacetic acid, utilloloacetic acid, 2-hydroxyethyliminodiacetic acid, iminoniacetic acid, 2- Examples thereof include hydroxyschetinoreglicin, ammonia, methinoreamine, ethenoreamine, propylamine, dimethylamine, diethylenetriamine, triaminotriethylamine, allylamamine, ethanolamine and the like.
  • the urea melting method is a method using molten urea as a medium for synthesizing phosphor particles. A substance containing an element that forms a phosphor matrix or an activator is dissolved in a molten liquid in which urea is maintained at a temperature higher than the melting point. Add reactants as needed.
  • a sulfur source such as ammonium sulfate, thiourea or thioacetamide is added to cause a precipitation reaction.
  • a solid in which phosphor particles and phosphor intermediates are uniformly dispersed in urea-derived resin is obtained. After this solid is finely pulverized, it is fired in the electric furnace while thermally decomposing the resin.
  • phosphor particles based on oxides, sulfides, and nitrides can be synthesized.
  • a spray pyrolysis method as a method for preparing the phosphor used in the present invention.
  • the precursor solution of the phosphor is made into fine droplets using an atomizer, and phosphor particles are condensed by chemical reaction inside the droplet or chemical reaction with the ambient gas around the droplet.
  • a phosphor intermediate product can be synthesized.
  • particles with fine particles, homogenous trace impurities, spheroids, and narrow particle size distribution can be obtained.
  • an atomizer that generates micro droplets it is preferable to use a two-fluid nozzle, an ultrasonic atomizer, or an electrostatic atomizer.
  • the fine droplets generated by the atomizer are introduced into an electric furnace using a carrier gas and heated to dehydrate and condense, and the chemical reaction and sintering of the substances in the droplets or chemistry with the atmosphere gas
  • the target phosphor particles or phosphor intermediate products are obtained by the reaction.
  • the obtained particles are additionally fired as necessary.
  • a mixed solution of zinc nitrate and thiourea is atomized and thermally decomposed in an inert gas (for example, nitrogen) at a temperature of about 800 ° C.
  • an inert gas for example, nitrogen
  • trace impurities such as Mn, Cu and rare earth are dissolved in the starting mixed solution, it acts as a luminescent center.
  • an yttrium oxide phosphor activated with europium is obtained.
  • the components in the droplets may contain ultrafine silicon dioxide particles that need not be completely dissolved.
  • Asia Zinc silicate phosphor particles can be obtained by thermal decomposition of micro droplets containing ultrafine particles of lead solution and silicon dioxide.
  • a method for preparing the phosphor particles used in the present invention laser ablation method, CVD method, plasma CVD method, sputtering, resistance heating, electron beam method, fluid oil surface vapor deposition combined method, etc.
  • a phase method, a metathesis method, a method using a precursor thermal decomposition reaction, a reverse micelle method, a method combining these methods with high-temperature firing, a liquid phase method such as a freeze drying method, and the like can also be used.
  • phosphor particles having a size of 0.1 to 15 ⁇ m that are preferable for the present invention can be obtained by controlling the preparation conditions of the particles.
  • the phosphor particles are non-luminescent composed of a metal oxide or metal nitride of 0.01 m or more. Good waterproofness and water resistance can be imparted by coating with a shell layer. Further, as described in WO02Z080 626, a technique for improving light extraction efficiency by forming a double structure comprising a core portion including a light emission center and a non-light emitting shell portion can be preferably used.
  • the phosphor particles used in the present invention more preferably have a non-light emitting shell layer on the surface of the particles.
  • This non-light-emitting shell layer is formed with a thickness of 0.01 m or more, preferably 0.01 mm or more, using a chemical method following the preparation of the semiconductor fine particles that serve as the core of the EL phosphor particles, preferably 0.01 to Hope to do.
  • the non-light-emitting shell layer can be made of oxide, nitride, oxynitride, or a material force having the same composition formed on the host phosphor particles and containing no emission center. In addition, it is possible to produce material forces of different compositions that are epitaxially grown on the matrix phosphor particle material.
  • a gas-phase method such as a laser one 'abrasion method, a CVD method, a plasma CVD method, a sputtering method, a resistance heating method, an electron beam method, and a fluid oil surface deposition method may be used.
  • Liquid phase methods and spray pyrolysis methods can also be used. Particularly suitable for phosphor particle formation, hydrothermal synthesis, urea melting Methods and spray pyrolysis methods are also suitable for the synthesis of non-luminescent shell layers!
  • a zinc sulfate phosphor serving as a core particle is added to a solvent, and suspended. Make it cloudy.
  • a solution containing a metal ion to be a non-light-emitting shell layer material and a cation as required is added from outside the reaction vessel at a controlled flow rate for a predetermined time.
  • the particles can move freely in the solvent, and the added ions can diffuse in the solvent and cause particle growth uniformly.
  • a non-light emitting shell layer can be uniformly formed on the surface.
  • zinc sulfide phosphor particles having a non-light emitting shell layer on the surface can be synthesized.
  • the metal salt as the non-light emitting shell layer material is dissolved and melted in the molten urea solution. ⁇ ⁇ Add zinc phosphor particles. Since zinc sulfate does not dissolve in urea, the temperature of the solution is raised as in the case of particle formation to obtain a solid in which zinc sulfide phosphor and non-luminescent shell layer material are uniformly dispersed in urea-derived resin. . After this solid is finely pulverized, it is fired in an electric furnace while thermally decomposing the resin.
  • Zinc phosphor particles can be synthesized.
  • the zinc sulfide is dissolved in a solution in which the metal salt to be the non-light emitting shell layer material is dissolved. Add phosphor. The solution is atomized and pyrolyzed to form a non-luminescent shell layer on the surface of the zinc sulfide phosphor particles.
  • zinc sulfate phosphor particles having a non-light-emitting shell layer such as an oxide, sulfide, or nitride can be synthesized.
  • the matrix material of the EL phosphor particles preferably used in the present invention includes, specifically, one or more elements selected from a group power consisting of Group II elements and Group VI elements, and Group III It is a semiconductor fine particle composed of one or more elements, and the group power composed of elements and group V elements is also selected arbitrarily depending on the required emission wavelength region.
  • CdS, CdSe, CdTe ZnS, ZnSe, ZnTe, CaS, MgS, SrS, GaP, GaAs, and their mixed crystals include ZnS, CdS, CaS, and the like.
  • the base material of the EL phosphor particles BaAl S, CaGa S, Ga 2 O, Zn SiO
  • the activator of the EL phosphor particles used in the present invention at least one ion selected from copper, manganese, silver, gold and rare earth elements can be preferably used.
  • the coactivator at least one kind of ions selected from chlorine, bromine, iodine and aluminum power can be preferably used.
  • metal ions such as Mn and Cr and rare earths can be preferably used.
  • a chromaticity diagram can be used without using dyes or fluorescent dyes.
  • White light emission in the range of 3 ⁇ x ⁇ 0.4 and 0.3 ⁇ y ⁇ 0.4 can be substantially obtained.
  • the light emitting layer 3 can be formed by dispersing the above-described phosphor particles in a dispersant.
  • the dispersant used to disperse the phosphor particles in the light emitting layer 3 include polymers having a relatively high dielectric constant such as cyanoethyl cellulose resin, polyethylene, polypropylene, polystyrene resin, A silicone resin, an epoxy resin, a rubber beidene, or the like can be used.
  • polymers having a relatively high dielectric constant such as cyanoethyl cellulose resin, polyethylene, polypropylene, polystyrene resin, A silicone resin, an epoxy resin, a rubber beidene, or the like can be used.
  • the dielectric constant can be adjusted by mixing fine particles with a high dielectric constant such as 3 3.
  • a dispersing method of the dispersant a homogenizer, a planetary kneader, a roll kneader, an ultrasonic disperser, or the like can be used.
  • the weight ratio of the particles to the dispersing agent in the light emitting layer is preferably 5.0 to 20.
  • the thickness of the light-emitting layer 3 is 1 to 60 ⁇ m, and it is more preferable that the thickness is 3 to 50 / ⁇ ⁇ .
  • the light emitting layer 3 emits light when the variation in the distance between the back electrode 1 and the transparent electrode 4 described later is viewed as the centerline average roughness Ra.
  • the surface of the optical layer 3 preferably has a smoothness of (dXlZ8) or less with respect to the thickness d of the light emitting layer 3.
  • the inorganic dispersion type EL device of the present invention can be formed by adjoining the light emitting layer 3 with the dielectric layer 2 containing an inorganic dielectric substance, if necessary.
  • an inorganic dielectric substance any material can be used as long as it has a high dielectric constant and insulation and a high dielectric breakdown voltage.
  • various metal oxides and nitrides can be used. For example, SiO, TiO, BaTiO, SrTiO, PbTiO, KNbO, PbNbO, Ta O
  • BaTa 2 O, LiTaO, Y 2 O, Al 2 O 3, ZrO, A10N, ZnS, and the like can be used.
  • the dielectric layer 2 may be formed as a uniform film or may be formed as a film having a particle structure. Furthermore, the dielectric layer 2 may be a single layer or a laminate of different insulating layers.
  • the dielectric layer 2 may be either a thin film crystal layer structure or a particle shape structure, or a combination thereof.
  • the dielectric layer 2 may be provided only on one side of the light emitting layer 3 as shown in FIG. 2, but is preferably provided on both sides of the light emitting layer 3 from the viewpoint of obtaining high luminance.
  • the dielectric layer 2 may be a thin film formed on a substrate by a vapor phase method such as sputtering, or a sol-gel film using an alkoxide such as Ba or Sr.
  • the size of the dielectric material is sufficiently smaller than the phosphor particle size.
  • the particles of the dielectric substance have an average particle size of the phosphor particles of 1Z3 ⁇ : LZ100 00! / ,.
  • the inorganic dispersion-type EL device of the present invention has a structure having a light emitting layer containing a phosphor material sandwiched between a pair of opposing electrodes, at least one of which is transparent. Therefore, the total thickness (hereinafter also referred to as “element thickness”) of the light emitting layer 3 and the dielectric layer 2 described above is to ensure the smoothness of the force element having a size equal to or larger than the average diameter of the EL phosphor particles.
  • the element thickness is preferably 1.1 to 10 times that of the average sphere equivalent diameter of the EL phosphor particles. It is preferably 2 to 10 times and more preferably 3 to 5 times. Is more preferable.
  • the dielectric layer 2 is formed so as to cover a part of the upper part of the particle, that is, on a part of the light emitting layer 3. It is preferable because the effect of increasing the contact point or improving the smoothness of the device surface appears by coating it so that it can be placed on the surface.
  • the dielectric substance contained in the dielectric layer 2 and the phosphor particles contained in the light emitting layer 3 can be in direct contact with the dielectric substance, but the dielectric substance It is preferred to contact the phosphor particles that are fully or partially covered with a non-luminescent shell layer. Further, the contact between the dielectric material and the phosphor material may be merely contact, but the upper part of the phosphor particles may be completely or partially covered, that is, the light emitting layer 3 is entirely covered with the dielectric layer 2. If there is a contact between the light-emitting layer 3 and the dielectric layer 2 in contact with the light-emitting layer 3, the contact point increases and the device A viewpoint power capable of developing effects such as improving the smoothness of the surface is also preferable.
  • the dielectric layer 2 and the light emitting layer 3 are preferably formed by application using a spin coating method, a dip coating method, a bar coating method, a spray coating method, or the like.
  • a method that does not select a printing surface such as a screen printing method, or a method that allows continuous application, such as a slide coating method.
  • a dispersion liquid in which phosphor or dielectric fine particles are dispersed in a polymer solution having a high dielectric constant is applied through a screen mesh.
  • the film thickness can be controlled by appropriately selecting the thickness of the screen mesh, the aperture ratio, and the number of coatings.
  • the method for preparing the dielectric layer 2 may be a vapor phase method such as a sputtering method or a vacuum deposition method.
  • the contact points between the phosphor particles and the dielectric material can be increased, and the smoothness of the EL element can be further improved. It is preferable because an effect such as improvement can be obtained.
  • the transparent electrode 4 can be formed of any commonly used transparent electrode material.
  • transparent electrode materials include tin-doped tin oxide, antimony monophosphate tin, zinc-doped tin oxide, tin-doped indium (ITO), and other oxides, and silver thin films with a high refractive index. Examples include multilayer structures sandwiched between layers, and ⁇ -conjugated polymers such as polyarine and polypyrrole.
  • Transparent electrodes include polyethylene terephthalate (PET) and polyethylene naphthalate It can be formed by providing a transparent conductive film formed of the above transparent electrode material on a substrate made of a transparent sheet such as (PEN).
  • the resistance value of the transparent conductive sheet preferably used as the transparent electrode 4 preferably has a surface resistivity of 0.05 to 50 ⁇ in view of uniformity of luminance on the light emitting surface. More preferably, it is 1 to 30 ⁇ .
  • the method for preparing the transparent electrode 4 may be any of a sputtering method and a vapor phase method such as vacuum deposition. However, there is a case where these cannot be sufficiently low resistance alone. In that case, for example, it is preferable to improve the conductivity by arranging a mesh-like metal such as a comb type or a grid type, and a thin wire of an iron or alloy.
  • Copper, silver, and aluminum are preferable as the fine wires of metals and alloys, but depending on the purpose, the above-mentioned transparent electrode material used in the formation of a transparent conductive film can be used for high electrical conductivity and thermal conductivity. Preferred to be a material ,.
  • the thickness of the thin wire of the metal and metal or alloy is arbitrary, but is preferably between 0.1 m and 100 ⁇ m. It is particularly preferred that the thin wires are arranged at a pitch of 50 ⁇ m to 1000 ⁇ m, with a pitch of 100 ⁇ m to 500 ⁇ m being particularly preferred.
  • the light transmittance is reduced by arranging metal and Z or alloy fine wires, but it is important to keep the reduction as small as possible, and the interval between the fine wires is made too narrow and the width and height of the fine wires are increased. It is important to ensure a transmittance of 90% or more and less than 100% without taking too much.
  • the shape of the thin line is a square mesh shape, a rectangular mesh shape, or a rhombus mesh shape.
  • the width of the fine line may be determined according to the purpose, but typically, the fine line interval is preferably 1Z10000 or more and 1Z10 or less.
  • the height of the fine wire is the same.
  • the range of 1Z100 to 10 times the width of the fine wire is preferably used.
  • the fine wire may be bonded to a transparent conductive sheet, or on a mesh-like fine wire formed on the sheet.
  • a transparent electrode material such as ITO may be applied and evaporated.
  • the power supply unit 5 is a conductive bus line electrically connected to the transparent electrode 4, for example, As shown in FIGS. 1 and 2, the light emitting layer 3 and the transparent electrode 4 can be mounted on at least one side of the light emitting layer 3. The power supply unit 5 can also be placed on at least one side of the transparent electrode 4.
  • the power supply unit 5 can be formed of a printed layer of a conductive paste such as silver paste or carbon paste, for example.
  • the lead piece 12a and the power supply unit 5 described later can be integrally manufactured.
  • the power supply portion on the back electrode 1 on at least one side of the back electrode 1 between the back electrode 1 and the dielectric layer 2.
  • the term "installed in the vicinity of the side” means that the element side length is about 1Z100 to 1Z10, as well as the case where the element side is completely matched with each side of the element. It also includes the case of mounting at the center side position.
  • the length of the power supply unit 5 in the longitudinal direction and the width direction can be appropriately determined according to the size of the designed inorganic dispersion-type EL element.
  • the length of the power supply unit 5 in the longitudinal direction can be substantially the same as the length of the element side in the longitudinal direction of the power supply unit 5.
  • the light emitting part 7 or the light emitting part 7 and the power supply part 5 are covered with a moisture-proof film 6 so as to eliminate the influence of humidity from the external environment. Can do. If the light-emitting unit 7 itself has sufficient shielding properties against humidity, a shielding sheet is placed over the formed light-emitting unit 7 or the light-emitting unit 7 and the power supply unit 5, and the periphery is a cured material such as epoxy. Seal with. Such a shielding sheet is selected from metal and plastic film according to the purpose.
  • the moisture-proof film 6 is preferably made of a lightweight and highly flexible material such as a resin film.
  • Moisture-proof film 6 is a transparent film with a low water-moisture permeability, such as a polychlorinated trifluoroethylene film. A film can be used.
  • the moisture-proof film 6 is formed by sandwiching the entire light-emitting part 7 or the light-emitting part 7 and the power-supplying part 5 between two sheets and applying heat and roll pressure to seal the protruding part of the sheet. 7 and the power supply part 5 can be sealed.
  • the light-emitting part 7 or the light-emitting part 7 and the power supply part 5 are sealed with the moisture-proof film 6, in order to prevent moisture absorption of the light-emitting part 7 with the passage of time, between the transparent electrode 4 and the moisture-proof film 6, It is preferable to provide a hygroscopic layer (not shown) integrally.
  • a hygroscopic film such as a 6-knife film can be used.
  • the lead wires 13a and 13a electrically connected to the back electrode 1 and the transparent electrode 4 for the purpose of applying an alternating electric field to the back electrode 1 and the transparent electrode 4 and 13b is disposed.
  • the lead wires 13a and 13b are electrically connected to the back electrode 1 and the transparent electrode 4 through lead pieces 12a and 12b, respectively.
  • the lead piece 12a and the power supply unit 5 are electrically connected. From the viewpoint of high luminance emission of the inorganic dispersion type EL element, it is preferable that the lead pieces (12a, 12b) and the lead wires (13a, 13b) have high electrical conductivity.
  • the lead piece and the lead wire (12a and 13a, 12b and 13b), the lead piece 12a and the transparent electrode 4 or the power supply section 5, and the lead piece 12b and the back electrode 1 are integrated. It is preferable to produce it.
  • the back electrode 1 of the present invention made of a graphite sheet and the lead piece 12b are produced integrally, the graphite sheet is cut out to produce a back electrode having a lead piece portion.
  • the back electrode and the lead piece can be integrated together.
  • the lead pieces 12a and 12b have high thermal conductivity.
  • the thermal conductivity of the lead piece is equal to or greater than lOOWZm′K, and more preferably equal to or greater than 200W Zm′K.
  • Preferred materials include metals selected from gold, silver, copper, aluminum, beryllium, iridium, potassium, magnesium, molybdenum, sodium, silicon, tungsten, zinc, graphite sheets, and alloys and inorganics thereof.
  • Can be more preferred Examples of such materials include metals such as gold, silver, copper, aluminum, beryllium, and graphite sheets, and alloys and inorganic substances thereof.
  • the power supply section 5 and the lead piece 12a mounted on the transparent electrode 4 and the back electrode 1 and the lead piece 12b are each integrally formed. Is more preferable. It is more preferable that these and the lead wires 13a and 13b are manufactured integrally.
  • the EL device of the first embodiment can be manufactured by the process of forming the light emitting portion 7 having the light emitting layer 3 between the transparent electrode 4 and the back electrode 1, and in the case shown in FIG.
  • the step of mounting the power supply unit 5 on the transparent electrode 4 the step of mounting the lead piece 12b on the back electrode 1, the lead piece 12a on the transparent electrode 4 or the power supply unit 5
  • the ceramic sheet 10 may be affixed to the rear electrode 1, it is preferable that the ceramic sheet 10 is directly adhered to the rear electrode 1 and then covered with the moisture-proof film 6 from the viewpoint of heat dissipation.
  • the dielectric layer 2 and the light-emitting layer 3 are formed on the back electrode 1 in a desired shape by using a spin coat method, a dip coat method, a bar coat method, or a spray coating method. Can be produced by laminating the transparent electrode 4 on which the power supply unit 5 is mounted.
  • the light emitting unit 7 or the light emitting unit 7 and the power supply unit 5 are The terminal piece 12a is attached in a state of being electrically connected to the transparent electrode 4 or the power supply unit 5.
  • the lead wire 13a is attached in a state where it is electrically connected. It is preferable that the lead piece 12a is manufactured integrally with the power supply unit 5, and it is more preferable that the lead wire 13a is integrated.
  • the light-emitting part 7 or the light-emitting part 7 and the power-supply part 5 are covered with the moisture-proof film 6, the light-emitting part is formed by the moisture-proof film 6 with the lead piece 12 b electrically connected to the back electrode 1. 7 or the light emitting unit 7 and the power supply unit 5 can be covered entirely.
  • the lead wire 13b is attached in a state where it is electrically connected. It is preferable that the lead piece 12b is integrally formed with the back electrode 1, and it is further preferable that these are integrated with the lead wire 13b.
  • the inorganic dispersion-type EL element according to the second embodiment of the present invention is an inorganic dispersion-type electroluminescent device having at least a light-emitting layer between a pair of electrodes having a back electrode and a transparent electrode.
  • the back electrode is a graphite. It is a sheet.
  • the graphite sheet acts not only as an electrode but also as a thermal diffusion and heat dissipation sheet.
  • the inorganic dispersion-type EL device of the second embodiment is particularly effective when emitting high-intensity light with strong heat generation, preferably when emitting light with a luminance of lOOcdZm 2 or more, more preferably 300 cd / m 2 or more. It has remarkable heat diffusion and heat dissipation effects.
  • FIG. 3 and FIG. 4 show an example of an inorganic dispersion-type EL element according to the second embodiment in which the entire light-emitting portion 7 is covered with the moisture-proof film 6 (FIG. 3 is a schematic plan view, FIG. 4). Is a schematic cross-sectional view).
  • the inorganic dispersion type EL element of the embodiment shown in FIGS. 3 and 4 has a light emitting portion 7 in which a dielectric layer 2, a light emitting layer 3, and a transparent electrode 4 are laminated in this order on a back electrode 1.
  • a conductive power supply part (pass line) 5 is placed in an electrically connected state at least near one side of the transparent electrode 4 on the side in contact with the light emitting layer 3.
  • the back electrode 1 and the power supply unit 5 are provided with lead pieces 12a and 12b connected to an AC power source, respectively.
  • the lead pieces 12a and 12b are electrically connected to the lead wires 13a and 13b, respectively.
  • the graph eye sheet used as the back electrode in the second embodiment the graph eye sheet described in the first embodiment can be used.
  • the other members such as the light emitting layer, the back electrode, and the transparent electrode can be the same as those described in the first embodiment.
  • the EL display element according to the second embodiment includes a step of forming a light-emitting portion 7 having a light-emitting layer 3 between the transparent electrode 1 and the back electrode 4, and a step of mounting a power supply portion 5 on the transparent electrode 4.
  • the lead piece 12b is placed on the back electrode 1
  • the lead piece 12a is placed on the transparent electrode 4 or the power supply section 5, and the lead wires 13a and 13b are electrically connected to the lead pieces 12a and 12b.
  • the dielectric layer 2 and the light-emitting layer 3 are formed on the back electrode 1 in a desired shape by using a spin coat method, a dip coat method, a bar coat method, or a spray coating method. Can be produced by laminating the transparent electrode 4 on which the power supply unit 5 is mounted.
  • the lead piece 12a is attached to the light emitting unit 7 or the light emitting unit 7 and the power supply unit 5 in a state of being electrically connected to the transparent electrode 4 or the power supply unit 5.
  • the lead wire 12a is attached in an electrically connected state. It is preferable that the lead piece 12a is integrally formed with the power supply unit 5, and it is more preferable that the lead piece 13a is integrated with the lead wire 13a.
  • the lead piece 12b can be covered with the moisture-proof film 6 while covering the light emitting part 7 or the light emitting part 7 and the power supply part 5 in a state where the lead piece 12b is attached in a state of being electrically connected to the back electrode 1.
  • the lead wire 13b is attached in a state where it is electrically connected. It is preferable that the lead piece 12b is manufactured integrally with the back electrode 1, and it is more preferable that the lead wire 13b is integrated with these.
  • the light emission color of the inorganic dispersion EL element used in the present invention is considered as a light source.
  • the white color is preferred.
  • Specific methods for setting the emission color to white include, for example, a method using phosphor particles that emit white light alone, such as a ZnS phosphor activated with manganese and gradually cooled after firing, and three primary colors Alternatively, it is preferable to use a method of mixing a plurality of phosphors that emit light of complementary colors (for example, a combination of blue, green, and red, or a combination of blue, green, and orange).
  • the CIE chromaticity coordinates (X, y) are preferably in the range of the X value force SO. 30 to 0.40 and the force y value force SO. 30 to 0.40.
  • the inorganic dispersion type EL element is driven by an alternating current, and is typically driven by using an alternating current power source of 100V and 50 to 400Hz.
  • an alternating current power source 100V and 50 to 400Hz.
  • the luminance increases almost in proportion to the applied voltage and frequency.
  • the capacitance component of the inorganic dispersion type EL element increases, and there is a deviation between the inorganic dispersion type EL element and the impedance matching of the power source.
  • the time constant required for the charge stored in the device may increase.
  • inorganic dispersion-type EL elements may have insufficient power supply even at higher voltages, especially at higher frequencies.
  • the applied voltage often decreases as the driving frequency increases, resulting in lower brightness. Often happens.
  • the inorganic dispersion type EL element of the present invention can suppress deterioration of the element due to heat generation, even at a size of 0.25 m 2 or more, driving at a higher frequency than normal, preferably driving at 500 Hz to 5 KHz, Preferably, driving at 800 Hz to 4 KHz is possible, and high brightness can be obtained.
  • the inorganic dispersion-type EL element of the present invention can be used as, for example, a knock light for a backlight display film for ink jet recording on which an image is recorded by an ink jet recording method.
  • the inorganic dispersion type EL device of the present invention has, for example, a high image quality with a maximum density of 1.5 or more. It can also be used as a backlight for transparent print images, and can realize high-quality, large-area advertisements and the like.
  • the above dielectric paste is applied on an aluminum sheet (thickness 75 m, thermal emissivity 0.04, thermal conductivity 180 WZm'K) so that the film thickness after drying is 35 / zm. And dried at 110 ° C for 4 hours. Further, the above light emitting layer paste was applied on this so that the film thickness after drying was 35 ⁇ m, and dried at 110 ° C. for 6 hours by a hot air dryer.
  • a lead electrode made of a copper aluminum sheet is attached to the side opposite to the coated surface of the aluminum sheet, and then the coated surface of the aluminum sheet and the conductive surface of the transparent conductive sheet are bonded together. And thermocompression bonded.
  • a ceramic sheet (“First to paste first” made by Ceramission, thermal emissivity; 0.96, sheet thickness 30 O / zm) was pasted on the side opposite to the coated surface of the aluminum sheet. The size of the light emitting surface of the element was set to 500 mm X 500 mm.
  • a thin copper wire with a width of 5 microns and a height of 2.5 microns is deposited on polyethylene terephthalate with a thickness of 100 microns by vacuum deposition to form a square with an interval of lmm, and then ITO is sputtered to 30 nm.
  • the same procedure as in Example 1-1 was performed, except that a sheet having a uniform thickness was used as the transparent electrode.
  • Example 1-1 The same procedure as in Example 1-1 was performed, except that phosphor particles (ZnS: Cu, C1) having an average particle size of 10 / zm were used to produce a light emitting layer paste.
  • phosphor particles ZnS: Cu, C1 having an average particle size of 10 / zm were used to produce a light emitting layer paste.
  • a thin copper wire with a width of 5 microns and a height of 2.5 microns is deposited on polyethylene terephthalate with a thickness of 100 microns by vacuum deposition to form a square with an interval of lmm, and then ITO is sputtered to 30 nm.
  • the same procedure as in Example 1-4 was performed, except that a sheet having a uniform thickness was used as the transparent electrode.
  • Example 15 The same procedure as in Example 15 was performed, except that a graphite sheet (“PGS graphite sheet” manufactured by Matsushita Electronic Components, thermal conductivity: 800 WZm. K) was used instead of the above aluminum sheet.
  • PPS graphite sheet manufactured by Matsushita Electronic Components, thermal conductivity: 800 WZm. K
  • Example 1-1 The same procedure as in Example 1-1 was performed except that the ceramic sheet was not attached to the aluminum sheet.
  • Example 1-1 Except for sticking ceramic sheet (thermal emissivity 0.5, thickness 40 ⁇ m) to aluminum sheet, The same procedure as in Example 1-1 was performed.
  • Example 1-1 changing the transparent electrode from ITO to copper fine wire + ITO as in Example 1-3 can improve not only the deterioration of ITO but also the heat dissipation from the transparent electrode, Furthermore, the change in relative luminance after time was small.
  • Example 14 When the average particle size of the phosphor particles was reduced as in Example 14 and the calorific value was increased, as a result, the heat dissipation effect was enhanced and the life was improved compared to Example 1-1.
  • Example 14 Furthermore, in contrast to Example 14, good results were obtained by changing the transparent electrode to copper fine wire + ITO as in Example 15. In Example 1-6, when the back electrode was changed to a graphite sheet from Example 1-5, a further heat radiation effect was obtained, and the best result was obtained.
  • Phosphor particles having an average particle size of 25 ⁇ m ZnS; Cu, CI
  • red Pigments having an average particle diameter of 4 mu m Shinroihi FA- 001, Shinroihi Co. (Ltd.)
  • a 30 weight 0/0 It was dispersed in a cyanoethyl cellulose solution to obtain a light emitting layer paste.
  • the above dielectric paste is applied on a graphite sheet (PGS graphite sheet (thermal conductivity; 800 W / mK), manufactured by Matsushita Electronic Components Co., Ltd.) to a film thickness of 35 ⁇ m, and a hot air dryer And dried at 110 ° C for 4 hours. Further, the above light emitting layer paste was applied to a thickness of 35 ⁇ m, and dried at 110 ° C. for 6 hours with a hot air dryer.
  • PPS graphite sheet thermo conductivity; 800 W / mK
  • the coated surface of the graphite sheet and the conductive surface of the transparent conductive sheet were bonded together and thermocompression bonded to obtain an inorganic dispersion-type electroluminescent device.
  • the size of the light emitting surface of the device was set to 500 mm X 500 mm.
  • Example 2-1 The test was performed in the same manner as in Example 2-1, except that the graphite sheet was changed to Super E GS (thermal conductivity: 350 W / m'K, manufactured by Suzuki Sogo Co., Ltd.).
  • a thin copper wire with a width of 5 / zm and a height of 2.5 m was deposited on a polyethylene terephthalate with a thickness of 100 / zm by vacuum deposition to form a square with a spacing of lmm, and ITO was further deposited on the surface by a notch.
  • the same procedure as in Example 2-1 was performed except that a sheet uniformly adhered to a thickness of 30 nm was used as the transparent electrode.
  • Example 2-1 The same procedure as in Example 2-1 was performed, except that phosphor particles (ZnS: Cu, C1) having an average particle diameter of 10 / zm were used and a light emitting layer paste was prepared.
  • phosphor particles ZnS: Cu, C1 having an average particle diameter of 10 / zm were used and a light emitting layer paste was prepared.
  • a thin copper wire with a width of 5 / zm and a height of 2.5 m was deposited on a polyethylene terephthalate with a thickness of 100 / zm by vacuum deposition to form a square with a spacing of lmm, and ITO was further deposited on the surface by a notch.
  • the same procedure as in Example 2-4 was performed except that a sheet uniformly adhered to a thickness of 30 nm was used as the transparent electrode.
  • Examples 2-1 to 2-5 and Comparative Example 2 under the driving conditions of voltage 200V and frequency ⁇
  • the initial luminance was 600 cd / m 2 .
  • Table 2 shows the luminance half-life (drive time required for the EL luminance to drop to half of the initial luminance) when these elements are driven continuously in the same environment.
  • Example 2 1 Graphite sheet 800 W / mK 25 U m ITO 500 hours
  • Example 2-1 Aluminum sheet 237 W / mK 25 m ITO 200 hours On the back of the aluminum sheet
  • Example 2-1 Compared to Comparative Example 2-1 in which the back electrode is an aluminum sheet, heat dissipation is improved by making the back electrode a graphite sheet as in Examples 2-1 and 2-2, and the luminance half-life is increased. Increased. In particular, Example 2-1 exhibited a remarkable effect because of the high thermal conductivity of the back electrode. In addition, by changing the ITO force of the transparent electrode to the copper fine wire + ITO as in Example 2-3, the heat dissipation of the transparent electrode force can be improved, and the luminance half-life is further increased.
  • Example 24 When the average particle diameter of the phosphor particles was reduced as in Example 24, the amount of heat generation was increased, and as a result, the heat dissipation effect was enhanced and the life was improved compared to Example 2-1. Furthermore, the best results were obtained by changing the transparent electrode to copper fine wire + ITO as in Example 2-5.

Abstract

An inorganic dispersion electroluminescence element having a novel structure which suppresses deterioration due to heat and emits light for a long time with high luminance. The inorganic dispersion electroluminescence element is provided with at least a light emitting layer between a pair of electrodes composed of a back plate and a transparent electrode. On a plane opposite to the light emitting layer of the back plate, a ceramic sheet having a thermal emissivity of 0.8 or more and a thickness of 50μm-1,000μm is provided.

Description

明 細 書  Specification
無機分散型エレクト口ルミネッセンス素子  Inorganic dispersion type electoluminescence element
技術分野  Technical field
[0001] 本発明は、無機分散型エレクト口ルミネッセンス素子に関する。  [0001] The present invention relates to an inorganic dispersion-type electroluminescent device.
背景技術  Background art
[0002] エレクト口ルミネッセンス(以下、「EL」ともよぶ)蛍光体は電圧励起型の蛍光体であ り、蛍光体粉末を電極の間に挟んで発光素子とした無機分散型 EL素子として用いら れることが知られている。無機分散型 EL素子の一般的な形状は、蛍光体粉末を高 誘電率のバインダー中に分散したものを、少なくとも一方が透明な二枚の電極の間 に挟み込んだ構造力 なり、両電極間に交流電場を印加することにより発光する。蛍 光体粉末を用いて作成された EL素子は数 mm以下の厚さとすることが可能で、面発 光体であり、発熱が少ないなど数多くの利点を有するため、道路標識、各種インテリ ァゃエクステリア用の照明、液晶ディスプレイ等のフラットパネルディスプレイ用の光 源、大面積の広告用の照明光源等としての用途がある。  [0002] Electric mouth luminescence (hereinafter also referred to as "EL") phosphors are voltage-excited phosphors, which are used as inorganic dispersion-type EL devices in which phosphor powders are sandwiched between electrodes. It is known that The general shape of an inorganic dispersion-type EL device is a structural force in which phosphor powder is dispersed in a binder with a high dielectric constant and is sandwiched between two transparent electrodes. Light is emitted by applying an alternating electric field. EL elements made from phosphor powders can be several millimeters or less in thickness, are surface emitters, and have many advantages such as low heat generation, so road signs and various intelligent devices Applications include exterior lighting, light sources for flat panel displays such as liquid crystal displays, and illumination light sources for large-area advertisements.
[0003] 無機分散型 EL素子は、高温プロセスを用いな 、ため、プラスチックを基板としたフ レキシブルな素子の形成が可能であること、真空装置を使用することなく比較的簡便 な工程で、低コストで製造が可能であること、また発光色の異なる複数の蛍光体粒子 を混合することで素子の発光色の調節が容易であるという特長を有し、 LCDなどの ノ ックライト、表示装置へ応用されている。し力しながら、発光輝度及び効率が低いこ とや高輝度発光に 100V以上の高電圧が必要なことから、応用範囲が限られており、 従来は高輝度で長時間発光する用途 (例えば、サインアンドディスプレイ用途)には 使用できなかった。 [0003] Since inorganic dispersion type EL elements do not use a high-temperature process, it is possible to form a flexible element using a plastic substrate, and a relatively simple process without using a vacuum apparatus. It can be manufactured at low cost, and it is easy to adjust the luminescent color of the element by mixing multiple phosphor particles with different luminescent colors, and it can be applied to knock lights and display devices such as LCDs. Has been. However, the range of applications is limited because of the low luminance and efficiency of light emission and the necessity of high voltage of 100V or higher for high-luminance light emission. Sign and display use).
[0004] また、一般的に EL素子は電圧をかけると発熱するという問題がある。 EL素子は熱 に弱ぐ発熱によって熱に弱い部分 (例えば、無機分散型 EL素子でいえば、蛍光体 粉末を分散させているバインダー)の劣化が加速されるため、長時間発光させること ができない。  [0004] In addition, EL devices generally have a problem of generating heat when a voltage is applied. The EL device cannot emit light for a long time due to the accelerated deterioration of heat-sensitive parts (for example, binders in which phosphor powder is dispersed in the case of inorganic dispersion type EL devices) due to heat generation that is weak to heat. .
この問題を解決するために、例えば特許文献 1では、 EL素子の背面部に熱伝導性 の高いグラフアイトシートを貼付することで、局所的な発熱を放熱、均熱化し、駆動寿 命を改善する方法を開示しているが、グラフアイトシートを貼り付けることのみでは均 熱化は可能である力 放熱性は高!、とは 、えな!/、。 In order to solve this problem, for example, in Patent Document 1, thermal conductivity is applied to the back surface of the EL element. Discloses a method to dissipate and equalize local heat generation by pasting a graphite sheet with a high level of heat and improve drive life, but it is possible to equalize heat by simply pasting a graphite sheet. The power that is heat dissipation is high!
[0005] 一方、特許文献 2では、各種機器に取り付けられる放熱体に、珪酸ナトリウムおよび Zまたは珪酸カリウムを含有する塗膜を形成させることで、放熱体の放熱効果を向上 させる方法を開示している。  [0005] On the other hand, Patent Document 2 discloses a method for improving the heat dissipation effect of a heat sink by forming a film containing sodium silicate and Z or potassium silicate on a heat sink attached to various devices. Yes.
特許文献 1:特開 2003— 59644号公報  Patent Document 1: Japanese Patent Laid-Open No. 2003-59644
特許文献 2:特開 2003 - 309383号公報  Patent Document 2: Japanese Patent Laid-Open No. 2003-309383
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] 本発明は上記課題を解決するためになされたものであり、本発明の目的は、発熱 による劣化を抑制して高輝度で長時間発光させることが可能な新規な構造を有する 無機分散型 EL素子を提供することである。 [0006] The present invention has been made in order to solve the above-mentioned problems, and an object of the present invention is to provide an inorganic dispersion having a novel structure that can suppress deterioration due to heat generation and emit light with high brightness for a long time. Type EL elements.
課題を解決するための手段  Means for solving the problem
[0007] 本発明者らは、上記課題を解消するべく鋭意検討した結果、印加電圧を高くするこ とや交流の周波数を上げることによって無機分散型 EL素子を高輝度で発光させるこ とができるが、無機分散型 EL素子では、特に高輝度発光における発光効率が著しく 低ぐ投入電力の大半が発熱で消費されてしまう、即ち高輝度発光時では素子の劣 化が著しいことを知見した。 [0007] As a result of intensive studies to solve the above problems, the present inventors can cause the inorganic dispersion type EL element to emit light with high luminance by increasing the applied voltage or increasing the AC frequency. However, it was found that the inorganic dispersion type EL device consumes most of the input power due to heat generation because the light emission efficiency is particularly low in high luminance light emission, that is, the device is greatly deteriorated during high luminance light emission.
上記課題は、下記特定の構造を有する無機分散型 EL素子によって  The above problem is solved by an inorganic dispersion EL device having the following specific structure:
解決されるに至った。  It came to be solved.
[0008] (1)背面電極及び透明電極カゝらなる一対の電極の間に少なくとも発光層を有する無 機分散型エレクト口ルミネッセンス素子であって、背面電極の発光層とは反対側の面 に、熱放射率が 0. 8以上で、厚さ 50 μ m〜1000 μ mのセラミックシートを有すること を特徴とする無機分散型エレクト口ルミネッセンス素子 (第 1の実施態様)。  [0008] (1) An organic dispersion type electroluminescent device having at least a light emitting layer between a pair of electrodes such as a back electrode and a transparent electrode, on the surface of the back electrode opposite to the light emitting layer. An inorganic dispersion-type electroluminescent device having a thermal emissivity of 0.8 or more and a thickness of 50 μm to 1000 μm (first embodiment).
(2)背面電極及び透明電極カゝらなる一対の電極の間に少なくとも発光層を有する無 機分散型エレクト口ルミネッセンス素子であって、前記背面電極がグラフアイトシート であることを特徴とする無機分散型エレクト口ルミネッセンス素子。 (3)前記背面電極がグラフアイトシートであることを特徴とする上記(1)に記載の無機 分散型エレクト口ルミネッセンス素子 (第 2の実施態様)。 (2) An inorganic electroluminescent element having at least a light emitting layer between a pair of electrodes such as a back electrode and a transparent electrode, wherein the back electrode is a graphite sheet Dispersion type electoluminescence element. (3) The inorganic dispersion-type electroluminescent device according to (1), wherein the back electrode is a graphite sheet (second embodiment).
(4)前記背面電極の熱伝導率が 200WZm'K以上であることを特徴とする上記(2) または(3)に記載の無機分散型エレクト口ルミネッセンス素子。  (4) The inorganic dispersion-type electroluminescent device according to (2) or (3) above, wherein the back electrode has a thermal conductivity of 200 WZm′K or more.
(5)前記透明電極が、透明導電膜部分と、金属及び Zまたは合金の細線構造部分と を有してなる透明導電シートであることを特徴とする上記(1)〜 (4)の 、ずれかに記 載の無機分散型エレクト口ルミネッセンス素子。  (5) The deviation of the above (1) to (4), wherein the transparent electrode is a transparent conductive sheet having a transparent conductive film portion and a metal and Z or alloy fine wire structure portion. An inorganic dispersion-type electoluminescence element described in Crab.
(6)前記発光層内に含有される蛍光体粒子の平均サイズが 0.1〜 15 μ mであること を特徴とする上記(1)〜(5)の 、ずれかに記載の無機分散型エレクト口ルミネッセン ス素子。  (6) The inorganic dispersion type elect mouth according to any one of (1) to (5) above, wherein the average size of the phosphor particles contained in the light emitting layer is 0.1 to 15 μm Luminescence element.
発明の効果  The invention's effect
[0009] 本発明によれば、発熱を抑制して長時間高輝度で発光させることができる新規な構 造を有する無機分散型 EL素子を提供することができる。  [0009] According to the present invention, it is possible to provide an inorganic dispersion-type EL element having a novel structure capable of suppressing heat generation and emitting light with high brightness for a long time.
図面の簡単な説明  Brief Description of Drawings
[0010] [図 1]第 1の実施態様の無機分散型 EL素子の一例であり、概略断面図である。 FIG. 1 is an example of an inorganic dispersion-type EL element according to a first embodiment, and is a schematic cross-sectional view.
[図 2]第 1の実施態様の無機分散型 EL素子の一例であり、防湿フィルムを有する無 機分散型 EL素子の概略断面図である。  FIG. 2 is a schematic cross-sectional view of an inorganic dispersion-type EL element having a moisture-proof film as an example of the inorganic dispersion-type EL element of the first embodiment.
[図 3]第 2の実施態様の無機分散型 EL素子の一例であり、概略平面図である。  FIG. 3 is an example of an inorganic dispersion-type EL element according to a second embodiment, and is a schematic plan view.
[図 4]第 2の実施態様の無機分散型 EL素子の一例であり、概略断面図である。  FIG. 4 is an example of an inorganic dispersion-type EL element according to a second embodiment, and is a schematic cross-sectional view.
符号の説明  Explanation of symbols
[0011] 1 背面電極 [0011] 1 Rear electrode
2 誘電体層  2 Dielectric layer
3 発光層  3 Light emitting layer
4 透明電極  4 Transparent electrode
5 供電部  5 Power supply unit
6 防湿フィルム  6 Moisture-proof film
7 発光部  7 Light emitter
10 セラミックシート 12aゝ 12b リード片 10 Ceramic sheet 12a ゝ 12b Lead piece
13a、 13b リード線  13a, 13b Lead wire
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0012] 以下、本発明の無機分散型 EL素子について以下に詳細に説明する。なお、本明 細書において「〜」は、その前後に記載される数値を下限値および上限値として含む 意味として使用される。 Hereinafter, the inorganic dispersion type EL device of the present invention will be described in detail below. In this specification, “to” is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
[0013] (第 1の実施態様) [0013] (First embodiment)
本発明の無機分散型 EL素子の第 1の実施態様は、背面電極及び透明電極からな る一対の電極の間に少なくとも発光層を有する無機分散型エレクト口ルミネッセンス 素子において、背面電極の発光層とは反対側の面に、熱放射率が 0. 8以上で、厚さ A first embodiment of the inorganic dispersion-type EL device of the present invention is an inorganic dispersion-type electoluminescence device having at least a light-emitting layer between a pair of electrodes consisting of a back electrode and a transparent electrode. On the opposite side, the thermal emissivity is 0.8 or more and the thickness
50 μ m〜1000 μ mのセラミックシートを有することを特徴とする。 It has a ceramic sheet of 50 μm to 1000 μm.
背面電極の発光層とは反対側の面に、熱放射率の高いセラミックシートを載設する ことによって、発生した熱を放射させ、無機分散型 EL素子の長寿命化を達成するこ とがでさる。  By placing a ceramic sheet with high thermal emissivity on the surface of the back electrode opposite to the light-emitting layer, the generated heat can be radiated and the life of the inorganic dispersed EL element can be extended. Monkey.
上記態様の無機分散型 EL素子は、特に強 ヽ発熱を伴う高輝度発光させた場合、 好ましくは輝度が 300cd/m2以上、より好ましくは 500cd/m2以上で発光させた場 合に、特に顕著な放熱効果を奏する。 The inorganic dispersion type EL device of the above embodiment is particularly preferable when emitting light with high luminance accompanied by intense heat generation, preferably when emitting light with a luminance of 300 cd / m 2 or more, more preferably 500 cd / m 2 or more. There is a remarkable heat dissipation effect.
[0014] 第 1の実施態様の無機分散型 EL素子について、図 1及び図 2を参照し、以下に説 明する。 [0014] The inorganic dispersion-type EL device of the first embodiment will be described below with reference to FIGS.
図 1は、第 1の実施態様の無機分散型 EL素子の一例を示す概略断面図である。ま た、図 2は、防湿フィルムで被覆した場合における第 1の実施態様の無機分散型 EL 素子の一例を示す概略断面図である。  FIG. 1 is a schematic cross-sectional view showing an example of an inorganic dispersion-type EL element according to the first embodiment. FIG. 2 is a schematic cross-sectional view showing an example of the inorganic dispersion-type EL element of the first embodiment when covered with a moisture-proof film.
[0015] 図 1に示される無機分散型 EL素子は、背面電極 1上に、誘電体層 2、発光層 3およ び透明電極 4がこの順に積層された発光部 7を有する。発光部 7において、透明電極 4の発光層 3に接する側の少なくとも 1辺近傍には、導電性の供電部 (パスライン) 5が 電気的に接続された状態で載設されている。さらに、背面電極 1には、熱放射性に優 れたセラミックシート 10が載設されている。背面電極 1および供電部 5には、それぞれ 交流電源に接続されるリード片 12a、 12bが設けられている。また、リード片 12a、 12b は、それぞれリード線 13a、 13bと電気的に接続されている。 The inorganic dispersion-type EL element shown in FIG. 1 has a light emitting portion 7 in which a dielectric layer 2, a light emitting layer 3, and a transparent electrode 4 are laminated in this order on a back electrode 1. In the light emitting unit 7, a conductive power supply unit (pass line) 5 is mounted in an electrically connected state in the vicinity of at least one side of the transparent electrode 4 on the side in contact with the light emitting layer 3. Further, a ceramic sheet 10 excellent in heat radiation is mounted on the back electrode 1. The back electrode 1 and the power supply unit 5 are provided with lead pieces 12a and 12b connected to an AC power source, respectively. Also, lead piece 12a, 12b Are electrically connected to the lead wires 13a and 13b, respectively.
[0016] また、発光部 7または発光部 7および供電部 5を、外部環境からの湿度の影響を排 除するよう防湿フィルム 6で被覆してもよい。図 2に、防湿フィルム 6により発光部 7の 全体が被覆された第 1の実施態様の無機分散型 EL素子の一例を示す。図 2に示さ れる態様の無機分散型 EL素子は、背面電極 1上に、誘電体層 2、発光層 3および透 明電極 4がこの順に積層された発光部 7を有する。発光部 7において、透明電極 4の 発光層 3に接する側の少なくとも 1辺近傍には、導電性の供電部 (パスライン) 5が電 気的に接続された状態で載設されている。さらに、背面電極 1には、防湿フィルム 6を 挟んで、熱放射性に優れたセラミックシート 10が載設されている。背面電極 1および 供電部 5には、それぞれ交流電源に接続されるリード片 12a、 12bが設けられている 。また、リード片 12a、 12bは、それぞれリード線 13a、 13bと電気的に接続されている In addition, the light emitting unit 7 or the light emitting unit 7 and the power supply unit 5 may be covered with a moisture-proof film 6 so as to eliminate the influence of humidity from the external environment. FIG. 2 shows an example of the inorganic dispersion type EL element of the first embodiment in which the entire light emitting portion 7 is covered with the moisture-proof film 6. The inorganic dispersion type EL element of the embodiment shown in FIG. 2 has a light emitting portion 7 in which a dielectric layer 2, a light emitting layer 3, and a transparent electrode 4 are laminated in this order on a back electrode 1. In the light emitting unit 7, a conductive power supply unit (pass line) 5 is mounted in an electrically connected state in the vicinity of at least one side of the transparent electrode 4 on the side in contact with the light emitting layer 3. Furthermore, a ceramic sheet 10 having excellent thermal radiation is placed on the back electrode 1 with a moisture-proof film 6 interposed therebetween. The back electrode 1 and the power supply unit 5 are provided with lead pieces 12a and 12b connected to an AC power source, respectively. The lead pieces 12a and 12b are electrically connected to the lead wires 13a and 13b, respectively.
[0017] [セラミックシート] [0017] [Ceramic sheet]
以下、本発明で用いられるセラミックシートについて、詳細に説明する。 本発明で使用されるセラミックシートは、基材上に珪酸ナトリウム及び Zまたは珪酸 カリウムを含有する塗膜を有する。  Hereinafter, the ceramic sheet used in the present invention will be described in detail. The ceramic sheet used in the present invention has a coating film containing sodium silicate and Z or potassium silicate on a substrate.
セラミックシートの厚さは 50 μ m〜1000 μ mであり、好ましくは 80 μ m〜800 μ m、 より好ましくは 100 μ m〜500 μ mである。シート厚みが 50 μ m未満であると、熱放射 率が低下してしまい、さらには脆くなつて折り曲げ強度が低下してしまう。一方、 1000 mを超えると、熱容量が大きくなることから、熱を放射しにくくなり、さらには折り曲げ にくくなつて可撓'性とは言いがたい。  The thickness of the ceramic sheet is 50 μm to 1000 μm, preferably 80 μm to 800 μm, more preferably 100 μm to 500 μm. When the sheet thickness is less than 50 μm, the thermal emissivity is lowered, and further, the sheet becomes brittle and the bending strength is lowered. On the other hand, if it exceeds 1000 m, the heat capacity increases, so it is difficult to radiate heat, and it is difficult to bend it, so it is difficult to say that it is flexible.
また、本発明のセラミックシートの熱放射率 (JIS A 1423)は 0. 8以上であり、 0. 85以上であることが好ましぐ 0. 9以上であることがより好ましい。保熱性の観点から 、熱放射率は高い程好ましい。  Further, the thermal emissivity (JIS A 1423) of the ceramic sheet of the present invention is 0.8 or more, preferably 0.85 or more, more preferably 0.9 or more. From the viewpoint of heat retention, the higher the thermal emissivity, the better.
尚、熱放射とは、熱エネルギーの電磁波変換による熱放出のことであり、熱放射率 とは、物体が熱を帯びている時に出す赤外線の強さを表す数値を、「理想黒体」を 1. 0 (100%)にしたときの比率で表したものである。  Thermal radiation is the heat release due to electromagnetic wave conversion of thermal energy, and the thermal emissivity is a numerical value representing the intensity of infrared rays emitted when an object is heated. 1. Expressed as a ratio when set to 0 (100%).
[0018] 基材としては、ポリエチレンテレフタラート、ポリエチレンナフタレート、ポリエーテノレ サルフォン、ポリスチレン、ポリエチレン、ポリアリレート、ポリエーテルエーテルケトン、 ポリカーボネート、ポリプロピレン、ポリイミド、トリァセチルセルロース等の可撓性ポリ マーのほか、住友 3M製アクリルソフトテープ 9894FR— 10等の両面粘着テープ等 が挙げられる。 [0018] Examples of the base material include polyethylene terephthalate, polyethylene naphthalate, and polyetherolate. In addition to flexible polymers such as sulfone, polystyrene, polyethylene, polyarylate, polyether ether ketone, polycarbonate, polypropylene, polyimide, triacetyl cellulose, etc., double-sided adhesive tape such as Sumitomo 3M acrylic soft tape 9894FR-10 It is done.
[0019] 珪酸ナトリウム及び Z又は珪酸カリウムを含有する塗膜としては、特に、珪酸ナトリウ ム、珪酸カリウムの両者を混合使用したものが好ましい。塗膜には、ナトリウムや力リウ ム以外のアルカリ珪酸塩、例えば、珪酸リチウムも含有させることができる。この塗膜 は、更に、金属酸化物を含有することができる。該金属酸化物として、酸化珪素、酸 化アルミニウムが好ましい。また、塗膜は、更に酸ィ匕錫を含有することができる。酸ィ匕 錫は、珪酸ナトリウム及び Z又は珪酸カリウムの系に添加しても良いし、珪酸ナトリウ ム及び Z又は珪酸カリウムの系に金属酸ィ匕物を添加し、更に酸ィ匕錫をカ卩えても良い 。塗膜に含有させる金属酸化物としては、珪酸アルミニウム (カオリン)、珪酸マグネシ ゥム(タルク)、酸ィ匕珪素、酸ィ匕アルミニウム、酸化錫の他に、酸化チタン、酸化ジルコ ユウム、酸ィ匕アンチモン、酸ィ匕ゲルマニウム、酸化硼素、酸ィ匕カルシウム、酸化バリゥ ム、酸化ストロンチウム、酸ィ匕ビスマス等を挙げることができる。  [0019] The coating film containing sodium silicate and Z or potassium silicate is particularly preferably a mixture of both sodium silicate and potassium silicate. The coating film can also contain an alkali silicate other than sodium or strong sodium, for example, lithium silicate. This coating film can further contain a metal oxide. As the metal oxide, silicon oxide and aluminum oxide are preferable. Further, the coating film can further contain acid tin. Oxidized tin may be added to sodium silicate and Z or potassium silicate systems, or metal oxides may be added to sodium silicate and Z or potassium silicate systems, and then oxidized tin can be added. You can bark. The metal oxides contained in the coating include aluminum silicate (kaolin), magnesium silicate (talc), silicon oxide, silicon oxide, and tin oxide, as well as titanium oxide, zirconium oxide, and acid oxide. Examples thereof include antimony, acid germanium, boron oxide, calcium oxide, barium oxide, strontium oxide, and acid bismuth.
[0020] また、これらの金属化合物を含むカオリン、タルク等の天然鉱物も含有させることが できることはいうまでもない。また、金属の窒化物を含有させることができる。金属窒化 物として、具体的には、窒化硼素、窒化ジルコニウム、窒化錫、窒化ストロンチウム、 窒化チタン、窒化ノ リウム等を挙げることができる。本発明における塗膜に含有させる 上記金属酸化物、金属窒化物等は、微粉末の状態で使用するのがよい。微粉末に するには、ボールミル、ジェットミル等で粉砕するのがよい。  [0020] Needless to say, natural minerals such as kaolin and talc containing these metal compounds can also be contained. Further, a metal nitride can be contained. Specific examples of the metal nitride include boron nitride, zirconium nitride, tin nitride, strontium nitride, titanium nitride, and nitride nitride. The metal oxide, metal nitride and the like contained in the coating film in the present invention are preferably used in a fine powder state. In order to make a fine powder, it is preferable to grind with a ball mill, a jet mill or the like.
[0021] 珪酸ナトリウムと珪酸カリウムを混合使用する場合、珪酸ナトリウムと珪酸カリウムの 割合は重量比で、珪酸カリウム 1に対して珪酸ナトリウム 0. 5〜7 (固形分ベース)が 好ましい。珪酸アルカリの塗膜中の含有量は、 3〜30重量%が好ましい。また、金属 酸ィ匕物の量的割合は、塗膜固形分中 12〜92重量%が好ましい。酸化錫の塗膜中 固形分に対する割合は、 6〜45重量%が好ましい。  [0021] When sodium silicate and potassium silicate are used in combination, the ratio of sodium silicate to potassium silicate is preferably 0.5 to 7 (based on solid content) sodium silicate with respect to potassium silicate 1. The content of alkali silicate in the coating is preferably 3 to 30% by weight. The quantitative ratio of the metal oxide is preferably 12 to 92% by weight in the solid content of the coating film. The ratio of tin oxide to the solid content in the coating film is preferably 6 to 45% by weight.
[0022] 塗膜を形成するためのコーティング材は、基本成分として、珪酸ナトリウム及び Z又 は珪酸カリウムを含む。珪酸ナトリウム及び珪酸カリウムは、それぞれ水溶液の形態 で入手できる。珪酸ナトリウムの水溶液は水ガラスとして知られるものである。珪酸ナト リウム、珪酸カリウムの水溶液は、水で希釈して使用して用いることができる。この珪 酸ナトリウム及び Z又は珪酸カリウムを含有する水溶液をコーティング材として、吹き 付け、刷毛等による塗布又はスクリーン印刷等の方法で、基材上にコーティングする 。コーティングした後は、大気中で風乾する。風乾後には基材の表面に塗膜が生成 する。得られたセラミックシートは、優れた放熱性を示す。 [0022] The coating material for forming the coating film contains sodium silicate and Z or potassium silicate as basic components. Sodium silicate and potassium silicate are each in the form of an aqueous solution Available at An aqueous solution of sodium silicate is known as water glass. An aqueous solution of sodium silicate and potassium silicate can be used by diluting with water. The aqueous solution containing sodium silicate and Z or potassium silicate is used as a coating material, and coating is performed on the substrate by spraying, applying with a brush, or screen printing. After coating, air dry in the atmosphere. A film forms on the surface of the substrate after air drying. The obtained ceramic sheet exhibits excellent heat dissipation.
[0023] また、塗膜を形成するコーティング材には、更に、酸化珪素や酸化アルミニウムの 微粒子を添加することができる。この場合は、コーティング液は懸濁液となる。この懸 濁液を同様にして基材上にコーティングして得られたセラミックシートは、顕著な放熱 効果を示す。更に、酸ィ匕錫の微粉末を添加することができる。酸ィ匕錫を添加したコー ティング材は、更に優れた放熱性を示す。コーティング液は適度の粘度にする必要 があるので、添加物の種類や量に応じて適宜水を添加して液の粘度を調整するのが よい。  [0023] Further, fine particles of silicon oxide or aluminum oxide can be further added to the coating material for forming the coating film. In this case, the coating liquid becomes a suspension. A ceramic sheet obtained by coating the suspension on the substrate in the same manner exhibits a remarkable heat dissipation effect. Furthermore, fine powder of acid tin can be added. The coating material added with acid tin shows further excellent heat dissipation. Since the coating liquid needs to have an appropriate viscosity, it is preferable to adjust the viscosity of the liquid by adding water as appropriate according to the type and amount of the additive.
[0024] 第一の実施態様における無機分散型 EL素子は、背面電極の発光層を有する側と は反対面にセラミックシートを有する。なお、上記態様の EL素子は、放熱性の観点か ら、必ずしも防湿フィルムを必要としないが、図 2に示される態様のように、発光部 7の 全体または発光部 7および供電部 5の全体を防湿フィルム 6で被覆する場合には、防 湿フィルム 6を挟んで背面電極 1に載設することができる。但し、放熱性の観点からは 、背面電極に直接接するように載設することが好ましい。  [0024] The inorganic dispersion-type EL element in the first embodiment has a ceramic sheet on the surface opposite to the side having the light emitting layer of the back electrode. The EL element of the above embodiment does not necessarily require a moisture-proof film from the viewpoint of heat dissipation, but as in the embodiment shown in FIG. 2, the entire light emitting unit 7 or the entire light emitting unit 7 and power supply unit 5 Can be mounted on the back electrode 1 with the moisture-proof film 6 sandwiched therebetween. However, from the viewpoint of heat dissipation, it is preferable to mount the electrode so as to be in direct contact with the back electrode.
セラミックシートの面積には特に制限はなぐ素子設計上に制約がない限り、より大 面積なものが放熱性の観点力 好ましいが、面積が大き過ぎると無機分散型 EL素子 の軽量性、柔軟性、設置場所の自由度の観点では好ましくない。セラミックシートの 面積は、無機分散型 EL素子の発光部分の面積の 0. 7倍〜 2倍であることが好まし く、 0. 9倍〜 1. 5倍であることがさらに好ましい。  Larger area is preferable from the viewpoint of heat dissipation unless there is a restriction on the element design, and the area of the ceramic sheet is not particularly limited, but if the area is too large, the light weight, flexibility, It is not preferable from the viewpoint of the degree of freedom of installation location. The area of the ceramic sheet is preferably 0.7 to 2 times, more preferably 0.9 to 1.5 times the area of the light emitting portion of the inorganic dispersion type EL element.
無機分散型 EL素子へのセラミックシートの載設方法は特に制限はなぐ例えば、接 着剤による装着、防湿フィルム 6への埋め込み、榭脂による基板への塗り固め等の方 法を挙げることができる。  There are no particular restrictions on the method of placing the ceramic sheet on the inorganic dispersion-type EL device.For example, there are methods such as attachment with an adhesive, embedding in a moisture-proof film 6, and application to a substrate with grease. .
[0025] セラミックシートは、放熱効果を高める目的で、これらを冷却する機構を備えている ことも好ましい。具体的には、セラミックシートに冷却フィンを設置する方法や、ベルチ ェ素子等の電子冷却素子を設置する方法等が挙げられる。 [0025] The ceramic sheet is provided with a mechanism for cooling the ceramic sheet for the purpose of enhancing the heat dissipation effect. It is also preferable. Specifically, a method of installing a cooling fin on a ceramic sheet, a method of installing an electronic cooling element such as a Bercher element, and the like can be mentioned.
[0026] [背面電極]  [0026] [Back electrode]
光を取りさな 、側の背面電極 1は、導電性を有する任意の材料を用いて作製するこ とができる。例えば、金、銀、銅、アルミニウム、ベリリウム、コノルト、クロム、鉄、ゲル マニウム、イリジウム、カリウム、リチウム、マグネシウム、モリブデン、ナトリウム、ニッケ ル、白金、珪素、錫、タンタル、タングステン、亜鉛等の金属、及びグラフアイトシート などの中から、作製する無機分散型 EL素子の形態や作製工程の温度に応じて適宜 選択して作製できる。その中でも、グラフアイトシートを用いることが好ましい。グラファ イトシートは、電気伝導性、熱伝導性に優れ、さらに一般的に背面電極として用いら れる銅などの金属に比べて軽ぐ柔軟性があるため、電極材料として好適であるため である。本発明では、グラフアイトシートを電極としてだけでなぐ熱拡散、放熱シート として作用させて用いることが好まし!/、。グラフアイトシートを背面電極として用いること で、発光層における発熱が効果的に熱拡散および放熱され、高輝度かつ長時間の 発光が可能となる。  Without taking light, the back electrode 1 on the side can be manufactured using any material having conductivity. For example, gold, silver, copper, aluminum, beryllium, connort, chromium, iron, germanium, iridium, potassium, lithium, magnesium, molybdenum, sodium, nickel, platinum, silicon, tin, tantalum, tungsten, zinc, etc. , And graphite sheets, etc., which can be selected as appropriate according to the form of the inorganic dispersion-type EL element to be manufactured and the temperature of the manufacturing process. Among them, it is preferable to use a graphite sheet. This is because the graphite sheet is excellent in electrical conductivity and thermal conductivity, and is lighter and more flexible than metals such as copper, which are generally used as a back electrode, and thus is suitable as an electrode material. In the present invention, it is preferable to use the graphite sheet by acting as a thermal diffusion / radiation sheet just as an electrode! /. By using the graphite sheet as the back electrode, heat generation in the light emitting layer is effectively diffused and dissipated, and light emission with high brightness and long time is possible.
[0027] ここで用いられるグラフアイトシートとは、グラフアイトを実質的に主成分とするシート であり、グラフアイトシート中、炭素原子を好ましくは 98. 0質量%以上、より好ましくは 99. 0質量%以上、更に好ましくは 99. 5質量%以上含有するものである。  [0027] The graphite sheet used here is a sheet containing graphite as a main component. In the graphite sheet, carbon atoms are preferably 98.0% by mass or more, more preferably 99.0%. It contains at least 9 mass%, more preferably at least 99.5 mass%.
本発明で用いるグラフアイトシートは、上記の中でも、特に電気伝導性および熱伝 導性に優れた高配向性グラフアイトシートであることが好ましい。以下、高配向性ダラ ファイトシートの製法について記す力 S、これらに限定されるものではない。  Among the above, the graphite sheet used in the present invention is particularly preferably a highly oriented graphite sheet excellent in electrical conductivity and thermal conductivity. Hereinafter, the force S described for the method for producing a highly oriented dullite sheet is not limited to these.
[0028] 高配向性グラフアイトシートは、延伸した芳香族イミドフィルムを不活性ガス雰囲気 で 2600度で処理することにより得られる。フィルムを延伸することで、芳香族ユニット 力 Sフィルム面に平行に配向し、配向性グラフアイトが得やすくなると考えられる。さらに 別の製法として、炭素粉末と、フエノール榭脂との混合物を、所定形状になるよう加熱 し加圧硬化することによつても高配向性グラフアイトシートが得られる。ここでいう炭素 粉末は、炭素を主成分とするものであれば適用可能で、例えばカーボンブラック、グ ラフアイト、木炭粉等を挙げることができる。炭素粉末の形状は、特に限定されるもの ではないが、中でも球状の炭素粉末は、フ ノール榭脂中に均一に分散し易ぐ素 子を形成したときの信頼性が高く好ましい。フエノール榭脂としては、その合成条件に よってノボラック型とレゾール型が知られている力 本発明はいずれも適用可能であ る。 [0028] A highly oriented graphite sheet can be obtained by treating a stretched aromatic imide film at 2600 degrees in an inert gas atmosphere. By stretching the film, it is considered that the aromatic unit force S is oriented parallel to the film surface, and it becomes easier to obtain orientation graphite. As yet another production method, a highly oriented graphite sheet can also be obtained by heating and pressure-curing a mixture of carbon powder and phenol resin in a predetermined shape. The carbon powder here is applicable as long as it contains carbon as a main component, and examples thereof include carbon black, graphite, and charcoal powder. The shape of the carbon powder is particularly limited However, spherical carbon powder is preferred because of its high reliability when forming an element that is easily dispersed uniformly in phenolic resin. As phenol rosin, novolac type and resol type are known depending on the synthesis conditions. Any of the present inventions can be applied.
[0029] さらに、グラフアイトシートの電気伝導度は高いほど好ましぐ 1000 SZcm以上で あることが好ましぐ 5000 SZcm以上であることがより好ましい。  [0029] Further, the higher the electrical conductivity of the graphite sheet, the more preferable it is 1000 SZcm or more, and it is more preferable that it is 5000 SZcm or more.
無機分散型 EL素子における発熱による温度上昇を抑制する観点では、グラフアイ トシートの熱伝導率は高いことが好ましぐ具体的には 200 WZm'K以上であること が好ましぐより好ましくは 300 WZm'K以上、更に好ましくは 400 WZm'K以上で ある。  From the viewpoint of suppressing the temperature rise due to heat generation in the inorganic dispersion type EL device, it is preferable that the thermal conductivity of the graphite sheet is high. Specifically, it is preferably 200 WZm'K or more, more preferably 300. WZm′K or more, more preferably 400 WZm′K or more.
また、グラフアイトシートの厚みは、 50 m〜5nmであることが好ましぐ 80 /ζ πι〜3 nmがより好ましく、 100 m〜 lnmがさらに好まし!/、。  Further, the thickness of the graphite sheet is preferably 50 m to 5 nm, more preferably 80 / ζ πι to 3 nm, and even more preferably 100 m to lnm! /.
[0030] [発光層] [0030] [Light emitting layer]
以下、発光層について説明する。  Hereinafter, the light emitting layer will be described.
発光部 7に含まれる発光層 3は、 EL蛍光体粒子を分散含有して形成された層であ る。本発明で用いる EL蛍光体粒子は、平均球相当径が 0. 1〜15 /ζ πιであることが 好ましぐ 1〜: L0 mであることがさらに好ましい。平均平均球相当径を上記サイズと することで、高輝度発光可能な素子を得ることができる。また球相当径の変動係数は 、 30%以下であることが好ましぐ 5〜20%であることがさらに好ましい。  The light emitting layer 3 included in the light emitting part 7 is a layer formed by dispersing and containing EL phosphor particles. The EL phosphor particles used in the present invention preferably have an average sphere equivalent diameter of 0.1 to 15 / ζ πι, and more preferably 1 to L0 m. By setting the average average sphere equivalent diameter to the above size, an element capable of emitting light with high luminance can be obtained. The coefficient of variation of the equivalent sphere diameter is preferably 5 to 20%, more preferably 30% or less.
なお、ここにいう「球相当径」とは、 EL蛍光体粒子サイズをそれと体積が等しい球に 換算したときの球の直径を意味する。  Here, “sphere equivalent diameter” means the diameter of a sphere when the EL phosphor particle size is converted to a sphere having the same volume as the EL phosphor particle size.
[0031] EL蛍光体粒子の調製方法としては、焼成法、尿素溶融法、噴霧熱分解法または 水熱合成法 (Hydrothermal method)を好ましく用いることができる。調製された E L蛍光体粒子は多重双晶構造を有することが好ましい。例えば、 EL蛍光体粒子が硫 化亜鉛である場合には、多重双晶(積層欠陥構造)の面間隔は 1〜: LOnmであること が好ましぐ 2〜5nmであることがさらに好ましい。  [0031] As a method for preparing the EL phosphor particles, a firing method, a urea melting method, a spray pyrolysis method, or a hydrothermal method can be preferably used. The prepared EL phosphor particles preferably have a multiple twin structure. For example, when the EL phosphor particles are zinc sulfate, the plane spacing of the multiple twins (stacking defect structure) is preferably 1 to: LOnm, more preferably 2 to 5 nm.
[0032] 本発明で用いる EL蛍光体粒子は、当業界で広く用いられている焼成法(固相法) により調製できる。例えば、硫ィ匕亜鉛の場合、液相法で 10〜50nmの粒子粉末 (通 常生粉と呼ぶ)を作製し、これを一次粒子として用い、これに付活剤と呼ばれる不純 物を混入させて融剤とともに坩堝にて 900〜1300°Cの高温で 30分〜 10時間、第 1 の焼成を行い、中間蛍光粉末を得る。次いで、得られた中間蛍光体粉末をイオン交 換水で繰り返し洗浄し、アルカリ金属またはアルカリ土類金属および過剰の付活剤、 共付活剤を除去する。次いで、得られた中間体蛍光体粉末に第 2の焼成を行う。第 2 の焼成は、第 1の焼成より低温の 500〜800°Cで行い、かつ焼成時間は 30分〜 12 時間と短時間の加熱 (アニーリング)を行う。 [0032] The EL phosphor particles used in the present invention can be prepared by a firing method (solid phase method) widely used in the art. For example, in the case of zinc sulfate, 10-50 nm particle powder (general This is used as primary particles, and an impure substance called activator is mixed in it and mixed with the flux in a crucible at a high temperature of 900 to 1300 ° C for 30 minutes to 10 hours. 1 is fired to obtain an intermediate fluorescent powder. Next, the obtained intermediate phosphor powder is repeatedly washed with ion-exchanged water to remove alkali metal or alkaline earth metal, excess activator and coactivator. Next, second baking is performed on the obtained intermediate phosphor powder. The second baking is performed at a temperature lower than that of the first baking at 500 to 800 ° C., and the baking time is 30 minutes to 12 hours and the heating (annealing) is performed for a short time.
[0033] 第 1および第 2の焼成により中間蛍光体粒子内には多くの積層欠陥が発生するが、 粒子サイズをより小さぐかつより多くの積層欠陥を粒子内に含むように第 1の焼成お よび第 2の焼成の条件を適宜選択することが好ま U 、。  [0033] Although many stacking faults are generated in the intermediate phosphor particles by the first and second firings, the first firing is performed so that the particle size is smaller and more stacking faults are included in the particles. And, it is preferable to select the second firing conditions appropriately.
[0034] また第 1の焼成物にある範囲の大きさの衝撃力を加えることにより、粒子を破壊する ことなぐ積層欠陥の密度を大幅に増カロさせることもできる。衝撃力を加える方法とし ては、中間蛍光粒子同士を接触混合させる方法、アルミナ等の球体を混ぜて混合さ せる(ボールミル)方法、中間蛍光体粒子を加速させ衝突させる方法、超音波を照射 する方法などを好ましく用いることができる。  [0034] By applying an impact force in a certain range to the first fired product, the density of stacking faults without destroying the particles can be greatly increased. As a method of applying an impact force, a method of contacting and mixing intermediate fluorescent particles, a method of mixing and mixing spheres such as alumina (ball mill), a method of accelerating and colliding intermediate phosphor particles, and irradiating ultrasonic waves. A method or the like can be preferably used.
[0035] 上記方法により、本発明では 5nm以下の積層欠陥密度を有する積層欠陥を 10層 以上有する粒子を形成することができる。その頻度の評価法としては、粒子を乳鉢で 磨り潰し、ほぼ 0. 2 m以下の厚みの砕片に砕いたものを加速電圧 200KVの電子 顕微鏡で観察した際に、 5nm以下の積層欠陥を 10層以上含む破片粒子の頻度で 評価できる。なお、粒径が 0. 2 m未満である場合には、前記破砕は不要である。 本発明の素子をより高輝度発光させるためには、上記頻度が 50%を超えるものが 好ましぐ 70%を超えるものがさらに好ましい。頻度は高いほどよぐ間隔は狭いほど よい。  [0035] According to the above method, in the present invention, particles having 10 or more stacking faults having a stacking fault density of 5 nm or less can be formed. As a method of evaluating the frequency, 10 layers of stacking faults of 5 nm or less were observed when the particles were ground with a mortar and crushed into fragments of thickness of approximately 0.2 m or less with an electron microscope with an acceleration voltage of 200 KV. It can be evaluated by the frequency of the fragment particles contained above. When the particle size is less than 0.2 m, the crushing is not necessary. In order for the device of the present invention to emit light with higher luminance, the above frequency is preferably over 50%, more preferably over 70%. The higher the frequency, the better the narrower the interval.
[0036] その後、前記中間蛍光体粒子を、 HC1等の酸でエッチングして表面に付着している 金属酸ィ匕物を除去し、さらに表面に付着した硫化銅を KCN溶液で洗浄して除去す る。続、て該中間蛍光体を乾燥して EL蛍光体粒子を得る。  [0036] Thereafter, the intermediate phosphor particles are etched with an acid such as HC1 to remove the metal oxides adhering to the surface, and the copper sulfide adhering to the surface is removed by washing with a KCN solution. The Subsequently, the intermediate phosphor is dried to obtain EL phosphor particles.
[0037] 硫化亜鉛の場合などは、蛍光体結晶中に多重双晶構造を導入するため、蛍光体 の粒子形成方法として水熱合成法を用いることが好ましい。水熱合成系では、粒子 は、よく攪拌された水溶媒に分散されており、かつ粒子成長を起こす亜鉛イオンおよ び Zまたは硫黄イオンは、反応容器外力 水溶液で制御された流量で、決められた 時間添加される。したがって、この系では粒子は水溶媒中で自由に動くことができ、 かつ添加されたイオンは水中を拡散して粒子成長を均一に起こすことができる。この ため、水熱合成法によれば、粒子内部における付活剤または共付活剤の濃度分布 を変化させることができ、焼成法では得られない粒子を得ることができる。また粒径分 布の調整において、核形成過程と成長過程を明確に分離でき、かつ粒子成長中の 過飽和度を自由に制御することにより粒径分布を調整可能で、粒径分布の狭い単分 散の硫ィ匕亜鉛粒子を得ることができる。核形成過程と成長過程の間に、ォストワルド 熟成工程を入れることが粒径の調整および多重双晶構造の実現のために好まし!、。 In the case of zinc sulfide or the like, it is preferable to use a hydrothermal synthesis method as a method for forming phosphor particles because a multiple twin structure is introduced into the phosphor crystal. In hydrothermal synthesis systems, particles Is dispersed in a well-stirred aqueous solvent, and zinc ions and Z or sulfur ions that cause particle growth are added at a flow rate controlled by the reaction vessel external force aqueous solution for a predetermined time. Therefore, in this system, the particles can move freely in an aqueous solvent, and the added ions can diffuse in water and cause particle growth uniformly. For this reason, according to the hydrothermal synthesis method, the concentration distribution of the activator or coactivator inside the particles can be changed, and particles that cannot be obtained by the firing method can be obtained. In addition, in adjusting the particle size distribution, the nucleation process and the growth process can be clearly separated, and the particle size distribution can be adjusted by freely controlling the degree of supersaturation during particle growth. It is possible to obtain powdered zinc oxide particles. An Ostwald ripening step is preferred between the nucleation process and the growth process to adjust the grain size and achieve a multiple twin structure!
[0038] 例えば、硫化亜鉛結晶は、水における溶解度が非常に低ぐこれは水溶液中にお いてイオン反応により粒子を成長させる場合に非常に不利となる。硫化亜鉛結晶の 水での溶解度は、温度上昇に伴い上昇するが、 375°C以上では水は超臨界状態と なってイオンの溶解度は激減する。したがって、粒子調製温度は 100〜375°Cであ ることが好ましぐ 200〜375°Cであることがさらに好ましい。粒径調整にかける時間 は好ましくは 100時間以内であり、さらに好ましくは 5分〜 12時間である。  [0038] For example, zinc sulfide crystals have very low solubility in water, which is very disadvantageous when particles are grown by ionic reaction in an aqueous solution. The solubility of zinc sulfide crystals in water increases with increasing temperature, but above 375 ° C, water becomes supercritical and the solubility of ions decreases drastically. Therefore, the particle preparation temperature is preferably 100 to 375 ° C, more preferably 200 to 375 ° C. The time required for particle size adjustment is preferably within 100 hours, more preferably 5 minutes to 12 hours.
[0039] 硫ィ匕亜鉛の水に対する溶解度を増加させる他の方法として、本発明ではキレート 剤を用いることが好ましい。 Znイオンのキレート剤としては、アミノ基、カルボキシル基 を有するものが好ましぐ具体的には、エチレンジァミン四酢酸 (EDTA)、 N—2—ヒ ドロォキシェチルエチレンジァミン三酢酸(EDTA—OH)、ジエチレントリアミン五酢 酸、 2—アミノエチルエチレングリコール四酢酸、 1, 3—ジァミノ一 2—ヒドロキシプロ パン四酢酸、ユトリロ三酢酸、 2—ヒドロキシェチルイミノ二酢酸、イミノニ酢酸、 2—ヒ ドロキシェチノレグリシン、アンモニア、メチノレアミン、ェチノレアミン、プロピルァミン、ジ ェチルァミン、ジエチレントリァミン、トリアミノトリエチルァミン、ァリルァミン、エタノー ルァミン等が挙げられる。  [0039] As another method for increasing the solubility of zinc sulfate in water, a chelating agent is preferably used in the present invention. As chelating agents for Zn ions, those having an amino group or a carboxyl group are preferred. Specifically, ethylenediamine amine acetic acid (EDTA), N-2-hydroxyhexyl ethylenediamine amine acetic acid (EDTA) —OH), diethylenetriaminepentaacetic acid, 2-aminoethylethyleneglycoltetraacetic acid, 1,3-diamino-1-hydroxypropyltetraacetic acid, utilloloacetic acid, 2-hydroxyethyliminodiacetic acid, iminoniacetic acid, 2- Examples thereof include hydroxyschetinoreglicin, ammonia, methinoreamine, ethenoreamine, propylamine, dimethylamine, diethylenetriamine, triaminotriethylamine, allylamamine, ethanolamine and the like.
[0040] また、構成元素の先駆体を用いず、構成する金属イオンと力ルゴゲンァ-オンを直 接の沈殿反応による場合には、両者の溶液の急速混合が必要で、ダブルジェット式 の混合器を用いるのが好まし 、。 [0041] また、本発明で用いる蛍光体粒子の調製方法として、尿素溶融法を用いることが好 ましい。尿素溶融法は、蛍光体粒子を合成する媒体として溶融した尿素を用いる方 法である。尿素を融点以上の温度で維持して溶融状態にした液中に、蛍光体母体や 付活剤を形成する元素を含む物質を溶解する。必要に応じて、反応剤を添加する。 例えば、硫化物蛍光体を合成する場合は、硫酸アンモ-ゥム、チォ尿素、チオアセト アミド等の硫黄源を添加して沈殿反応を起こさせる。その融液を 450°C程度まで徐々 に昇温すると、蛍光体粒子や蛍光体中間体が、尿素由来の榭脂中に均一に分散し た固体が得られる。この固体を微粉砕した後、電気炉中で榭脂を熱分解させながら 焼成する。焼成雰囲気として、不活性雰囲気、酸化性雰囲気、還元性雰囲気、アン モニァ雰囲気、真空雰囲気を選択することで、酸化物、硫化物、窒化物を母体とした 蛍光体粒子が合成できる。 [0040] In addition, in the case where the constituent metal ion and force Lugogen-on are directly precipitated by using a precipitation reaction without using a precursor of the constituent elements, rapid mixing of both solutions is necessary, and a double jet type mixer is used. Is preferred to use. [0041] It is preferable to use the urea melting method as a method for preparing the phosphor particles used in the present invention. The urea melting method is a method using molten urea as a medium for synthesizing phosphor particles. A substance containing an element that forms a phosphor matrix or an activator is dissolved in a molten liquid in which urea is maintained at a temperature higher than the melting point. Add reactants as needed. For example, when a sulfide phosphor is synthesized, a sulfur source such as ammonium sulfate, thiourea or thioacetamide is added to cause a precipitation reaction. When the temperature of the melt is gradually raised to about 450 ° C., a solid in which phosphor particles and phosphor intermediates are uniformly dispersed in urea-derived resin is obtained. After this solid is finely pulverized, it is fired in the electric furnace while thermally decomposing the resin. By selecting an inert atmosphere, an oxidizing atmosphere, a reducing atmosphere, an ammonia atmosphere, or a vacuum atmosphere as the firing atmosphere, phosphor particles based on oxides, sulfides, and nitrides can be synthesized.
[0042] また、本発明で用いる蛍光体の調製方法として、噴霧熱分解法を用いることも好ま しい。噴霧熱分解法により、霧化器を用いて蛍光体の前駆体溶液を微小液滴化し、 液滴内での凝縮や化学反応または液滴周囲の雰囲気ガスとの化学反応により、蛍 光体粒子または蛍光体中間生成物を合成できる。液滴化の条件を好適にすることで 、微粒子化、微量不純物の均一化、球形化、狭粒子サイズ分布化した粒子が得られ る。微小液滴を生成する霧化器としては、 2流体ノズル、超音波霧化器、静電霧化器 を用いることが好ましい。霧化器によって生成した微小液滴を、キャリアガスで電気炉 などに導入し、加熱することで、脱水'縮合し、さらに液滴内物質同士の化学反応や 焼結、または雰囲気ガスとの化学反応により目的とする蛍光体粒子または蛍光体中 間生成物を得る。得られた粒子を、必要に応じて追加焼成する。  [0042] It is also preferable to use a spray pyrolysis method as a method for preparing the phosphor used in the present invention. By spray pyrolysis, the precursor solution of the phosphor is made into fine droplets using an atomizer, and phosphor particles are condensed by chemical reaction inside the droplet or chemical reaction with the ambient gas around the droplet. Alternatively, a phosphor intermediate product can be synthesized. By making the conditions for droplet formation suitable, particles with fine particles, homogenous trace impurities, spheroids, and narrow particle size distribution can be obtained. As an atomizer that generates micro droplets, it is preferable to use a two-fluid nozzle, an ultrasonic atomizer, or an electrostatic atomizer. The fine droplets generated by the atomizer are introduced into an electric furnace using a carrier gas and heated to dehydrate and condense, and the chemical reaction and sintering of the substances in the droplets or chemistry with the atmosphere gas The target phosphor particles or phosphor intermediate products are obtained by the reaction. The obtained particles are additionally fired as necessary.
[0043] 例えば、硫化亜鉛蛍光体を合成する場合、硝酸亜鉛とチォ尿素の混合溶液を霧化 し、 800°C程度の温度において、不活性ガス (例えば窒素)中で熱分解し、球形の硫 化亜鉛蛍光体を得る。出発の混合溶液中に、 Mn、 Cuおよび希土類などの微量不 純物を溶解させておけば、発光中心をとして作用する。また、硝酸イットリウムと硝酸 ユーロピウムの混合溶液を出発溶液として、 1000°C程度で、酸素雰囲気中で熱分 解して、ユーロピウムで付活された酸化イットリウム蛍光体を得る。液滴中の成分は、 すべてが溶解している必要はなぐ二酸化珪素の超微粒子を含有させてもよい。亜 鉛溶液と二酸化珪素の超微粒子を含んだ微小液滴の熱分解で、珪酸亜鉛蛍光体の 粒子が得られる。 [0043] For example, when synthesizing a zinc sulfide phosphor, a mixed solution of zinc nitrate and thiourea is atomized and thermally decomposed in an inert gas (for example, nitrogen) at a temperature of about 800 ° C. A zinc sulfide phosphor is obtained. If trace impurities such as Mn, Cu and rare earth are dissolved in the starting mixed solution, it acts as a luminescent center. In addition, starting from a mixed solution of yttrium nitrate and europium nitrate at about 1000 ° C in an oxygen atmosphere, an yttrium oxide phosphor activated with europium is obtained. The components in the droplets may contain ultrafine silicon dioxide particles that need not be completely dissolved. Asia Zinc silicate phosphor particles can be obtained by thermal decomposition of micro droplets containing ultrafine particles of lead solution and silicon dioxide.
[0044] また、本発明で用いる蛍光体粒子の調製方法として、レーザー 'アブレーシヨン法、 CVD法、プラズマ CVD法、スパッタリングや抵抗加熱、電子ビーム法、流動油面蒸 着を組み合わせた方法などの気相法と、複分解法、プレカーサ一の熱分解反応によ る方法、逆ミセル法ゃこれらの方法と高温焼成を組み合わせた方法、凍結乾燥法な どの液相法なども用いることができる。これらの方法において、粒子の調製条件を制 御することで、本発明に好ましい 0. 1〜15 μ mの大きさの蛍光体粒子を得ることがで きる。  [0044] In addition, as a method for preparing the phosphor particles used in the present invention, laser ablation method, CVD method, plasma CVD method, sputtering, resistance heating, electron beam method, fluid oil surface vapor deposition combined method, etc. A phase method, a metathesis method, a method using a precursor thermal decomposition reaction, a reverse micelle method, a method combining these methods with high-temperature firing, a liquid phase method such as a freeze drying method, and the like can also be used. In these methods, phosphor particles having a size of 0.1 to 15 μm that are preferable for the present invention can be obtained by controlling the preparation conditions of the particles.
[0045] 蛍光体粒子は、特許第 2756044号公報や米国特許 6458512号明細書に記載さ れているように、 0. 01 m以上の金属酸ィ匕物や金属窒化物で構成される非発光シ エル層で被覆することにより良好な防水性と耐水性を付与できる。また WO02Z080 626号公報に記載されているように、発光中心を含むコア部と非発光のシェル部から なる 2重構造ィ匕することにより光取り出し効率を高める技術を好ましく用いることができ る。  [0045] As described in Japanese Patent No. 2756044 and US Pat. No. 6458512, the phosphor particles are non-luminescent composed of a metal oxide or metal nitride of 0.01 m or more. Good waterproofness and water resistance can be imparted by coating with a shell layer. Further, as described in WO02Z080 626, a technique for improving light extraction efficiency by forming a double structure comprising a core portion including a light emission center and a non-light emitting shell portion can be preferably used.
[0046] 本発明で用いられる蛍光体粒子は、粒子の表面に非発光シェル層を有することが より好ましい。この非発光シェル層は、 EL蛍光体粒子のコアとなる半導体微粒子の 調製に引き続いて化学的な方法を用いて 0. 01 m以上、好ましくは 0. 01〜: L Ο μ mの厚みで形成することが望まし 、。  [0046] The phosphor particles used in the present invention more preferably have a non-light emitting shell layer on the surface of the particles. This non-light-emitting shell layer is formed with a thickness of 0.01 m or more, preferably 0.01 mm or more, using a chemical method following the preparation of the semiconductor fine particles that serve as the core of the EL phosphor particles, preferably 0.01 to Hope to do.
[0047] 非発光シェル層は、酸化物、窒化物、酸窒化物や、母体蛍光体粒子上に形成した 同一組成で発光中心を含有しない物質力も作製できる。また、母体蛍光体粒子材料 上にェピタキシャルに成長させた、異なる組成の物質力 作製できる。  [0047] The non-light-emitting shell layer can be made of oxide, nitride, oxynitride, or a material force having the same composition formed on the host phosphor particles and containing no emission center. In addition, it is possible to produce material forces of different compositions that are epitaxially grown on the matrix phosphor particle material.
[0048] 非発光シェル層の形成方法として、レーザ一'アブレーシヨン法、 CVD法、プラズマ CVD法、スパッタリングや抵抗加熱、電子ビーム法などと流動油面蒸着を組み合わ せた方法などの気相法と、複分解法、ゾルゲル法、超音波化学法、プレカーサ一の 熱分解反応による方法、逆ミセル法ゃこれらの方法と高温焼成を組み合わせた方法 、水熱合成法、尿素溶融法、凍結乾燥法などの液相法や噴霧熱分解法なども用いる ことができる。特に、蛍光体の粒子形成で好適に用いられる、水熱合成法、尿素溶融 法や噴霧熱分解法は、非発光シェル層の合成にも適して!ヽる。 [0048] As a method for forming the non-light-emitting shell layer, a gas-phase method such as a laser one 'abrasion method, a CVD method, a plasma CVD method, a sputtering method, a resistance heating method, an electron beam method, and a fluid oil surface deposition method may be used. , Metathesis method, sol-gel method, ultrasonic chemistry method, precursor thermal decomposition method, reverse micelle method, combined method of these methods and high temperature firing, hydrothermal synthesis method, urea melting method, freeze drying method, etc. Liquid phase methods and spray pyrolysis methods can also be used. Particularly suitable for phosphor particle formation, hydrothermal synthesis, urea melting Methods and spray pyrolysis methods are also suitable for the synthesis of non-luminescent shell layers!
[0049] 例えば、水熱合成法を用いて硫化亜鉛蛍光体粒子の表面に非発光シェル層を形 成する場合には、溶媒中にコア粒子となる硫ィ匕亜鉛蛍光体を添加し、懸濁させる。粒 子形成の場合と同様に、非発光シェル層材料となる金属イオンと、必要に応じてァ- オンを含む溶液を反応容器外から、制御された流量で、決められた時間で添加する 。反応容器内を十分に撹拌することで、粒子は溶媒中を自由に動くことができ、かつ 添加されたイオンは溶媒中を拡散して粒子成長を均一に起こすことができるため、コ ァ粒子の表面に非発光シェル層を均一に形成することができる。この粒子を必要に 応じて焼成することで、非発光シェル層を表面に有する硫化亜鉛蛍光体粒子が合成 できる。  [0049] For example, when a non-light-emitting shell layer is formed on the surface of zinc sulfide phosphor particles by using a hydrothermal synthesis method, a zinc sulfate phosphor serving as a core particle is added to a solvent, and suspended. Make it cloudy. As in the case of particle formation, a solution containing a metal ion to be a non-light-emitting shell layer material and a cation as required is added from outside the reaction vessel at a controlled flow rate for a predetermined time. By sufficiently stirring the inside of the reaction vessel, the particles can move freely in the solvent, and the added ions can diffuse in the solvent and cause particle growth uniformly. A non-light emitting shell layer can be uniformly formed on the surface. By firing the particles as necessary, zinc sulfide phosphor particles having a non-light emitting shell layer on the surface can be synthesized.
[0050] また、尿素溶融法を用 ヽて硫化亜鉛蛍光体粒子の表面に非発光シェル層を形成 する場合、非発光シェル層材料となる金属塩が溶解、溶融した尿素溶液中に、硫ィ匕 亜鉛蛍光体粒子を添加する。硫ィ匕亜鉛は尿素に溶解しないため、粒子形成の場合 と同様に溶液を昇温し、尿素由来の榭脂中に硫化亜鉛蛍光体と非発光シェル層材 料が均一に分散した固体を得る。この固体を微粉砕した後、電気炉中で榭脂を熱分 解させながら焼成する。焼成雰囲気として、不活性雰囲気、酸化性雰囲気、還元性 雰囲気、アンモニア雰囲気、真空雰囲気を選択することで、酸化物、硫化物、窒化物 カゝらなる非発光シェル層を表面に有する硫ィ匕亜鉛蛍光体粒子が合成できる。  [0050] Further, when the non-light emitting shell layer is formed on the surface of the zinc sulfide phosphor particles by using the urea melting method, the metal salt as the non-light emitting shell layer material is dissolved and melted in the molten urea solution.亜 鉛 Add zinc phosphor particles. Since zinc sulfate does not dissolve in urea, the temperature of the solution is raised as in the case of particle formation to obtain a solid in which zinc sulfide phosphor and non-luminescent shell layer material are uniformly dispersed in urea-derived resin. . After this solid is finely pulverized, it is fired in an electric furnace while thermally decomposing the resin. By selecting an inert atmosphere, an oxidizing atmosphere, a reducing atmosphere, an ammonia atmosphere, or a vacuum atmosphere as a firing atmosphere, a sulfur having a non-light emitting shell layer such as an oxide, sulfide, or nitride on the surface. Zinc phosphor particles can be synthesized.
[0051] また、噴霧熱分解法を用いて硫化亜鉛蛍光体粒子の表面に非発光シェル層を形 成する場合には、非発光シェル層材料となる金属塩が溶解した溶液中に、硫化亜鉛 蛍光体を添加する。この溶液を霧化し、熱分解することで、硫化亜鉛蛍光体粒子の 表面に非発光シェル層が生成する。熱分解の雰囲気や追加焼成の雰囲気を選択す ることで、酸化物、硫化物、窒化物カゝらなる非発光シェル層を表面に有する硫ィ匕亜鉛 蛍光体粒子が合成できる。  [0051] Further, when the non-light emitting shell layer is formed on the surface of the zinc sulfide phosphor particles by using the spray pyrolysis method, the zinc sulfide is dissolved in a solution in which the metal salt to be the non-light emitting shell layer material is dissolved. Add phosphor. The solution is atomized and pyrolyzed to form a non-luminescent shell layer on the surface of the zinc sulfide phosphor particles. By selecting a pyrolysis atmosphere or an additional firing atmosphere, zinc sulfate phosphor particles having a non-light-emitting shell layer such as an oxide, sulfide, or nitride can be synthesized.
[0052] 本発明で好ましく用いる EL蛍光体粒子の母体材料としては、具体的には第 II族元 素と第 VI族元素とからなる群力 選ばれる元素の 1つまたは複数と、第 III族元素と第 V族元素とからなる群力も選ばれる 1つまたは複数の元素とからなる半導体の微粒子 であり、必要な発光波長領域により任意に選択される。例えば、 CdS、 CdSe、 CdTe 、 ZnS、 ZnSe、 ZnTe、 CaS、 MgS、 SrS、 GaP、 GaAs、およびそれらの混晶などが 挙げられる力 ZnS、 CdS、 CaSなどを好ましく用いることができる。 [0052] The matrix material of the EL phosphor particles preferably used in the present invention includes, specifically, one or more elements selected from a group power consisting of Group II elements and Group VI elements, and Group III It is a semiconductor fine particle composed of one or more elements, and the group power composed of elements and group V elements is also selected arbitrarily depending on the required emission wavelength region. For example, CdS, CdSe, CdTe ZnS, ZnSe, ZnTe, CaS, MgS, SrS, GaP, GaAs, and their mixed crystals include ZnS, CdS, CaS, and the like.
[0053] さらに、 EL蛍光体粒子の母体材料としては、 BaAl S、 CaGa S、 Ga O、 Zn SiO [0053] Further, as the base material of the EL phosphor particles, BaAl S, CaGa S, Ga 2 O, Zn SiO
2 4 2 4 2 3 2 2 4 2 4 2 3 2
、 Zn GaO、 ZnGa O、 ZnGeO、 ZnGeO、 ZnAl O、 CaGa O、 CaGeO、 Ca, Zn GaO, ZnGa O, ZnGeO, ZnGeO, ZnAl O, CaGa O, CaGeO, Ca
4 2 4 2 4 3 4 2 4 2 4 3 24 2 4 2 4 3 4 2 4 2 4 3 2
Ge O、 CaO、 Ga O、 GeO、 SrAl O、 SrGa O、 SrP O、 MgGa O、 Mg GeOGe O, CaO, Ga O, GeO, SrAl O, SrGa O, SrP O, MgGa O, Mg GeO
2 7 2 3 2 2 4 2 4 2 7 2 4 2 42 7 2 3 2 2 4 2 4 2 7 2 4 2 4
、 MgGeO、 BaAl O、 Ga Ge O、 BeGa O、 Y SiO、 Y GeO、 Y Ge O、 Y Ge , MgGeO, BaAl O, Ga Ge O, BeGa O, Y SiO, Y GeO, Y Ge O, Y Ge
3 2 4 2 2 7 2 4 2 5 2 5 2 2 7 4 3 2 4 2 2 7 2 4 2 5 2 5 2 2 7 4
O、 Y O、 Y O S、 SnOおよびそれらの混晶などを好ましく用いることができる。 O, Y 2 O, Y 2 O 3 S, SnO and mixed crystals thereof can be preferably used.
8 2 3 2 2 2  8 2 3 2 2 2
[0054] また、本発明で用いる EL蛍光体粒子の付活剤としては、銅、マンガン、銀、金およ び希土類元素から選択された少なくとも一種のイオンを好ましく用いることができる。 また共付活剤としては、塩素、臭素、ヨウ素およびアルミニウム力 選択された少なく とも一種のイオンを好ましく用いることができる。  [0054] As the activator of the EL phosphor particles used in the present invention, at least one ion selected from copper, manganese, silver, gold and rare earth elements can be preferably used. As the coactivator, at least one kind of ions selected from chlorine, bromine, iodine and aluminum power can be preferably used.
[0055] また、発光中心としては、 Mnや Crなどの金属イオンおよび希土類を好ましく用いる ことができる。  [0055] As the emission center, metal ions such as Mn and Cr and rare earths can be preferably used.
[0056] 上記の EL蛍光体粒子の母体材料、付活剤および発光中心を適宜選択し、複数の 蛍光体粒子を用いることにより、染料や蛍光染料を用いなくても、色度図上 0. 3<x < 0. 4、0. 3<y< 0. 4の範囲の白色発光を実質的に得ることができる。  [0056] By appropriately selecting the matrix material, activator, and emission center of the EL phosphor particles described above, and using a plurality of phosphor particles, a chromaticity diagram can be used without using dyes or fluorescent dyes. White light emission in the range of 3 <x <0.4 and 0.3 <y <0.4 can be substantially obtained.
[0057] 発光層 3は、上述した蛍光体粒子を分散剤中に分散させることにより形成すること ができる。発光層 3で蛍光体粒子を分散するために用いられる分散剤としては、例え ば、シァノエチルセルロース系榭脂のような比較的誘電率の高いポリマーや、ポリエ チレン、ポリプロピレン、ポリスチレン系榭脂、シリコーン榭脂、エポキシ榭脂、フツイ匕 ビ-リデンなどの榭脂を用いることができる。また、これらの榭脂に BaTiOや SrTiO  [0057] The light emitting layer 3 can be formed by dispersing the above-described phosphor particles in a dispersant. Examples of the dispersant used to disperse the phosphor particles in the light emitting layer 3 include polymers having a relatively high dielectric constant such as cyanoethyl cellulose resin, polyethylene, polypropylene, polystyrene resin, A silicone resin, an epoxy resin, a rubber beidene, or the like can be used. Moreover, BaTiO and SrTiO
3 3 などの高誘電率の微粒子を適度に混合して誘電率を調整することもできる。分散剤 の分散方法としては、ホモジナイザー、遊星型混練機、ロール混練機、超音波分散 機などを用いることができる。高輝度発光させるには、発光層における粒子と分散剤 との重量比は、 5. 0〜20であることが好ましい。  The dielectric constant can be adjusted by mixing fine particles with a high dielectric constant such as 3 3. As a dispersing method of the dispersant, a homogenizer, a planetary kneader, a roll kneader, an ultrasonic disperser, or the like can be used. In order to emit light with high brightness, the weight ratio of the particles to the dispersing agent in the light emitting layer is preferably 5.0 to 20.
[0058] 高輝度を得るためには、発光層 3の厚みは薄いことが好ましぐ 1〜60 μ mであるこ と力 子ましく、 3〜50 /ζ πιであることがさらに好ましい。また、発光層 3は、後述する背 面電極 1と透明電極 4の間の距離のバラツキを中心線平均粗さ Raとして見たとき、発 光層 3の表面は、発光層 3の厚み dに対して (dX lZ8)以下の平滑性を有しているこ とが好ましい。 [0058] In order to obtain high luminance, it is preferable that the thickness of the light-emitting layer 3 is 1 to 60 μm, and it is more preferable that the thickness is 3 to 50 / ζ πι. The light emitting layer 3 emits light when the variation in the distance between the back electrode 1 and the transparent electrode 4 described later is viewed as the centerline average roughness Ra. The surface of the optical layer 3 preferably has a smoothness of (dXlZ8) or less with respect to the thickness d of the light emitting layer 3.
[0059] [誘電体層] [0059] [Dielectric layer]
本発明における無機分散型 EL素子は、無機誘電体物質を含有する誘電体層 2を 必要に応じて発光層 3に隣接させて形成することができる。無機誘電体物質は、誘電 率および絶縁性が高ぐかつ高い誘電破壊電圧を有する材料であれば任意のもの が用いられる。無機誘電体物質は、各種の金属酸ィ匕物および窒化物を用いることが でき、例えば、 SiO、 TiO、 BaTiO、 SrTiO、 PbTiO、 KNbO、 PbNbO、 Ta O  The inorganic dispersion type EL device of the present invention can be formed by adjoining the light emitting layer 3 with the dielectric layer 2 containing an inorganic dielectric substance, if necessary. As the inorganic dielectric substance, any material can be used as long as it has a high dielectric constant and insulation and a high dielectric breakdown voltage. As the inorganic dielectric material, various metal oxides and nitrides can be used. For example, SiO, TiO, BaTiO, SrTiO, PbTiO, KNbO, PbNbO, Ta O
2 2 3 3 3 3 3 2 3 2 2 3 3 3 3 3 2 3
、 BaTa O、 LiTaO、 Y O、 Al O、 ZrO、 A10N、 ZnSなどを用いることができる。 BaTa 2 O, LiTaO, Y 2 O, Al 2 O 3, ZrO, A10N, ZnS, and the like can be used.
2 6 3 2 3 2 3 2  2 6 3 2 3 2 3 2
これらは単独でまたは組み合わせて用いることができる。誘電体層 2は、均一な膜とし て形成されてもよいし、また粒子構造を有する膜として形成されてもよい。さらに、誘 電体層 2は単層であっても異なる絶縁層を積層させたものであってもよい。  These can be used alone or in combination. The dielectric layer 2 may be formed as a uniform film or may be formed as a film having a particle structure. Furthermore, the dielectric layer 2 may be a single layer or a laminate of different insulating layers.
[0060] 誘電体層 2は、薄膜結晶層構造および粒子形状構造のいずれの構造でもよぐさら にそれらの組合せた構造であってもよい。また誘電体層 2は、図 2のように発光層 3の 片面側だけに設けられていてもよいが、高輝度を得る観点からは発光層 3の両面に 設けることが好ましい。誘電体層 2が薄膜結晶層構造を有する場合、基板にスパッタ リング等の気相法で薄膜ィ匕させたものでも、 Baや Srなどのアルコキサイドを用いたゾ ルゲル膜であってもよい。また、誘電体層 2が粒子形状構造を有する場合、誘電体物 質のサイズは、蛍光体粒子サイズと比較して十分小さ!/、サイズであることが好ま 、。 具体的には、誘電体物質の粒子は、蛍光体粒子の平均粒子サイズの 1Z3〜: LZ10 00のサイズであることが好まし!/、。  [0060] The dielectric layer 2 may be either a thin film crystal layer structure or a particle shape structure, or a combination thereof. The dielectric layer 2 may be provided only on one side of the light emitting layer 3 as shown in FIG. 2, but is preferably provided on both sides of the light emitting layer 3 from the viewpoint of obtaining high luminance. When the dielectric layer 2 has a thin film crystal layer structure, it may be a thin film formed on a substrate by a vapor phase method such as sputtering, or a sol-gel film using an alkoxide such as Ba or Sr. Further, when the dielectric layer 2 has a particle shape structure, it is preferable that the size of the dielectric material is sufficiently smaller than the phosphor particle size. Specifically, it is preferable that the particles of the dielectric substance have an average particle size of the phosphor particles of 1Z3 ~: LZ100 00! / ,.
[0061] 本発明の無機分散型 EL素子は、少なくとも一方が透明な、対向する一対の電極で 狭持した蛍光体物質を含む発光層を有する構成を有する。そのため前述の発光層 3 と誘電体層 2との合計の厚み(以下「素子厚み」ともいう)は、 EL蛍光体粒子の平均球 相当径以上のサイズである力 素子の平滑性を確保するためには、 EL蛍光体粒子 の平均球相当径に対して素子厚みが 1. 1〜10倍であることが好ましぐ 2〜10倍で あることがより好ましぐ 3〜5倍であることがさらに好ましい。  [0061] The inorganic dispersion-type EL device of the present invention has a structure having a light emitting layer containing a phosphor material sandwiched between a pair of opposing electrodes, at least one of which is transparent. Therefore, the total thickness (hereinafter also referred to as “element thickness”) of the light emitting layer 3 and the dielectric layer 2 described above is to ensure the smoothness of the force element having a size equal to or larger than the average diameter of the EL phosphor particles. The element thickness is preferably 1.1 to 10 times that of the average sphere equivalent diameter of the EL phosphor particles. It is preferably 2 to 10 times and more preferably 3 to 5 times. Is more preferable.
[0062] また、粒子の上部の一部を覆うように、すなわち発光層 3の一部に、誘電体層 2がー 部乗り入れるように塗設することにより接触点を増加させ、あるいは素子表面の平滑 性を改善するなどの効果が現れるため好まし 、。 [0062] Further, the dielectric layer 2 is formed so as to cover a part of the upper part of the particle, that is, on a part of the light emitting layer 3. It is preferable because the effect of increasing the contact point or improving the smoothness of the device surface appears by coating it so that it can be placed on the surface.
[0063] 誘電体層 2に含有される誘電体物質と発光層 3に含有される蛍光体粒子とは、誘電 体物質と蛍光体粒子とが直接接触することもできるが、誘電体物質は、非発光シェル 層で完全に被覆または部分的に被覆された状態の蛍光体粒子と接触することが好ま しい。また、誘電体物質と蛍光体物質との接触は、単に接触させるだけでもよいが、 蛍光体粒子の上部を完全にまたは一部を覆うように、すなわち発光層 3の全体に誘 電体層 2が覆うように接触させるか、ある!/ヽは発光層 3に誘電体層 2がー部乗り入れる ように接触させた状態で塗設して接触させることは、接触点を増加させ、また素子表 面の平滑性を改良するなどの効果を発現できる観点力も好ましい。  [0063] The dielectric substance contained in the dielectric layer 2 and the phosphor particles contained in the light emitting layer 3 can be in direct contact with the dielectric substance, but the dielectric substance It is preferred to contact the phosphor particles that are fully or partially covered with a non-luminescent shell layer. Further, the contact between the dielectric material and the phosphor material may be merely contact, but the upper part of the phosphor particles may be completely or partially covered, that is, the light emitting layer 3 is entirely covered with the dielectric layer 2. If there is a contact between the light-emitting layer 3 and the dielectric layer 2 in contact with the light-emitting layer 3, the contact point increases and the device A viewpoint power capable of developing effects such as improving the smoothness of the surface is also preferable.
[0064] 誘電体層 2および発光層 3は、スピンコート法、ディップコート法、バーコート法、ま たはスプレー塗布法などを用いて塗布して形成されることが好ましい。特に、スクリー ン印刷法のような印刷面を選ばない方法やスライドコート法のような連続塗布が可能 な方法を用いることが好ましい。例えば、スクリーン印刷法は、蛍光体や誘電体の微 粒子を高誘電率のポリマー溶液に分散した分散液を、スクリーンメッシュを通して塗 布する。スクリーンメッシュの厚さ、開口率、塗布回数を適宜選択することにより膜厚を 制御できる。分散液を調整することにより誘電体層 2や発光層 3のみならず、背面電 極 1なども形成でき、さらにスクリーンメッシュの大きさを変えることで大面積ィ匕が容易 である。また、誘電体層 2の調製法はスパッター法、真空蒸着法等の気相法であって もよい。また、発光層 3の一部に誘電体層 2がー部乗り入れるように塗設することによ り発光体粒子と誘電体物質の接触点を増加させることができ、さらに EL素子の平滑 性を改良するなどの効果を得ることができるため好ましい。  [0064] The dielectric layer 2 and the light emitting layer 3 are preferably formed by application using a spin coating method, a dip coating method, a bar coating method, a spray coating method, or the like. In particular, it is preferable to use a method that does not select a printing surface, such as a screen printing method, or a method that allows continuous application, such as a slide coating method. For example, in the screen printing method, a dispersion liquid in which phosphor or dielectric fine particles are dispersed in a polymer solution having a high dielectric constant is applied through a screen mesh. The film thickness can be controlled by appropriately selecting the thickness of the screen mesh, the aperture ratio, and the number of coatings. By adjusting the dispersion, not only the dielectric layer 2 and the light-emitting layer 3 but also the back electrode 1 can be formed, and the large area can be easily obtained by changing the size of the screen mesh. The method for preparing the dielectric layer 2 may be a vapor phase method such as a sputtering method or a vacuum deposition method. In addition, by coating the dielectric layer 2 so that the portion of the dielectric layer 2 is placed on a part of the light emitting layer 3, the contact points between the phosphor particles and the dielectric material can be increased, and the smoothness of the EL element can be further improved. It is preferable because an effect such as improvement can be obtained.
[0065] [透明電極]  [0065] [Transparent electrode]
透明電極 4は、一般的に用いられる任意の透明電極材料で形成することができる。 そのような透明電極材料としては、例えば、錫ドープ酸化錫、アンチモンド一プ酸ィ匕 錫、亜鉛ドープ酸化錫、錫ドープインジウム (ITO)などの酸ィ匕物、銀の薄膜を高屈折 率層で挟んだ多層構造、ポリア-リン、ポリピロールなどの π共役系高分子などが挙 げられる。透明電極は、ポリエチレンテレフタラート(PET)やポリエチレンナフタレート (PEN)等の透明シートからなる基材上に、上記透明電極材料から形成される透明導 電膜を設けることによって形成することができる。 The transparent electrode 4 can be formed of any commonly used transparent electrode material. Examples of such transparent electrode materials include tin-doped tin oxide, antimony monophosphate tin, zinc-doped tin oxide, tin-doped indium (ITO), and other oxides, and silver thin films with a high refractive index. Examples include multilayer structures sandwiched between layers, and π-conjugated polymers such as polyarine and polypyrrole. Transparent electrodes include polyethylene terephthalate (PET) and polyethylene naphthalate It can be formed by providing a transparent conductive film formed of the above transparent electrode material on a substrate made of a transparent sheet such as (PEN).
[0066] 透明電極 4として好ましく用いられる透明導電性シートの抵抗値は、発光面におけ る輝度の均一性の観点では、表面抵抗率が 0. 05〜50ΩΖ口であることが好ましぐ 0. 1〜30ΩΖ口であることがさらに好ましい。  [0066] The resistance value of the transparent conductive sheet preferably used as the transparent electrode 4 preferably has a surface resistivity of 0.05 to 50Ω in view of uniformity of luminance on the light emitting surface. More preferably, it is 1 to 30Ω.
[0067] 透明電極 4の調製法はスパッター法および真空蒸着等の気相法の ヽずれであって もよい。しかし、これらの単独では十分に低抵抗ィ匕できない場合がある。その場合に は、例えば櫛型あるいはグリッド型等の網目状の金属および Ζまたは合金の細線を 配置して通電性を改善することが好ま 、。  [0067] The method for preparing the transparent electrode 4 may be any of a sputtering method and a vapor phase method such as vacuum deposition. However, there is a case where these cannot be sufficiently low resistance alone. In that case, for example, it is preferable to improve the conductivity by arranging a mesh-like metal such as a comb type or a grid type, and a thin wire of an iron or alloy.
金属や合金の細線としては、銅や銀、アルミニウムが好ましいが、目的によっては透 明導電膜の形成で使用される上記透明電極材料を用いてもよぐ電気伝導性と熱伝 導性が高 、材料であることが好ま 、。この金属および Ζまたは合金の細線の太さは 任意であるが、 0. 1 m〜100 μ mの間が好ましい。細線は 50 μ m〜1000 μ mの 間隔のピッチで配置されていることが好ましぐ 100 μ m〜500 μ mピッチであること が特に好ま U、。金属および Zまたは合金の細線を配置することで光の透過率が減 少するが、減少を出来るだけ小さく抑えることが重要であり、細線の間隔を狭くしすぎ たり、細線幅や高さを大きく取りすぎたりすることなぐ 90%以上 100%未満の透過率 を確保することが重要である。  Copper, silver, and aluminum are preferable as the fine wires of metals and alloys, but depending on the purpose, the above-mentioned transparent electrode material used in the formation of a transparent conductive film can be used for high electrical conductivity and thermal conductivity. Preferred to be a material ,. The thickness of the thin wire of the metal and metal or alloy is arbitrary, but is preferably between 0.1 m and 100 μm. It is particularly preferred that the thin wires are arranged at a pitch of 50 μm to 1000 μm, with a pitch of 100 μm to 500 μm being particularly preferred. The light transmittance is reduced by arranging metal and Z or alloy fine wires, but it is important to keep the reduction as small as possible, and the interval between the fine wires is made too narrow and the width and height of the fine wires are increased. It is important to ensure a transmittance of 90% or more and less than 100% without taking too much.
好ま 、細線の形状は、正方形網目状、長方形網目状、又は、ひし形網目状が挙 げられる。細線の幅は目的に応じて決めればよいが、典型的には、細線間隔の 1Z1 0000以上、 1Z10以下が好ましい。  Preferably, the shape of the thin line is a square mesh shape, a rectangular mesh shape, or a rhombus mesh shape. The width of the fine line may be determined according to the purpose, but typically, the fine line interval is preferably 1Z10000 or more and 1Z10 or less.
細線の高さも同様である力 細線の幅に対して 1Z100以上 10倍以下の範囲が好 ましく用いられる。  The height of the fine wire is the same. The range of 1Z100 to 10 times the width of the fine wire is preferably used.
透明導電膜部分と、金属および Zまたは合金の細線構造部とを有する透明電極の 形成方法としては、細線を透明導電性シートに貼り合わせてもよいし、シート上に形 成した網目状細線上に ITO等の透明電極材料を塗布、蒸着しても良い。  As a method for forming a transparent electrode having a transparent conductive film portion and a fine wire structure portion of metal and Z or an alloy, the fine wire may be bonded to a transparent conductive sheet, or on a mesh-like fine wire formed on the sheet. A transparent electrode material such as ITO may be applied and evaporated.
[0068] [供電部] [0068] [Power Supply Unit]
供電部 5は、透明電極 4と電気的に接続された導電性のバスラインであり、例えば、 図 1及び図 2に示されるように発光層 3と透明電極 4との間であって、発光層 3の少な くとも一辺近傍上に載設することができる。また、供電部 5は、透明電極 4の少なくとも 一辺近傍上に載設することもできる。供電部 5は、例えば、銀ペースト、カーボンぺー ストのような導体ペーストの印刷層で形成することができる。また、金、銀、銅、アルミ -ゥム、ベリリウム、コバルト、クロム、鉄、ゲルマニウム、イリジウム、カリウム、リチウム、 マグネシウム、モリブデン、ナトリウム、ニッケル、白金、珪素、錫、タンタル、タンダス テン、亜鉛、グラフアイトシート等の金属並びにこれらの合金および無機物等によって 形成することもできる。図 1及び図 2に示される態様のように、供電部を載設する場合 には、後述するリード片 12aと供電部 5とを一体化して作製することもできる。 The power supply unit 5 is a conductive bus line electrically connected to the transparent electrode 4, for example, As shown in FIGS. 1 and 2, the light emitting layer 3 and the transparent electrode 4 can be mounted on at least one side of the light emitting layer 3. The power supply unit 5 can also be placed on at least one side of the transparent electrode 4. The power supply unit 5 can be formed of a printed layer of a conductive paste such as silver paste or carbon paste, for example. Also, gold, silver, copper, aluminum, beryllium, cobalt, chromium, iron, germanium, iridium, potassium, lithium, magnesium, molybdenum, sodium, nickel, platinum, silicon, tin, tantalum, tandastene, zinc, It can also be formed from a metal such as a graphite sheet, or an alloy or inorganic material thereof. When the power supply unit is mounted as in the embodiment shown in FIG. 1 and FIG. 2, the lead piece 12a and the power supply unit 5 described later can be integrally manufactured.
一方、背面電極 1にも供電部を載設してもよぐ背面電極 1と誘電体層 2の間の背面 電極 1の少なくとも一辺近傍上に載設できる。  On the other hand, it is possible to place the power supply portion on the back electrode 1 on at least one side of the back electrode 1 between the back electrode 1 and the dielectric layer 2.
[0069] なお、本明細書における「辺近傍に載設する」とは、素子の各辺に完全に一致させ て載設する場合はもちろん、素子辺長の 1Z100〜1Z10程度、素子辺から素子の 中心側の位置に載設する場合も含まれる。  [0069] In this specification, the term "installed in the vicinity of the side" means that the element side length is about 1Z100 to 1Z10, as well as the case where the element side is completely matched with each side of the element. It also includes the case of mounting at the center side position.
[0070] 供電部 5の長手方向および幅方向の長さは、設計される無機分散型 EL素子の大 きさに合わせて適宜決定することができる。例えば、図 2に示される態様の無機分散 型 EL素子の場合、供電部 5の長手方向の長さは、供電部 5の長手方向の素子辺長 と略同一の長さであることができる。  [0070] The length of the power supply unit 5 in the longitudinal direction and the width direction can be appropriately determined according to the size of the designed inorganic dispersion-type EL element. For example, in the case of the inorganic dispersion-type EL element of the embodiment shown in FIG. 2, the length of the power supply unit 5 in the longitudinal direction can be substantially the same as the length of the element side in the longitudinal direction of the power supply unit 5.
[0071] [防湿フィルム]  [0071] [Moisture-proof film]
実施態様 1の無機分散型 EL素子は、図 2の態様のように、発光部 7または発光部 7 および供電部 5は、外部環境からの湿度の影響を排除するよう防湿フィルム 6で被覆 することができる。発光部 7自体が湿度に対して十分な遮蔽性を有する場合には、形 成した発光部 7または発光部 7および供電部 5の上方に遮蔽性のシートを重ね、周囲 をエポキシ等の硬化材料を用いて封止する。このような遮蔽性のシートは、金属およ びプラスチックフィルム等の中から目的に応じて選択される。  In the inorganic dispersion type EL device of Embodiment 1, as shown in the embodiment of FIG. 2, the light emitting part 7 or the light emitting part 7 and the power supply part 5 are covered with a moisture-proof film 6 so as to eliminate the influence of humidity from the external environment. Can do. If the light-emitting unit 7 itself has sufficient shielding properties against humidity, a shielding sheet is placed over the formed light-emitting unit 7 or the light-emitting unit 7 and the power supply unit 5, and the periphery is a cured material such as epoxy. Seal with. Such a shielding sheet is selected from metal and plastic film according to the purpose.
[0072] 防湿フィルム 6は、軽量性、柔軟性、設置場所の自由度の観点では、例えば榭脂 製フィルムのような軽量で柔軟性が高 ヽ材料で作製することが好まし ヽ。また防湿フ イルム 6は、ポリクロ口トリフルォロエチレンフィルムのような水湿透過率の小さい透明 フィルムを用いることができる。防湿フィルム 6は、発光部 7または発光部 7および供電 部 5の全体を 2枚のシート間に挟み込み、熱とロール圧力をかけてシートのはみ出し 部をシールすることにより、発光部 7または発光部 7および供電部 5を封止することが できる。 [0072] From the viewpoint of lightness, flexibility, and flexibility in installation location, the moisture-proof film 6 is preferably made of a lightweight and highly flexible material such as a resin film. Moisture-proof film 6 is a transparent film with a low water-moisture permeability, such as a polychlorinated trifluoroethylene film. A film can be used. The moisture-proof film 6 is formed by sandwiching the entire light-emitting part 7 or the light-emitting part 7 and the power-supplying part 5 between two sheets and applying heat and roll pressure to seal the protruding part of the sheet. 7 and the power supply part 5 can be sealed.
[0073] 防湿フィルム 6により発光部 7または発光部 7および供電部 5を封止する場合、経時 による発光部 7の吸湿を防止するため、透明電極 4と防湿フィルム 6との間に、これら と一体的に吸湿層(図示せず)を設けることが好ましい。吸湿層は、例えば 6—ナイ口 ンフィルム等のように吸湿性のフィルムを用いることができる。  [0073] When the light-emitting part 7 or the light-emitting part 7 and the power supply part 5 are sealed with the moisture-proof film 6, in order to prevent moisture absorption of the light-emitting part 7 with the passage of time, between the transparent electrode 4 and the moisture-proof film 6, It is preferable to provide a hygroscopic layer (not shown) integrally. For the hygroscopic layer, a hygroscopic film such as a 6-knife film can be used.
[0074] [リード片およびリード線]  [0074] [Lead piece and lead wire]
第 1の実施態様の無機分散型 EL素子では、背面電極 1および透明電極 4に交流 電界を印加する目的で、背面電極 1および透明電極 4に対して電気的に接続したリ ード線 13aおよび 13bが配設される。リード線 13aおよび 13bは、それぞれリード片 12 aおよび 12bを介して背面電極 1および透明電極 4と電気的に接続されている。但し、 透明電極 4と発光層 3との間に供電部 5を有する場合には、リード片 12aと供電部 5と を電気的に接続する。無機分散型 EL素子の高輝度発光の観点では、リード片(12a 、 12b)およびリード線(13a、 13b)の電気伝導性が高いことが好ましい。さらに、電気 伝導性の観点からは、リード片とリード線(12aと 13a、 12bと 13b)、リード片 12aと透 明電極 4または供電部 5、リード片 12bと背面電極 1とをそれぞれ一体に作製すること が好ましい。  In the inorganic dispersion-type EL element of the first embodiment, the lead wires 13a and 13a electrically connected to the back electrode 1 and the transparent electrode 4 for the purpose of applying an alternating electric field to the back electrode 1 and the transparent electrode 4 and 13b is disposed. The lead wires 13a and 13b are electrically connected to the back electrode 1 and the transparent electrode 4 through lead pieces 12a and 12b, respectively. However, when the power supply unit 5 is provided between the transparent electrode 4 and the light emitting layer 3, the lead piece 12a and the power supply unit 5 are electrically connected. From the viewpoint of high luminance emission of the inorganic dispersion type EL element, it is preferable that the lead pieces (12a, 12b) and the lead wires (13a, 13b) have high electrical conductivity. Furthermore, from the viewpoint of electrical conductivity, the lead piece and the lead wire (12a and 13a, 12b and 13b), the lead piece 12a and the transparent electrode 4 or the power supply section 5, and the lead piece 12b and the back electrode 1 are integrated. It is preferable to produce it.
具体的には、例えばグラフアイトシートからなる本発明の背面電極 1とリード片 12bと を一体に作製する場合、グラフアイトシートを型抜きして、リード片部分を有する背面 電極を作製し、これを用いることで、背面電極とリード片を一体ィ匕させることができる。  Specifically, for example, when the back electrode 1 of the present invention made of a graphite sheet and the lead piece 12b are produced integrally, the graphite sheet is cut out to produce a back electrode having a lead piece portion. By using this, the back electrode and the lead piece can be integrated together.
[0075] 放熱性の観点からは、リード片 12aおよび 12bの熱伝導率が高いことが好ましい。 [0075] From the viewpoint of heat dissipation, it is preferable that the lead pieces 12a and 12b have high thermal conductivity.
具体的には、リード片の熱伝導率は lOOWZm'K以上であることが好ましぐ 200W Zm'K以上であることが更に好ましい。  Specifically, it is preferable that the thermal conductivity of the lead piece is equal to or greater than lOOWZm′K, and more preferably equal to or greater than 200W Zm′K.
好ましい材料としては金、銀、銅、アルミニウム、ベリリウム、イリジウム、カリウム、マ グネシゥム、モリブデン、ナトリウム、珪素、タングステン、亜鉛、グラフアイトシート等か ら選ばれる金属並びにこれらの合金および無機物等を挙げることができ、更に好まし い材料としては金、銀、銅、アルミニウム、ベリリウム、グラフアイトシート等の金属並び にこれらの合金および無機物などが挙げられる。 Preferred materials include metals selected from gold, silver, copper, aluminum, beryllium, iridium, potassium, magnesium, molybdenum, sodium, silicon, tungsten, zinc, graphite sheets, and alloys and inorganics thereof. Can be more preferred Examples of such materials include metals such as gold, silver, copper, aluminum, beryllium, and graphite sheets, and alloys and inorganic substances thereof.
[0076] 特に、リード片 12bの背面電極 1への取り付け部分、およびリード片 12aの透明電 極 4または供電部 5への取り付け部分における熱伝導性を高める観点では、透明電 極 4上に供電部 5を載設することが好ま 、。  [0076] In particular, from the viewpoint of increasing the thermal conductivity in the portion where the lead piece 12b is attached to the back electrode 1 and the portion where the lead piece 12a is attached to the transparent electrode 4 or the power supply portion 5, power is supplied onto the transparent electrode 4. Part 5 is preferred.
[0077] より熱伝導性を高める観点では、透明電極 4に載設された供電部 5とリード片 12a、 および背面電極 1とリード片 12bとが、それぞれ一体ィ匕して作製されていることがより 好ましい。これらとリード線 13aおよび 13bとが一体に作製されていることがさらに好ま しい。  [0077] From the standpoint of further increasing the thermal conductivity, the power supply section 5 and the lead piece 12a mounted on the transparent electrode 4 and the back electrode 1 and the lead piece 12b are each integrally formed. Is more preferable. It is more preferable that these and the lead wires 13a and 13b are manufactured integrally.
[0078] [製造方法]  [0078] [Production method]
次に、第 1の実施態様の EL素子の製造方法について説明する。  Next, a method for manufacturing the EL element of the first embodiment will be described.
第 1の実施態様の EL素子は、透明電極 4と背面電極 1の間に発光層 3を有する発 光部 7を形成する工程によって製造することができ、図 1に示される態様とする場合に は、前記工程に加えて、透明電極 4上に供電部 5を載設する工程と、背面電極 1にリ ード片 12bを載設する工程と、透明電極 4または供電部 5にリード片 12aを載設する 工程と、リード片 12a、 12bにリード線 13a、 13bを電気的に接続する工程と、背面電 極 1にセラミックシート 10を載設する工程とを有する製造方法によって製造することが できる。  The EL device of the first embodiment can be manufactured by the process of forming the light emitting portion 7 having the light emitting layer 3 between the transparent electrode 4 and the back electrode 1, and in the case shown in FIG. In addition to the above steps, the step of mounting the power supply unit 5 on the transparent electrode 4, the step of mounting the lead piece 12b on the back electrode 1, the lead piece 12a on the transparent electrode 4 or the power supply unit 5 A step of electrically connecting the lead wires 13a, 13b to the lead pieces 12a, 12b, and a step of mounting the ceramic sheet 10 on the back electrode 1. it can.
なお、図 2の態様のように、発光部 7の全体または発光部 7および供電部 5の全体を 防湿フィルム 6で被覆する工程を有していてもよぐその場合には、被覆後に防湿フィ ルム 6の上力 背面電極 1にセラミックシート 10を貼付けてもよいが、放熱性の観点か ら背面電極 1にセラミックシート 10を直接貼り合わせてから防湿フィルム 6で被覆する ことが好ましい。  In addition, as shown in FIG. 2, it may have a step of covering the entire light emitting unit 7 or the entire light emitting unit 7 and the power supply unit 5 with the moisture-proof film 6. Although the ceramic sheet 10 may be affixed to the rear electrode 1, it is preferable that the ceramic sheet 10 is directly adhered to the rear electrode 1 and then covered with the moisture-proof film 6 from the viewpoint of heat dissipation.
[0079] 発光部 7を形成する工程では、背面電極 1上に、スピンコート法、ディップコート法、 バーコート法、またはスプレー塗布法などを用いて所望の形状に誘電体層 2および 発光層 3を積層した後、供電部 5を載設した透明電極 4を積層することにより作製する ことができる。  [0079] In the step of forming the light-emitting portion 7, the dielectric layer 2 and the light-emitting layer 3 are formed on the back electrode 1 in a desired shape by using a spin coat method, a dip coat method, a bar coat method, or a spray coating method. Can be produced by laminating the transparent electrode 4 on which the power supply unit 5 is mounted.
[0080] リード片 12aを載設する工程では、発光部 7または発光部 7および供電部 5に、リー ド片 12aを、透明電極 4または供電部 5と電気的に接続された状態で取り付ける。 リード線 13aを載設する工程では、これとリード片 12aとが電気的に接続された状態 で取り付ける。リード片 12aは供電部 5と一体に作製されていることが好ましぐこれら とリード線 13aとが一体であることがさらに好ましい。 [0080] In the step of mounting the lead piece 12a, the light emitting unit 7 or the light emitting unit 7 and the power supply unit 5 are The terminal piece 12a is attached in a state of being electrically connected to the transparent electrode 4 or the power supply unit 5. In the process of mounting the lead wire 13a, the lead wire 13a is attached in a state where it is electrically connected. It is preferable that the lead piece 12a is manufactured integrally with the power supply unit 5, and it is more preferable that the lead wire 13a is integrated.
さら〖こ、防湿フィルム 6で、発光部 7または発光部 7および供電部 5を被覆する場合 には、リード片 12bを背面電極 1と電気的に接続された状態で防湿フィルム 6により、 発光部 7または発光部 7および供電部 5全体を被覆できる。  If the light-emitting part 7 or the light-emitting part 7 and the power-supply part 5 are covered with the moisture-proof film 6, the light-emitting part is formed by the moisture-proof film 6 with the lead piece 12 b electrically connected to the back electrode 1. 7 or the light emitting unit 7 and the power supply unit 5 can be covered entirely.
リード線 13bを載設する工程では、これとリード片 12bとが電気的に接続された状態 で取り付ける。リード片 12bは背面電極 1と一体に作製されていることが好ましぐこれ らとリード線 13bとが一体であることがさらに好ましい。  In the step of mounting the lead wire 13b, the lead wire 13b is attached in a state where it is electrically connected. It is preferable that the lead piece 12b is integrally formed with the back electrode 1, and it is further preferable that these are integrated with the lead wire 13b.
[0081] (第 2の実施態様) [0081] (Second Embodiment)
本発明における第 2の実施態様の無機分散型 EL素子は、背面電極及び透明電極 力 なる一対の電極の間に少なくとも発光層を有する無機分散型エレクト口ルミネッ センス素子において、前記背面電極がグラフアイトシートであることを特徴とする。 グラフアイトシートは、電極として作用するだけではなぐ熱拡散、放熱シートとしても 作用するものである。  The inorganic dispersion-type EL element according to the second embodiment of the present invention is an inorganic dispersion-type electroluminescent device having at least a light-emitting layer between a pair of electrodes having a back electrode and a transparent electrode. The back electrode is a graphite. It is a sheet. The graphite sheet acts not only as an electrode but also as a thermal diffusion and heat dissipation sheet.
第 2の実施態様の無機分散型 EL素子は、特に強い発熱を伴う高輝度発光させた 場合、好ましくは輝度が lOOcdZm2以上、より好ましくは 300cd/m2以上で発光さ せた場合に、特に顕著な熱拡散および放熱効果を奏する。 The inorganic dispersion-type EL device of the second embodiment is particularly effective when emitting high-intensity light with strong heat generation, preferably when emitting light with a luminance of lOOcdZm 2 or more, more preferably 300 cd / m 2 or more. It has remarkable heat diffusion and heat dissipation effects.
[0082] 図 3及び図 4に、防湿フィルム 6により発光部 7の全体が被覆されている第 2の実施態 様の無機分散型 EL素子の一例を示す (図 3は概略平面図、図 4は概略断面図であ る)。図 3及び図 4に示される態様の無機分散型 EL素子は、背面電極 1上に、誘電体 層 2、発光層 3および透明電極 4がこの順に積層された発光部 7を有する。発光部 7 において、透明電極 4の発光層 3に接する側の少なくとも 1辺近傍には、導電性の供 電部 (パスライン) 5が電気的に接続された状態で載設されている。背面電極 1および 供電部 5には、それぞれ交流電源に接続されるリード片 12a、 12bが設けられている 。また、リード片 12a、 12bは、それぞれリード線 13a、 13bと電気的に接続されている [0083] 第 2の実施態様において背面電極として用いられるグラフアイトシートとしては、第 1 の実施態様において説明したグラフアイトシートを用いることができる。また、発光層、 背面電極、透明電極等のその他の部材も第 1の実施態様において説明したものを用 いることがでさる。 FIG. 3 and FIG. 4 show an example of an inorganic dispersion-type EL element according to the second embodiment in which the entire light-emitting portion 7 is covered with the moisture-proof film 6 (FIG. 3 is a schematic plan view, FIG. 4). Is a schematic cross-sectional view). The inorganic dispersion type EL element of the embodiment shown in FIGS. 3 and 4 has a light emitting portion 7 in which a dielectric layer 2, a light emitting layer 3, and a transparent electrode 4 are laminated in this order on a back electrode 1. In the light emitting part 7, a conductive power supply part (pass line) 5 is placed in an electrically connected state at least near one side of the transparent electrode 4 on the side in contact with the light emitting layer 3. The back electrode 1 and the power supply unit 5 are provided with lead pieces 12a and 12b connected to an AC power source, respectively. The lead pieces 12a and 12b are electrically connected to the lead wires 13a and 13b, respectively. [0083] As the graph eye sheet used as the back electrode in the second embodiment, the graph eye sheet described in the first embodiment can be used. In addition, the other members such as the light emitting layer, the back electrode, and the transparent electrode can be the same as those described in the first embodiment.
[0084] [製造方法]  [0084] [Production method]
次に、第 2の実施態様の無機分散型 EL表示素子の製造方法について説明する。 第 2の実施態様の EL表示素子は、透明電極 1と背面電極 4の間に発光層 3を有す る発光部 7を形成する工程と、透明電極 4上に供電部 5を載設する工程と、背面電極 1にリード片 12bを載設する工程と、透明電極 4または供電部 5にリード片 12aを載設 する工程と、リード片 12a、 12bにリード線 13a、 13bを電気的に接続する工程と、発 光部 7の全体または発光部 7および供電部 5の全体を防湿フィルム 6で被覆する工程 とを有すること〖こより製造することができる。  Next, a manufacturing method of the inorganic dispersion type EL display element of the second embodiment will be described. The EL display element according to the second embodiment includes a step of forming a light-emitting portion 7 having a light-emitting layer 3 between the transparent electrode 1 and the back electrode 4, and a step of mounting a power supply portion 5 on the transparent electrode 4. The lead piece 12b is placed on the back electrode 1, the lead piece 12a is placed on the transparent electrode 4 or the power supply section 5, and the lead wires 13a and 13b are electrically connected to the lead pieces 12a and 12b. And the step of covering the entire light-emitting part 7 or the entire light-emitting part 7 and the power supply part 5 with the moisture-proof film 6.
[0085] 発光部 7を形成する工程では、背面電極 1上に、スピンコート法、ディップコート法、 バーコート法、またはスプレー塗布法などを用いて所望の形状に誘電体層 2および 発光層 3を積層した後、供電部 5を載設した透明電極 4を積層することにより作製する ことができる。  [0085] In the step of forming the light-emitting portion 7, the dielectric layer 2 and the light-emitting layer 3 are formed on the back electrode 1 in a desired shape by using a spin coat method, a dip coat method, a bar coat method, or a spray coating method. Can be produced by laminating the transparent electrode 4 on which the power supply unit 5 is mounted.
[0086] リード片 12aを載設する工程では、発光部 7または発光部 7および供電部 5に、リー ド片 12aを、透明電極 4または供電部 5と電気的に接続された状態で取り付ける。リー ド線 13aを載設する工程では、これとリード片 12aとが電気的に接続された状態で取り 付ける。リード片 12aは供電部 5と一体に作製されていることが好ましぐこれらとリード 線 13aとが一体であることがさらに好ましい。リード片 12bは背面電極 1と電気的に接 続された状態で取り付けられた状態で、防湿フィルム 6により、発光部 7または発光部 7および供電部 5全体を被覆できる。リード線 13bを載設する工程では、これとリード 片 12bとが電気的に接続された状態で取り付ける。リード片 12bは背面電極 1と一体 に作製されていることが好ましぐこれらとリード線 13bとが一体であることがさらに好ま しい。  In the step of mounting the lead piece 12a, the lead piece 12a is attached to the light emitting unit 7 or the light emitting unit 7 and the power supply unit 5 in a state of being electrically connected to the transparent electrode 4 or the power supply unit 5. In the process of placing the lead wire 13a, the lead wire 12a is attached in an electrically connected state. It is preferable that the lead piece 12a is integrally formed with the power supply unit 5, and it is more preferable that the lead piece 13a is integrated with the lead wire 13a. The lead piece 12b can be covered with the moisture-proof film 6 while covering the light emitting part 7 or the light emitting part 7 and the power supply part 5 in a state where the lead piece 12b is attached in a state of being electrically connected to the back electrode 1. In the step of mounting the lead wire 13b, the lead wire 13b is attached in a state where it is electrically connected. It is preferable that the lead piece 12b is manufactured integrally with the back electrode 1, and it is more preferable that the lead wire 13b is integrated with these.
[0087] [用途]  [0087] [Usage]
本発明で用いられる無機分散型 EL素子の発光色は、光源としての用途を考えると 、白色であることが好ましい。発光色を白色とする具体的な方法としては、例えば、銅 とのマンガンが賦活され、焼成後に徐冷された ZnS蛍光体のように単独で白色発光 する蛍光体粒子を用いる方法や、 3原色または補色関係に発光する複数の蛍光体を 混合する方法 (例えば、青色 緑色 赤色の組み合わせや、青緑色 オレンジ色の 組み合わせなど)を用いることが好ましい。また、特開平 7— 166161号公報、特開平 9 - 245511号公報、特開 2002— 62530号公報に記載の青色のように短 、波長で 発光させて、蛍光顔料や蛍光染料を用いて発光の一部を緑色や赤色に波長変換( 発光)させて白色化する方法を用いることも好ましい。さらに、 CIE色度座標 (X, y)は 、 X値力 SO. 30〜0. 40の範囲で、力つ y値力 SO. 30〜0. 40の範囲であること力 S好まし い。 The light emission color of the inorganic dispersion EL element used in the present invention is considered as a light source. The white color is preferred. Specific methods for setting the emission color to white include, for example, a method using phosphor particles that emit white light alone, such as a ZnS phosphor activated with manganese and gradually cooled after firing, and three primary colors Alternatively, it is preferable to use a method of mixing a plurality of phosphors that emit light of complementary colors (for example, a combination of blue, green, and red, or a combination of blue, green, and orange). In addition, light is emitted at a short wavelength such as blue as described in JP-A-7-166161, JP-A-9-245511, and JP-A-2002-62530, and light is emitted using a fluorescent pigment or fluorescent dye. It is also preferable to use a method of converting a part of the light into green or red and then whitening it. Furthermore, the CIE chromaticity coordinates (X, y) are preferably in the range of the X value force SO. 30 to 0.40 and the force y value force SO. 30 to 0.40.
[0088] 通常、無機分散型 EL素子は交流で駆動され、典型的には 100Vで 50〜400Hzの 交流電源を用いて駆動される。無機分散型 EL素子の面積が小さい場合には、輝度 は印加電圧および周波数にほぼ比例して増加する。しかし、 0. 25m2以上の大面積 な無機分散型 EL素子の場合、無機分散型 EL素子の容量成分が増大し、無機分散 型 EL素子と電源のインピーダンスマッチングとの間にずれが生じたり、素子への蓄 電荷に必要な時定数が大きくなつたりする。そのため、大面積の無機分散型 EL素子 では、高電圧化、特に高周波化しても電力供給が不十分になる場合がある。特に 0. 25m2以上の大面積の無機分散型 EL素子では、 500Hz以上の交流駆動に対して は、しばしば駆動周波数の増大に対して印加電圧の低下がおこり、低輝度化が起こ ることがしばしば起こる。 [0088] Usually, the inorganic dispersion type EL element is driven by an alternating current, and is typically driven by using an alternating current power source of 100V and 50 to 400Hz. When the area of the inorganic dispersion-type EL element is small, the luminance increases almost in proportion to the applied voltage and frequency. However, in the case of an inorganic dispersion type EL element having a large area of 0.25 m 2 or more, the capacitance component of the inorganic dispersion type EL element increases, and there is a deviation between the inorganic dispersion type EL element and the impedance matching of the power source. The time constant required for the charge stored in the device may increase. For this reason, large-area inorganic dispersion-type EL elements may have insufficient power supply even at higher voltages, especially at higher frequencies. In particular, in the case of an inorganic dispersion type EL element having a large area of 0.25 m 2 or more, for AC driving of 500 Hz or more, the applied voltage often decreases as the driving frequency increases, resulting in lower brightness. Often happens.
これに対し、本発明の無機分散型 EL素子は発熱による素子の劣化を抑制できるた め、 0. 25m2以上のサイズでも通常より高い周波数の駆動、好ましくは 500Hz〜5K Hzでの駆動、さらに好ましくは 800Hz〜4KHzでの駆動が可能であり、高輝度を得 ることがでさる。 In contrast, since the inorganic dispersion type EL element of the present invention can suppress deterioration of the element due to heat generation, even at a size of 0.25 m 2 or more, driving at a higher frequency than normal, preferably driving at 500 Hz to 5 KHz, Preferably, driving at 800 Hz to 4 KHz is possible, and high brightness can be obtained.
[0089] 本発明の無機分散型 EL素子は、例えば、インクジェット記録方法で画像記録され たインクジェット記録用バックライトディスプレイ用フィルムのノ ックライトとして利用す ることがでさる。  The inorganic dispersion-type EL element of the present invention can be used as, for example, a knock light for a backlight display film for ink jet recording on which an image is recorded by an ink jet recording method.
また、本発明の無機分散型 EL素子は、例えば、最大濃度が 1. 5以上ある高画質 な透過プリント画像のバックライトとしても利用することができ、高画質な大面積広告 等を実現することができる。 In addition, the inorganic dispersion type EL device of the present invention has, for example, a high image quality with a maximum density of 1.5 or more. It can also be used as a backlight for transparent print images, and can realize high-quality, large-area advertisements and the like.
実施例  Example
[0090] 以下に本発明の無機分散型 EL素子の具体的な実施例を記載するが、本発明はこ の実施例に制限されるものではな 、。  [0090] Specific examples of the inorganic dispersion-type EL device of the present invention are described below, but the present invention is not limited to these examples.
[0091] (第 1の実施態様) [0091] (First embodiment)
<実施例 1 1 >  <Example 1 1>
平均粒径 25 μ mの蛍光体粒子(ZnS ;Cu, CI)と平均粒径が 4 μ mである赤色顔 料(シンロイヒ FA— 001、シンロイヒ社製)とを 30質量0 /0のシァノエチルセルロース溶 液に分散して、発光層用ペーストとした。また 30質量%のシァノエチルセルロース溶 液に平均粒径 0. 2 mのチタン酸バリウム粉末を均一に分散し、誘電体ペーストとし た。 Phosphor particles having an average particle size of 25 μ m (ZnS; Cu, CI) and mean particle size of red Pigment is 4 mu m (Shinroihi FA- 001, manufactured by Shinroihi Ltd.) 30 mass and 0/0 Shiano Dispersed in an ethyl cellulose solution to obtain a light emitting layer paste. Further, barium titanate powder having an average particle size of 0.2 m was uniformly dispersed in 30% by mass of cyanoethyl cellulose solution to obtain a dielectric paste.
上記誘電体ペーストをアルミシート(厚み 75 m、熱放射率 0. 04、熱伝導率 180 WZm'K)上に、乾燥後の膜厚が 35 /z mになるように塗布し、温風乾燥機にて 110 °Cで 4時間乾燥させた。さらにこの上に上記発光層用ペーストを乾燥後の膜厚が 35 μ mになるように塗布し、温風乾燥機にて 110°Cで 6時間乾燥させた。  The above dielectric paste is applied on an aluminum sheet (thickness 75 m, thermal emissivity 0.04, thermal conductivity 180 WZm'K) so that the film thickness after drying is 35 / zm. And dried at 110 ° C for 4 hours. Further, the above light emitting layer paste was applied on this so that the film thickness after drying was 35 μm, and dried at 110 ° C. for 6 hours by a hot air dryer.
次に厚さ 100 mのポリエチレンテレフタレート上に ITOをスパッターにより lOOnm の厚さに均一に付着したシートを透明電極として用い、該シートの導電面側に給電 線として銀ペーストをスクリーン印刷法により印刷、乾燥し、銅アルミシートからなるリ ード片よりなるリード電極を取り付けた。  Next, using a sheet of ITO uniformly deposited to a thickness of lOOnm by sputtering on polyethylene terephthalate with a thickness of 100 m as a transparent electrode, silver paste is printed on the conductive surface side of the sheet as a power line by screen printing, After drying, a lead electrode made of a lead piece made of a copper aluminum sheet was attached.
さらに、上記アルミシートの塗布面とは反対側に、銅アルミシートからなるリード片ょ りなるリード電極を取り付け、その後、上記アルミシートの塗布面と上記透明導電シー トの導電面とを貼りあわせて熱圧着した。さらに、アルミシートの塗布面とは反対側に 、セラミックシート(「まず貼る一番」セラミッション製、熱放射率; 0. 96、シート厚み 30 O /z m)を貼付した。なお、素子の発光面の大きさが 500mm X 500mmとなるようにし た。  In addition, a lead electrode made of a copper aluminum sheet is attached to the side opposite to the coated surface of the aluminum sheet, and then the coated surface of the aluminum sheet and the conductive surface of the transparent conductive sheet are bonded together. And thermocompression bonded. Further, a ceramic sheet (“First to paste first” made by Ceramission, thermal emissivity; 0.96, sheet thickness 30 O / zm) was pasted on the side opposite to the coated surface of the aluminum sheet. The size of the light emitting surface of the element was set to 500 mm X 500 mm.
[0092] <実施例 1 2 >  <Example 1 2>
上記アルミシートの替わりにグラフアイトシート(「PGSグラフアイトシート」松下電子 部品製、熱伝導率; 800WZm'K)を用いたこと以外は、実施例 1—1と同様に行つ た。 Instead of the above aluminum sheet, Graphite Sheet ("PGS Graphite Sheet" Matsushita Electronics The procedure was the same as Example 1-1, except that a component manufactured and a thermal conductivity of 800 WZm'K) was used.
[0093] <実施例 1 3 >  <Example 1 3>
厚さ 100ミクロンのポリエチレンテレフタレート上に、真空蒸着法により、幅 5ミクロン 、高さ 2. 5ミクロンの銅の細線を間隔 lmmで正方形になるように蒸着し、さらにその 上に ITOをスパッターにより 30nmの厚さに均一に付着したシートを透明電極として 用いたこと以外、実施例 1—1と同様に行った。  A thin copper wire with a width of 5 microns and a height of 2.5 microns is deposited on polyethylene terephthalate with a thickness of 100 microns by vacuum deposition to form a square with an interval of lmm, and then ITO is sputtered to 30 nm. The same procedure as in Example 1-1 was performed, except that a sheet having a uniform thickness was used as the transparent electrode.
[0094] <実施例 1—4 > [0094] <Example 1-4>
平均粒径 10 /z mの蛍光体粒子 (ZnS ;Cu, C1)を用い、発光層用ペーストを作製し たこと以外、実施例 1—1と同様に行った。  The same procedure as in Example 1-1 was performed, except that phosphor particles (ZnS: Cu, C1) having an average particle size of 10 / zm were used to produce a light emitting layer paste.
[0095] <実施例 1 5 > <Example 1 5>
厚さ 100ミクロンのポリエチレンテレフタレート上に、真空蒸着法により、幅 5ミクロン 、高さ 2. 5ミクロンの銅の細線を間隔 lmmで正方形になるように蒸着し、さらにその 上に ITOをスパッターにより 30nmの厚さに均一に付着したシートを透明電極として 用いたこと以外、実施例 1—4と同様に行った。  A thin copper wire with a width of 5 microns and a height of 2.5 microns is deposited on polyethylene terephthalate with a thickness of 100 microns by vacuum deposition to form a square with an interval of lmm, and then ITO is sputtered to 30 nm. The same procedure as in Example 1-4 was performed, except that a sheet having a uniform thickness was used as the transparent electrode.
[0096] <実施例 1—6 > [0096] <Example 1-6>
上記アルミシートの替わりにグラフアイトシート(「PGSグラフアイトシート」松下電子 部品製、熱伝導率; 800WZm. K)を用いたこと以外は、実施例 1 5と同様に行な つた o  The same procedure as in Example 15 was performed, except that a graphite sheet (“PGS graphite sheet” manufactured by Matsushita Electronic Components, thermal conductivity: 800 WZm. K) was used instead of the above aluminum sheet. O
[0097] <比較例 1 1 >  [0097] <Comparative Example 1 1>
アルミシートにセラミックシートを貼り付けないこと以外は、実施例 1—1と同様に行つ た。  The same procedure as in Example 1-1 was performed except that the ceramic sheet was not attached to the aluminum sheet.
[0098] <比較例 1 2 >  [0098] <Comparative Example 1 2>
アルミシートにグラフアイトシート(「PGSグラフアイトシート」松下電子部品製、熱伝 導率; 800WZm. K、熱放射率 0. 75)を貼り付けた以外は、実施例 1—1と同様に 行なった。  Except that the graphite sheet (“PGS Graphite Sheet”, manufactured by Matsushita Electronic Components, thermal conductivity: 800 WZm. K, thermal emissivity: 0.75) was attached to the aluminum sheet, the same procedure as in Example 1-1 was performed. It was.
[0099] <比較例 1 3 > [0099] <Comparative Example 1 3>
アルミシートにセラミックシート (熱放射率 0. 5、厚み 40 μ m)を貼り付けた以外は、 実施例 1— 1と同様に行なった。 Except for sticking ceramic sheet (thermal emissivity 0.5, thickness 40 μm) to aluminum sheet, The same procedure as in Example 1-1 was performed.
[0100] 電圧 200V、周波数 ΙΚΗζの駆動条件において、実施例 1 1〜1 6および比較 例 1 1および 1 3の EL表示パネルを、気温 20°C、湿度 60%の環境において駆動 した場合、初期の輝度はいずれも 600cd/m2であった。さらに、これらの素子を同じ 環境下において 300時間連続駆動した場合の、初期輝度に対する相対輝度を表 1 に示す。 [0100] Under the driving conditions of voltage 200V and frequency ΙΚΗζ, the EL display panels of Examples 1 to 16 and Comparative Example 1 1 and 13 were driven in an environment of 20 ° C and 60% humidity. The luminance of each was 600 cd / m 2 . Furthermore, Table 1 shows the relative luminance with respect to the initial luminance when these devices are driven continuously for 300 hours under the same environment.
[0101] [表 1] [0101] [Table 1]
Figure imgf000029_0001
比較例 1 1に対して、実施例 1 1や 1 2のように背面電極の発光層とは反対側 の面にセラミックシートを用いることによって、放熱性が高められ、経時後の相対輝度 が増大した。また、背面電極をグラフアイトシートに変更することによってその効果がよ り増大することがわ力つた。 比較例 1—2と比較すると、グラフアイトシート貼付よりもセラミックシート貼付の方が、 その効果が大きいことがわ力つた。特に実施例 1—2は背面電極がグラフアイトシート であるため、発光層の局所的な熱を均熱化し、さらにセラミックシートで放熱するため 、その効果が顕著に現れた。
Figure imgf000029_0001
Compared to Comparative Example 1 and 1, using a ceramic sheet on the surface of the back electrode opposite to the light-emitting layer as in Examples 1 1 and 1 2 improves heat dissipation and increases the relative luminance after time. did. In addition, the effect was increased by changing the back electrode to a graphite sheet. Compared with Comparative Example 1-2, it was found that the effect of the ceramic sheet application was greater than that of the graphite sheet application. Particularly in Example 1-2, since the back electrode is a graphite sheet, the local heat of the light emitting layer is soaked and further radiated by the ceramic sheet, so that the effect is remarkable.
また実施例 1— 1に対して、実施例 1— 3のように透明電極を ITOから銅細線 +ITO に変更することで、 ITOの劣化だけでなく透明電極からの放熱性も高められるため、 さらに経時後の相対輝度の変化が少な力つた。  Also, in contrast to Example 1-1, changing the transparent electrode from ITO to copper fine wire + ITO as in Example 1-3 can improve not only the deterioration of ITO but also the heat dissipation from the transparent electrode, Furthermore, the change in relative luminance after time was small.
実施例 1 4のように蛍光体粒子の平均粒径を小さくすると、発熱量も多くなるので 、結果として実施例 1—1に対して放熱効果が高められ寿命が向上した。  When the average particle size of the phosphor particles was reduced as in Example 14 and the calorific value was increased, as a result, the heat dissipation effect was enhanced and the life was improved compared to Example 1-1.
さらに実施例 1 4に対し、実施例 1 5のように透明電極を銅細線 + ITOに変更 することで、良好な結果が得られた。実施例 1—6は、実施例 1—5から背面電極をグ ラファイトシートに変更することで、さらに放熱効果が得られ、最も良好な結果が得ら れた。  Furthermore, in contrast to Example 14, good results were obtained by changing the transparent electrode to copper fine wire + ITO as in Example 15. In Example 1-6, when the back electrode was changed to a graphite sheet from Example 1-5, a further heat radiation effect was obtained, and the best result was obtained.
比較例 1 3のように、セラミックシートでも熱放射率が 0. 8未満かつシート厚みが 5 0 m未満であると、放熱効果が得られな力つた。  As in Comparative Example 13 and 3, even if the ceramic sheet had a thermal emissivity of less than 0.8 and a sheet thickness of less than 50 m, the heat dissipation effect was not obtained.
(第 2の実施態様) <実施例 2— 1 > (Second Embodiment) <Example 2-1>
平均粒径 25 μ mの蛍光体粒子(ZnS ;Cu, CI)と平均粒径が 4 μ mである赤色顔 料(シンロイヒ FA— 001、シンロイヒ社 (製))とを 30質量0 /0のシァノエチルセルロース 溶液に分散して、発光層用ペーストとした。また 30質量0 /0のシァノエチルセルロース 溶液に平均粒径 0. 2 mのチタン酸バリウム粉末を均一に分散し、誘電体ペーストと した。 Phosphor particles having an average particle size of 25 μ m (ZnS; Cu, CI) and red Pigments having an average particle diameter of 4 mu m (Shinroihi FA- 001, Shinroihi Co. (Ltd.)) and a 30 weight 0/0 It was dispersed in a cyanoethyl cellulose solution to obtain a light emitting layer paste. Also Xia Bruno ethylcellulose solution of 30 weight 0/0 uniformly dispersed barium titanate powder having an average particle diameter of 0. 2 m, and the dielectric paste.
上記誘電体ペーストをグラフアイトシート(PGSグラフアイトシート(熱伝導率; 800W /m-K)、松下電子部品 (株)製)上に、膜厚 35 μ mになるように塗布し、温風乾燥 機にて 110°Cで 4時間乾燥させた。さらにこの上に上記発光層用ペーストを膜厚 35 μ mになるように塗布し、温風乾燥機にて 110°Cで 6時間乾燥させた。  The above dielectric paste is applied on a graphite sheet (PGS graphite sheet (thermal conductivity; 800 W / mK), manufactured by Matsushita Electronic Components Co., Ltd.) to a film thickness of 35 μm, and a hot air dryer And dried at 110 ° C for 4 hours. Further, the above light emitting layer paste was applied to a thickness of 35 μm, and dried at 110 ° C. for 6 hours with a hot air dryer.
次に厚さ 100 mのポリエチレンテレフタレート上に ITOをスパッターにより lOOnm の厚さに均一に付着したシートを透明電極として用い、該シートの導電面側に給電 線として銀ペーストをスクリーン印刷法により印刷、乾燥し、銅アルミシートからなるリ ード片よりなるリード電極を取り付けた。 Next, using a sheet of ITO uniformly deposited to a thickness of lOOnm by sputtering on polyethylene terephthalate with a thickness of 100 m as a transparent electrode, silver paste is printed on the conductive surface side of the sheet as a power supply line by screen printing. Dry and made of copper aluminum sheet A lead electrode made of a piece was attached.
上記グラフアイトシートの塗布面と上記透明導電シートの導電面とを貼りあわせて熱 圧着し、無機分散型エレクト口ルミネッセンス素子を得た。  The coated surface of the graphite sheet and the conductive surface of the transparent conductive sheet were bonded together and thermocompression bonded to obtain an inorganic dispersion-type electroluminescent device.
なお、素子の発光面の大きさが 500mm X 500mmとなるようにした。  The size of the light emitting surface of the device was set to 500 mm X 500 mm.
[0104] く実施例 2— 2 > [0104] Example 2-2->
グラフアイトシートを、スーパーえ GS (熱伝導率; 350W/m'K、鈴木総業社 (株)製 )に変更した以外は、実施例 2—1と同様に行った。  The test was performed in the same manner as in Example 2-1, except that the graphite sheet was changed to Super E GS (thermal conductivity: 350 W / m'K, manufactured by Suzuki Sogo Co., Ltd.).
[0105] く実施例 2— 3 > [0105] Example 2-3—
厚さ 100 /z mのポリエチレンテレフタレート上に真空蒸着法により幅 5 /z m 高さ 2. 5 mの銅の細線を間隔 lmmで正方形になるように蒸着し、さらにその上に ITOをス ノ ッターにより 30nmの厚さに均一に付着したシートを透明電極として用いたこと以外 は、実施例 2—1と同様に行った。  A thin copper wire with a width of 5 / zm and a height of 2.5 m was deposited on a polyethylene terephthalate with a thickness of 100 / zm by vacuum deposition to form a square with a spacing of lmm, and ITO was further deposited on the surface by a notch. The same procedure as in Example 2-1 was performed except that a sheet uniformly adhered to a thickness of 30 nm was used as the transparent electrode.
[0106] く実施例 2— 4 > [0106] Examples 2-4>
平均粒径 10 /z mの蛍光体粒子 (ZnS ;Cu, C1)を用い、発光層用ペーストを作製し たこと以外は、実施例 2—1と同様に行った。  The same procedure as in Example 2-1 was performed, except that phosphor particles (ZnS: Cu, C1) having an average particle diameter of 10 / zm were used and a light emitting layer paste was prepared.
[0107] く実施例 2— 5 > [0107] Example 2-5>
厚さ 100 /z mのポリエチレンテレフタレート上に真空蒸着法により幅 5 /z m 高さ 2. 5 mの銅の細線を間隔 lmmで正方形になるように蒸着し、さらにその上に ITOをス ノ ッターにより 30nmの厚さに均一に付着したシートを透明電極として用いたこと以外 は、実施例 2— 4と同様に行った。  A thin copper wire with a width of 5 / zm and a height of 2.5 m was deposited on a polyethylene terephthalate with a thickness of 100 / zm by vacuum deposition to form a square with a spacing of lmm, and ITO was further deposited on the surface by a notch. The same procedure as in Example 2-4 was performed except that a sheet uniformly adhered to a thickness of 30 nm was used as the transparent electrode.
[0108] <比較例 2— 1 > [0108] <Comparative Example 2-1>
グラフアイトシートの替わりにアルミシートを用いたこと以外、実施例 2—1と同様に行 つた o  Performed in the same manner as in Example 2-1, except that an aluminum sheet was used instead of the graphite sheet o
[0109] <比較例 2— 2 >  [0109] <Comparative Example 2-2>
アルミシートの背面部(背面電極の発光層とは反対側の面)にグラフアイトシート(P On the back side of the aluminum sheet (surface opposite to the light emitting layer of the back electrode)
GSグラフアイトシート (熱伝導率; 800WZm'K、松下電子部品 (株)製)を配置した 以外は、比較例 2—1と同様に行なった。 The procedure was the same as Comparative Example 2-1, except that a GS graphite sheet (thermal conductivity; 800 WZm'K, manufactured by Matsushita Electronic Components Co., Ltd.) was placed.
[0110] 電圧 200V、周波数 ΙΚΗζの駆動条件において、実施例 2— 1〜2— 5、比較例 2— 1および 2— 2の EL表示パネルを気温 20°C、湿度 60%の環境にお!、て駆動した場 合、初期の輝度はいずれも 600cd/m2であった。さらに、これらの素子を同じ環境下 で連続して駆動した場合の輝度半減期 (EL輝度が初期輝度の半分に低下するのに 要する駆動時間)を表 2に示す。 [0110] Examples 2-1 to 2-5 and Comparative Example 2— under the driving conditions of voltage 200V and frequency ΙΚΗζ When the 1 and 2-2 EL display panels were driven in an environment with an air temperature of 20 ° C and a humidity of 60%, the initial luminance was 600 cd / m 2 . Furthermore, Table 2 shows the luminance half-life (drive time required for the EL luminance to drop to half of the initial luminance) when these elements are driven continuously in the same environment.
[表 2] [Table 2]
(表 2) (Table 2)
背面電極 蛍光体粒子の  Back electrode of phosphor particles
透明電極 輝度半減期 種類 熱伝導率 平均粒径  Transparent electrode Luminance half-life Type Thermal conductivity Average particle size
実施例 2— 1 グラフアイトシート 800 W/m-K 25 U m ITO 500時間 実施例 2— 2 〃 350 W/m-K II II 420時間 実施例 2— 3 〃 800 W/m-K II 銅線 + ITO 600時間 実施例 2— 4 // // 10 m ITO 520時間 実施例 2— 5 〃 〃 〃 銅線 + ITO 550時間 比較例 2— 1 アルミシート 237 W/m-K 25 m ITO 200時間 アルミシートの背面部に Example 2— 1 Graphite sheet 800 W / mK 25 U m ITO 500 hours Example 2— 2 〃 350 W / mK II II 420 hours Example 2— 3 〃 800 W / mK II copper wire + ITO 600 hours Example 2— 4 // // 10 m ITO 520 hours Example 2— 5 〃 〃 銅 Copper wire + ITO 550 hours Comparative Example 2-1 Aluminum sheet 237 W / mK 25 m ITO 200 hours On the back of the aluminum sheet
237 W/m-K  237 W / m-K
比較例 2— 2 グラフアイトシートを貼り 〃 〃 280時間 Comparative Example 2—2 Affixing the Graph Eye Sheet 〃 〃 280 hours
(800 W/m-K)  (800 W / m-K)
付け Date
[0112] 背面電極をアルミシートとした比較例 2—1に対して、実施例 2—1や 2— 2のように 背面電極をグラフアイトシートにすることによって放熱性が高められ、輝度半減期が増 大した。特に実施例 2—1は背面電極の熱伝導率が高いため、その効果が顕著に現 れた。また実施例 2— 3のように透明電極を ITO力も銅細線 +ITOに変更することで 、透明電極力ゝらの放熱性も高められるため、さらに輝度半減期が増大した。実施例 2 4のように蛍光体粒子の平均粒径を小さくすると、発熱量も多くなるので、結果とし て実施例 2—1に対して放熱効果が高められ寿命が向上した。さらに実施例 2— 5の ように透明電極を銅細線 + ITOに変更することで、最も良好な結果が得られた。 [0112] Compared to Comparative Example 2-1 in which the back electrode is an aluminum sheet, heat dissipation is improved by making the back electrode a graphite sheet as in Examples 2-1 and 2-2, and the luminance half-life is increased. Increased. In particular, Example 2-1 exhibited a remarkable effect because of the high thermal conductivity of the back electrode. In addition, by changing the ITO force of the transparent electrode to the copper fine wire + ITO as in Example 2-3, the heat dissipation of the transparent electrode force can be improved, and the luminance half-life is further increased. When the average particle diameter of the phosphor particles was reduced as in Example 24, the amount of heat generation was increased, and as a result, the heat dissipation effect was enhanced and the life was improved compared to Example 2-1. Furthermore, the best results were obtained by changing the transparent electrode to copper fine wire + ITO as in Example 2-5.
[0113] 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲 を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明ら かである。  [0113] Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. is there.
本出願は、 2004年 7月 15日出願の日本特許出願(特願 2004— 208790)、 2004 年 7月 28日出願の日本特許出願 (特願 2004— 220330)に基づくものであり、その 内容はここに参照として取り込まれる。  This application is based on a Japanese patent application filed on July 15, 2004 (Japanese Patent Application No. 2004-208790) and a Japanese patent application filed on July 28, 2004 (Japanese Patent Application No. 2004-220330). Incorporated herein by reference.

Claims

請求の範囲 The scope of the claims
[1] 背面電極及び透明電極カゝらなる一対の電極の間に少なくとも発光層を有する無機 分散型エレクト口ルミネッセンス素子であって、背面電極の発光層とは反対側の面に [1] An inorganic dispersion-type electroluminescent device having at least a light emitting layer between a pair of electrodes such as a back electrode and a transparent electrode, on the surface opposite to the light emitting layer of the back electrode
、熱放射率が 0. 8以上で、厚さ 50 μ m〜1000 μ mのセラミックシートを有することを 特徴とする無機分散型エレクト口ルミネッセンス素子。 An inorganic dispersive electoluminescence element comprising a ceramic sheet having a thermal emissivity of 0.8 or more and a thickness of 50 μm to 1000 μm.
[2] 背面電極及び透明電極カゝらなる一対の電極の間に少なくとも発光層を有する無機 分散型エレクト口ルミネッセンス素子であって、前記背面電極がグラフアイトシートであ ることを特徴とする無機分散型エレクト口ルミネッセンス素子。 [2] An inorganic dispersion-type electoluminescent element having at least a light emitting layer between a pair of electrodes such as a back electrode and a transparent electrode, wherein the back electrode is a graphite sheet Dispersion type electoluminescence element.
[3] 前記背面電極がグラフアイトシートであることを特徴とする請求項 1に記載の無機分 散型エレクト口ルミネッセンス素子。 [3] The inorganic dispersive electoluminescence device according to [1], wherein the back electrode is a graphite sheet.
[4] 前記背面電極の熱伝導率が 200WZm'K以上であることを特徴とする請求項 2ま たは 3に記載の無機分散型エレクト口ルミネッセンス素子。  [4] The inorganic dispersive electoluminescence device according to [2] or [3], wherein the back electrode has a thermal conductivity of 200 WZm′K or more.
[5] 前記透明電極が、透明導電膜部分と、金属及び Zまたは合金の細線構造部分とを 有してなる透明導電シートであることを特徴とする請求項 1〜4のいずれかに記載の 無機分散型エレクト口ルミネッセンス素子。 [5] The transparent electrode according to any one of claims 1 to 4, wherein the transparent electrode is a transparent conductive sheet having a transparent conductive film portion and a fine wire structure portion of metal and Z or alloy. Inorganic dispersion type electoluminescence element.
[6] 前記発光層内に含有される蛍光体粒子の平均サイズが 0.1〜 15 mであることを 特徴とする請求項 1〜5のいずれかに記載の無機分散型エレクト口ルミネッセンス素 子。 [6] The inorganic dispersed electoluminescence device according to any one of [1] to [5], wherein an average size of the phosphor particles contained in the light emitting layer is 0.1 to 15 m.
PCT/JP2005/008177 2004-07-15 2005-04-28 Inorganic dispersion electroluminescence element WO2006008863A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006528385A JPWO2006008863A1 (en) 2004-07-15 2005-04-28 Inorganic dispersion type electroluminescence device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004208790 2004-07-15
JP2004-208790 2004-07-15
JP2004-220330 2004-07-28
JP2004220330 2004-07-28

Publications (1)

Publication Number Publication Date
WO2006008863A1 true WO2006008863A1 (en) 2006-01-26

Family

ID=35784994

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/008177 WO2006008863A1 (en) 2004-07-15 2005-04-28 Inorganic dispersion electroluminescence element

Country Status (2)

Country Link
JP (1) JPWO2006008863A1 (en)
WO (1) WO2006008863A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009122909A1 (en) * 2008-03-31 2009-10-08 住友化学株式会社 Organic electroluminescent device
JP2010537392A (en) * 2007-08-27 2010-12-02 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト Identification mark having electroluminescent effect and method for producing the same
JP2011145320A (en) * 2010-01-12 2011-07-28 Seiko Epson Corp Electro-optical device
JP2012221917A (en) * 2011-04-14 2012-11-12 Nec Lighting Ltd Organic el lighting panel and manufacturing method thereof and organic el luminaire
JP2015011855A (en) * 2013-06-28 2015-01-19 セイコーエプソン株式会社 Electro-optic device, method of manufacturing electro-optic device, and electronic apparatus
JP2020003608A (en) * 2018-06-27 2020-01-09 国立大学法人電気通信大学 Quantum dot sheet, optoelectronic device using the same, and manufacturing method of quantum dot sheet
WO2021029286A1 (en) * 2019-08-14 2021-02-18 株式会社ジャパンディスプレイ Display device
WO2022224368A1 (en) * 2021-04-21 2022-10-27 三菱電機株式会社 Heat-dissipating member and heat sink

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01149396A (en) * 1987-12-07 1989-06-12 Ricoh Co Ltd Electroluminescence element
JPH04129194A (en) * 1990-09-19 1992-04-30 Hitachi Ltd Organic thin film electroluminescence (el) element
JP2003007450A (en) * 2001-06-20 2003-01-10 Matsushita Electric Ind Co Ltd Light-emitting element, display device and illumination device
JP2003309383A (en) * 2002-04-16 2003-10-31 Ceramission Kk Radiator
JP2004137354A (en) * 2002-10-17 2004-05-13 Fuji Photo Film Co Ltd Electroluminescent fluorescent substance
JP2004146136A (en) * 2002-10-23 2004-05-20 Idemitsu Kosan Co Ltd Electrode substrate for organic electroluminescent (el) element, and its manufacturing method and organic el device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01149396A (en) * 1987-12-07 1989-06-12 Ricoh Co Ltd Electroluminescence element
JPH04129194A (en) * 1990-09-19 1992-04-30 Hitachi Ltd Organic thin film electroluminescence (el) element
JP2003007450A (en) * 2001-06-20 2003-01-10 Matsushita Electric Ind Co Ltd Light-emitting element, display device and illumination device
JP2003309383A (en) * 2002-04-16 2003-10-31 Ceramission Kk Radiator
JP2004137354A (en) * 2002-10-17 2004-05-13 Fuji Photo Film Co Ltd Electroluminescent fluorescent substance
JP2004146136A (en) * 2002-10-23 2004-05-20 Idemitsu Kosan Co Ltd Electrode substrate for organic electroluminescent (el) element, and its manufacturing method and organic el device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010537392A (en) * 2007-08-27 2010-12-02 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト Identification mark having electroluminescent effect and method for producing the same
WO2009122909A1 (en) * 2008-03-31 2009-10-08 住友化学株式会社 Organic electroluminescent device
JP2009245770A (en) * 2008-03-31 2009-10-22 Sumitomo Chemical Co Ltd Organic electroluminescent device
JP2011145320A (en) * 2010-01-12 2011-07-28 Seiko Epson Corp Electro-optical device
CN102157544A (en) * 2010-01-12 2011-08-17 精工爱普生株式会社 Electro-optical device
JP2012221917A (en) * 2011-04-14 2012-11-12 Nec Lighting Ltd Organic el lighting panel and manufacturing method thereof and organic el luminaire
JP2015011855A (en) * 2013-06-28 2015-01-19 セイコーエプソン株式会社 Electro-optic device, method of manufacturing electro-optic device, and electronic apparatus
JP2020003608A (en) * 2018-06-27 2020-01-09 国立大学法人電気通信大学 Quantum dot sheet, optoelectronic device using the same, and manufacturing method of quantum dot sheet
JP7109062B2 (en) 2018-06-27 2022-07-29 国立大学法人電気通信大学 Quantum dot sheet, optoelectronic device using the same, and method for producing quantum dot sheet
WO2021029286A1 (en) * 2019-08-14 2021-02-18 株式会社ジャパンディスプレイ Display device
WO2022224368A1 (en) * 2021-04-21 2022-10-27 三菱電機株式会社 Heat-dissipating member and heat sink

Also Published As

Publication number Publication date
JPWO2006008863A1 (en) 2008-05-01

Similar Documents

Publication Publication Date Title
JP2005302508A (en) Transparent conductive sheet and electroluminescent element using it
WO2006008863A1 (en) Inorganic dispersion electroluminescence element
JP2007012466A (en) Transparent conductive film and distributed electroluminescent element using the film
US7009337B2 (en) EL phosphor powder and EL device
WO2006093095A1 (en) Dispersion-type electroluminescent element
US20100193740A1 (en) Method of producing an electroluminescence phosphor
JP2005197234A (en) Electroluminescent element
US20060255718A1 (en) Dispersion type electroluminescent element
US20050104509A1 (en) Electroluminescent device
JP2006120555A (en) Dispersion type electroluminescent element
JP2008251321A (en) Inorganic electroluminescent element, and illumination device equipped with this
JP2006156358A (en) Distributed electroluminescent element
US20050122034A1 (en) Electroluminescent device
US20050052129A1 (en) Electroluminescent material
JP2005283911A (en) Electroluminescence display panel
JP2008123780A (en) Dispersed type inorganic electroluminescent element and lighting system equipped with it
US20050122027A1 (en) Method of producing inorganic semiconductor-or phosphor-primary particle and inorganic semiconductor-or phosphor-primary particle
JP2006032100A (en) Inorganic dispersion type electroluminescent element
JP4330475B2 (en) Method for producing electroluminescent phosphor
JP2005322567A (en) Distributed electroluminescent element
JP2010215787A (en) Inorganic phosphor particle and distributed electroluminescence element using the same
WO2006046564A1 (en) Electroluminescence phosphor and el element using the same
JP2005174923A (en) Electroluminescent element
JP2005228693A (en) Distributed electroluminescent device and its manufacturing method
US20050052121A1 (en) Electroluminescent material

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006528385

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase