JP2004111344A - Light emitting element - Google Patents

Light emitting element Download PDF

Info

Publication number
JP2004111344A
JP2004111344A JP2002311883A JP2002311883A JP2004111344A JP 2004111344 A JP2004111344 A JP 2004111344A JP 2002311883 A JP2002311883 A JP 2002311883A JP 2002311883 A JP2002311883 A JP 2002311883A JP 2004111344 A JP2004111344 A JP 2004111344A
Authority
JP
Japan
Prior art keywords
phosphor
light emitting
light source
light
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002311883A
Other languages
Japanese (ja)
Inventor
Kenji Morinaga
森永 健次
Takahiro Murata
村田 貴広
Takashi Hase
長谷 尭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kasei Optonix Ltd
Original Assignee
Kasei Optonix Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kasei Optonix Ltd filed Critical Kasei Optonix Ltd
Priority to JP2002311883A priority Critical patent/JP2004111344A/en
Publication of JP2004111344A publication Critical patent/JP2004111344A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)
  • Luminescent Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light emitting device with an excellent color rendering property and color reproduction as a multicolor or white color light source saving power consumption and replacing a fluorescent lamp, without using a harmful substance such as mercury as a component. <P>SOLUTION: The light emitting device is provided with a light source for excitation with a peak wavelength of a emission spectrum in a near-ultraviolet or short wavelength visible range, and a red light emitting phosphor with a composition (M<SB>1-x</SB>M'x)O-n(Al<SB>1-y</SB>Ga<SB>y</SB>)<SB>2</SB>0<SB>3</SB>:Mn<SB>z</SB>(M=Ca, Sr, M'= Ba, Mg, Zn, O≤x≤0.1, 0≤y≤0.1, 1x10<SP>-4</SP>≤z≤1x10<SP>-1</SP>(g.atm/matrix 1 mol), 2≤n≤8), or a compound phosphor formed of the red light emitting phosphor and other color light emitting phosphor in a position where light emitted from the light source for excitation can be absorbed, and emits light with a different peak wavelength. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明が属する技術分野】
本発明は近紫外または短波長可視域の発光を呈する励起用光源と蛍光体との組合せにより種々の発光色の発光を呈する照明用やディスプレイ用として用いられる発光装置に関する。
【0002】
【従来の技術】
蛍光体の代表的な用途の1つとして蛍光ランプが知られており、古くから照明やディスプレーとして実用されている。周知のように蛍光ランプはガラス管の内壁に形成された蛍光体からなる蛍光膜が、水銀蒸気を封入したガラス管内において、放電で発生する紫外線より励起され発光することを利用し、照明用等の光源として用いられている。
【0003】
ところで、近年、環境問題や省電力の観点から水銀を使用しない、より消費電力の少ない照明用の光源として、発光ダイオード(LED)や半導体レーザー(LD)を励起用光源として用い、これと蛍光体とを組合せて、LEDやLDからの発光を用い蛍光体を励起して発光させ、その時出る光を光源として用いる方法が開発されている。例えば、特許第2,927,279号公報には、LEDチップが発する青色系の可視光と、このLEDチップの青色系の発光の一部を吸収して発光するCe付活希土類アルミン酸塩蛍光体からの黄色系の発光との加色混合によって全体として白色系の発光を呈する発光ダイオードが開示されている。
【0004】
しかしながら、従来のLED等の励起用光源と蛍光体とを組み合わせたタイプの光源では、LED等の励起用光源の発光波長が限定されることや、用いられる励起用光源により発光し得る蛍光体の種類が極めて限られている等のため、最終的に得られる発光色が白色系に限定されるとかマルチカラー的な色が出せない等の制約があった。また白色についても照明下の色は好ましい色が再現されず、演色性も問題であった。
【0005】
近年、この様な問題を解決するため、2色加色での白色合成の欠点を補う方法として、U.S.P.6294800、U.S.P.6255670等で3成分、緑、青、赤での混合による方法が紹介されている。ここで使用されている蛍光体は緑発光蛍光体としてはCaMg(SiOCl:Eu,Mn、青発光蛍光体としてはBaMgAl1017:EU等が、また赤色蛍光体としては、YS:EuまたはY:Eu,Bi等があげられている。
【0006】
この3成分の混合による方法は、2色成分法に比べればその光源照明下での映り出される色の再現はかなり改善してきている。しかしながら成分として用いられている個々の蛍光体自身の色調が好ましくない場合、その光源の照明下で映り出される色は再現性の乏しく望む色が出せず、上記の技術の場合特に赤色の蛍光体の色調が望ましい赤色から離れているため、満足な白色光源を得ることができない。
近年、照明、ディスプレー、液晶バックライト用として白色光源に限らず多色光源としても、色再現性、演色性の良好なものがより望まれるようになって来ている。
【0007】
【発明が解決しようとする課題】
本発明は構成要素として水銀などの有害物質を使用しない省消費電力の蛍光ランプに代わる照明、ディスプレー、液晶バックライト用光源として、色再現性、演色性の優れた赤色及び白色及び又は多色の光源を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明者らは、上記目的達成のため、種々の蛍光体について、これを励起するための各種励起用光源で発光させてみることによって、好ましい赤色光源となり得る蛍光体を励起用光源との組合について詳細に探索した。その結果、色調の好ましい蛍光体として組成が(M1−xM’)O・n(Al1−yGa:Mn(但しM=Ca,Sr、M’=Ba,Mg,Zn、0≦x≦0.1、0≦y≦0.1、1x10−4≦z≦1x10−1(g.atm/母体1mol)、2≦n≦8)であることを特徴とする赤色発光蛍光体を見出した。
また一方この蛍光体を用いて、他色蛍光体との混合で白色及び多色について検討した結果、多色としての色再現性が優れていること、また白色光源の場合その照明下で映り出される赤色再現が良好である等の利点を見出し、本発明に至った。
【0009】
本発明の発光装置は下記の構成を有する。
(1)近紫外ないしは短波長可視域に発光スペクトルのピーク波長をもった励起用光源と、該励起用光源からの発光を吸収し得る位置に配置されて、該励起用光源からの前記発光の少なくとも1部を吸収して、これとは異なるピーク波長の発光を呈する1種以上の蛍光体とを具備する発光装置であって、前記蛍光体の赤色発光蛍光体の組成が(M1−xM’)O・n(Al1−yGa:Mn(但しM=Ca,Sr、M’=Ba,Mg,Zn、0≦x≦0.1、0≦y≦0.1、1x10−4≦z≦1x10−1(g.atm/母体1mol)、2≦n≦8)のアルミン酸塩であることを特徴とする発光装置。
【0010】
(2)近紫外ないしは短波長可視域に発光スペクトルのピーク波長をもった励起用光源と、該励起用光源からの発光を吸収し得る位置に配置されて、該励起用光源からの前記発光の少なくとも1部を吸収して、これとは異なるピーク波長の発光を呈する赤色、緑色、青色の3種の蛍光体とを具備する発光装置であって、赤色発光蛍光体が(M1−xM’)O・n(Al1−yGa)2O3:Mn(但しM=Ca,Sr、M’=Ba,Mg,Zn、0≦x≦0.1、0≦y≦0.1、1x10−4≦z≦1x10−1(g.atm/母体1mol)、2≦n≦8)であることを特徴とする白色発光装置。
【0011】
(3)前記励起用光源の発光スペクトルのピーク波長が300〜500nmであることを特徴とする前記(1)〜(2)のいずれかに記載の発光装置。
(4)前記励起用光源が発光ダイオード(LED)、半導体レーザーの中の少なくとも1種であることを特徴とする前記(1)〜(3)のいずれかに記載の発光装置。
(5)前記励起用光源が(In,Ga)Nであることを特徴とする前記(1)〜(4)のいずれかに記載の発光装置。
【0012】
【発明の実施の形態】
本発明の発光装置は、近紫外ないしは短波長可視域に発光スペクトルのピーク波長をもった発光ダイオード(LED)等の励起用光源と、該励起用光源からの発光を吸収し得る位置にアルミン酸塩赤色発光蛍光体(M1−xM’)O・n(Al1−yGa:Mn(但しM=Ca,Sr、M’=Ba,Mg,Zn、0≦x≦0.1、0≦y≦0.1、1x10−4≦z≦1x10−1(g.atm/母体1mol)、2≦n≦8)または他色蛍光体である緑色発光蛍光体、青色発光蛍光体との混合で2色または3色混合で構成された蛍光体を配置したもので、光学的に結合される形で組まれた従来の発光装置と同様の構成を有する。なおここで用いられる他色発光蛍光体は、緑色発光蛍光体としてはZnS:Cu,Al、BaMgAl1017:Eu,Mn、CaMgSi:Eu等がまた青色発光蛍光体としてはBaMgAl1017:Eu、(Sr,Ca,Ba,Mg)10(POCl:Eu、CaCl:Eu、SrMgSi:Eu、(Ca,Sr,Ba)MgSi:Eu等が好ましいものとして使用される。
【0013】
以下、本発明の赤色発光蛍光体を更に詳細に説明する。
本発明のアルミン酸塩物蛍光体は、次のようにして合成される。蛍光体原料としては、▲1▼母体の一構成成分である、Ca、Sr、Ba、Zn及びMgの1種以上の酸化物もしくはこれらの硝酸塩、炭酸塩等の化合物、▲2▼付活剤成分である、Mn酸化物もしくはこれらの硝酸塩、炭酸塩、塩化物等の化合物、▲3▼母体の一構成成分である、アルミニウム及びガリウムの酸化物、もしくはこれらの硝酸塩、炭酸塩、塩化物等の化合物、更にこれにアルカリ金属及び/又はアルカリ土類金属やアンモニウムのバロゲン化物等をフラックスとして配合し、湿式又は乾式で充分に混合する。上記原料を所定量秤取し、この原料混合物をルツボ等の耐熱容器に充填し、中性雰囲気中もしくは空気中等の雰囲気中で1000〜1750℃で1〜12時間で1回以上焼成する。焼成を終えた焼成物は粉砕し、うすい鉱酸水溶液で洗浄したのち水洗を行い、更にボールミル等による分散処理を施した後、水篩等の湿式分級法で不要な大粒子を除くなどのため、分級処理を加えた後、乾燥、篩いを行うことにより本発明のアルミン酸塩蛍光体が得られる。
【0014】
図1は、この赤色発光蛍光体について、近紫外波長である382nmの紫外線励起による発光スペクトルを調べたもので、その発光色は従来検討されている赤色蛍光体YS:Euの発光ピーク波長が624nmであることと比較すると、赤みの強い長波長域の656nmに強いピークを持っており、色純度的に好ましい赤色であることを示している。
【0015】
一方、本発明の発光装置の構成要素の1つである励起用発光としては、近紫外〜短波長可視光の波長域に発光する発光素子が用いられる。この励起用光源である発光素子としては、比較的入手し易く、しかも発光効率が高くて、蛍光体をより高輝度に発光させ得る点で、その発光ピークの波長λが300〜500nmで、より好ましくは370〜500nmである(In,Ga)N等の窒化物系化合物半導体からなる発光ダイオード(LED)や半導体レーザー(LD)を使用することができる。
本発明の発光装置は、前記の蛍光体が励起用光源からの光を受光して吸収し得るような位置関係にあり、励起光源に対峙するような配置で構成されている。
【0016】
図3は本発明の発光素子の構造概略図の一例であり、ステム1上には半導体発光素子チップ3が電気的に接着されており、一方、半導体発光素子チップ3の他方の電極とリード2の1つとがリード線5により電気的に接続されている。このステム1にはドーム状の透明樹脂被覆蓋体5が固着される。そして、この透明樹脂被覆蓋体5の内面には、蛍光体を分散させた結合剤が塗布され蛍光体層6が形成されている。透明樹脂被覆蓋体5は、エポキシ樹脂、アクリル樹脂、シリコーン樹脂、ポリスチレンなどの樹脂やガラス等の光に対して透明な材料で構成され、半導体発光素子チップ3の気密封止用キャップの役割を兼ねてステム1に固着されている。リード線2に通電することによって半導体発光素子チップ3が発光し、この発光光が空間層を介して透明樹脂被覆蓋体5の内壁面に形成されている蛍光体層6面に照射され、蛍光体層6がこの半導体発光素子チップ3からの発光を吸収して励起され、半導体発光素子チップ3とは異なる発光波長で本発明の構成要素として示された蛍光体に固有の発光を呈する。
【0017】
図4は本発明の発光装置の別の実施例を示す構造概略図の1例であり、本例の発光装置はヘッダー4上に半導体発光素子チップ13をマウントし、リード12に電気的に接続されている。また、半導体発光装置チップ13を覆うように蛍光体を混入した透明樹脂で被覆し、蛍光体層16を形成し、該蛍光体層16の上に透明樹脂をモールドして凸レンズ状の樹脂レンズ15を形成する。14は半導体発光素子チップ13と電極とを電気的に接続するリード線である。リード12を通じて通電して半導体発光素子チップ13を発光させ、この発光を吸収した半導体発光素子チップ13が励起されて半導体発光素子チップ13とは異なる波長の発光を呈する。なお、樹脂レンズ15と蛍光体層16とは一体化し、蛍光体を分散含有させた透明樹脂で半導体発光素子チップ13の上をモールドしておいても良い。
また更にカップ型のマウント部を有するリードフレームを作製し、底部に発光装置チップを配置し、カップ状マウント部に蛍光体を樹脂と共に注入充填しても良い。
【0018】
また、これら図3及び図4に例示したような点光源状の発光素子を線状もしくは面状に集積してアレイ状に配列して、線状または面状の光源とすることも出来る。
このような構成を有する本発明の発光装置の一構成要素である蛍光体層において、赤色のアルミン酸塩蛍光体または発光色の異なる複数の蛍光体と混合された蛍光体を用いることにより、所望の発光色を呈し、色再現性、色演性に優れた発光装置を得ることができる。この様な発光装置の実現により、照明、ディスプレー、液晶バックライト用として白色光源に限らず多色光源としても、色再現性、演色性の良好なものを提供することが可能となり、工業的な利用価値は大きい。
【0019】
【実施例】
次に実施例により本発明を説明するが、本発明は以下の実施例に例示した実施の態様に限定されるものではない。
〔実施例1〕
組成式がCaO・6Al:Mn0.001で表されるアルミン酸塩蛍光体4mgとアクリル樹脂1gとトルエン15gとを混合して蛍光体塗布液を調製した。
これとは別に、励起用光源として主ピーク波長382nmの近紫外発光を示す発光ダイオード素子のウエハー部分を水平に保持し、先に調製した蛍光体塗布液をその発光部上に細いノズルから滴下してドーム状の蛍光体塗布膜を作り、次いでこれをそのまま半回転して蛍光体塗布面を逆水平にして表面張力を利用しドーム状の塗膜内で蛍光体を室温で自然乾燥させた後、およそ150℃で3時間更に乾燥して表面にCaO・6Al:Mn蛍光体が塗布された実施例1の発光装置を作製した。
【0020】
このようにして得られた実施例1の発光装置の電極に通電したところ、CIE表色系で表される発光色度点がx=0.711、y=0.281である、赤色の発光を示す発光装置が得られた。この時の蛍光体層からの発光について、色調をスペクトル解析したものを図1示したが、発光ピーク波長が長波長域の656nmに強いピークを持っており、赤みの強い色純度的に好ましい赤色であることを示している。
【0021】
〔比較例1〕
蛍光体のみ従来蛍光体YS:Euに変えて実施例1と同様の方法にて発光装置を作製した。このようにして得られた比較例1の発光装置の電極に通電したところ、CIE表色系で表される発光色度点がx=0.669、y=0.328である、赤色の発光を示す発光装置が得られた。この時の蛍光体層からの発光について、色調をスペクトル解析したものを図1示したが、発光ピーク波長はオレンジサイドによった長波624nmに強いピークを持っており、赤みの色純度が乏しく色再現の面で満足行くものではなかった。
【0022】
〔実施例2〕
本発明の赤色蛍光体CaO・6Al:Mnと青色蛍光体(Sr,Ca,Ba,Mg)10(POCl:Euと緑色蛍光体ZnS:Cu,Alとを混合して作られた白色蛍光体を用いて、実施例1と同様な方法で発光装置を作製した。
このようにして得られた実施例1の発光装置の電極に通電したところ、CIE表色系で表される発光色度点がx=0.310 y=0.396で通常用いられる白色色度点を示しており、また照明下で映し出される色は良好であり、またそこで得られた発光をスペクトル解析した結果図2からも赤色成分の発光ピーク波長が好ましい赤色の波長である650nmに位置していることが確認できた。
【0023】
〔比較例2〕
従来赤色蛍光体を用いた白色蛍光体として、赤色蛍光体YS:Euと青色蛍光体(Sr,Ca,Ba,Mg)10(POCl:Euと緑色蛍光体ZnS:Cu,Alとを混合して作られた白色蛍光体を用い、実施例2において蛍光体のみ変更し、其の他は同様な方法で発光装置を作製した。
このようにして得られた比較例2の発光装置の電極に通電したところ、CIE表色系で表される発光色度点がx=0.318 y=0.386で通常用いられる白色色度点を示した。照明下で映し出される色は赤色の色再現の面で満足行くものではなかった。その得られた発光をスペクトル解析した結果を図2に示した。
【0024】
【発明の効果】
以上の説明の様に、本発明の実施例1及び実施例2の赤色は、従来技術を用いた比較例1及び比較例2に対し、赤色成分の発光ピーク波長が好ましい赤色の波長である650nmに位置して色純度的に良好である。
従って本発明は上述のような構成にすることにより、構成要素として水銀などの有害物質を使用せず、省消費電力で蛍光ランプに代わる多色及び白色光源として、色再現が広く演色性に優れた発光装置の提供を可能にする。
【図面の簡単な説明】
【図1】本発明の発光装置に使用されるアルミン酸塩蛍光体CaO・6Al:Mnと比較用赤色蛍光体YS:Euの励起波長382nmでの発光スペクトルを例示するグラフである。
【図2】本発明対象のアルミン酸塩蛍光体CaO・6Al:Mnを用いて作られた白色蛍光体と従来赤色蛍光体YS:Euを用いて作られた白色蛍光体の発光光源装置で得られた光の励起波長382nmでの発光スペクトルを例示するグラフである。
【図3】本発明の発光装置の一実施例を示す概略断面図である。
【図4】本発明の発光装置で別タイプの実施例を示す概略断面図である。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a light emitting device used for illumination or display, which emits light of various emission colors by a combination of a light source for excitation that emits light in the near ultraviolet or short wavelength visible region and a phosphor.
[0002]
[Prior art]
A fluorescent lamp is known as one of typical uses of the phosphor, and has been used for a long time as a lighting or a display. As is well known, a fluorescent lamp utilizes a fluorescent film formed of a phosphor formed on an inner wall of a glass tube, which is excited by ultraviolet rays generated by electric discharge in a glass tube filled with mercury vapor to emit light. Used as a light source.
[0003]
By the way, in recent years, a light emitting diode (LED) or a semiconductor laser (LD) has been used as a light source for excitation, which does not use mercury and consumes less power, from the viewpoint of environmental problems and power saving. In addition, a method has been developed in which light is emitted from an LED or LD to excite a phosphor to emit light, and light emitted at that time is used as a light source. For example, Japanese Patent No. 2,927,279 discloses a blue activated visible light emitted by an LED chip and a Ce-activated rare earth aluminate fluorescent material that emits light by absorbing a part of the blue emitted light of the LED chip. There is disclosed a light emitting diode that emits white light as a whole by additive mixing with yellow light emitted from the body.
[0004]
However, in a conventional light source of a type in which an excitation light source such as an LED and a phosphor are combined, the emission wavelength of the excitation light source such as an LED is limited, and a phosphor which can emit light by the excitation light source used. Since the types are extremely limited, there are restrictions such as that the finally obtained luminescent color is limited to a white color or that a multi-colored color cannot be obtained. Also, with respect to white, a preferable color was not reproduced for the color under illumination, and color rendering was also a problem.
[0005]
In recent years, in order to solve such a problem, U.S. Pat. S. P. 6294800, U.S.A. S. P. No. 6,255,670 and the like, a method of mixing three components, green, blue and red, is introduced. The phosphor used here is Ca 8 Mg (SiO 4 ) 4 Cl: Eu, Mn as a green light-emitting phosphor, BaMgAl 10 O 17 : EU as a blue light-emitting phosphor, and a red light-emitting phosphor. , Y 2 O 2 S: Eu or Y 2 O 3 : Eu, Bi, and the like.
[0006]
The method of mixing the three components has considerably improved the reproduction of the projected color under the illumination of the light source as compared with the two-color component method. However, when the color tone of each phosphor used as a component is not preferable, the color projected under the illumination of the light source is poor in reproducibility and a desired color cannot be obtained. Since the color tone is different from the desired red color, a satisfactory white light source cannot be obtained.
In recent years, not only a white light source but also a multicolor light source for illumination, display, and liquid crystal backlights have been desired to have good color reproducibility and color rendering properties.
[0007]
[Problems to be solved by the invention]
The present invention replaces fluorescent lamps with low power consumption that does not use harmful substances such as mercury as constituent elements, as a light source for displays, liquid crystal backlights, and has excellent color reproducibility, excellent color rendering, red and white and / or multicolor. It is intended to provide a light source.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the present inventors have tried to emit various phosphors with various excitation light sources to excite the phosphors, so that a phosphor that can be a preferable red light source is combined with the excitation light source. Was searched in detail. As a result, the composition as a phosphor color tone (M 1-x M 'x ) O · n (Al 1-y Ga y) 2 O 3: Mn z ( where M = Ca, Sr, M' = Ba, Mg, Zn, 0 ≦ x ≦ 0.1, 0 ≦ y ≦ 0.1, 1 × 10 −4 ≦ z ≦ 1 × 10 −1 (g.atm / base 1 mol), 2 ≦ n ≦ 8) Red phosphor was found.
On the other hand, as a result of examining white and multicolor by mixing this phosphor with other color phosphors, it was found that the color reproducibility as multicolor was excellent, and in the case of a white light source, it was projected under the illumination. The present invention has found advantages such as good red color reproduction, and has led to the present invention.
[0009]
The light emitting device of the present invention has the following configuration.
(1) An excitation light source having a peak wavelength of an emission spectrum in a near ultraviolet or short wavelength visible region, and a light source for excitation that is disposed at a position capable of absorbing light emission from the excitation light source. A phosphor that absorbs at least a part of the phosphor and emits light having a peak wavelength different from that of the phosphor, wherein the phosphor has a composition of (M 1−x M 'x) O · n ( Al 1-y Ga y) 2 O 3: Mn z ( where M = Ca, Sr, M' = Ba, Mg, Zn, 0 ≦ x ≦ 0.1,0 ≦ y ≦ A light-emitting device comprising an aluminate of 0.1, 1 × 10 −4 ≦ z ≦ 1 × 10 −1 (g.atm / base 1 mol), 2 ≦ n ≦ 8).
[0010]
(2) an excitation light source having a peak wavelength of an emission spectrum in a near-ultraviolet or short-wavelength visible region, and an emission light source arranged at a position capable of absorbing the emission from the excitation light source. What is claimed is: 1. A light-emitting device comprising three kinds of phosphors of red, green and blue that absorb at least a part and emit light of a peak wavelength different from this, wherein the red light-emitting phosphor is (M 1−x M 'x) O · n (Al 1-y Ga y) 2O3: Mn z ( where M = Ca, Sr, M' = Ba, Mg, Zn, 0 ≦ x ≦ 0.1,0 ≦ y ≦ 0.1 1 × 10 −4 ≦ z ≦ 1 × 10 −1 (g.atm / base 1 mol), 2 ≦ n ≦ 8).
[0011]
(3) The light emitting device according to any one of (1) and (2), wherein a peak wavelength of an emission spectrum of the excitation light source is 300 to 500 nm.
(4) The light emitting device according to any one of (1) to (3), wherein the excitation light source is at least one of a light emitting diode (LED) and a semiconductor laser.
(5) The light emitting device according to any one of (1) to (4), wherein the excitation light source is (In, Ga) N.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
The light emitting device of the present invention comprises an excitation light source such as a light emitting diode (LED) having a peak wavelength of an emission spectrum in the near ultraviolet or short wavelength visible region, and an aluminate at a position capable of absorbing the emission from the excitation light source. salts red-emitting phosphor (M 1-x M 'x ) O · n (Al 1-y Ga y) 2 O 3: Mn z ( where M = Ca, Sr, M' = Ba, Mg, Zn, 0 ≦ a green light-emitting phosphor that is x ≦ 0.1, 0 ≦ y ≦ 0.1, 1 × 10 −4 ≦ z ≦ 1 × 10 −1 (g.atm / base 1 mol), 2 ≦ n ≦ 8) or other color phosphor; A phosphor composed of a mixture of two or three colors mixed with a blue light-emitting phosphor is arranged, and has a configuration similar to that of a conventional light-emitting device assembled in an optically coupled form. The other color light-emitting phosphor used here is ZnS: Cu, Al, BaMgAl 10 O 17 : Eu, Mn, Ca 2 MgSi 2 O 7 : Eu as a green light-emitting phosphor, and a blue light-emitting phosphor. BaMgAl 10 O 17 : Eu, (Sr, Ca, Ba, Mg) 10 (PO 4 ) 6 Cl 2 : Eu, Ca 2 B 5 O 9 Cl: Eu, Sr 2 MgSi 2 O 7 : Eu, (Ca, Sr , Ba) 3 MgSi 2 O 8 : Eu and the like are preferably used.
[0013]
Hereinafter, the red light emitting phosphor of the present invention will be described in more detail.
The aluminate phosphor of the present invention is synthesized as follows. Examples of the phosphor raw material include: (1) one or more oxides of Ca, Sr, Ba, Zn, and Mg, which are one component of the base, or compounds thereof such as nitrates and carbonates; (2) activators Ingredients such as Mn oxides or compounds thereof such as nitrates, carbonates and chlorides, and (3) oxides of aluminum and gallium, which are constituents of the base, or nitrates, carbonates and chlorides thereof And a barogenide of an alkali metal and / or alkaline earth metal or ammonium, etc., as a flux, and thoroughly mix in a wet or dry system. The raw material is weighed in a predetermined amount, and the raw material mixture is filled in a heat-resistant container such as a crucible and fired at least once at 1000 to 1750 ° C. for 1 to 12 hours in a neutral atmosphere or an atmosphere such as air. After firing, the fired product is pulverized, washed with a thin mineral acid aqueous solution, washed with water, and further subjected to a dispersion treatment using a ball mill or the like, and then used to remove unnecessary large particles by a wet classification method such as a water sieve. After the classification treatment, drying and sieving are performed to obtain the aluminate phosphor of the present invention.
[0014]
FIG. 1 shows the emission spectrum of this red light-emitting phosphor when excited by ultraviolet light at 382 nm, which is a near-ultraviolet wavelength. The emission color is the emission of the red phosphor Y 2 O 2 S: Eu conventionally studied. Compared to the peak wavelength of 624 nm, it has a strong peak at 656 nm in a long wavelength region with a strong reddish color, indicating that the red color is preferable in terms of color purity.
[0015]
On the other hand, a light emitting element that emits light in the wavelength range of near ultraviolet to short wavelength visible light is used as excitation light emission, which is one of the components of the light emitting device of the present invention. The light emitting element as the excitation light source is relatively easily available, has high luminous efficiency, and can emit a phosphor with higher luminance. A light emitting diode (LED) or a semiconductor laser (LD) made of a nitride-based compound semiconductor such as (In, Ga) N, which preferably has a wavelength of 370 to 500 nm, can be used.
The light emitting device of the present invention has a positional relationship such that the phosphor can receive and absorb light from the excitation light source, and is configured to face the excitation light source.
[0016]
FIG. 3 is an example of a schematic structural view of a light emitting device of the present invention, in which a semiconductor light emitting device chip 3 is electrically bonded on a stem 1, while the other electrode of the semiconductor light emitting device chip 3 and a lead 2 are provided. Are electrically connected by a lead wire 5. A dome-shaped transparent resin-coated lid 5 is fixed to the stem 1. Then, on the inner surface of the transparent resin-coated lid 5, a binder in which a phosphor is dispersed is applied to form a phosphor layer 6. The transparent resin-coated lid 5 is made of a resin transparent to light, such as a resin such as an epoxy resin, an acrylic resin, a silicone resin, or polystyrene, or glass, and serves as a cap for hermetically sealing the semiconductor light emitting element chip 3. It is also fixed to the stem 1. When the lead wire 2 is energized, the semiconductor light emitting element chip 3 emits light, and this emitted light is applied to the surface of the phosphor layer 6 formed on the inner wall surface of the transparent resin covering lid 5 via the space layer, and the fluorescent light is emitted. The body layer 6 absorbs the light emitted from the semiconductor light-emitting element chip 3 and is excited to emit light having a light emission wavelength different from that of the semiconductor light-emitting element chip 3 and specific to the phosphor shown as a component of the present invention.
[0017]
FIG. 4 is an example of a schematic structural view showing another embodiment of the light emitting device of the present invention. In the light emitting device of this embodiment, a semiconductor light emitting element chip 13 is mounted on a header 4 and electrically connected to leads 12. Have been. Further, the semiconductor light emitting device chip 13 is covered with a transparent resin mixed with a phosphor so as to cover the semiconductor light emitting device chip 13 to form a phosphor layer 16, and the transparent resin is molded on the phosphor layer 16 to form a convex lens resin lens 15. To form Reference numeral 14 denotes a lead wire for electrically connecting the semiconductor light emitting element chip 13 and the electrode. The semiconductor light emitting element chip 13 emits light by supplying electricity through the leads 12, and the semiconductor light emitting element chip 13 absorbing the light emission is excited to emit light of a different wavelength from that of the semiconductor light emitting element chip 13. Note that the resin lens 15 and the phosphor layer 16 may be integrated, and the semiconductor light emitting element chip 13 may be molded with a transparent resin containing a phosphor dispersed therein.
Alternatively, a lead frame having a cup-shaped mount portion may be manufactured, a light emitting device chip may be arranged at the bottom, and a fluorescent material may be injected and filled into the cup-shaped mount portion together with a resin.
[0018]
Alternatively, the point light source light emitting elements illustrated in FIGS. 3 and 4 may be linearly or planarly integrated and arranged in an array to form a linear or planar light source.
By using a phosphor mixed with a red aluminate phosphor or a plurality of phosphors having different emission colors in the phosphor layer which is one component of the light emitting device of the present invention having such a structure, And a light emitting device having excellent color reproducibility and color rendition can be obtained. By realizing such a light-emitting device, it is possible to provide not only a white light source but also a multicolor light source with good color reproducibility and color rendition for illumination, display, and liquid crystal backlight, and industrially. The utility value is great.
[0019]
【Example】
Next, the present invention will be described with reference to examples, but the present invention is not limited to the embodiments exemplified in the following examples.
[Example 1]
Composition formula CaO · 6Al 2 O 3: to prepare a phosphor coating liquid by mixing an aluminate phosphor 4mg acrylic resin 1g and toluene 15g represented by Mn 0.001.
Separately from this, the wafer part of the light emitting diode element which emits near-ultraviolet light having a main peak wavelength of 382 nm as an excitation light source is held horizontally, and the previously prepared phosphor coating solution is dropped on the light emitting part from a thin nozzle. After forming a dome-shaped phosphor coating film, and then half-turning the phosphor coating surface in reverse to make the phosphor coating surface horizontal and using a surface tension, the phosphor is naturally dried at room temperature in the dome-shaped coating film. After further drying at about 150 ° C. for 3 hours, a light emitting device of Example 1 in which a CaO.6Al 2 O 3 : Mn phosphor was applied on the surface was produced.
[0020]
When the electrodes of the light emitting device of Example 1 obtained as described above were energized, red light emission having a light emission chromaticity point represented by the CIE color system of x = 0.711 and y = 0.281 was obtained. Was obtained. FIG. 1 shows a spectrum analysis of the color tone of the light emitted from the phosphor layer at this time. The light emission peak wavelength has a strong peak at 656 nm in a long wavelength range, and the red color is strong in red and is preferable in color purity. Is shown.
[0021]
[Comparative Example 1]
A light emitting device was manufactured in the same manner as in Example 1 except that only the phosphor was changed to the conventional phosphor Y 2 O 3 S: Eu. When the electrodes of the light emitting device of Comparative Example 1 obtained as described above were energized, the emission chromaticity point represented by the CIE color system was x = 0.669 and y = 0.328. Was obtained. Fig. 1 shows the color tone of the light emission from the phosphor layer at this time, and the light emission peak wavelength has a strong peak at 624 nm, which is a long wave due to the orange side. It was not satisfactory in terms of reproduction.
[0022]
[Example 2]
The red phosphor CaO.6Al 2 O 3 : Mn of the present invention, the blue phosphor (Sr, Ca, Ba, Mg) 10 (PO 4 ) 6 Cl 2 : Eu and the green phosphor ZnS: Cu, Al are mixed. A light emitting device was manufactured in the same manner as in Example 1 using the white phosphor prepared as described above.
When the electrodes of the light emitting device of Example 1 thus obtained were energized, the emission chromaticity point represented by the CIE color system was x = 0.310 y = 0.396, and the white chromaticity normally used In addition, the color projected under illumination is good, and the spectrum of the emission obtained therefrom shows that the emission peak wavelength of the red component is located at 650 nm, which is the preferred red wavelength, from FIG. Was confirmed.
[0023]
[Comparative Example 2]
Conventionally, as a white phosphor using a red phosphor, a red phosphor Y 2 O 3 S: Eu, a blue phosphor (Sr, Ca, Ba, Mg) 10 (PO 4 ) 6 Cl 2 : Eu and a green phosphor ZnS are used. A light emitting device was manufactured in the same manner as in Example 2 except that a white phosphor prepared by mixing Cu and Al was used.
When the electrodes of the light emitting device of Comparative Example 2 thus obtained were energized, the emission chromaticity point represented by the CIE color system was x = 0.318 y = 0.386, and the white chromaticity normally used Points are shown. The color projected under illumination was not satisfactory in terms of red color reproduction. FIG. 2 shows the result of spectral analysis of the obtained light emission.
[0024]
【The invention's effect】
As described above, the red color of Example 1 and Example 2 of the present invention is 650 nm, which is the preferred red wavelength for the emission peak wavelength of the red component, as compared with Comparative Example 1 and Comparative Example 2 using the prior art. And good in color purity.
Therefore, the present invention adopts the above-described configuration, does not use a harmful substance such as mercury as a constituent element, and has a wide color reproduction and excellent color rendering properties as a multicolor and white light source that replaces a fluorescent lamp with low power consumption. To provide a light emitting device.
[Brief description of the drawings]
FIG. 1 illustrates an emission spectrum of an aluminate phosphor CaO.6Al 2 O 3 : Mn and a comparative red phosphor Y 2 O 2 S: Eu used in a light emitting device of the present invention at an excitation wavelength of 382 nm. It is a graph.
FIG. 2 shows a white phosphor produced using the aluminate phosphor CaO.6Al 2 O 3 : Mn of the present invention and a white phosphor produced using the conventional red phosphor Y 2 O 2 S: Eu. It is a graph which illustrates the luminescence spectrum at the excitation wavelength of 382nm of the light obtained with the body luminescence light source device.
FIG. 3 is a schematic sectional view showing one embodiment of the light emitting device of the present invention.
FIG. 4 is a schematic sectional view showing another embodiment of the light emitting device of the present invention.

Claims (5)

近紫外ないしは短波長可視域に発光スペクトルのピーク波長をもった励起用光源と、該励起用光源からの発光を吸収し得る位置に配置されて、該励起用光源からの前記発光の少なくとも1部を吸収して、これとは異なるピーク波長の発光を呈する1種以上の蛍光体とを具備する発光装置であって、前記蛍光体の赤色発光蛍光体の組成が(M1−xM’)O・n(Al1−yGa:Mn(但しM=Ca,Sr、M’=Ba,Mg,Zn、0≦x≦0.1、0≦y≦0.1、1x10−4≦z≦1x10−1(g.atm/母体1mol)、2≦n≦8)のアルミン酸塩であることを特徴とする発光装置。A near-ultraviolet or short-wavelength excitation light source having a peak wavelength of an emission spectrum in a visible wavelength region, and at least a part of the emission from the excitation light source arranged at a position capable of absorbing the emission from the excitation light source. And at least one kind of phosphor that emits light of a peak wavelength different from the above, wherein the composition of the red light-emitting phosphor is (M 1−x M ′ x ) O · n (Al 1- y Ga y) 2 O 3: Mn z ( where M = Ca, Sr, M ' = Ba, Mg, Zn, 0 ≦ x ≦ 0.1,0 ≦ y ≦ 0.1 1. A light emitting device, which is an aluminate of 1 × 10 −4 ≦ z ≦ 1 × 10 −1 (g.atm / base 1 mol) and 2 ≦ n ≦ 8). 近紫外ないしは短波長可視域に発光スペクトルのピーク波長をもった励起用光源と、該励起用光源からの発光を吸収し得る位置に配置されて、該励起用光源からの前記発光の少なくとも1部を吸収して、これとは異なるピーク波長の発光を呈する赤色、緑色、青色の3種の蛍光体とを具備する発光装置であって、赤色発光蛍光体が(M1−xM’)O・n(Al1−yGa:Mn(但しM=Ca,Sr、M’=Ba,Mg,Zn、0≦x≦0.1、0≦y≦0.1、1x10−4≦z≦1x10−1(g.atm/母体1mol)、2≦n≦8)であることを特徴とする白色発光装置。A near-ultraviolet or short-wavelength excitation light source having a peak wavelength of an emission spectrum in a visible wavelength region, and at least a part of the emission from the excitation light source arranged at a position capable of absorbing the emission from the excitation light source. And three types of red, green, and blue phosphors that emit light of different peak wavelengths from each other, wherein the red light-emitting phosphor is (M 1−x M ′ x ). O · n (Al 1-y Ga y) 2 O 3: Mn z ( where M = Ca, Sr, M ' = Ba, Mg, Zn, 0 ≦ x ≦ 0.1,0 ≦ y ≦ 0.1, A white light emitting device, wherein 1 × 10 −4 ≦ z ≦ 1 × 10 −1 (g.atm / base 1 mol), 2 ≦ n ≦ 8). 前記励起用光源の発光スペクトルのピーク波長が300〜500nmであることを特徴とする請求項1〜2のいずれか一項目に記載の発光装置。The light emitting device according to claim 1, wherein a peak wavelength of an emission spectrum of the excitation light source is 300 to 500 nm. 前記励起用光源が発光ダイオード(LED)、半導体レーザーの中の少なくとも1種であることを特徴とする請求項1〜3のいずれか1項に記載の発光装置。The light emitting device according to claim 1, wherein the excitation light source is at least one of a light emitting diode (LED) and a semiconductor laser. 前記励起用光源が(In,Ga)Nであることを特徴とする請求項1〜4のいずれか1項に記載の発光装置。The light emitting device according to claim 1, wherein the excitation light source is (In, Ga) N.
JP2002311883A 2002-09-19 2002-09-19 Light emitting element Withdrawn JP2004111344A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002311883A JP2004111344A (en) 2002-09-19 2002-09-19 Light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002311883A JP2004111344A (en) 2002-09-19 2002-09-19 Light emitting element

Publications (1)

Publication Number Publication Date
JP2004111344A true JP2004111344A (en) 2004-04-08

Family

ID=32289511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002311883A Withdrawn JP2004111344A (en) 2002-09-19 2002-09-19 Light emitting element

Country Status (1)

Country Link
JP (1) JP2004111344A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006046607A1 (en) * 2004-10-29 2006-05-04 Fujifilm Corporation Dispersion type electroluminescence element
WO2010128664A1 (en) * 2009-05-07 2010-11-11 株式会社 パールライティング Led illuminating lamp and method for manufacturing dome cap for led illuminating lamp
WO2014203479A1 (en) * 2013-06-21 2014-12-24 パナソニックIpマネジメント株式会社 Light source, and vehicle headlamp equipped with light source

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006046607A1 (en) * 2004-10-29 2006-05-04 Fujifilm Corporation Dispersion type electroluminescence element
WO2010128664A1 (en) * 2009-05-07 2010-11-11 株式会社 パールライティング Led illuminating lamp and method for manufacturing dome cap for led illuminating lamp
WO2014203479A1 (en) * 2013-06-21 2014-12-24 パナソニックIpマネジメント株式会社 Light source, and vehicle headlamp equipped with light source

Similar Documents

Publication Publication Date Title
JP4223879B2 (en) Sm-activated red light emitting phosphor and light emitting device using the same
US7262439B2 (en) Charge compensated nitride phosphors for use in lighting applications
JP3993854B2 (en) Semiconductor light emitting element and light emitting device using the same
JP3985486B2 (en) Semiconductor light emitting element and light emitting device using the same
US7274045B2 (en) Borate phosphor materials for use in lighting applications
US7026755B2 (en) Deep red phosphor for general illumination applications
US7329371B2 (en) Red phosphor for LED based lighting
JP4896129B2 (en) Light emitting device and alkaline earth metal sulfide phosphor for the same
US6759804B2 (en) Illumination device with at least one LED as light source
JP4779384B2 (en) Ce-activated rare earth aluminate-based phosphor and light emitting device using the same
US20070018573A1 (en) Phosphor, production method thereof and light-emitting device using the phosphor
US20040263074A1 (en) White light emitting device
US20070012931A1 (en) White semiconductor light emitting device
US20050230689A1 (en) Ce3+ and Eu2+ doped phosphors for light generation
CN1432198A (en) LED-based white-light emitting lighting unit
US20060197443A1 (en) Oxynitride phosphors for use in lighting applications having improved color quality
JP2006332134A (en) White light-emitting diode
JP4233929B2 (en) Phosphor and light emitting device using the same
JP4433793B2 (en) Phosphor and light emitting device using the same
JP2005167138A (en) White light emitting element
KR100672972B1 (en) White diode
JP2005054159A (en) Red light-emitting fluorescent material and light-emitting element given by using the same
JP2004111344A (en) Light emitting element
JP2004231770A (en) Red light-emitting phosphor and light emitter
CN100490192C (en) Light-emitting diode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080407

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080407

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080707

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080827

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080919

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090814

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090916

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20101222