WO2006037912A1 - Echangeur de chaleur a plaques specifiques - Google Patents

Echangeur de chaleur a plaques specifiques Download PDF

Info

Publication number
WO2006037912A1
WO2006037912A1 PCT/FR2005/050777 FR2005050777W WO2006037912A1 WO 2006037912 A1 WO2006037912 A1 WO 2006037912A1 FR 2005050777 W FR2005050777 W FR 2005050777W WO 2006037912 A1 WO2006037912 A1 WO 2006037912A1
Authority
WO
WIPO (PCT)
Prior art keywords
corrugation
plates
plate
deformations
exchanger according
Prior art date
Application number
PCT/FR2005/050777
Other languages
English (en)
Inventor
Claude Roussel
Olivier Noel-Baron
Patrice Tochon
Jean-François FOURMIGUE
Leif Hallgren
Original Assignee
Alfa Laval Vicarb
Alfa Laval Corporate Ab
Commissariat A L'energie Atomique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alfa Laval Vicarb, Alfa Laval Corporate Ab, Commissariat A L'energie Atomique filed Critical Alfa Laval Vicarb
Priority to DE602005006296T priority Critical patent/DE602005006296T2/de
Priority to DK05800230T priority patent/DK1797386T3/da
Priority to EP05800230A priority patent/EP1797386B1/fr
Publication of WO2006037912A1 publication Critical patent/WO2006037912A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/042Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
    • F28F3/046Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element the deformations being linear, e.g. corrugations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/08Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning
    • F28F3/083Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning capable of being taken apart
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/10Secondary fins, e.g. projections or recesses on main fins

Definitions

  • the invention relates to the field of heat exchangers, specifically plate heat exchangers.
  • Such exchangers are constituted by the stack of corrugated plates, and assembled to define between them fluid circulation channels, in two interleaved circuits.
  • the invention is more specifically an improvement concerning the positioning of reliefs formed on these plates.
  • the plate exchangers comprise corrugations, defining corrugations, so that the channel defined with the adjacent plate has a variable section.
  • these corrugations are inclined with respect to the fluid flow direction, and have the opposite inclination with respect to corrugations of the adjacent plate.
  • These corrugations are frequently, but not necessarily, in the form of chevrons.
  • the deformations in the bump are preferably localized near the contact points between plates, which correspond to the zones where the velocity of the fluid is the lowest. These areas are therefore dead or stagnant zones in which the deposits are likely to appear.
  • the positioning of the deformations in the bump near these contact points thus makes it possible to reduce the volume of these dead zones, and thus limit the risks of formation of deposit, without, however, increasing too much the pressure drops.
  • the objective of the present invention is to optimize the performance of this type of exchanger on all the factors representative of the efficiency of the exchanger, that is to say the heat exchange coefficient, and that the pressure losses generated, and this being compatible with a rate of fouling as low as possible.
  • the invention therefore relates to a heat exchanger which comprises a plurality of corrugated plates assembled to define between them fluid circulation channels.
  • each plate comprises corrugations defined between corrugation vertex lines and corrugation background lines. All or some of these plates comprise, as in the document EP 0 737 296, deformations hollow and bump, located between the top and bottom corrugation lines.
  • the invention lies in a more precise positioning of the various deformations hollow and hump with respect to the lines of contact points between the adjacent plates. This location is defined on the side of the "place" of a plate, that is to say the face coming in front of a channel considered, and inside an elementary cell defined between four points of consecutive contact with the adjacent plate delimiting the channel.
  • D 1 is the distance measured in a main surface parallel plane of the plate, and parallel to the corrugation vertex line, separating: the center of the bump deformation nearest one of the contact points; reference point equidistant from the corrugation vertex line and the corrugation bottom line, said reference point being aligned with said contact point in the direction of flow of the fluid.
  • D is the distance measured in a plane parallel to the main surface of the plate and parallel to the corrugation vertex line separating:
  • the invention lies in the location of the bump deformations at an intermediate level between the contact points, and not near the contact points, corresponding to a substantially zero criterion N, as taught in patent EP 0737296. .
  • the efficiency of a plate heat exchanger has been evaluated by combining the power transmitted with the measured pressure drops. Measurements made in comparison with corrugated plates without hollow deformation and hump show an improvement in the overall efficiency of the exchanger, within the range of criteria considered. This improvement even reaches about ten percent for the optimum of the criterion evaluated at around 0.55, in chevron configurations described earlier in the description of a particular embodiment.
  • the deformations can take various different forms, which depend on the stamping process, and the elongation that can be subjected to the material used. Whatever the form of these deformations, the measurements necessary for the evaluation of the characteristic criterion are made by defining the volume of these deformations with respect to the general form of the undulation. This general shape can in particular be evaluated in a zone free of deformation in hollow and hump. This volume is then projected on the main plane of the plate, and the center of gravity of this projection is then considered as the center of the deformation.
  • this arrangement corresponds to the formation of recessed areas near the corrugation bottom lines, with the same alternating distribution with respect to the opposite face of the plate.
  • the hollow deformations may advantageously be distributed symmetrically on either side of the corrugation bottom line.
  • the different deformations in bump and recess can be positioned at varying levels of the height of the corrugation, between the top line and the bottom line.
  • the characteristic criterion N can be substantially constant over most of the exchange surface of the plate, but it is also possible to form plates having different zones having distinct characteristic criteria.
  • the face of the plate may, in a first zone, have bump deformations which are alternately distributed and offset on either side of the corrugation top line, thus presenting a characteristic criterion in advantageous ranges.
  • the hump deformations are instead distributed symmetrically on either side of the corrugation vertex line.
  • the exchanger can be constituted by the association and the stack of identical plates, but also different plates depending on the desired exchange properties.
  • the identical plates can be arranged in different ways depending on the orientation of the faces of the plates having a characteristic criterion in an advantageous range.
  • the plates may be assembled to define channels of a first type, which may be described as "symmetrical", defined by facing surfaces having a substantially identical characteristic criterion.
  • liquid / liquid exchangers in which the channels of lower pressure drops receive the higher flow rate.
  • the plates may be assembled to delimit channels of a second type, which may be described as "asymmetrical", the arrangement being such that the faces of the plates having the same characteristic criteria N are all oriented in the same direction.
  • the channels then have substantially similar properties, since they are delimited on one side by the face of a characteristic plate, and on the other side by a front side a priori, less efficient.
  • the exchanger thus produced has two very similar performance circuits, and can therefore be adapted to any type of liquid / liquid exchanger.
  • the shape of the corrugations can be adapted according to the desired applications, and the invention is in no way limited to corrugations shaped chevrons as illustrated in the accompanying figures.
  • Figure 1 is a general summary perspective view showing the arrangement of different plates involved in a plate heat exchanger.
  • Figures 2 and 3 are schematic summary perspective views of a plate respectively shown on its front and back side.
  • Figure 4 is a detailed perspective perspective view illustrating the positioning of the characteristic depressions and bumps.
  • FIG. 5 is a schematic plan view of FIG. 4.
  • FIGS. 6 and 7 are diagrams illustrating the evolution of various parameters representative of the exchange according to the characteristic criterion N.
  • Figures 8, 9 and 10 are representations of assembly of plates according to the invention, according to different variants.
  • the exchanger (1) comprises different plates (2-5) assembled to define between them channels (6-8) fluid circulation.
  • each plate (2-5) has four holes (10-13) for connection with the inlet and outlet pipes of two fluid circuits (20, 21; 22, 23).
  • a peripheral seal (14) makes it possible to seal the channel created, including in said channel only two of the bores.
  • the bores (10, 11; 12, 13) associated with the same channel are on the same large side of the plate (2), but the invention also covers variants in which the two bores associated with a channel lying on a diagonal of the plate.
  • each plate (2-5) comprises corrugations
  • the corrugations can also be in the form of multiple chevrons.
  • the plates are alternately pi voted at 180 ° around their center, so that the herringbone corrugations are in opposition on the two faces of the facing plates, at the same channel, to increase the level of disturbances of the fluid. flowing in the canal.
  • the plates comprise hollow and bump deformations which are distributed over the corrugations. In all the figures, only a portion of these hollows and bumps is shown to avoid overloading the drawings, and so as not to interfere with the understanding of the invention.
  • the deformations in the bump corresponding to growths in relation to the viewed face of the plate, are represented by ovals.
  • the hollow deformations are represented by rectangles, and therefore correspond to deformations sinking inside the plate, viewed on the face considered.
  • the hollow deformations (30, 31) are arranged near a corrugation bottom line (32), while the hump deformations (33, 34) are located near a corrugation bottom line (32). line (35) of corrugation vertex.
  • the hollow deformations (30, 31) are situated approximately opposite a corrugation bottom line (32).
  • the bump deformations (33, 34) are arranged offset from their corrugation top line (35).
  • FIG. 3 The backside (46) of the same plate is illustrated in FIG. 3. It can be seen that the recessed deformations (30, 31) of the face face correspond to hump deformations (40, 41) on the reverse side, which are located opposite, on either side of the top line (42) corrugations on the reverse side (46).
  • the bump deformations (33, 34) of the locating face (36) correspond to recessed deformations (43, 44) seen from the reverse side (46).
  • These recessed deformations (43, 44) are arranged offset and on either side of the corrugation bottom line (45), looking at the back face (46), the same corrugation bottom line (46). ) corresponding to a corrugation vertex line (35) on the location face (36).
  • the invention lies in a particular positioning of the recessed and hump zones with respect to the contact points between plates.
  • the plate (25) comes into contact with the plate (48) facing it to define the channel (26) at a plurality of contact points.
  • the different points of contact (51-54) define elementary cells which have a general parallelogram shape, and more particularly a diamond shape when the chevrons of the two plates facing each other are of the same inclination. These rhombs can even be square when the rafters are perpendicular from one plate to another.
  • the location of the hollow and bump patterns is after projection in a plane P parallel to the main plane of the plate, also parallel to the plane defined by the set of contact points.
  • Deformations in hollow and hump are measured in this plane by projecting their center of gravity in the plane P.
  • the boss (33) projects at the point (63) of the plane P, while the deformation in the hollow (30) is projected to the point
  • This reference point is deduced from the point of contact (52) as being aligned with the latter with respect to the direction F corresponding to the flow direction of the fluid.
  • the projection (66) of this reference point (65) is shown on the plane P.
  • the invention resides in a positioning of bumps and depressions with respect to this reference point.
  • This reference point is therefore located, from a point of the fluid flow, behind a contact zone between plates.
  • the distances of hump and hollow are measured by projection on the line of corrugations (35).
  • the distance D illustrated in FIG. 4 thus corresponds to the difference, measured parallel to the corrugation vertex line, which separates the deformation into a bump (33) and the successive hollow deformations (30, 31).
  • the distance D 1 corresponds to the difference, always measured parallel to the line of corrugations, which separates the projection (63) from the hump deformation (33) of the projection (66) of the reference point (65).
  • Figure 6 illustrates the variation of a performance evaluation parameter of a heat exchanger.
  • the efficiency parameter ⁇ is evaluated by comparing the performance of a plate according to the invention with respect to the performance of a plate having no hollow deformation and hump. More precisely, this parameter ⁇ is calculated by measuring the ratio of the exchange powers, divided by the ratio of the pressure losses measured with these two types of plates, the ratio of the pressure drops being high to a power of the order of 0.33 to 0.37 depending on the type of exchanger.
  • the criterion ⁇ shown in FIG. 6 very clearly shows a substantial gain of the order of 10% in the range of the criterion N considered, with an optimum when the criterion N is around 0.55.
  • the prior art patent EP 0 737 296 taught the positioning of hump deformations just behind the points of contact between plates, corresponding to a situation where the characteristic criterion N is close to 0.
  • the pressure losses measured with the plates according to the invention surprisingly show a very clear improvement in the range of the characteristic criterion. These pressure drops are lower by about 30%. relative to the pressure losses measured in the situation corresponding to the teachings of the patent of the aforementioned prior art.
  • the characteristic plates may be arranged relative to each other in different configurations, depending on the faces they have facing each other.
  • the various plates are arranged in such a way that they have on their faces in the figure faces on which the bump deformations (70) are arranged symmetrically with respect to the lines (71). ) of top of corrugations.
  • the visible faces of the plates of FIG. 8 correspond to the visible face illustrated in FIG.
  • the set of plates (69) of FIG. 8 have all their identical faces oriented in the same direction. These plates are stacked by making a plate to another pivoting around their central point.
  • each of the plates (69) corresponds to the configuration illustrated in FIG. 2, in which the hollow deformations are each arranged symmetrically with respect to the corrugation bottom lines.
  • the hump deformations on this hidden face are arranged alternately and offset from the lines. vertex of corrugations, coming opposite the visible faces of the plates of FIG.
  • the channels (73) thus defined thus have very substantially identical properties for the two fluid circuits.
  • the two end plates (80, 82) shown have a visible face which corresponds to the configuration illustrated in FIG. 2, in which the bump deformations (83, 84) are arranged alternately and offset by relative to the corrugation vertex lines (85).
  • the intermediate plate (81) has a visible face in FIG. 9 which corresponds to the configuration of FIG. 3 in which the hump deformations (86, 87) are located symmetrically with respect to the lines (88). ) of top of corrugations.
  • the channel (89) defined between the first (80) and the second (81) plates, has two substantially identical faces, corresponding to the visible face of the intermediate plate (81). At this channel (89), the bump deformations are therefore on each of the opposite faces arranged symmetrically with respect to the corrugation vertex lines.
  • the hump deformations (84, 85) of the opposing faces are arranged alternately and offset from the corrugation vertex line. It is therefore conceivable that the overall thermal performances as well as the pressure losses of the two channels (89, 90) thus defined are different, and are more suitable for producing exchangers having a flow typology. different between the two circuits, such as for example evaporators or condensers.
  • the two configurations mentioned above can be combined within the same plate, as shown in Figure 10.
  • the same plate can have on one side the two configurations.
  • the intermediate plate (94) has on one side hump deformations (95) disposed symmetrically with respect to the lines (96) corrugation top.
  • the bump deformations (97, 98) are arranged in an offset and alternating manner. It follows that the pressure losses thus generated are different in the two longitudinal portions (99, 100) parallel to the channel (101). This arrangement is optimized to reduce the pressure losses corresponding to the fraction (100) of the channel located farthest from the points (103, 104) of entry and exit of the fluid, so as to homogenize as much as possible the flow on the width of the canal.
  • the different plates of the exchanger are stacked by providing them pivoting in the same plane around their central point.
  • the exchangers can be constructed by arranging characteristic plates in different ways, adapted to the type of fluid and flow to go through the exchangers.

Abstract

L'invention concerne échangeur de chaleur à plaques, comportant une pluralité de plaques (2-5) assemblées pour définir entre elles des canaux (6-8) de circulation de fluide. Chaque plaque comporte des ondulations (25) ou corrugations définies entre des lignes de sommet de corrugations (35) et des lignes de fond de corrugations (32). Au moins une partie des plaques comporte des déformations en creux (30, 31) et en bosse (33) situées entre les lignes de sommet et de fond de corrugations. Cet échangeur est remarquable par le positionnement de ces bosses et creux par rapport aux points de contact (51, 54) entre plaques adjacentes (48, 25) délimitant le canal.

Description

ECHANGEUR DE CHALEUR A PLAQUES SPECIFIQUES
Domaine technique
L'invention se rattache au domaine des échangeurs de chaleur, plus précisément des échangeurs de chaleur à plaques. De tels échangeurs sont constitués par l'empilement de plaques ondulées, et assemblées pour définir entre elles des canaux de circulation de fluide, selon deux circuits entrelacés.
L'invention vise plus précisément un perfectionnement concernant le positionnement de reliefs formés sur ces plaques.
Techniques antérieures
De façon générale, les échangeurs à plaque comportent des corrugations, définissant des ondulations, de telle sorte que le canal défini avec la plaque adjacente présente une section variable. Généralement, ces corrugations sont inclinées par rapport au sens de circulation du fluide, et présentent l'inclinaison opposée par rapport aux corrugations de la plaque adjacente. Ces corrugations se présentent fréquemment, mais pas obligatoirement, sous forme de chevrons. Ces différentes variantes géométriques ont pour objectif de définir des canaux dont la fonction est de perturber l'écoulement, en vue d'améliorer les échanges thermiques.
Les Demandeurs ont décrit dans le document EP 0 737 296 un perfectionnement à ce type d'échangeur, destiné à améliorer d'une part, les pertes de chaleur, et d'autre part, les risques d'encrassement de l'échangeur dans les zones de moindre passage. Ce perfectionnement consiste à réaliser sur les corrugations des déformations qui perturbent de façon supplémentaire la circulation du fluide. Ces déformations sont obtenues lors de la fabrication de la plaque qui est généralement réalisée par emboutissage. Ces déformations peuvent être en creux ou en bosse par rapport à l'ondulation principale, étant entendu que les déformations formant un creux sur une face de la plaque constituent une déformation en bosse sur la face opposée de la même plaque. Selon les enseignements de ce document, les déformations en bosse sont préférentiellement localisées à proximité des points de contact entre plaques, qui correspondent aux zones où la vitesse du fluide est la plus faible. Ces zones constituent donc des zones mortes ou stagnantes dans lesquelles les dépôts sont susceptibles d'apparaître. Le positionnement des déformations en bosse à proximité de ces points de contact permet donc de réduire le volume de ces zones mortes, et limiter donc les risques de formation de dépôt, sans toutefois augmenter trop fortement les pertes de charge.
Après expérimentation, il s'avère que ce positionnement des déformations en bosse près des points de contact entre plaques n'est pas réellement satisfaisant, notamment du fait d'une augmentation des pertes de charge. De plus, la déformation en bosse présente à l'intérieur d'un canal, correspond à une déformation en creux sur le canal adjacent, qui limite l'effet positif des bosses dans ce canal adjacent.
L'objectif de la présente invention est d'optimiser les performances de ce type d'échangeur sur l'ensemble des facteurs représentatifs de l'efficacité de l'échangeur, c'est-à-dire le coefficient d'échange thermique, ainsi que les pertes de charge générées, et ce en étant compatible avec un taux d'encrassement aussi faible que possible.
Exposé de l'invention
L'invention concerne donc un échangeur de chaleur qui comporte une pluralité de plaques ondulées assemblées pour définir entre elles des canaux de circulation de fluide.
De façon connue, chaque plaque comporte des corrugations définies entre des lignes de sommet de corrugations et des lignes de fond de corrugations. Tout ou partie de ces plaques comportent, comme dans le document EP 0 737 296, des déformations en creux et en bosse, situées entre les lignes de sommet et de fond de corrugation. L'invention réside dans un positionnement plus précis des différentes déformations en creux et en bosse par rapport aux lignes de points de contact entre les plaques adjacentes. Cette localisation se définit du côté de la face "endroit" d'une plaque, c'est-à-dire la face venant au regard d'un canal considéré, et à l'intérieur d'une cellule élémentaire définie entre quatre points de contact consécutifs avec la plaque adjacente délimitant le canal.
Ainsi, les déformations en bosse et en creux sont localisées de telle sorte que le critère N = D1ZD est compris entre 0,35 et 0,8 dans lequel :
" D1 est la distance mesurée dans un plan parallèle à surface principale de la plaque, et parallèlement à la ligne de sommet de corrugation, séparant : le centre de la déformation en bosse la plus proche d'un des points de contact ; - un point de référence situé à égale distance de la ligne de sommet de corrugation et de la ligne de fond de corrugation, ledit point de référence étant aligné avec ledit point de contact selon la direction d'écoulement du fluide.
" D est la distance mesurée dans un plan parallèle à la surface principale de la plaque et parallèlement à la ligne de sommet de corrugation séparant :
le centre de la déformation en bosse la plus proche d'un des points de contact ; le centre de la déformation en creux la plus proche selon la direction de la ligne de sommet de corrugation.
Autrement dit, l'invention réside dans la localisation des déformations en bosse à un niveau intermédiaire entre les points de contact, et non pas à proximité des points de contact, correspondant à un critère N sensiblement nul, comme l'enseignait le brevet EP 0737296.
La localisation de ces déformations en bosse conformément à l'invention se traduit de manière surprenante premièrement par une amélioration des performances d'échanges thermiques, et également, par une diminution des pertes de charge mesurées dans les échangeurs intégrant de telles plaques.
Ainsi, en pratique, l'efficacité d'un échangeur à plaques a été évaluée en combinant la puissance transmise avec les pertes de charge mesurées. Les mesures effectuées en comparaison avec des plaques ondulées sans déformation en creux et en bosse montrent une amélioration de l'efficacité globale de l'échangeur, dans la plage de critères considérée. Cette amélioration atteint même une dizaine de pourcent pour l'optimal du critère évalué aux alentours de 0,55, dans des configurations de chevrons décrites plus avant dans la description d'un mode de réalisation particulier.
De même, l'amélioration en termes de pertes de charge se traduit par une diminution de plusieurs dizaines de pourcent au voisinage de cet optimum.
En pratique, les déformations peuvent adopter différentes formes variées, qui dépendent du procédé d'emboutissage, et de l'allongement qu'il est possible de faire subir à la matière employée. Quelle que soit la forme de ces déformations, les mesures nécessaires pour l'évaluation du critère caractéristique se font en définissant le volume de ces déformations par rapport à la forme générale de l'ondulation. Cette forme générale peut notamment être évaluée dans une zone exempte de déformation en creux et en bosse. Ce volume est ensuite projeté sur le plan principal de la plaque, et le centre de gravité de cette projection est alors considéré comme le centre de la déformation.
En pratique, de multiples arrangements de position des déformations en creux et en bosse peuvent être adoptés, mais on préférera conserver une répétitivité des motifs de repositionnement pour éviter la formation de chemins préférentiels, et l'apparition de zones trop fortement stagnantes.
Parmi les différentes géométries donnant satisfaction, on a identifié celles dans lesquelles les déformations en bosse sont réparties de façon alternative et décalée de part et d'autre de la ligne de sommet d'une corrugation, en regardant la face endroit de la plaque, c'est-à-dire celle qui est directement au contact du fluide dans le canal considéré.
Bien entendu, cette disposition correspond à la formation de zones en creux à proximité des lignes de fond de corrugation, avec la même répartition alternée en ce qui concerne la face opposée de la plaque. Dans cette même géométrie préférentielle au niveau de la face endroit de la plaque, les déformations en creux peuvent avantageusement être réparties de façon symétrique de part et d'autre de la ligne de fond de corrugation. Ces déformations en creux de la face endroit correspondent à des déformations en bosse à proximité des lignes de sommet de corrugation pour la face opposée.
Bien entendu, les différentes déformations en bosse et en creux peuvent être positionnées à des niveaux variables de la hauteur de la corrugation, entre la ligne de sommet et la ligne de fond. Toutefois, on prendra soin à ce que le volume des déformations en bosse ne dépasse pas le plan principal défini par les différentes lignes de sommet de corrugation, pour permettre l'empilement aisé des différentes plaques.
En pratique, le critère caractéristique N peut être sensiblement constant sur l'essentiel de la surface d'échange de la plaque, mais il est également possible de former des plaques présentant différentes zones possédant des critères caractéristiques distincts.
Ainsi, dans un cas particulier, la face endroit de la plaque peut, dans une première zone, posséder des déformations en bosse qui sont réparties de façon alternative et décalée de part et d'autre de la ligne de sommet de corrugation, présentant donc ainsi un critère caractéristique dans des plages avantageuses. Dans une seconde zone, les déformations en bosse sont au contraire réparties de façon symétrique de part et d'autre de la ligne de sommet de corrugation. Cette double configuration permet donc de générer des pertes de charge différentes dans les deux zones ainsi définies. On constitue ainsi des zones de passage privilégié du fluide, susceptibles de compenser le fait que le fluide peut pénétrer et ressortir du canal du même côté d'un bord long de la plaque.
En pratique, l'échangeur peut être constitué par l'association et l'empilement de plaques identiques, mais également de plaques différentes en fonction des propriétés d'échange recherchées.
De même, les plaques identiques peuvent être agencées de différentes manières selon l'orientation des faces des plaques possédant un critère caractéristique dans une plage avantageuse.
Ainsi, dans une première variante, les plaques peuvent être assemblées pour délimiter des canaux d'un premier type, que l'on peut qualifier de "symétrique", défini par des surfaces en regard présentant un critère caractéristique sensiblement identique.
Quand les canaux définis par les faces préférentielles présentent des propriétés particulièrement avantageuses en terme de coefficient d'échange et de pertes de charge, il s'ensuit que les canaux adjacents, formés avec les faces envers des plaques, présentent quant à eux des propriétés intrinsèques inférieures. Ces échangeurs formés avec ce type d'empilement sont plus particulièrement adaptés pour les échangeurs parcourus par des fluides ayant des typologies d'écoulement différentes, et notamment les échangeurs du type évaporateur ou condenseur.
II peut également s'agir d'échangeurs liquide/liquide dans lequel les canaux de plus faible pertes de charge reçoivent la circulation à plus fort débit.
Dans une autre variante de réalisation, les plaques peuvent être assemblées pour délimiter des canaux d'un deuxième type, que l'on peut qualifier d"'asymétrique", l'agencement étant tel que les faces des plaques présentant les mêmes critères caractéristiques N sont toutes orientées dans la même direction. Autrement dit, les canaux présentent alors des propriétés sensiblement similaires, puisqu'ils sont délimités d'un côté par la face endroit d'une plaque caractéristique, et de l'autre côté par une face envers a priori, moins performante.
L'échangeur ainsi réalisé présente deux circuits de performances très similaires, et peut être adapté donc à tout type d'échangeur liquide/liquide.
Dans le cas des plaques déjà évoquées, présentant des zones de natures différentes sur la même face, ces dernières sont à empiler pour réaliser, comme évoqué, des canaux formés de tronçons sensiblement parallèles, du premier et du deuxième type déjà évoqué.
Bien qu'il soit plus simple de réaliser des échangeurs avec des plaques identiques en assurant leur rotation et le retournement en fonction du type de canal que l'on souhaite réaliser, l'invention couvre également des variantes dans lesquelles on réalise l'assemblage de plaques possédant des propriétés différentes.
De même, la forme des ondulations peut être adaptée en fonction des applications souhaitées, et l'invention n'est en aucun cas limitée aux corrugations en forme de chevrons telles qu'illustrées aux figures annexées.
Description sommaire des figures
La manière de réaliser l'invention, ainsi que les avantages qui en découlent ressortiront bien de la description des modes de réalisation qui suivent, à l'appui des figures annexées dans lesquelles :
La figure 1 est une vue en perspective sommaire générale montrant l'agencement de différentes plaques intervenant dans un échangeur à plaques.
Les figures 2 et 3 sont des vues en perspective sommaire schématiques d'une plaque montrée respectivement sur sa face endroit et envers. La figure 4 est une vue de détail en perspective sommaire illustrant le positionnement des creux et bosses caractéristiques.
La figure 5 est une représentation schématique en plan de la figure 4. Les figures 6 et 7 sont des diagrammes illustrant l'évolution de différents paramètres représentatifs de l'échange en fonction du critère caractéristique N.
Les figures 8, 9 et 10 sont des représentations d'assemblage de plaques conformes à l'invention, selon différentes variantes.
Manière de réaliser l'invention
Comme illustré schématiquement à la figure 1, l'échangeur (1) comporte différentes plaques (2-5) assemblées pour définir entre elles des canaux (6-8) de circulation de fluide.
Plus précisément, chaque plaque (2-5) comporte quatre perçages (10-13) de connexion avec les canalisations d'entrée et de sortie de deux circuits (20, 21 ; 22, 23) de fluide. Sur chaque plaque, un joint périphérique (14) permet d'assurer l'étanchéité du canal crée, en englobant dans ledit canal uniquement deux des perçages. Dans la forme illustrée, les perçages (10, 11 ; 12, 13) associés à un même canal se trouvent sur le même grand côté de la plaque (2), mais l'invention couvre également des variantes dans lesquelles les deux perçages associés à un canal se trouvant sur une diagonale de la plaque.
Comme illustré à la figure 1, chaque plaque (2-5) comporte des corrugations
(25) en forme de chevrons simples. Dans d'autres variantes non représentées, les corrugations peuvent également être en forme de chevrons multiples. Les plaques sont alternativement pi votées à 180° autour de leur centre, de sorte que les corrugations en chevrons se trouvent en opposition sur les deux faces des plaques en regard, au niveau d'un même canal, pour augmenter le niveau de perturbations du fluide circulant dans le canal.
Comme illustré à la figure 4, lorsque deux plaques définissant le canal viennent en regard, leur ligne de sommet de corrugation respectives se touchent au niveau de points de contact. Conformément aux enseignements du brevet EP 0 737 296, les plaques comportent des déformations en creux et en bosse qui sont réparties sur les corrugations. Dans l'ensemble des figures, seule une partie de ces creux et de ces bosses est représentée pour éviter de surcharger les dessins, et afin de ne pas nuire à la compréhension de l'invention.
Par convention, et comme illustré aux figures 2, 3 et 4, les déformations en bosse, correspondant donc à des excroissances par rapport à la face regardée de la plaque, sont représentées par des ovales. Les déformations en creux sont représentées par des rectangles, et correspondent donc à des déformations s'enfonçant à l'intérieur de la plaque, regardée sur la face considérée.
Comme illustré à la figure 2, les déformations en creux (30, 31) sont disposées à proximité d'une ligne de fond (32) de corrugations, tandis que les déformations en bosse (33, 34) sont situées à proximité d'une ligne (35) de sommet de corrugations. Sur la face endroit (36) de la plaque de la figure 2, les déformations en creux (30, 31) sont situées sensiblement vis à vis par rapport à une ligne de fond de corrugations (32). En revanche, les déformations en bosses (33, 34) sont disposées de manière décalée par rapport à leur ligne de sommet (35) de corrugations.
La face envers (46) de la même plaque est illustrée à la figure 3. On constate que les déformations en creux (30, 31) de la face endroit correspondent à des déformations en bosse (40, 41) sur la face envers, qui sont situées en vis à vis, de part et d'autre de la ligne de sommet (42) de corrugations sur la face envers (46).
De la même manière, les déformations en bosse (33, 34) de la face endroit (36) correspondent à des déformations en creux (43, 44) vu de la face envers (46). Ces déformations en creux (43, 44) sont disposées de manière décalées et de part et d'autre de la ligne de fond de corrugations (45), en regardant la face envers (46), cette même ligne de fond de corrugations (46) correspondant à une ligne de sommet de corrugations (35) sur la face endroit (36). Comme déjà évoqué, l'invention réside dans un positionnement particulier des zones en creux et en bosse par rapport aux points de contact entre plaques. Ainsi, comme illustré à la figure 4, la plaque (25) vient au contact de la plaque (48) qui lui fait face pour définir le canal (26) au niveau d'une pluralité de points de contact. Ces points de contact sont situés aux intersections des lignes (35) de sommet de corrugations de la plaque (25) avec les lignes de sommet de corrugations (49) de la plaque (48). Les différents points de contact (51-54) définissent des cellules élémentaires qui ont une forme générale de parallélogramme, et plus particulièrement de losange lorsque les chevrons des deux plaques se faisant face sont de même inclinaison. Ces losanges peuvent même être de forme carrée lorsque les chevrons sont perpendiculaires d'une plaque à l'autre.
La localisation des motifs en creux et en bosse se fait après projection dans un plan P parallèle au plan principal de la plaque, également parallèle au plan défini par l'ensemble des points de contact.
Les déformations en creux et en bosse sont mesurées dans ce plan en projetant leur centre de gravité dans le plan P. Ainsi, la bosse (33) se projette au point (63) du plan P, tandis que la déformation en creux (30) se projette au point
(60) du même plan. La position de ces creux et bosses se détermine conformément à l'invention, vis à vis d'un point de référence (65). Ce point de référence se situe sur la plaque (25), à mi-distance d'une ligne de sommet (35) et de creux (32) de corrugations.
Ce point de référence se déduit du point de contact (52) comme étant aligné avec ce dernier par rapport à la direction F correspondant à la direction d'écoulement du fluide.
La projection (66) de ce point de référence (65) est représentée sur le plan P. L'invention réside dans un positionnement de bosses et de creux par rapport à ce point de référence. Ce point de référence est donc situé, d'un point de l'écoulement du fluide, derrière une zone de contact entre plaques. Les distances de bosse et creux se mesurent par projection sur la ligne de corrugations (35). Ainsi, la distance D illustrée à la figure 4 correspond donc à l'écart, mesuré parallèlement à la ligne de sommet de corrugation, qui sépare la déformation en bosse (33) et les déformations en creux successives (30, 31).
La distance D1 correspond à l'écart, toujours mesuré parallèlement à la ligne de corrugations, qui sépare la projection (63) de la déformation en bosse (33) de la projection (66) du point de référence (65).
Conformément à l'invention, on a observé de bons résultats d'un point de vue du fonctionnement de l'échangeur thermique lorsque le rapport D1ZD est compris entre 0,35 et 0,80, et plus précisément voisin de 0,55. Ces valeurs sont données pour des plaques dont les chevrons ont un angle de l'ordre de 60°. Plus particulièrement, l'optimal de ce critère N peut être légèrement différent pour des angles de chevrons (10) également différents.
La figure 6 illustre la variation d'un paramètre d'évaluation des performances d'un échangeur thermique. Ainsi, le paramètre d'efficacité ζ est évalué en comparant les performances d'une plaque conforme à l'invention par rapport aux performances d'une plaque ne comportant aucune déformation en creux et en bosse. Plus précisément, ce paramètre ζ est calculé en mesurant le rapport des puissances d'échange, divisé par le rapport des pertes de charge mesurées avec ces deux types de plaques, le rapport des pertes de charge étant élevé à une puissance de l'ordre de 0,33 à 0,37 selon le type d'échangeur.
Ainsi, le critère ζ montré en figure 6 montre très clairement un gain substantiel de l'ordre de 10% dans la plage du critère N considérée, avec un optimal lorsque le critère N se situe aux alentours de 0,55. On rappelle à cet égard que le brevet de l'Art antérieur EP 0 737 296 enseignait le positionnement des déformations en bosse juste derrière les points de contact entre plaque, correspondant à une situation où le critère N caractéristique est proche de 0.
Complémentairement, les pertes de charge mesurées avec les plaques conformes à l'invention présentent de manière surprenante une amélioration très nette dans la plage considérée du critère caractéristique. Ces pertes de charge sont inférieures de l'ordre de 30%. par rapport aux pertes de charge mesurées dans la situation correspondant aux enseignements du brevet de l'Art antérieur précité.
Conformément à un autre aspect de l'invention, les plaques caractéristiques peuvent être agencées les unes par rapport aux autres selon différentes configurations, en fonction des faces qu'elles présentent en regard les unes des autres. Pour faciliter la compréhension des figures 8 à 10, seules les zones en bosse ont été représentées (par des points) autour des lignes de sommet de corrugations. Ainsi, dans la configuration illustrée à la figure 8, les différentes plaques sont agencées de telle sorte qu'elles présentent sur leur face visible sur la figure des faces sur lesquelles les déformations en bosse (70) sont disposées symétriquement par rapport aux lignes (71) de sommet de corrugations. Les faces visibles des plaques de la figure 8 correspondent à la face visible illustrée à la figure 3.
L'ensemble des plaques (69) de la figure 8 présentent toutes leurs faces identiques orientées dans la même direction. Ces plaques sont empilées en effectuant d'une plaque à l'autre un pivotement autour de leur point central.
On déduit que la face cachée de chacune des plaques (69) correspond à la configuration illustrée à la figure 2, dans laquelle les déformations en creux sont disposées chacune symétriquement par rapport aux lignes de fond de corrugations. Complémentairement, les déformations en bosse sur cette face cachée, (correspondant aux zones en creux non représentées sur les faces visibles de la figure 8) se trouvent disposées de façon alternée et décalée par rapport aux lignes de sommet de corrugations, venant au regard des faces visibles des plaques de la figure 8.
Les canaux (73) ainsi définis présentent donc des propriétés très sensiblement identiques pour les deux circuits de fluide.
Il est possible d'utiliser une configuration opposée telle qu'illustrée à la figure
9. Dans ce cas, les deux plaques extrêmes (80, 82) représentées présentent une face visible qui correspond à la configuration illustrée à la figure 2, dans laquelle les déformations en bosse (83, 84) sont disposées de façon alternée et décalée par rapport aux lignes (85) de sommet de corrugations.
A l'opposé, la plaque intermédiaire (81) présente une face visible sur la figure 9 qui correspond à la configuration de la figure 3 dans laquelle les déformations en bosse (86, 87) sont situées de manière symétrique par rapport aux lignes (88) de sommet de corrugations. On en déduit que le canal (89), défini entre la première (80) et la seconde (81) plaques, présente deux faces sensiblement identiques, correspondant à la face visible de la plaque intermédiaire (81). Au niveau de ce canal (89), les déformations en bosse se trouvent donc sur chacune des faces en regard disposées symétriquement par rapport aux lignes de sommet de corrugations.
A l'inverse, dans le canal (90) défini entre la plaque intermédiaire (81) et la plaque (82) située plus en arrière, les deux faces en regard présentent la même configuration correspondant à celle de la figure 2.
Dans ce cas, les déformations en bosse (84, 85) des faces en regard sont disposées de manière alternée et décalée par rapport à la ligne de sommet de corrugations. On conçoit donc que les performances thermiques globales ainsi que les pertes de charge des deux canaux (89, 90) ainsi définis sont différentes, et sont plus adaptées à la réalisation d'échangeurs ayant une typologie d'écoulement différente entre les deux circuits, tels que par exemple les évaporateurs ou les condenseurs.
Bien entendu, les deux configurations évoquées ci-dessus peuvent être combinées au sein d'une même plaque, tel qu'illustré à la figure 10. Ainsi, une même plaque peut présenter sur une même face les deux configurations. Plus précisément, comme illustré à la figure 10, la plaque intermédiaire (94) présente d'un côté des déformations en bosse (95) disposées symétriquement par rapport aux lignes (96) de sommet de corrugations.
Complémentairement, sur le côté opposé, les déformations en bosse (97, 98) sont disposées de manière décalée et alternée. Il s'ensuit que les pertes de charge ainsi générées sont différentes dans les deux portions longitudinales (99, 100) parallèles du canal (101). Cet agencement est optimisé pour diminuer les pertes de charge correspondant à la fraction (100) du canal située la plus éloignée des points (103, 104) d'entrée et de sortie du fluide, de manière à homogénéiser autant que faire ce peut le débit sur la largeur du canal.
Les différentes plaques de l'échangeur sont empilées en leur assurant un pivotement dans le même plan autour de leur point central.
Il ressort de ce qui précède que les échangeurs intégrant des plaques conformes à l'invention présentent des performances nettement supérieures aux échangeurs à plaque de l'Art antérieur, tant en ce qui concerne le coefficient d'échange thermique que le niveau de perte de charge.
Les échangeurs peuvent se construire en agençant des plaques caractéristiques de différentes manières, adaptés au type de fluide et de débit destiné à parcourir les échangeurs.

Claims

REVENDICATIONS
1/ Echangeur de chaleur, comportant une pluralité de plaques (2-5) assemblées pour définir entre elles des canaux (6-8) de circulation de fluide, chaque plaque comportant des ondulations (25) ou corrugations définies entre des lignes de sommet de corrugations (35) et des lignes de fond de corrugations (32), au moins une partie des plaques comportant des déformations en creux (30,31) et en bosse (33) situées entre les lignes de sommet et de fond de corrugations, caractérisé en ce que sur au moins une plaque, au niveau de sa face endroit venant au regard d'un canal, et à l'intérieur d'une cellule élémentaire définie entre quatre points de contact consécutifs (51, 54) avec la plaque adjacente (48) délimitant ledit canal, les déformations en bosse (33) et en creux (30, 31) sont localisées de telle sorte que le critère N = D1ZD est compris entre 0,35 et 0,8 dans lequel :
" Dl est la distance mesurée dans un plan (P) parallèle à la surface principale de la plaque, et parallèlement à la ligne de sommet de corrugation (35), séparant : le centre de la déformation en bosse (33) la plus proche d'un des points de contact (52) ;
un point de référence (65) situé à égale distance de la ligne de sommet (35) de corrugation et de la ligne de fond (32) de corrugation, ledit point de référence (66) étant aligné avec ledit point de contact (52) selon la direction d'écoulement du fluide (F).
" D est la distance mesurée dans un plan parallèle à la surface principale de la plaque et parallèlement à la ligne de sommet (35) de corrugation séparant : le centre de la déformation en bosse (33) la plus proche d'un des points de contact (52) ; le centre de la déformation en creux (30) la plus proche selon la direction de la ligne de sommet (35) de corrugation.
2/ Echangeur selon la revendication 1, caractérisé en ce qu'au niveau d'au moins une partie de la face endroit d'une plaque (25) les déformations en bosse (33, 34) sont réparties de façon alternative et décalées de part et d'autre de la ligne de sommet (35) de corrugation.
3/ Echangeur selon la revendication 1, caractérisé en ce qu'au niveau d'au moins 5 une partie de la face endroit d'une plaque les déformations en creux (30, 31) sont réparties de façon symétrique de part et d'autre de la ligne de fond (32) de corrugation.
4/ Echangeur selon l'une des revendications 2 et 3, caractérisé en ce qu'au niveau 10 de la face endroit d'une plaque (94), dans une première zone (100), les déformations en bosse (97, 98) sont réparties de façon alternative et décalées de part et d'autre de la ligne de sommet de corrugation (96), et dans une seconde zone (99), les déformations en bosse (95) sont réparties de façon symétrique de part et d'autre de la ligne de sommet (96) de corrugation. 15
5/ Echangeur selon la revendication 1, caractérisé en ce que les plaques (80-82) sont assemblées pour délimiter les canaux d'un premier type (73), définis par des surfaces en regard présentant un critère N sensiblement identique.
20 6/ Echangeur selon les revendications 2 et 3, caractérisé en ce que les plaques (69) sont assemblées pour délimiter des canaux (73) d'un second type, les faces des plaques présentant des critères N sensiblement identiques étant orientées dans la même direction.
25 11 Echangeur selon la revendication 4, caractérisé en ce que les plaques (94) sont assemblées pour délimiter des canaux formés de tronçons sensiblement parallèles du premier et du deuxième type.
8/ Echangeur selon la revendication 1, caractérisé en ce qu'il est composé de 30 plaques identiques. 9/ Echangeur selon la revendication 1, caractérisé en ce que les corrugations (25) sont en forme de chevrons simple ou multiple.
10/ Echangeur selon la revendication 1, caractérisé en ce que les chevrons (25) présentent un angle d'ouverture de 60°.
11/ Plaque destinée à être intégrée dans un echangeur selon l'une des revendications 1 à 10.
PCT/FR2005/050777 2004-10-04 2005-09-23 Echangeur de chaleur a plaques specifiques WO2006037912A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE602005006296T DE602005006296T2 (de) 2004-10-04 2005-09-23 Wärmetauscher mit besonderen platten
DK05800230T DK1797386T3 (da) 2004-10-04 2005-09-23 Varmeveksler med specielle plader
EP05800230A EP1797386B1 (fr) 2004-10-04 2005-09-23 Echangeur de chaleur a plaques specifiques

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0452257A FR2876179B1 (fr) 2004-10-04 2004-10-04 Echangeur de chaleur a plaques specifiques
FR0452257 2004-10-04

Publications (1)

Publication Number Publication Date
WO2006037912A1 true WO2006037912A1 (fr) 2006-04-13

Family

ID=34954288

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2005/050777 WO2006037912A1 (fr) 2004-10-04 2005-09-23 Echangeur de chaleur a plaques specifiques

Country Status (8)

Country Link
EP (1) EP1797386B1 (fr)
CN (1) CN100485300C (fr)
AT (1) ATE393368T1 (fr)
DE (1) DE602005006296T2 (fr)
DK (1) DK1797386T3 (fr)
ES (1) ES2303279T3 (fr)
FR (1) FR2876179B1 (fr)
WO (1) WO2006037912A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107314699A (zh) * 2017-06-20 2017-11-03 上海交通大学 一种用于换热器的高性能换热片及其换热器

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ300999B6 (cs) * 2007-09-27 2009-10-07 2 V V S. R. O. Protiproudý rekuperacní výmeník
FR2931542A1 (fr) * 2008-05-22 2009-11-27 Valeo Systemes Thermiques Echangeur de chaleur a plaques, notamment pour vehicules automobiles
DE102009050889A1 (de) * 2009-10-27 2011-04-28 Behr Gmbh & Co. Kg Abgasverdampfer
EP2228615B1 (fr) 2009-03-12 2018-04-25 MAHLE Behr GmbH & Co. KG Echangeur de chaleur à plaque, en particulier pour récupération de chaleur d'échappement de véhicule automobile
CN102288054B (zh) * 2011-06-27 2012-09-19 江苏宝得换热设备有限公司 等流量高效板式换热器
CN103822521B (zh) * 2014-03-04 2017-02-08 丹佛斯微通道换热器(嘉兴)有限公司 换热板及板式换热器
CN106895723B (zh) * 2017-02-24 2019-03-26 江阴市亚龙换热设备有限公司 高效板式换热器
CN109297975A (zh) * 2018-08-16 2019-02-01 奇酷互联网络科技(深圳)有限公司 移动终端及检测方法、存储装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4344899A (en) * 1979-10-26 1982-08-17 Hamon Sobelco, S.A. Fill sheets for gas and liquid contact apparatus
EP0737296A1 (fr) * 1993-12-29 1996-10-16 Commissariat Energie Atomique Echangeur de chaleur a plaques ameliorees
JP2000193390A (ja) * 1998-12-25 2000-07-14 Daikin Ind Ltd プレ―ト式熱交換器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4344899A (en) * 1979-10-26 1982-08-17 Hamon Sobelco, S.A. Fill sheets for gas and liquid contact apparatus
EP0737296A1 (fr) * 1993-12-29 1996-10-16 Commissariat Energie Atomique Echangeur de chaleur a plaques ameliorees
JP2000193390A (ja) * 1998-12-25 2000-07-14 Daikin Ind Ltd プレ―ト式熱交換器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 2000, no. 10 17 November 2000 (2000-11-17) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107314699A (zh) * 2017-06-20 2017-11-03 上海交通大学 一种用于换热器的高性能换热片及其换热器

Also Published As

Publication number Publication date
ES2303279T3 (es) 2008-08-01
CN101036033A (zh) 2007-09-12
EP1797386A1 (fr) 2007-06-20
FR2876179B1 (fr) 2007-02-16
CN100485300C (zh) 2009-05-06
ATE393368T1 (de) 2008-05-15
FR2876179A1 (fr) 2006-04-07
DE602005006296D1 (de) 2008-06-05
DK1797386T3 (da) 2008-07-21
EP1797386B1 (fr) 2008-04-23
DE602005006296T2 (de) 2009-07-16

Similar Documents

Publication Publication Date Title
EP1797386B1 (fr) Echangeur de chaleur a plaques specifiques
EP2032928B1 (fr) Echangeurs thermiques a plaquettes creuses
EP0028545B1 (fr) Feuille de ruissellement pour dispositif de garnissage d'installation de mise en contact de liquide et de gaz
EP1709380A1 (fr) Echangeur thermique et module d'echange s'y rapportant
FR2867844A1 (fr) Dissipateur thermique a fluide pulse
EP2294348A1 (fr) Echangeur de chaleur a plaques, notamment pour vehicules automobiles
WO2005083347A1 (fr) Ailette metallique pour echangeur thermique a air
FR2881218A1 (fr) Tube plat avec insert pour echangeur de chaleur
EP1063486B1 (fr) Echangeur de chaleur à plaques, en particulier refroidisseur d'huile pour véhicule automobile
WO2018206894A1 (fr) Dispositif de régulation thermique de cellules de stockage d'énergie électrique de type cylindrique
FR2916835A1 (fr) Module d'echange de chaleur pour un circuit de climatisation
EP2810009A1 (fr) Radiateur de refroidissement pour vehicule, notamment automobile
WO2005124255A1 (fr) Echangeur de chaleur pour l’huile du moteur d’un vehicule
FR3000189A1 (fr) Plaque pour echangeur thermique
WO2008061918A1 (fr) Echangeur de chaleur interne pour circuit de fluide refrigerant
EP2936031A1 (fr) Élement d'echange thermique, et echangeur thermique correspondant
EP3645184A1 (fr) Tube pour echangeur de chaleur avec dispositif de perturbation
EP3857150B1 (fr) Plaque constitutive d'un échangeur de chaleur et échangeur de chaleur comprenant au moins une telle plaque
EP2068106A1 (fr) Intercalaire ondulé muni de persiennes pour échangeur de chaleur.
EP3207326B1 (fr) Échangeur thermique
FR3100058A1 (fr) Echangeur de chaleur notamment pour véhicule automobile et procédé de fabrication d’un tel échangeur de chaleur
WO2023217970A1 (fr) Plaque pour échangeur de chaleur à perturbateurs d'écoulement de fluide
FR2985010A1 (fr) Plaque pour echangeur thermique
FR2996148A1 (fr) Element de garnissage structure pour colonne de mise en contact de fluides
FR2913819A1 (fr) Plaque de pile a combustible, empilage de cellules de pile a combustible et pile a combustible correspondante

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005800230

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200580033789.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005800230

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2005800230

Country of ref document: EP