WO2006046500A1 - 通信遅延を有する通信路を介して信号を送受信する遠隔制御システム - Google Patents

通信遅延を有する通信路を介して信号を送受信する遠隔制御システム Download PDF

Info

Publication number
WO2006046500A1
WO2006046500A1 PCT/JP2005/019483 JP2005019483W WO2006046500A1 WO 2006046500 A1 WO2006046500 A1 WO 2006046500A1 JP 2005019483 W JP2005019483 W JP 2005019483W WO 2006046500 A1 WO2006046500 A1 WO 2006046500A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication
disturbance
slave
manipulator
master
Prior art date
Application number
PCT/JP2005/019483
Other languages
English (en)
French (fr)
Inventor
Kouhei Ohnishi
Toshiaki Tsuji
Kenji Natori
Original Assignee
Keio University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keio University filed Critical Keio University
Priority to JP2006543121A priority Critical patent/JP4930938B2/ja
Publication of WO2006046500A1 publication Critical patent/WO2006046500A1/ja

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators

Definitions

  • a remote control system for transmitting and receiving signals via a communication path having a communication delay
  • the present invention relates to a remote control system that transmits and receives signals via a communication path having a communication delay, and in particular, as in the Internet, the communication delay varies and the communication delay (dead time) cannot be accurately measured.
  • the present invention relates to a remote control system suitable for application to a remote operation system using a network as a communication means.
  • Patent Document 1 a communication time delay is predicted based on planned movement data of a remote place where a robot is placed, and the command generation timing is changed in accordance with the fluctuation of the communication time delay.
  • a robot remote control device is described.
  • Patent Document 2 describes a remote operation method and apparatus that converts a communication time delay into a force sensation and remotely operates a controlled part at a remote location.
  • the communication delay can be regarded as a dead time in the control system. If the dead time is included in the control system, a phase delay occurs in the system, which causes the control system to become unstable.
  • the Smith method has been used as a method for compensating for instability of a control system including a dead time element.
  • Fig. 13 shows a block diagram of a control system using the Smith method.
  • C (s) is the control.
  • Control device G (s) indicates the transfer function to be controlled
  • e " Ts is a dead time element (s is a Laplacian operator).
  • the system can be stabilized by adding a compensation element (Smith Predictor) [G (s) (1-e- Ts )] using the Smith method.
  • a compensation element Smith Predictor
  • FIG. 14 shows a block diagram of a bilateral system with communication delay
  • Fig. 14 (b) shows a block diagram when the Smith method is applied to the bilateral system of Fig. 14 (a).
  • FIG. 14 shows a conceptual configuration of the bilateral system.
  • 1 is a master
  • 2 is a slave
  • master 1 and slave 2 are connected by a communication path 3 having communication delay such as the Internet.
  • the transfer function of slave 2 is lZjs
  • force signal F from master 1 is applied to slave 2
  • speed signal sXe— Ts is returned from master 2 to master 1.
  • Fig. 14 (a) When the values of the communication delays Tl and ⁇ 2 in the system shown in Fig. 14 (a) are known, the system shown in Fig. 14 (a) is shown in Fig. 14 (b) as described in Fig. 13 above. As shown, by introducing a compensation element using the Smith method, a response sX that compensates for the communication delay can be obtained.
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-25986
  • Patent Document 2 JP 2004-82293 A
  • the Smith method described above has been widely used as a method for compensating for instability of the system caused by communication delay (dead time) in a remote control system.
  • the Smith method cannot measure the exact value of the communication delay (dead time) of the remote control system, and in some cases the performance will be poor. Because of this nature, communication delays (no Since the value of the “unused time” fluctuates from time to time and the value cannot be measured accurately, satisfactory performance cannot be obtained for a remote control system using a network as a communication device.
  • the present invention can compensate for instability caused by the dead time even in a control system having a dead time in which an accurate value cannot be measured, and bilateral using a communication means having a large communication delay.
  • the object is to provide a remote control device that can transmit tactile sensation from a remote place by applying to control.
  • communication disturbance estimation means for estimating communication disturbance is provided, and the communication disturbance estimation means estimates the communication disturbance. Based on communication disturbances (communication disturbances can be expressed as X ⁇ (1—e— ts ) [X: control signal, t: delay time]) And compensate for communication delays in the remote control system.
  • the communication disturbance estimation means determines that the communication delay in the communication path is an acceleration dimension (force dimension) disturbance (communication disturbance) applied to a remote control target, and transmits a control signal or control transmitted through the communication path.
  • a communication disturbance is estimated based on a signal corresponding to the signal and a response signal transmitted from a remote control target or a signal corresponding to the response signal.
  • a disturbance estimation means for estimating the disturbance applied to the control object at the remote location is provided, and based on the disturbance estimated by the disturbance estimation means, it is added to the control target at the remote location. Compensate for disturbances.
  • the gain of the communication disturbance estimation means and the disturbance estimation means are reduced so that the disturbance applied to the control target at a remote location has less influence on the estimation result of the communication disturbance estimation means.
  • the master-side manipulator and slave-side manipulator are connected via a communication path with a communication delay, and follow the master-side manipulator to drive the slave-side manipulator and add it to the slave side.
  • a remote control system that transmits operating force to the master side
  • the first control unit that controls the master side manipulator, the second control unit that controls the slave side manipulator, and the output of the master side manipulator Based on thread Communication disturbance estimating means for simulating the operation of the slave manipulator and estimating the communication disturbance from the simulated signal and the output of the slave manipulator that is also sent via the communication path by the slave side manipulator.
  • Compensation value generation means for generating a compensation value for compensating for communication delay based on the communication disturbance estimated by the communication disturbance estimation means is provided.
  • the output of the manipulator on the master side is sent to the slave side via the communication path, and the output of the manipulator on the slave side and the output of the master side manipulator sent via the communication path are second controlled.
  • the slave manipulator output sent via the communication path is compensated by the output of the compensation value generating means, the compensated slave manipulator output,
  • the master side manipulator output is input to the first control unit to control the master side manipulator.
  • the communication disturbance estimation means regards the influence due to the communication delay (dead time) as the influence of the disturbance (communication disturbance) of the acceleration dimension (force dimension) applied to the system, and observes and compensates for this communication disturbance. Therefore, the estimated value of communication delay (dead time) is not required! For this reason, even a remote operation system using a network that cannot accurately measure communication delay (dead time), such as the Internet, can be controlled stably. Moreover, even if it is applied to a general control system with dead time, the same performance can be achieved.
  • Disturbance estimation means for estimating the disturbance applied to the controlled object at the remote location is provided, and the disturbance applied to the controlled object at the remote location is compensated based on the disturbance estimated by the disturbance estimating means. Manipulate remote control objects without being affected by Can do.
  • the disturbance applied to the control target at the remote location is The influence on the estimation result of the communication disturbance estimation means can be reduced, and the communication disturbance can be accurately estimated and compensated.
  • FIG. 1 is a block diagram illustrating the concept of the present invention.
  • FIG. 2 is a diagram showing a configuration example when a disturbance observer is provided on the slave side in FIG. 1.
  • FIG. 3 is a block diagram of a communication disturbance observer and a disturbance observer.
  • FIG. 6 is a diagram showing a configuration example when the method of the present invention is applied to a remote control system.
  • FIG. 7 is a block diagram of the remote control system shown in FIG.
  • FIG. 8 is a block diagram of a disturbance and reaction force estimation observer.
  • FIG. 9 is a diagram showing a position response of a conventional example and the present invention.
  • FIG. 10 is a diagram showing a position response when delay time compensation is performed by the Smith method.
  • FIG. 11 is a diagram showing a position response when communication delay time is compensated according to the present invention.
  • FIG. 12 is a diagram showing an angular response and a force response when communication delay compensation is performed according to the present invention.
  • FIG. 13 is a block diagram of a control system in which the Smith method is introduced.
  • FIG. 14 is a block diagram when the Smith method is applied to a neutral system.
  • FIG. 1 is a block diagram illustrating the concept of the present invention. First, the concept of the present invention will be described with reference to FIG. FIG. 1 shows a conceptual configuration when the present invention is applied to a bilateral control composed of a master and a slave camera located at a remote place.
  • 1 is a master
  • 2 is a slave
  • the master 1 and the slave 2 are connected via a communication path having a communication delay that varies from time to time, such as the Internet.
  • the transfer function of slave 2 is lZjs, force signal F from master 1 is applied to slave 2, and speed signal sXe— Ts is returned from master 2 to master 1.
  • the communication delay is treated as a disturbance applied to the slave side, that is, a communication disturbance, and the disturbance is estimated using a disturbance estimation means (hereinafter referred to as a disturbance observer) via the network.
  • a disturbance observer this disturbance observer will be referred to as a communication disturbance observer.
  • the force signal F may be a torque signal ⁇
  • the speed signal sX may be an angular speed signal s ⁇ .
  • S is a Laplace operator.
  • a remote control system with communication delay can be regarded as a system having a dead time element that cannot be accurately measured due to communication delay.
  • the block diagram shown in Fig. 14 (a) is equivalently converted to the block diagram shown in Fig. 1 (a).
  • the influence of the dead time due to the communication delay can be regarded as the influence of disturbance (communication disturbance) in the acceleration dimension (force dimension).
  • the communication disturbance observer 4 estimates the communication disturbance F (1-e- Ts ) applied to the slave side from the force signal F applied to the slave and the speed sXe— Ts which is the response signal of the slave force. By estimating communication disturbance due to communication delay using the observer 4, a compensation value is generated in the same manner as the Smith method, and this dead time can be compensated for as shown in FIG. 1 (c). .
  • the communication disturbance (1--) of the acceleration dimension (force dimension) estimated by the communication disturbance observer 4 is applied to the compensation value generation means 6.
  • the compensation value generation means 6 applies the communication disturbance F (l-e - T s) to lZJ s (T inertia coefficient of the slave side (nominal value) is multiplied by), adds sX a (l-e- Ts) to determined Mel which is obtained from the slave 2 sXe- Ts.
  • sX that compensates for communication disturbance can be obtained.
  • communication disturbance is estimated using a communication disturbance observer, and communication delay is compensated, so that accurate estimation of the delay time by communication is not necessary, and communication means in which the communication delay fluctuates. Even in a system using the system, it is possible to control stably.
  • the communication disturbance observer 4 for example, the disturbance observer described in the paper 1 or Japanese Patent Application Laid-Open No. 2004-49523 can be used.
  • Figure 3 (a) shows a block diagram of the communication disturbance observer.
  • the communication disturbance observer 4 takes the force signal F applied to the slave and the speed signal sXe— Ts from the slave and considers it to be the cause of the communication disturbance (or influence) on the communication path 3.
  • the communication disturbance F (l—e— Ts ) is estimated.
  • J is the inertia coefficient (nominal value) on the slave side
  • g is the communication disturbance estimation.
  • the gain, g / (s + g), of the fixing means 4 is a Lonos filter.
  • Fig. 3 (a) shows the case where the first-order lag element is used as the low-pass filter
  • a higher-order low-pass filter with a second-order lag or higher may be used!
  • FIG. 2 shows that in FIG. 1 (c), a disturbance observer 5 for compensating for the disturbance F is provided.
  • the disturbance observer 5 estimates the disturbance F applied to the slave 2 by taking the force signal input to the slave and the velocity signal of the slave force.
  • J is the inertia coefficient (nominal value) on the slave side
  • g is the disturbance ob
  • the gain of server 5, g / (s + g), is a low-pass filter. Note that the low-pass filter and
  • the disturbance observer 5 estimates the disturbance F applied to the slave 2 and uses this as the slave 2
  • the disturbance in the band that cannot be compensated by the disturbance observer 5 appears in the communication disturbance estimated value by the communication disturbance observer.
  • the low-pass filter of the disturbance observer 5 is g /
  • the estimated value F by the communication disturbance observer 4 is as shown in the following equation (1).
  • the second term of the above equation (1) is the effect of the disturbance F applied to the slave 2 itself.
  • G (s) G (s) -G d net d net d net d for g (g) and g> g as Z (s + g)
  • G (s) Since the gain of G (s) should be as small as possible, it is desirable to set g to g, as is clear from Figs. 4 and 5. Especially, if g is g, G (s) Net d net d
  • the net should be as large as possible.
  • the disturbance F is output from the communication disturbance observer.
  • FIG. 6 is a diagram showing a configuration example when the above-described method of the present invention is applied to a master-slave remote control system.
  • 7 is a block diagram thereof.
  • FIGS. 6 and 7, 1 is the master side
  • 2 is the slave side
  • the master side and the slave side are connected via a communication path 3 with communication delay such as the Internet.
  • communication delay when transmitting a signal from the master 1 side to the slave 2 side is represented by e- Tls
  • e- T2s the communication delay when the signal is transmitted from the slave 2 side to the master 1 side. This communication delay varies from moment to moment.
  • the manipulators lb and 2b are provided on the master 1 side and the slave 2 side, respectively, and the manipulators lb and 2b are controlled by the control units la and 2a, respectively.
  • the manipulator lb on the master side When the manipulator lb on the master side is operated, the manipulator 2b on the slave side moves following it, and the operating force applied to the slave 2 side is transmitted to the master side as a tactile sensation.
  • manipulators lb and 2b are shown in FIG. 7 as transfer functions 1ZJS and lZjs, respectively, and the control units la and 2a are multiplied by Kp, Kv, Jn, and Kf [gain and inertia coefficient (nominal value) in FIG. [Calculation unit] and the like.
  • the master side and slave side manipulators lb and 2b are provided with sensors (not shown), and the master side and slave side manipulators la and 2a have angular velocities of 0, res , ⁇ 'res ,
  • the differential signal is represented by dots in the figure.
  • disturbance observer and reaction force estimation observer On the master 1 side and slave 2 side, disturbance observer and reaction force estimation observer (hereinafter referred to as “disturbance and reaction force estimation observer”) 5m, 5s are provided, and disturbance and reaction force estimation observer 5m, 5s
  • the external force torque (disturbance) ⁇ which is generated by the manipulator lb, 2b is estimated and added to the outputs of the control units la, 2a to compensate for the disturbance. Is done.
  • the external force torque estimated by the disturbance and reaction force estimation observers 5m and 5s is added and given to the control units la and 2a on the master side and the slave side.
  • the disturbance and reaction force estimation sub-servers 5m and 5s detect the disturbance and the external force torque. In this example, it is assumed that there is no disturbance other than the external force torque.
  • the model 8 that simulates the operation on the slave side, the communication disturbance observer 4, and the output of the communication disturbance observer 4 are used for communication.
  • a communication delay compensator 7 comprising compensation value generation means 6 for generating a disturbance compensation value.
  • the angular velocity signals ⁇ , res of the manipulator lb on the master side are the comparison unit m
  • a difference from the angular velocity signal 0 ′ fed back to Id and sent from the slave 2 side and compensated for the communication delay by the communication delay compensation unit 7 is given to the control unit la.
  • the angular velocity signal ⁇ 'res is transmitted to the slave side via the communication path 3, and m
  • disturbance and reaction force estimating observer 5m estimates the driving torque of the manipulator lb, the external torque ⁇ applied to the master side by the angular velocity signal theta 'res, mh
  • the estimated external force torque value ⁇ 'and the external force torque compensation value ⁇ are output.
  • the estimated external force torque ⁇ ”h mcmp h is sent to the slave 2 side via the communication path 3 and added to the estimated external force torque ⁇ ′ sent from the slave 2 side via the communication path 3. , Given to the control unit la.
  • Fig. 8 shows a block diagram of the disturbance and reaction force estimation observer 5m.
  • the configuration of the disturbance and reaction force estimation observer 5m is considered to have no disturbance other than the external force torque here, so basically the same as that shown in Fig. 3 (b).
  • the slave disturbance and reaction force estimation observer 5s have the same configuration.
  • the communication delay compensator 7 has a slave-side control system model 8 which is driven from the master-side angle signal 0 res and angular velocity signal e ′ res by driving the manipulator 2b on the slave 2 side mm.
  • the communication disturbance observer 4 is an estimated value of torque ⁇ applied to the slave 2 side manipulator ⁇
  • Ts Ts .
  • the angular velocity signal theta 'res sent slave force Te is added to the angle signal theta res, master ss
  • the difference from r es is input to the control unit la.
  • control unit la multiplies the position deviation and speed deviation output from the comparison units lc and Id by the position control gain Kp and the speed control gain ⁇ and adds them. Then, an estimated value ⁇ ′ of the external force torque sent to the slave side force in the addition result and the estimated external force torque env
  • the configuration of the control system on the slave 2 side is the same as that of the control system on the master side, and the angular velocity signals 0 and res of the manipulator 2b on the slave side are fed back to the comparison unit 2d, and s
  • the angular velocity signals ⁇ and res are transmitted to the master side via communication path 3.
  • the driving torque ⁇ applied to the manipulator 2b is the above disturbance and reaction force estimation.
  • disturbance and reaction force estimating observer 5s is Ma - based on Piyure over drive torque ⁇ and the angular velocity signal 6 applied to the motor 2b 'res Kuwawa the slave 2 side
  • the external force torque ⁇ is estimated and the external force torque estimated value ⁇ ′ and the external force torque compensation value ⁇ are output. To help.
  • the estimated external force torque ' is sent to the master 1 side via the communication path 3,
  • the configuration of the disturbance and reaction force estimation observer 5s is the same as that shown in FIG. 8, and the external force torque compensation value ⁇ is added to the driving torque of the manipulator 2b.
  • the angle signal ⁇ res is transmitted to the master side via the communication path 3.
  • control unit 2a multiplies the position deviation and speed deviation output from the comparison units 2c and 2d by the position control gain Kp and the speed control gain ⁇ and adds them. Then, the estimated value ⁇ ′ of the external force torque sent from the master side force to the addition result and the estimated value ⁇ of the external force torque
  • the slave side control system model 8 is provided on the master side, but the above model 8 is not essential and the slave side drive torque or the equivalent drive torque is not shown. The value may be obtained by other means.
  • the angular velocity ⁇ , res and angle ⁇ res of the manipulator 2b on the slave 2 side are the above master 1
  • the disturbance and reaction force estimation observer 5s estimates the external force and estimates the external force torque ⁇
  • This external force torque estimated value ⁇ ′ is sent to the master 1 side via the communication path 3.
  • the communication delay that occurs in the communication path 3 is compensated by the communication delay compensation unit 7 as described in FIGS. 1 and 2, and the control delay on the master 1 side and the slave 2 side varies. Is also controlled stably.
  • FIG. 9 is a diagram showing a position response by the computer simulation of the conventional example and the present invention.
  • FIG. 9 (a) is a position response when the communication delay time compensation of the present invention is not performed, and FIG. 9 (b). Shows the position response when the communication delay is compensated according to the present invention.
  • the delay time is constant
  • the horizontal axis is time (s)
  • the vertical axis is position (m).
  • FIG. 10 and FIG. 11 are diagrams showing the position response by computer simulation when the delay time compensation is performed by the Smith method and when the communication delay time is compensated by the present invention. Indicates the case where the round-trip delay time T of communication fluctuates in the range of 220 ms to 460 ms.
  • the horizontal axis is time (s) and the vertical axis is position (m).
  • the estimated delay time is shorter than the actual delay time.
  • the estimated delay time is larger than the actual delay time.
  • FIG. 11 is a position response when the communication delay time is compensated according to the present invention.
  • FIG. 11 when the communication delay time is compensated by the Smith method, if the estimated delay time differs from the actual delay time, the response The bad slave side cannot follow the movement of the master side stably.
  • the slave side By performing the communication delay compensation according to the present invention without requiring an estimated value in between, the slave side can be made to follow the movement of the master side stably.
  • FIG. 12 is a diagram showing an angle response and a force response when communication delay compensation is performed according to the present invention.
  • Fig. 12 (a) shows the angular response when the slave side touches the object when the master side is operated
  • Fig. 12 (b) shows the force response in that case. Indicates when the enclosed partial force slave side contacts the object.
  • the above angle response and force response are the results of experiments conducted between Japan and other countries using the Internet as a communication path.

Landscapes

  • Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Manipulator (AREA)
  • Telephonic Communication Services (AREA)
  • Feedback Control In General (AREA)

Abstract

 マスタ1とスレーブ2はインターネットなどの通信遅延を有する通信路で接続されている。この通信遅延は無駄時間要素e-Ts で表すことができ、この無駄時間による影響はスレーブ側に加わる加速度次元(力次元)の外乱による影響であると考えることできる。通信外乱オブザーバ4は力信号Fと速度sXe-Ts から、スレーブ側に加わる通信外乱F(1-e-Ts )を推定する。この通信外乱に1/Jn s(Jn はスレーブ側の慣性係数(ノミナル値))を乗じてsX(1-e-Ts )を求めこれをsXe-Ts に加算する。これにより通信遅延を補償したsXを得ることができ無駄時間により生ずる影響を補償できる。また、外乱オブザーバ5を設けることによりスレーブ側に加わる外乱Fdis を補償することができる。

Description

明 細 書
通信遅延を有する通信路を介して信号を送受信する遠隔制御システム 技術分野
[0001] 本発明は、通信遅延を有する通信路を介して信号を送受信する遠隔制御システム に関し、特に、インターネットのように、通信遅延が変動し、通信遅延 (無駄時間)が 正確に計測できな 、ネットワークを通信手段として用いた遠隔操作システムに適用す るに好適な遠隔制御システムに関するものである。
背景技術
[0002] 近年のインターネットの急速な普及により、情報通信ネットワークが一般的なものと して浸透している。このような状況において、従来は宇宙空間や原子力プラントなど、 V、わゆる極限環境にぉ 、て用いられることが多力つた遠隔制御を、インターネットを 介して実現することができれば、遠隔制御がより一般的なものとして認識され、普及し ていくであろうと考えられる。
しかし、インターネットは、通信遅延が大きぐかつその値が変動してしまうため、リア ルタイム性を重視する遠隔制御の通信経路として用いることが非常に困難である。 従来から、遠隔制御において上記通信遅延の変動に対処するための技術が種々 提案されている。
例えば、特許文献 1には、ロボットの配置された遠隔地の移動予定データを元に、 通信時間遅れを予測し、コマンドの生成のタイミングを通信時間遅れの変動に合わ せて変化させるようにしたロボットの遠隔操作装置が記載されて 、る。
また、特許文献 2には、通信の時間遅れを力感覚に変換し、遠隔地にある被制御 部を遠隔操作するようにした遠隔操作方法及び装置が記載されて ヽる。
[0003] 上記通信遅延は、制御系における無駄時間と捉えることができ、制御系に無駄時 間が含まれると、系に位相遅れが生じ、制御系を不安定にする要因となる。
従来から、無駄時間要素を含む制御系の不安定ィ匕を補償する方法として、スミス法 が用いられてきた。
図 13にスミス法を導入した制御系のブロック図を示す。同図において、 C (s)は制 御装置、 G (s)は制御対象の伝達関数を示し、 e"Tsは無駄時間要素である(sはラプラ ス演算子である)。このような無駄時間要素を有する制御系に、同図に示すようにスミ ス法を用いた補償要素(Smith Predictor) [G (s) (1— e— Ts ) ]を追加することで、シス テムを安定ィ匕することができる。
[0004] 通信遅延が存在するバイラテラルシステム等の遠隔制御装置においても、通信遅 延が一定であったり、通信遅延が予測できる場合には、上記スミス法を適用すること で、システムの安定ィ匕を図ることができる。
図 14 (a)に通信遅延のあるバイラテラルシステムのブロック図を示し、図 14 (b)に、 同図(a)のバイラテラルシステムにスミス法を適用した場合のブロック図を示す。なお 、図 14は、バイラテラルシステムの概念構成を示している。
図 14において、 1はマスタ、 2はスレーブであり、マスタ 1とスレーブ 2は、インターネ ットなどの通信遅延を有する通信路 3で接続されている。ここでは、スレーブ 2の伝達 関数は lZjsであり、マスタ 1からの力信号 Fがスレーブ 2に加わり、スレーブ 2から速 度信号 sXe— Tsがマスタ 1に返される。
上記通信遅延は無駄時間要素 e— Tls, e"T2s, e— Tsとして示されており、 T=T1 +T2で ある。
図 14 (a)に示すシステムの通信遅延 Tl, Τ2の値がわかっている場合には、前記 図 13で説明したのと同様に、図 14 (a)に示すシステムに図 14 (b)に示すようにスミス 法を用いた補償要素を導入することで、通信遅延を補償した応答 sXを得ることができ る。
特許文献 1:特開 2001— 25986号公報
特許文献 2 :特開 2004— 82293号公報
発明の開示
発明が解決しょうとする課題
[0005] 上述したスミス法は、遠隔操作システムにお 、て通信遅延 (無駄時間)によって引き 起こされるシステムの不安定ィ匕を補償する方法として広く用いられてきた。しかし、スミ ス法は遠隔操作システムの通信遅延 (無駄時間)の正確な値が計測できな 、場合に は性能が悪ィ匕してしまう。このような性質から、インターネットのように、通信遅延 (無 駄時間)の値が時々刻々変動し、その値が正確に計測できな 、ネットワークを通信手 段として適用した遠隔操作システムにお 、ては満足な性能が得られな 、。
本発明は、正確な値が計測できな 、無駄時間を有する制御システムにお 、ても、 無駄時間により生ずる不安定性を補償することができ、また、通信遅延の大きな通信 手段を用いたバイラテラル制御に適用することで、遠隔地からの触覚の伝達をするこ とが可能な遠隔制御装置を提供することを目的とする。
課題を解決するための手段
上記課題を本発明にお 、ては次のように解決する。
(1)通信の時間遅延がある通信路を介して、遠隔地にある制御対象を制御する遠隔 制御システムにおいて、通信外乱を推定する通信外乱推定手段を設け、該通信外 乱推定手段により推定された通信外乱 (通信外乱は X· (1— e— ts ) [X:制御信号、 t: 遅延時間]として表すことができる)に基づき、補償値生成手段により通信遅延を補償 する補償値を生成し、遠隔制御システムにおける通信遅延を補償する。
通信外乱推定手段は、上記通信路における通信遅延を遠隔地の制御対象に加わ る加速度次元 (力次元)の外乱 (通信外乱)であるとして、上記通信路を介して送信す る制御信号もしくは制御信号に相当する信号と、遠隔地にある制御対象から送信さ れる応答信号もしくは応答信号に相当する信号に基づき通信外乱を推定する。
(2)上記(1)において、上記遠隔地にある制御対象に加わる外乱を推定する外乱推 定手段を設け、この外乱推定手段により推定された外乱に基づき、遠隔地にある制 御対象に加わる外乱を補償する。
(3)上記(2)において、遠隔地にある制御対象に加わる外乱が、上記通信外乱推定 手段の推定結果へ及ぼす影響が少なくなるように、上記通信外乱推定手段のゲイン と、上記外乱推定手段のゲインを設定する。
(4)マスタ側のマニピュレータと、スレーブ側のマニピュレータが通信遅延を有する通 信路を介して接続され、マスタ側のマニピュレータに追従させてスレーブ側のマ-ピ ユレータを駆動し、スレーブ側に加わる操作力をマスタ側に伝達する遠隔制御システ ムにおいて、マスタ側のマニピュレータを制御する第 1の制御部と、スレーブ側のマ- ピユレータを制御する第 2の制御部と、マスタ側のマニピュレータの出力に基づきスレ ーブ側のマニピュレータの動作を模擬し、この模擬信号とスレーブ側のマ-ピュレー タカも通信路を介して送られるスレーブ側マニピュレータの出力とから通信外乱を推 定する通信外乱推定手段と、上記通信外乱推定手段により推定された通信外乱に 基づき、通信遅延を補償する補償値を生成する補償値生成手段とを設ける。
そして、マスタ側のマニピュレータの出力を上記通信路を介してスレーブ側に送り、 スレーブ側のマニピュレータの出力と上記通信路を介して送られたマスタ側のマ-ピ ユレータの出力を第 2の制御部に入力し、スレーブ側のマニピュレータを制御するとと もに、通信路を介して送られるスレーブ側マニピュレータ出力を上記補償値生成手 段の出力により補償し、該補償されたスレーブ側マニピュレータ出力と、マスタ側のマ -ピユレータの出力を上記第 1の制御部に入力し、マスタ側のマニピュレータを制御 する。
本発明においては、通信外乱推定手段が、通信遅延 (無駄時間)による影響を、シ ステムに加わる加速度次元 (力次元)の外乱 (通信外乱)による影響とみなして、この 通信外乱を観測し補償して 、るので、通信遅延 (無駄時間)の予測値を必要としな!ヽ 。このため、インターネットのように、通信遅延 (無駄時間)が正確に計測できないネッ トワークを通信手段として用いた遠隔操作システムであっても、安定に制御することが できる。また、一般的な無駄時間のある制御システムに適用しても、同様の性能を発 揮することができる。
発明の効果
本発明においては、以下の効果を得ることができる。
(1)通信外乱推定手段により通信外乱を推定し、遠隔制御システムにおける通信遅 延による無駄時間を補償して 、るので、インターネットなどの遅延時間が正確に計測 できない通信手段を用いたシステムにおいても、安定に制御することが可能となる。 また、本発明をバイラテラル制御に適用することで、遠隔地からの触覚の伝達をす ることが可能となる。
(2)遠隔地にある制御対象に加わる外乱を推定する外乱推定手段を設け、この外乱 推定手段により推定された外乱に基づき、遠隔地にある制御対象に加わる外乱を補 償することにより、外乱による影響を受けることなく遠隔地の制御対象を操作すること ができる。
(3)上記通信外乱を推定する通信外乱推定手段と、制御対象に加わる外乱を推定 する外乱推定手段のゲインを適切に設定することにより、上記遠隔地にある制御対 象に加わる外乱が、上記通信外乱推定手段の推定結果へ及ぼす影響を少なくする ことができ、上記通信外乱を正確に推定して補償することが可能となる。
(4)本発明をマスタスレーブ遠隔制御システムに適用することにより、遅延時間の推 定値を必要とせず、スレーブ側をマスタ側の動きに安定に追従させることが可能とな る。
図面の簡単な説明
[0008] [図 1]本発明の概念を説明するブロック図である。
[図 2]図 1においてスレーブ側に外乱オブザーバを設けた場合の構成例を示す図で ある。
[図 3]通信外乱オブザーバおよび外乱オブザーバのブロック図である。
[図 4]G (s)のゲイン線図(g <g )である。
net d
[図 5]G (s)のゲイン線図(g >g )である。
net d
[図 6]本発明の手法を遠隔制御システムに適用した場合の構成例を示す図である。
[図 7]図 6に示す遠隔制御システムのブロック図である。
[図 8]外乱および反作用力推定オブザーバのブロック図である。
[図 9]従来例と本願発明の位置応答を示す図である。
[図 10]スミス法により遅延時間補償を行なった場合の位置応答を示す図である。
[図 11]本発明により通信遅延時間の補償を行なった場合の位置応答を示す図である
[図 12]本発明により通信遅延補償を行なった場合の角度応答と、力応答を示す図で ある。
[図 13]スミス法を導入した制御系のブロック図である。
[図 14]ノイラテラルシステムにスミス法を適用した場合のブロック図である。
符号の説明
[0009] 1 マスタ la 制御部
lb マニピュレータ
2 スレーブ
2a 制御部
2b マニピュレータ
3 通信路
4 通信外乱オブザーバ
5 外乱オブザーバ
5m, 5s 外乱および反作用力推定オブザーバ
6 補償値生成手段
7 通信遅延補償部
8 スレーブ制御系のモデル
発明を実施するための最良の形態
[0010] 図 1は本発明の概念を説明するブロック図であり、まず、図 1により本発明の概念を 説明する。図 1は、本発明をマスタと、遠隔地に配置されたスレーブカゝら構成されるバ イラテラル制御に適用した場合の概念構成を示して ヽる。
図 1において、前記図 14と同様、 1はマスタ、 2はスレーブであり、マスタ 1とスレーブ 2は、インターネットなどの時々刻々変動する通信遅延を有する通信路で接続されて いる。スレーブ 2の伝達関数は lZjsであり、マスタ 1からの力信号 Fがスレーブ 2に加 わり、スレーブ 2から速度信号 sXe— Tsがマスタ 1に返される。
本発明においては、上記通信遅延を、スレーブ側に加わる外乱、すなわち通信外 乱として扱い、この外乱をネットワークを介した外乱推定手段 (以下、外乱オブザーバ という)を用いて推定する。以後、この外乱オブザーバのことを通信外乱オブザーバと 呼ぶ。なお、上記力信号 Fはトルク信号 τであってもよいし、また、速度信号 sXは、角 速度信号 s Θであってもよい。なお、 "s"はラプラス演算子である。
[0011] 通信遅延のある遠隔制御システムは、前記図 14 (a)に示したように、通信遅延によ り生ずる正確に値が計測できない無駄時間要素を備えたシステムとして捉えることが できる。前記図 14 (a)に示したブロック図は、図 1 (a)に示すブロック図に等価変換す ることができ、上記通信遅延による無駄時間の影響は、加速度次元 (力次元)の外乱 (通信外乱)による影響であるとみなすことできる。
上述したように、通信遅延による無駄時間の影響を加速度次元の外乱 F (l— e—Ts ) による影響であるとみなせば、図 1 (b)に示すように、上記通信外乱を通信外乱ォブ ザーバ 4を用いて推定することができる。
通信外乱オブザーバ 4は、スレーブに加わる力信号 Fと、スレーブ力 の応答信号 である速度 sXe— Tsから、スレーブ側に加わる通信外乱 F (1—e— Ts )を推定するもので あり、通信外乱オブザーバ 4を用いて、通信遅延による通信外乱を推定することで、 前記スミス法と同様に補償値を生成し、図 1 (c)に示すように、この無駄時間を補償す ることがでさる。
[0012] すなわち、通信外乱オブザーバ 4により推定した加速度次元 (力次元)の通信外乱 (1ー„を補償値生成手段6に与ぇる。補償値生成手段 6は、通信外乱 F (l— e— Ts )に lZJ s (Tはスレーブ側の慣性係数 (ノミナル値))を乗じて、 sX(l— e— Ts )を求 める。これをスレーブ 2から得られる sXe— Tsに加算することで、通信外乱を補償した sX を得ることができる。
図 1 (c)に示すように、通信外乱オブザーバを用いて通信外乱を推定し、通信遅延 を補償することで、通信による遅延時間の正確な推定は必要がなくなり、通信遅延が 変動する通信手段を用いたシステムにおいても、安定に制御することが可能となる。
[0013] 上記通信外乱オブザーバ 4としては、例えば、論文 1や、特開 2004— 49523号公 報に記載される外乱オブザーバを用いることができる。
<論文 1 >西川直榭,藤本康孝,村上俊之,大西公平:〃環境変動を考慮した 3次 元 2足歩行ロボットの可変コンプライアンス制御〃電気学会産業応用部門誌, Vol.119 -D,No. l2, pp.1507— 1513, (1999)
図 3 (a)に上記通信外乱オブザーバのブロック図を示す。同図に示すように、通信 外乱オブザーバ 4は、スレーブに加わる力信号 Fと、スレーブからの応答信号である 速度 sXe— Tsを取り込み通信路 3の通信外乱 (もしくは影響)の原因であるとみなした通 信外乱 F (l— e— Ts )を推定する。
なお、図 3にお 、て、 J はスレーブ側の慣性係数 (ノミナル値)、 g は通信外乱推
n net 定手段 4のゲイン、 g / (s+g )はローノ スフィルタである。
net net
なお、図 3 (a)では、ローノ スフィルタとして一次遅れ要素を用いる場合について示 したが、 2次遅れ以上の高次のローパスフィルタを用いてもよ!、。
[0014] ところで、図 1では考慮していないが、実際にはスレーブ側の制御対象に加わる外 乱も存在し、この外乱も補償することが望ましい。
図 2は、前記図 1 (c)において、上記外乱 F を補償する外乱オブザーバ 5を設けた
dis
ブロック図である。
上記外乱オブザーバ 5としては、図 3 (b)のブロック図に示すように、上記通信外乱 ォブザーノ と同様の構成のオブザーバを用いることができる。
図 3 (b)に示すように、外乱オブザーバ 5は、スレーブに入力される力信号と、スレ ーブ力 の速度信号を取り込みスレーブ 2に加わる外乱 F を推定する。
dis
なお、図 3 (b)において、 J はスレーブ側の慣性係数 (ノミナル値)、 g は外乱ォブ
n d
ザーバ 5のゲイン、 g / (s+g )はローパスフィルタである。なお、ローパスフィルタと
d α
して 2次遅れ以上の高次のローパスフィルタを用いてもよ!、。
上記外乱オブザーバ 5でスレーブ 2にカ卩わる外乱 F を推定し、これをスレーブ 2の
ais
入力側に加算することで、スレーブ 2そのものに加わる外乱 F を補償することができ
dis
る。
[0015] ここで、図 2に示すようにスレーブ側に加わる外乱を推定する外乱オブザーバ 5を設 けても、この外乱オブザーバゲインの帯域までの外乱は補償できる力 それ以上の帯 域の外乱にっ 、ては補償できな 、。
この外乱オブザーバ 5で補償できない帯域の外乱は、通信外乱オブザーバによる 通信外乱推定値に現れてくる。
すなわち、上記外乱オブザーバ 5のローパスフィルタを、一次遅れ要素である g /
d
(s + g )とすると、 [sZ (s + g ) ] X F の外乱が補償できない外乱として、通信外乱 d a dis
ォブザーノ 4の出力に現れてくる。
このことを考慮すると、通信外乱オブザーバ 4による推定値 F は次の(1)式のよう
disnet
になる。
[0016] [数 1] F disne t F{1- e~Ts)
s +gn
Figure imgf000011_0001
Figure imgf000011_0002
ここで、上記(1)式の 2項は、スレーブ 2そのものに加わる外乱 F による影響である dis
から、この項はできるだけ小さいことが望ましい。つまり、上記(2)式を全帯域で 0にし たいということになる。
そこで、上記通信外乱オブザーバ 4のゲイン g と外乱オブザーバ 5のゲイン gをど net d のような値にすればょ 、のかを検証する。
上記(2)式の g /(s + g )を。 (s)=g /(s + g )、sZ(s + g )を G (s)=s net net net net net d d
Z(s+g )として、 g く gとした場合と、 g >gとした場合の、 G(s)=G (s)-G d net d net d net d
(s)のゲイン線図を描くと、図 4、図 5に示すようになる。なお、図 4、図 5の横軸は ω、 縦軸はゲイン (dB)である。
上記 G(s)のゲインはできるだけ小さい方がよいから、図 4、図 5から明らかなように、 g く gとするのが望ましぐ特に、 g くく gとすれば、 G(s)のゲインをより小さくす net d net d
ることがでさる。
しかし、上記 gは、サンプリング周波数、ハードウェアの制約からそれほど大きくす d
ることができない。また、通信外乱 F(l— e— Ts)をできるだけ正確に推定する必要があ ることから、 g
netはできるだけ大きくするべきである。
これらの条件を考慮すると、現実的な設計においては、 G(s)のゲインを 0にすること はできないものの、 g をできるだけ大きく設定し g =g とするのが望ましいと考えら net net d
れる。
上記のようにゲイン g , gを設定することで、外乱 F が通信外乱オブザーバの出
net d dis
力に影響するのを小さくすることができ、通信外乱を正しく推定することが可能となる 図 6は、本発明の上記手法をマスタースレーブ遠隔制御システムに適用した場合の 構成例を示す図、図 7はそのブロック図である。
図 6、図 7において、 1はマスタ側、 2はスレーブ側であり、マスタ側とスレーブ側は、 インターネットなどの通信遅延のある通信路 3を介して接続されている。図 7では、マ スタ 1側からスレーブ 2側へ信号を伝送する場合の通信遅延を e—Tlsで表し、スレーブ 2 側からマスタ 1側に信号伝送する場合の通信遅延を e—T2sで表しており、この通信遅延 は時々刻々変動する。
図 6に示すようにマスタ 1側、スレーブ 2側には、それぞれマニピュレータ lb、 2bが 設けられ、マニピュレータ lb、 2bは、それぞれ制御部 la, 2aにより制御される。
マスタ側のマニピュレータ lbを操作すると、それに応じてスレーブ側のマ-ピュレー タ 2bが追従して動き、また、スレーブ 2側に加わる操作力がマスタ側へ触覚として伝 達される。
上記マニピュレータ lb、 2bは、図 7ではそれぞれ伝達関数 1ZJS、 lZjsとして示さ れており、上記制御部 la, 2aは図 7における Kp, Kv, Jn, Kf [ゲイン及び慣性係数( ノミナル値)を乗ずる演算器]等を一つにまとめたものである。
上記マスタ側およびスレーブ側のマニピュレータ lb、 2bには、センサ(図示せず)が 設けられ、マスタ側、スレーブ側のマニピュレータ la, 2aの角速度 0,res , Θ ' res
m s 角度 0 res , 0 res が上記センサにより検出される。なお、微分信号を図ではドットで
m s
示すが、本文中では、ダッシュ「'」で示す。
また、マスタ 1側、スレーブ 2側には、外乱オブザーバおよび反作用力推定ォブザ ーバ(以下「外乱および反作用力推定ォブサーバ」という) 5m, 5sが設けられ、外乱 および反作用力推定オブザーバ 5m, 5sによりマニピュレータ lb, 2bにカ卩わる外力ト ルク (外乱) τ , て が推定され、制御部 la, 2aの出力に加算されて、外乱が補償 される。また、外乱および反作用力推定オブザーバ 5m, 5sにより推定された外力ト ルクは、加算されて、マスタ側およびスレーブ側の制御部 la, 2aに与えられる。なお 、外乱および反作用力推定ォブサーバ 5m, 5sは外乱と外力トルクを検出しており、 この例では、外力トルク以外の外乱はな 、とみなして 、る。
さらに、マスタ 1側には、上記マニピュレータ lbを制御する制御系に加え、スレーブ 側の動作を模擬するモデル 8と、前記した通信外乱オブザーバ 4と、この通信外乱ォ ブザーバ 4の出力に基づき、通信外乱の補償値を生成する補償値生成手段 6から構 成される通信遅延補償部 7が設けられて ヽる。
[0019] 図 6、図 7において、マスタ側のマニピュレータ lbの角速度信号 Θ,res は、比較部 m
Idにフィードバックされ、スレーブ 2側から送られてくる通信遅延補償部 7により通信 遅延が補償された角速度信号 0 ' との差が、上記制御部 laに与えられる。
P
また、この角速度信号 Θ 'res は通信路 3を介してスレーブ側に送信されるとともに、 m
外乱および反作用力推定オブザーバ 5mに与えられる。さらに、上記通信遅延補償 部 7のモデル 8に入力される。
一方、マニピュレータ lbの駆動トルク τ が上記外乱および反作用力推定ォブザ m
ーバ 5mに与えられ、外乱および反作用力推定オブザーバ 5mは、マニピュレータ lb の駆動トルクと、角速度信号 Θ 'res によりマスタ側に加わる外力トルク τ を推定し、 m h
外力トルク推定値 τ 'と、外力トルク補償値 τ を出力する。外力トルク推定値 τ " h mcmp h は、通信路 3を介してスレーブ 2側に送られるとともに、スレーブ 2側から通信路 3を介 して送られてくる外力トルクの推定値 τ 'と加算され、制御部 laに与えられる。
env
図 8に上記外乱および反作用力推定オブザーバ 5mのブロック図を示す。同図に 示すように、外乱および反作用力推定オブザーバ 5mの構成は、ここでは外力トルク 以外の外乱はないものと考えているので、基本的には前記図 3 (b)に示したものと同 じであり、スレーブ側の外乱および反作用力推定オブザーバ 5sも同様の構成を有し ている。
[0020] 図 6、図 7に戻り、マスタ側のマニピュレータ lbの角度信号 Θ res は、比較部 lcにフ m
イードバックされ、スレーブ 2側力 送られてくる通信遅延補償部 7により通信遅延が 補償された角度信号 Θ との差が、制御部 laに入力される。また、この角度信号 Θ res
P は通信路 3を介してスレーブ側に送信されるとともに、上記通信遅延補償部 7のモ m
デル 8に入力される。
通信遅延補償部 7は、スレーブ側の制御系のモデル 8を有し、モデル 8は、マスタ側 の角度信号 0 res 、角速度信号 e ' res から、スレーブ 2側のマニピュレータ 2bの駆動 m m
トルク τ を推定する。
S
[0021] 通信外乱オブザーバ 4は、スレーブ 2側のマニピュレータに加わるトルクの推定値 τ
" (前記図 1、図 2における力信号 Fに相当)とスレーブ 2側から通信路 3を介して送ら s
れてくる角速度信号 Θ 'res (前記図 1、図 2の速度信号 sXe— Tsに相当)に基づき、通
S
信外乱 τ (l -e"Ts )を推定する。通信外乱オブザーバ 4により推定された τ (1 e—
S S
Ts )は、補償値生成手段 6に与えられ、前記図 1、図 2で示したのと同様に、通信遅延 を補償する補償値 θ ' 、 Θ が生成される。この補償値 θ ' 、 Θ は、通信路 3を介し d d d d
てスレーブ側力 送られてくる角速度信号 θ 'res 、角度信号 Θ res と加算され、マスタ s s
側の比較部 Id, lcに与えられ、前記したように前記角速度信号 Θ 'res 、角度信号 Θ m
res との差が制御部 laに入力される。
m
制御部 laでは、図 7に示すように上記比較部 lc, Idが出力する位置偏差、速度偏 差に位置制御ゲイン Kp、速度制御ゲイン Κνを乗じて加算する。そして、その加算結 果にスレーブ側力 送られてくる外力トルクの推定値 τ 'と前記外力トルク推定値 env
て "の和にゲイン Kfを乗じたものを加算し、慣性係数 (ノミナル値) Jnを乗じて出力す h
る。
[0022] スレーブ 2側の制御系の構成は、上記マスタ側の制御系の構成と同様であり、スレ ーブ側のマニピュレータ 2bの角速度信号 0,res は、比較部 2dにフィードバックされ、 s
マスタ 1側から通信路 3を介して送られてくる角速度信号 Θ ' res との差が、上記制御 m
部 2aに入力される。また、この角速度信号 Θ , res は通信路 3を介してマスタ側に送信 s
されるとともに、外乱および反作用力推定オブザーバ 5sに与えられる。
一方、マニピュレータ 2bに与えられる駆動トルク τ が上記外乱および反作用力推
S
定オブザーバ 5sに与えられ、外乱および反作用力推定オブザーバ 5sは、マ-ピユレ ータ 2bに与えられる駆動トルク τ と角速度信号 6 ' res に基づきスレーブ 2側に加わ
S S
る外力トルク τ を推定し、外力トルク推定値 τ 'と、外力トルク補償値 τ を出 力する。外力トルク推定値て 'は、通信路 3を介してマスタ 1側に送られるとともに、
env
マスタ 1側から通信路 3を介して送られてくる外力トルクの推定値 τ 'と加算され、制
h
御部 2aに入力される。
上記外乱および反作用力推定オブザーバ 5sの構成は、前記図 8に示したものと同 様であり、上記外力トルク補償値 τ をマニピュレータ 2bの駆動トルクに加算するこ
scmp
とで外力トルク τ 'を補償する。
env
[0023] スレーブ 2側のマニピュレータ 2bの角度信号 0 res は、比較部 2cにフィードバックさ
s
れ、マスタ 1側力 送られてくる角度信号 Θ res との差が、制御部 2aに入力される。ま
m
た、この角度信号 Θ res は通信路 3を介してマスタ側に送信される。
s
制御部 2aでは、図 7に示すように上記比較部 2c, 2dが出力する位置偏差、速度偏 差に位置制御ゲイン Kp、速度制御ゲイン Κνを乗じて加算する。そして、その加算結 果にマスタ側力ら送られてくる外力トルクの推定値 τ 'と前記外力トルクの推定値 τ
h e
"の和にゲイン Kfを乗じたものを加算し、慣性係数 (ノミナル値) Jnを乗じて出力す nv
る。
なお、図 6、図 7の例では、マスタ側にスレーブ側制御系のモデル 8を設けているが 、上記モデル 8は必須のものではなぐ上記スレーブ側の駆動トルクもしくはそれに相 当する駆動トルクの値をその他の手段で得てもよい。
[0024] 図 6、図 7において、マスタ 1側のマニピュレータ lbを操作すると、その角速度信号
Θ , res 、角度信号 0 res が通信路 3を介してスレーブ 2側に送られ、スレーブ側の制 m m
御系は、スレーブ 2側のマニピュレータ 2bの角速度 Θ,res 、角度 Θ res が上記マスタ 1
s s
側のマニピュレータ lbの角速度信号 Θ 'res 、角度信号 e res に追従するように制御
m m
する。
また、スレーブ 2側のマニピュレータ 2bが物体などに接触し外力が作用すると、外 乱および反作用力推定オブザーバ 5sは、この外力を推定し、外力トルク推定値 τ
env
'として出力する。この外力トルク推定値 τ 'は、通信路 3を介してマスタ 1側に送ら
env
れる。
マスタ 1側では、上記外力トルク推定値 τ 'と、外乱および反作用力推定ォブザ
env
ーバ 5mで推定されたマスタ側のマニピュレータ lbに加わる外力トルク推定値 τ 'と 加算して、制御部 laに与える。このため、マスタ側のマニピュレータ lbには、この外 力が作用し、マスタ側のマニピュレータ lbの操作者は、上記スレーブ側のマ-ピユレ ータ 2bに作用した力を触覚として感じることができる。
一方、通信路 3で生ずる通信遅延は、前記図 1、図 2で説明したように、通信遅延補 償部 7で補償され、マスタ 1側、スレーブ 2側の制御系は通信遅延が変動しても安定 に制御される。
[0025] 図 9は従来例と本願発明の計算機シミュレーションによる位置応答を示す図であり、 図 9 (a)は、本発明の通信遅延時間補償を行なわない場合の位置応答、図 9 (b)は、 本発明により通信遅延を補償した場合の位置応答を示す。なお、この例は遅延時間 が一定の場合を示しており、横軸は時間(s)、縦軸は位置 (m)である。
図 9 (a)に示すように、遅延時間補償を行なわない場合には、マスタ側の動きにスレ 一ブ側は追従できず、不安定ィ匕しているのに対し、本発明により通信遅延時間を補 償することにより、図 9 (b)に示すようにスレーブ側をマスタ側の動きに正確に追従さ せることができる。
[0026] 図 10、図 11は、前記スミス法による遅延時間補償を行なった場合と、本発明により 通信遅延時間の補償を行なった場合の計算機シミュレーションによる位置応答を示 す図であり、この例は、通信の往復遅延時間 Tが 220ms〜460msの範囲で変動す る場合を示しており、横軸は時間(s)、縦軸は位置 (m)である。
図 10 (a)は、スミス法により通信遅延時間の補償を行なった場合の位置応答であり 、スミス法の中で必要となる遅延時間の推定値を T= 220msにした場合を示して 、る 。この例は、遅延時間の推定値が実際の遅延時間より短い場合である。
図 10 (b)は、スミス法により通信遅延時間の補償を行なった場合の位置応答であり 、スミス法の中で必要となる遅延時間の推定値を T=460msにした場合を示して 、る 。この例は、遅延時間の推定値が実際の遅延時間より大きい場合である。
図 11は、本発明により通信遅延時間を補償した場合の位置応答である。 図 10 (a)、図 10 (b)、図 11を比較すると明らかなように、スミス法により通信遅延時 間を補償した場合、遅延時間の推定値が実際の遅延時間と異なると、応答が悪ぐス レーブ側をマスタ側の動きに安定に追従させることができないが、本発明では遅延時 間の推定値を必要とせず、本発明の通信遅延補償を行なうことにより、スレーブ側を マスタ側の動きに安定に追従させることができる。
図 12は、本発明により通信遅延補償を行なった場合の角度応答と、力応答を示す 図である。図 12 (a)は、マスタ側を操作したとき、スレーブ側が物体に接触した場合 の角度応答を示しており、また、図 12 (b)はその場合の力応答を示し、同図の点線 で囲んだ部分力スレーブ側が物体に接触したときを示す。上記角度応答と力応答は 、実際に日本と他国間で、インターネットを通信経路として用いて行った実験結果で ある。
同図(a)に示すように、スレーブ側が物体に接触したとき、マスタ側には若干行き過 ぎが生じているが、同図(b)に示すように、スレーブ側に物体との接触力が加わった とき、マスタ側でその接触力が再現されており、正確な力の伝達が実現されているこ とがわかる。

Claims

請求の範囲
[1] 通信の時間遅延がある通信路を介して、遠隔地にある制御対象を制御する遠隔制 御システムであって、
上記通信路における通信外乱を、上記通信路を介して送信する制御信号もしくは 制御信号に相当する信号と、遠隔地にある制御対象から送信される応答信号もしく は応答信号に相当する信号に基づき推定する通信外乱推定手段と、
上記通信外乱推定手段により推定された通信外乱に基づき、通信遅延を補償する 補償値を生成する補償値生成手段とを備え、
上記補償値生成手段により生成された補償値により上記遠隔制御システムにおけ る通信遅延を補償する
ことを特徴とする遠隔制御システム。
[2] 上記遠隔地にある制御対象に加わる外乱を推定する第 2の外乱推定手段を備え、 該第 2の外乱推定手段により推定された外乱に基づき、遠隔地にある制御対象に 加わる外乱を補償する
ことを特徴とする請求項 1記載の遠隔制御システム。
[3] 上記遠隔地にある制御対象に加わる外乱が、上記通信外乱推定手段の推定結果へ 及ぼす影響が少なくなるように、上記通信外乱推定手段のゲインと、上記外乱推定 手段のゲインを設定した
ことを特徴とする請求項 2記載の遠隔制御システム。
[4] マスタ側のマニピュレータと、スレーブ側のマニピュレータが通信遅延を有する通信 路を介して接続され、マスタ側のマニピュレータに追従させてスレーブ側のマ-ピュ レータを駆動し、スレーブ側に加わる操作力をマスタ側に伝達する遠隔制御システム であって、
マスタ側のマニピュレータを制御する第 1の制御部と、スレーブ側のマニピュレータ を制御する第 2の制御部と、
マスタ側のマニピュレータの出力に基づきスレーブ側のマニピュレータの動作を模 擬し、この模擬信号とスレーブ側のマニピュレータ力も通信路を介して送られるスレー ブ側マニピュレータの出力とから通信外乱を推定する通信外乱推定手段と、 上記通信外乱推定手段により推定された通信外乱に基づき、通信遅延を補償する 補償値を生成する補償値生成手段とを備え、
マスタ側のマニピュレータの出力を上記通信路を介してスレーブ側に送り、スレー ブ側のマニピュレータの出力と上記通信路を介して送られたマスタ側のマ-ピュレー タの出力を第 2の制御部に入力し、スレーブ側のマニピュレータを制御するとともに、 通信路を介して送られるスレーブ側マニピュレータ出力を上記補償値生成手段の 出力により補償し、該補償されたスレーブ側マニピュレータ出力と、マスタ側のマ-ピ ユレータの出力を上記第 1の制御部に入力し、マスタ側のマニピュレータを制御する ことを特徴とする遠隔制御システム。
PCT/JP2005/019483 2004-10-29 2005-10-24 通信遅延を有する通信路を介して信号を送受信する遠隔制御システム WO2006046500A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006543121A JP4930938B2 (ja) 2004-10-29 2005-10-24 通信遅延を有する通信路を介して信号を送受信する遠隔制御システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004315391 2004-10-29
JP2004-315391 2004-10-29

Publications (1)

Publication Number Publication Date
WO2006046500A1 true WO2006046500A1 (ja) 2006-05-04

Family

ID=36227739

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/019483 WO2006046500A1 (ja) 2004-10-29 2005-10-24 通信遅延を有する通信路を介して信号を送受信する遠隔制御システム

Country Status (2)

Country Link
JP (1) JP4930938B2 (ja)
WO (1) WO2006046500A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014204503A (ja) * 2013-04-02 2014-10-27 株式会社ダイヘン シミュレータ、シミュレーションシステム、シミュレーション方法、および、プログラム
JP2016215357A (ja) * 2015-05-26 2016-12-22 国立大学法人 名古屋工業大学 パラメータ推定装置、パラメータ推定方法、プログラム及び制御装置
JP2018107568A (ja) * 2016-12-26 2018-07-05 日本電気株式会社 遠隔制御装置、遠隔制御システム、遠隔制御方法及び遠隔制御プログラム
WO2022145150A1 (ja) * 2020-12-28 2022-07-07 ソニーグループ株式会社 制御システム及び制御方法
JP7357820B1 (ja) * 2022-10-24 2023-10-06 三菱電機株式会社 遠隔操縦装置、移動体遠隔操縦システム、移動体制御装置、画像表示装置、移動体および遠隔操縦方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023151894A (ja) 2022-04-01 2023-10-16 オムロン株式会社 制御システム、制御装置、制御方法及び制御プログラム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6389274A (ja) * 1986-09-30 1988-04-20 株式会社東芝 マニピユレ−タのバイラテラル制御装置
JPH05313754A (ja) * 1992-05-08 1993-11-26 Mitsubishi Heavy Ind Ltd 速度制御装置
JPH06297368A (ja) * 1992-10-23 1994-10-25 Shinichi Yokota マニピュレ−タの制御装置
JP2001296907A (ja) * 2000-04-12 2001-10-26 Nippon Steel Corp むだ時間補償制御装置、むだ時間補償制御方法及び記憶媒体
JP2002229605A (ja) * 2001-02-02 2002-08-16 Yaskawa Electric Corp フィードバック制御装置
JP2003305669A (ja) * 2002-01-21 2003-10-28 Center For Advanced Science & Technology Incubation Ltd ロボットフォン

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0876805A (ja) * 1994-09-09 1996-03-22 Toshiba Corp プロセス制御装置
JPH08339207A (ja) * 1995-06-13 1996-12-24 Kobe Steel Ltd 制御装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6389274A (ja) * 1986-09-30 1988-04-20 株式会社東芝 マニピユレ−タのバイラテラル制御装置
JPH05313754A (ja) * 1992-05-08 1993-11-26 Mitsubishi Heavy Ind Ltd 速度制御装置
JPH06297368A (ja) * 1992-10-23 1994-10-25 Shinichi Yokota マニピュレ−タの制御装置
JP2001296907A (ja) * 2000-04-12 2001-10-26 Nippon Steel Corp むだ時間補償制御装置、むだ時間補償制御方法及び記憶媒体
JP2002229605A (ja) * 2001-02-02 2002-08-16 Yaskawa Electric Corp フィードバック制御装置
JP2003305669A (ja) * 2002-01-21 2003-10-28 Center For Advanced Science & Technology Incubation Ltd ロボットフォン

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014204503A (ja) * 2013-04-02 2014-10-27 株式会社ダイヘン シミュレータ、シミュレーションシステム、シミュレーション方法、および、プログラム
JP2016215357A (ja) * 2015-05-26 2016-12-22 国立大学法人 名古屋工業大学 パラメータ推定装置、パラメータ推定方法、プログラム及び制御装置
JP2018107568A (ja) * 2016-12-26 2018-07-05 日本電気株式会社 遠隔制御装置、遠隔制御システム、遠隔制御方法及び遠隔制御プログラム
WO2022145150A1 (ja) * 2020-12-28 2022-07-07 ソニーグループ株式会社 制御システム及び制御方法
JP7357820B1 (ja) * 2022-10-24 2023-10-06 三菱電機株式会社 遠隔操縦装置、移動体遠隔操縦システム、移動体制御装置、画像表示装置、移動体および遠隔操縦方法
WO2024089728A1 (ja) * 2022-10-24 2024-05-02 三菱電機株式会社 遠隔操縦装置、移動体遠隔操縦システム、移動体制御装置、画像表示装置、移動体および遠隔操縦方法

Also Published As

Publication number Publication date
JP4930938B2 (ja) 2012-05-16
JPWO2006046500A1 (ja) 2008-05-22

Similar Documents

Publication Publication Date Title
Chan et al. Application of adaptive controllers in teleoperation systems: A survey
Chen et al. Integrated adaptive robust control for multilateral teleoperation systems under arbitrary time delays
CN106647281B (zh) 一种基于终端滑模的遥操作系统干扰有限时间补偿方法
Chan et al. Extended active observer for force estimation and disturbance rejection of robotic manipulators
Muradore et al. A review of bilateral teleoperation algorithms
Artigas et al. Time domain passivity control for position-position teleoperation architectures
JP4930938B2 (ja) 通信遅延を有する通信路を介して信号を送受信する遠隔制御システム
Chan et al. Position and force tracking for non-linear haptic telemanipulator under varying delays with an improved extended active observer
Zhai et al. Robust saturation‐based control of bilateral teleoperation without velocity measurements
Katsura et al. A realization of multilateral force feedback control for cooperative motion
Islam et al. New stability and tracking criteria for a class of bilateral teleoperation systems
Yang et al. Dynamics and noncollocated model‐free position control for a space robot with multi‐link flexible manipulators
Slawiñski et al. PD-like controller with impedance for delayed bilateral teleoperation of mobile robots
Nuño et al. Control of teleoperators with joint flexibility, uncertain parameters and time-delays
Yan et al. Dynamic gain control of teleoperating cyber-physical system with time-varying delay
Harashima et al. Tracking control of robot manipulators using sliding mode
Sun et al. Stability Control of Force‐Reflected Nonlinear Multilateral Teleoperation System under Time‐Varying Delays
Aksman et al. Force estimation based compliance control of harmonically driven manipulators
Lu et al. An adaptive fuzzy control for human-in-the-loop operations with varying communication time delays
Slawinski et al. Bilateral teleoperation through the Internet
Lee et al. Prediction-based preview control of motion platform with time delay
Yang et al. Effects of quantization and saturation on performance in bilateral teleoperator
Su et al. Fixed-time adaptive neural network synchronization control for teleoperation system with position error constraints and time-varying delay
Gutiérrez-Giles et al. Transparent master-slave teleoperation without force nor velocity measurements
JP2005212054A (ja) 力検出方法及び装置並びに力検出機能を備えた制御装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV LY MD MG MK MN MW MX MZ NA NG NO NZ OM PG PH PL PT RO RU SC SD SG SK SL SM SY TJ TM TN TR TT TZ UG US UZ VC VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SZ TZ UG ZM ZW AM AZ BY KG MD RU TJ TM AT BE BG CH CY DE DK EE ES FI FR GB GR HU IE IS IT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006543121

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05795721

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5795721

Country of ref document: EP