WO2006035990A1 - 撮影レンズ - Google Patents

撮影レンズ Download PDF

Info

Publication number
WO2006035990A1
WO2006035990A1 PCT/JP2005/018384 JP2005018384W WO2006035990A1 WO 2006035990 A1 WO2006035990 A1 WO 2006035990A1 JP 2005018384 W JP2005018384 W JP 2005018384W WO 2006035990 A1 WO2006035990 A1 WO 2006035990A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
focal length
object side
photographic
lens system
Prior art date
Application number
PCT/JP2005/018384
Other languages
English (en)
French (fr)
Inventor
Mayumi Kawata
Masatoshi Yamashita
Hirohiko Ina
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2004281830A external-priority patent/JP2006098504A/ja
Priority claimed from JP2004368808A external-priority patent/JP2006178026A/ja
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Publication of WO2006035990A1 publication Critical patent/WO2006035990A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/003Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having two lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration

Definitions

  • the present invention relates to a photographing lens mounted on a camera such as a digital still camera.
  • a photographic lens composed of a lens system including at least a first lens, an aperture stop, and a second lens,
  • the first lens is a positive meniscus lens having a convex surface on the object side lens surface
  • the lens system satisfies the following conditions.
  • the taking lens is a lens
  • a photographing lens composed of a lens system including at least an aperture stop, a first lens, and a second lens,
  • the first lens is a positive meniscus lens having a convex surface on the object side lens surface
  • the second lens is a concave lens on both sides
  • At least one of the lens surfaces has an aspheric shape
  • the focal length of the lens system is f
  • the focal length of the first lens is f1
  • the refractive index of the first lens is n1
  • the radius of curvature of the object side of the first lens is r1
  • FIG. 1 is a cross-sectional view of a photographic lens according to Embodiment 1 of the present invention.
  • 2A to 2C are aberration diagrams of the photographing lens of FIG.
  • FIG. 3 is a cross-sectional view of a photographic lens according to Embodiment 2 of the present invention.
  • 4A to 4C are aberration diagrams of the photographing lens of FIG.
  • FIG. 5 is a cross-sectional view of a photographic lens according to Embodiment 3 of the present invention.
  • 6A to 6C are aberration diagrams of the photographic lens of FIG.
  • FIG. 7 is a cross-sectional view of a photographic lens according to Embodiment 4 of the present invention.
  • 8A to 8C are aberration diagrams of the photographic lens shown in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • the conventional photographing lens described above has the following problems.
  • the above-mentioned Japanese Patent Laid-Open No. 2 00 1- 1 7 4 7 0 1 and Japanese Patent Laid-Open No. 2 0 2-2 9 6 4 9 5 each have a two-lens configuration.
  • the lens constituting the first lens has negative power (also referred to as negative refractive power, negative focal length, or simply negative lens) or weak positive power (positive refractive power, both positive focal length) It is also called a positive lens.
  • the ratio of the total lens length to the focal length of the lens system is large, and the ratio of the total lens length to the focal length of the lens system is about 2 in the photographic lens disclosed in Japanese Patent Application Laid-Open No.
  • the ratio of the total lens length to the focal length of the lens system is about 1.6 times. Therefore, there is a problem that the photographing lens used for a mobile phone or the like that is particularly required to be thin is not compact.
  • the present invention has been made to solve the problems of the prior art, and an object of the present invention is to provide a high-performance photographic lens that shortens the overall length of the lens system.
  • the photographic lens according to the present invention includes at least a first lens, an aperture stop, and a first lens.
  • the first lens is a positive meniscus lens having a convex surface on the object side lens surface. If the focal length of the first lens is f1, the focal length of the lens system is f, and the radius of curvature of the object-side lens surface of the first lens is r1, the lens system satisfies the following conditions: To meet.
  • a positive first meniscus lens having a convex surface on the object side lens surface having power, refractive power or focal length
  • a positive lens having a convex surface on the image side lens surface The lens system is composed of two lenses, the second lens, which is a meniscus lens.
  • the aperture stop is provided in front of the first lens (object side) or behind (image side).
  • the expression (1) in the present invention defines the power arrangement of the front group (first lens) with respect to the lens system, and indicates the conditions under which various aberrations can be corrected satisfactorily while achieving miniaturization. Is.
  • the expression (2) in the present invention defines the power arrangement of the object surface and the lens surface of the first lens with respect to the lens system, and can improve the workability while having high lens performance.
  • the conditions are shown. That is, if the ratio of the radius of curvature r1 of the lens surface on the object side of the first lens to the focal length f of the lens system exceeds the upper limit of Equation (2), The curvature of the object side lens surface becomes too large, making it difficult to process the first lens. On the other hand, if the lower limit of Equation (2) is exceeded, it becomes difficult to correct distortion, and the angle of incidence of the image plane at the maximum angle of view increases, so in particular for photographic lenses that use a solid-state image sensor. In this case, shading (peripheral dimming, etc.) occurs and the lens performance cannot be improved.
  • the inventor of the present invention achieved the miniaturization by constructing the lens system with two lenses and satisfying the equation (1) after the earnest research, By satisfying (1) and (2), various aberrations can be corrected satisfactorily.
  • conditional expression (2) a photographic lens with good workability has been developed. By using such a lens system, downsizing can be achieved and various aberrations can be corrected well.
  • the lens system is composed of two lenses, and each parameter of the lens system satisfies the conditional expression (1), thereby achieving miniaturization.
  • conditional expressions (1) and (2) various aberrations can be corrected satisfactorily, and by satisfying conditional expression (2), workability can be improved.
  • FIG. 1 is a cross-sectional view of a photographic lens according to Embodiment 1 of the present invention.
  • the photographic lens according to the present embodiment includes a lens system including a first lens 1001, an aperture stop 103, and a second lens 1002 in order from the object side.
  • the first lens 10 1 is a positive meniscus lens having a convex surface on the object side lens surface (first lens first surface) 10 6.
  • the second lens 10 2 is a positive meniscus lens having a convex surface on the image side lens surface (second lens second surface) 10 9.
  • Second lens 1 Optical element (face plate or filter) such as a face plate or filter in a solid-state imaging device such as CCD between the image side lens surface 1 0 9 and the imaging surface 1 0 5 of 0 2 Is placed.
  • r j is the radius of curvature (mm) at the j-th surface number R j in order from the object side.
  • R j when j is 1, it is the object side lens surface 1 0 6 of the first lens 1 0 1, and when j is 2, the image side lens surface of the first lens 1 0 1 (first Lens 2nd surface) 1 0 7, when j is 3, object side lens surface of 2nd lens 1 0 2 (second lens 1st surface) 1 0 8 and when j is 4, 2nd lens This is the image side lens surface 1 0 9 of the lens 1 0 1.
  • d j is the j-th center distance (mm) in order from the object side.
  • N d is the refractive index of each lens at the d-line (wavelength of 0.5 8 7 5 6 ⁇ )
  • d is the Abbe number of each lens at the d-line
  • f is the focal distance of the lens system (mm)
  • F no. means open F picker
  • L means the total length of the lens system (mm).
  • the * next to the surface number indicates a non-spherical surface.
  • the aspherical shape is defined as the distance (sag amount) in the optical axis direction from the tangent plane of the surface vertex to x, the height h_ from the optical axis, the paraxial radius of curvature r, the conic constant ⁇ , the mth order
  • the focal length ⁇ 1 of the first lens 101 is 3.542 mm
  • the value LZ f obtained by normalizing the total length L of the lens system with the focal length f of the lens system is 1.26. Therefore, a very compact photographic lens with a total length of the lens system L ⁇ e ⁇ which is less than 1.3 times the focal length f of the lens system has been realized.
  • FIG. 2A to 2C are aberration diagrams of the photographing lens of FIG. Figure 2A shows spherical aberration, Figure 2B shows astigmatism, and Figure 2C shows distortion.
  • each aberration is corrected well despite the fact that a very compact photographic lens is realized as compared with the prior art.
  • the lens surfaces 1 0 6, 1 0 7, 1 0 8 and 1 0 9 are aspherical lenses, but the present invention is limited to this. It is not a thing and can be selected and used as appropriate.
  • a resin material is used for both the first lens and the second lens. Since all lenses use resin materials, the cost is low and they can be produced easily.
  • FIG. 3 is a side view of the photographic lens according to Embodiment 2 of the present invention.
  • the photographing lens according to this embodiment differs from the first embodiment in that, as shown in FIG. 3, the position of the aperture stop 10 3 is the front of the first lens 1 0 1 (object 2), the shape of the image side lens surface 1 0 9 of the second lens 10 2 is different, and the position of the imaging surface 1 0 5 is on the end surface of the optical member (face plate or filter) 1 04 That is.
  • the value LZ f obtained by normalizing the total length L of the lens system with the focal length f of the lens system is 1.13.
  • FIG. 4A to 4C are aberration diagrams of the photographing lens of FIG. Figure 4A shows spherical aberration, Figure 4B shows astigmatism, and Figure 4C shows distortion.
  • lenses that are aspherical at the lens surfaces 1 0 6, 1 0 7, 1 0 8 and 1 0 9 are used, but the present invention is not limited to this. However, it can be selected and adopted as appropriate. Next, the present invention will be described below together with the third embodiment and the fourth embodiment.
  • the present invention has been made to solve the problems of the prior art, and it is an object of the present invention to provide a photographing lens that is compact and can correct aberrations satisfactorily without increasing the number of lenses.
  • the photographic lens according to the present invention is a photographic lens including a lens system including an aperture stop, a first lens, and a second lens in order from the object side.
  • the first lens is a meniscus lens that is convex on the object side and has a positive refractive power
  • the second lens is a biconcave lens.
  • at least one of the lens surfaces has an aspherical shape, and the lens system satisfies the following conditions.
  • f is the focal length of the lens system
  • f 1 is the focal length of the first lens
  • n 1 is the refractive index of the first lens
  • r 1 is the radius of curvature of the object-side surface of the first lens.
  • conditional expression (3) in the present invention defines the focal length of the first lens, and indicates the condition for obtaining a compact and good aberration performance. That is, if the ratio of the focal length of the first lens to the focal length of the lens system is less than or equal to the lower limit value of the conditional expression (3), it is difficult to correct aberrations such as distortion. On the other hand, if the upper limit value of conditional expression (3) is exceeded, the entire device becomes large, and a compact lens cannot be realized.
  • Conditional expression (4) in the present invention defines the refractive power of the first lens, and indicates the condition for obtaining a compact and good aberration performance.
  • the predetermined value (nl-l) f Z rl for the radius of curvature r 1 of the object side surface of the first lens, the refractive index n 1 of the first lens, and the focal length f of the lens system is the lower limit of the conditional expression (4) If it is below, the thickness will increase around the axial thickness of the first lens, and a compact lens cannot be realized. On the other hand, if the upper limit of conditional expression (4) is exceeded, it will be difficult to sufficiently pass the off-axis light beam through the first lens, and it will be difficult to correct spherical aberration.
  • the total length is about 1 of the focal length while satisfying conditional expressions (3) and (4). It is very short, less than 2 times, and good aberration performance can be obtained.
  • a resin material is used for both the first lens and the second lens. Since all lenses use resin material, the cost is low and production is easy.
  • FIG. 5 is a cross-sectional view of a photographic lens according to Embodiment 3 of the present invention.
  • the photographing lens according to the present embodiment includes an aperture stop 50 3, a first lens 5 0 1, and a second lens 5 0 2 in order from the object side. It is composed of a lens system.
  • the first lens 50 1 is a meniscus lens having a positive refractive power with a convex object-side lens surface 5 06 (first surface of the first lens).
  • the second lens 50 2 is a biconcave lens.
  • a resin material is used for both the first lens 5 0 1 and the second lens 5 0 2, and any of the lens surfaces 5 0 6, 5 0 7, 5 0 8, 5 0 9 is aspherical. have.
  • r j is the radius of curvature (mm) at the j-th surface number R j in order from the object side.
  • the surface number R l is the object side lens surface 5 0 6 of the first lens 5 0 1
  • R 2 is the image side lens surface (first lens second surface) 5 0 7 of the first lens 5 0 1 Yes
  • R 3 is the object side lens surface (second lens first surface) 5 0 8 of the second lens 50 2
  • R 4 is the image side lens surface of the second lens 5 0 1 (second lens second surface) Surface) 5 0 9
  • d j is the j-th center distance (mm) in order from the object side.
  • N d is the refractive index of the lens at the d line
  • r d is the Abbe number of the lens at the d line
  • f is the focal length (mm) of the lens system
  • the aspherical shape is defined as the optical axis direction distance (sag amount) from the tangent plane of the surface apex to x, the height h from the optical axis, r is the paraxial radius of curvature, ⁇ is the conic constant,
  • x ⁇ (1 / r) h 2 ⁇ / [1 + ⁇ 1-(1 + ⁇ ) (1 / r) 2 h 2 ⁇ 1/2 ] + A 4 h 4 + A 6 h 6 + A 8 h 8 + A 10 h l0 + A 12 h 12 ⁇ (X) Therefore, in the following, it represents the value of / and A m in the above formula (X), and specifies a non-spherical shape.
  • the focal length f 1 of the first lens 50 1 is 4.21, and the focal length f of the lens system is 4.64. Therefore, 0.6 ⁇ f 1 / f-0.9 1 1 1. 0, and conditional expression (3) is satisfied.
  • FIGS. 6A to 6C are aberration diagrams of the photographing lens of FIG. Figure 6A shows spherical aberration, Figure 6B shows astigmatism, and Figure 6C shows distortion.
  • Fig. 6 it is a lens system with a very simple configuration of 2 elements in 2 groups, but by satisfying conditional expressions (2 1) and (2 2), it is approximately 1.2 times the focal length.
  • the following aberrations are very short and good aberration performance can be obtained.
  • the cost is low and they can be produced easily.
  • FIG. 7 is a cross-sectional view of a photographic lens according to Embodiment 4 of the present invention.
  • the fourth embodiment is also composed of the same lens system as the third embodiment.
  • Each parameter value (including the aspherical coefficient) of the photographing lens in this embodiment is as shown in (Table 4).
  • 8A to 8C are aberration diagrams of the photographic lens shown in FIG. Fig. 8A shows spherical aberration, Fig. 8B shows astigmatism, and Fig. 8C shows distortion.
  • the lens system has a very simple configuration of 2 elements in 2 groups. It is very short, about 1.2 times the focal length, and good aberration performance can be obtained. In addition, since all lenses use a resin material, the cost is low and they can be produced easily.
  • both the first lens 50 1 and the second lens 50 2 are configured to be aspherical.
  • the present invention is not limited to this.
  • At least one of the lens surfaces 5 06 and 5 0 7 of the first lens 5 0 1 has an aspheric shape
  • the lens surface of the second lens 5 0 2 At least one of 5 0 8 and 5 0 9 may be an aspherical shape.
  • the lens system is composed of two lenses, miniaturization can be achieved, various aberrations can be corrected well, and workability can be improved. Therefore, it is useful as a photographic lens mounted on a digital still camera, a small imaging device, or the like.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

レンズ枚数を増やすことなくレンズ系の全長を短くし、かつコンパクトかつ収差を良好に補正することができる高性能な撮影レンズが提供される。本発明の撮影レンズは、少なくとも第1レンズと開口絞りと第2レンズを具備するレンズ系から構成される撮影レンズであって、第1レンズは物体側レンズ面に凸面を有し、f1を前記第1レンズの焦点距離、fを前記レンズ系の焦点距離、r1を前記第1レンズの物体側レンズ面の曲率半径とした場合に、レンズ系は、以下の条件を満たす。   0.5<f1/f<1.5 ・・・(1)   1.0<f/r1<4.0 ・・・(2)また、第2レンズ2は両凹レンズであり、第1レンズ1および第2レンズ2のいずれにおいても少なくともいずれか一方のレンズ面は非球面形状を有する場合、第1レンズ1の屈折率をn1とすると、レンズ系は、以下の条件を満たす。 0.6<f1/f<1.0         ・・・(3) 1.8<(n1−1)f/r1<2.5   ・・・(4)

Description

明細書
撮影レンズ
技術分野
本発明は、 デジ夕ルスチルカメラ等のカメラに搭載される撮影レン ズに関する。 背景技術
近年、 C CD等の固体撮像素子が採用されたデジ夕ルスチルカメラ やビデオカメラ等の普及率が伸びている。 また、 携帯電話やノート型 パソコン等の携帯通信機器に上述の固体撮像素子および撮影レンズが 搭載されたものが増えていることもあり、 これらに用いる撮影レンズ の需要も急速に高まっている。 このような携帯通信機器の小型化 · 薄 型化、 高性能化にともない、 これらに搭載される撮影レンズの小型 化 ·薄型化、 高性能化が求められるとともに、 普及させるための低コ スト化が求められている。
このような要求に対し、 従来から 2枚程度のレンズを利用したもの がある。 これらの従来技術は、 例えば、 特開 2 0 0 1 - 1 7 4 7 0 1 号公報ゃ特開 2 0 0 2— 2 9 649 5号公報に開示されている。
また、 カメラ付き携帯電話やノート P C、 P DAのような携帯通信 機器の急速な普及にともない、 高い光学性能が望まれている。 そして、 このための撮影レンズとして様々なレンズが開発されている。 これら のレンズは、 例えば、 特開 2 0 0 2— 2 5 8 1 5 5号公報ゃ特開 2 0 04— 1 7 7 6 2 8号公報に開示されている。 発明の開示 撮影レンズは、
少なく とも第 1 レンズと開口絞りと第 2レンズを具備するレンズ系か ら構成される撮影レンズであって、
第 1 レンズは、 物体側レンズ面に凸面を有する正のメニスカスレンズ であり、
第 1 レンズの焦点距離を ί 1 とし、 レンズ系の焦点距離を f とし、 第 1 レンズの物体側レンズ面の曲率半径を r 1をとした場合に、 レンズ 系は、 以下の条件を満たす。
0 . 5 < f 1 / f < 1 . 5 - - · ( 1 )
1 . 0く f / r l < 4 . 0 - - · ( 2 )
撮影レンズは、
物体側より順に、 少なくとも開口絞りと第 1 レンズと第 2レシ ズを具備するレンズ系から構成される撮影レンズであって、
第 1 レンズは、 物体側レンズ面に凸面を有する正メニスカスレ ンズであり、
第 2レンズは、 両面が凹のレンズであり、
第 1 レンズおよび第 2レンズのいずれにおいても、 少なくとも いずれか一方のレンズ面は、 非球面形状を有し、
レンズ系は、 レンズ系の焦点距離を f とし、 第 1 レンズの焦点 距離を f 1 とし、 第 1レンズの屈折率を n 1 とし、 第 1 レンズの物体 側面の曲率半径を r 1とした場合に、 以下の 2つの条件式を満たす。
Figure imgf000004_0001
1 . 8 < ( n 1 - 1 ) f / r 1 < 2 . 5 • ( 4 ) 図面の簡単な説明
図 1は本発明の実施の形態 1における撮影レンズの断面図である。 図 2 Aから図 2 Cは図 1の撮影レンズにおける収差図である。 図 3は本発明の実施の形態 2における撮影レンズの断面図である。 図 4 Aから図 4 Cは図 3の撮影レンズにおける収差図である。
図 5は本発明の実施の形態 3における撮影レンズの断面図である。 図 6 Aから図 6 Cは図 5の撮影レンズにおける収差図である。
図 7は本発明の実施の形態 4における撮影レンズの断面図である。 図 8 Aから図 8 Cは図 7の撮影レンズにおける収差図である。 発明を実施するための最良の形態
まず、 実施の形態 1 と実施の形態 2とともに、 本発明を以下に説明 する。
上述の従来の撮影レンズにおいては、 以下のような問題がある。 す なわち、 上記特開 2 0 0 1— 1 7 4 7 0 1号公報ゃ特開 2 0 0 2— 2 9 6 4 9 5号公報に開示の撮影レンズは、 いずれも 2枚構成であるが、 第 1 レンズを構成するレンズが、 負のパワー (負の屈折力、 負の焦点 距離ともいい、 単に負のレンズともいう) あるいは弱い正のパワー (正の屈折力、 正の焦点距離ともいい、 単に正のレンズともいう) に なっている。 そのため、 レンズ系の焦点距離に対するレンズ全長の比 が大きく、 特開 2 0 0 1 - 1 74 7 0 1号公報に開示の撮影レンズで は、 レンズ系の焦点距離に対するレンズ全長の比は約 2. 3倍、 特開 2 0 0 2 - 2 9 6 4 9 5号公報に開示の撮影レンズでは、 レンズ系の焦 点距離に対するレンズ全長の比は約 1. 6倍になっている。 従って、 特に薄型化が要求される携帯電話等に用いられる撮影レンズとしては、 コンパクト性に欠けるという問題がある。
本発明は、 かかる従来技術の問題点を解決するべくなされたもので、 レンズ系の全長を短くし、 かつ、 高性能な撮影レンズを提供すること を目的とする。
本発明に係る撮影レンズは、 少なくとも第 1 レンズと開口絞りと第 2レンズを具備するレンズ系から構成される撮影レンズであって、 第 1レンズは物体側レンズ面に凸面を有する正のメニスカスレンズであ る。 そうして、 第 1 レンズの焦点距離を f 1、 レンズ系の焦点距離を f 、 第 1 レンズの物体側レンズ面の曲率半径を r 1 とした場合に、 レ ンズ系は、 以下の条件を満たすものである。
0 . 5 < f 1 / f < 1 . 5 · - · ( 1 )
1 . 0 < f Z r lく 4 . 0 - - · ( 2 )
上記構成に係る撮影レンズにおいては、 物体側レンズ面に凸面を有 する正の (パワー、 屈折力または焦点距離を有する) メニスカスレン ズである第 1 レンズと、 像側レンズ面に凸面を有する正のメニスカス レンズである第 2 レンズとの 2枚のレンズによりレンズ系が構成され る。 また、 開口絞りは、 第 1 レンズの前 (物体側) もしくは後 (像 側) 〖こ設けられる。
ここで、 本発明における式 ( 1 ) は、 レンズ系に対する前群 (第 1 レンズ) のパワー配置を規定するものであり、 小型化を達成しつつ諸 収差の補正を良好に行い得る条件を示すものである。
すなわち、 レンズ系の焦点距離 f に対する第 1 レンズの焦点距離 f 1の _fc匕が式 ( 1 ) の上限を超えると、 レンズ系に対する前群のパワー 配置 S弱くなり、 レンズ系の全長が長くなつてしまう。 一方、 式 ( 1 ) の下限を超えると、 レンズ系に対する前群のパワー配置が強く なるので、 前群で発生した諸収差を後群 (第 2レンズ) で補正するこ とができない。
また、 本発明における式 (2 ) は、 レンズ系に対する第 1 レンズの 物体俱 ϋレンズ面のパワー配置を規定するものであり、 高いレンズ性能 を有しつつ、 加工性を良好にすることができる条件を示すものである。 すなわち、 レンズ系の焦点距離 f に対する第 1 レンズの物体側レン ズ面の曲率半径 r 1の比が式 ( 2 ) の上限を超えると、 第 1レンズの 物体側レンズ面の曲率が大きくなり過ぎ、 第 1 レンズの加工が困難と なる。 一方、 式 ( 2 ) の下限を超えると、 歪曲収差の補正が困難にな るとともに、 最大画角での像面の入射角が大きくなるため、 特に、 固 体撮像素子を使用する撮影レンズにおいては、 シェーディング (周辺 減光等) が生じ、 レンズ性能を高くすることができない。
以上より、 本発明の発明者は、 鋭意研究の末、 レンズ系を 2枚のレ ンズで構成し、 レンズ系の各パラメータが式 ( 1 ) を満足させること により、 小型化を達成し、 式 ( 1 ) ( 2 ) を満足させることにより、 諸 収差の補正を良好に行うことができ、 加えて、 条件式 ( 2 ) を満足さ せることにより、 加工性のよい撮影レンズを開発した。 このようなレ ンズ系を用いることにより、 小型化を達成することができるとともに、 諸収差を良好に補正することができる。
この様に、 本発明に係る撮影レンズによれば、 レンズ系を 2枚のレ ンズで構成し、 レンズ系の各パラメ一夕が条件式 (1 ) を満足させる ことにより、 小型化を達成し、 条件式 ( 1 ) ( 2 ) を満足させることに より、 諸収差の補正を良好に行うことができ、 加えて、 条件式 ( 2 ) を満足させることにより、 加工性をよくすることができる。
以下、 図面を参照しつつ、 本発明を実施するための最良の形態につ いて説明する。
(実施の形態 1 )
図 1は本発明の実施の形態 1における撮影レンズの断面図である。 本実施形態に係る撮影レンズは、 図 1に示すように、 物体側より順 に、 第 1 レンズ 1 0 1、 開口絞り 1 0 3、 第 2 レンズ 1 0 2を具備す るレンズ系から構成される。 第 1 レンズ 1 0 1は、 物体側レンズ面 (第 1 レンズ第 1 面) 1 0 6に凸面を有する正のメニスカスレンズで ある。 第 2 レンズ 1 0 2は、 像側レンズ面 (第 2レンズ第 2面) 1 0 9に凸面を有する正のメニスカスレンズである。 また、 第 2レンズ 1 0 2の像側レンズ面 1 0 9 と撮像面 1 0 5との間に C CD等の固体撮 像素子におけるフェイスプレ一トまたはフィルタ等の光学部材 (フエ イスプレート、 またはフィルタ) 1 0 4が配置される。
以上の構成を有する本実施形態における撮影レンズの各パラメータ 値は、 (表 1 ) に示す通りである。 ここで、 r j は物体側から順に j番 目の面番号 R j における曲率半径 (mm) である。 面番号 R j におい て、 j が 1の場合は第 1 レンズ 1 0 1の物体側レンズ面 1 0 6であり、 j が 2の場合は第 1 レンズ 1 0 1 の像側レンズ面 (第 1 レンズ第 2 面) 1 0 7であり、 j が 3の場合は第 2 レンズ 1 0 2の物体側レンズ 面 (第 2レンズ第 1面) 1 0 8であり、 j が 4の場合は第 2レンズ 1 0 1の像側レンズ面 1 0 9である。 d j は物体側から順に j番目の面 中心間隔 (mm) である。 N dは d線 (波長 0. 5 8 7 5 6 ΠΙの 光) における各レンズの屈折率、 dは d線における各レンズのアツ ベ数、 f はレンズ系の焦点 巨離 (mm)、 F n o . は開放 Fナンパ一、 Lはレンズ系の全長 (mm) を意味する。 なお、 面番号横の *は非球 面であることを示す。
また、 非球面形状は、 面頂点の接平面からの光軸方向の距離 (サグ 量) を x、 光軸からの高さ h_ として、 近軸曲率半径を r、 円錐定数を κ、 第 m次の非球面係数を A m (m= 4 , 6 , 8 , 1 0, 1 2) とした とき、 次式で表される。 x= K l Z r ) h2} / 〔 1 + { 1 - ( 1 + κ ) ( l Z r ) zh2} 1/2〕 + A4h +A6h6+A8h8 + Alo I0+ A12h12 · · (X) したがって、 以下では、 上記式 (X) における Kと Amの値を示し、 非球面形状を特定している。 00+30000Ό 00+30000Ό 00+ョ oooo'o 00+30000Ό sty ι.ο-39εοε - 00+ヨ^ 6'6 00+ョ oooo'o 00+ョ OOOO'O οτγ 0-ョ 9 00+ョ 9 60'8- 0+ョ Ο Ο'Ι·- 10-3£098'9- 8V ΐ·ο-ョ δε'ε- 00+ョ £8 ' 2: 0-3£99Ζ'6- ョ 9V
0-ョ 96(Η - ョ簡 'ぃ
1-0+3126 ' U 00+39892'3
z TH
Figure imgf000009_0001
K Xく/!
9 o ε · ε = i ^ · ε = o u j 、 8 2 9 =J
( T拏)
L
t'scsio/soozdf/xad 066SC0/900Z ΟΛ\ なお、 本実施の形態においては、 第 1 レンズ 1 〇 1の焦点距離 ί 1 は 3. 54 2 mmであり、 レンズ系の焦点距離 f 2. 6 2 8 mmで ある。 従って、 0. 5く f l / f = l . 3 4 < 1. 5 となり、 条件式 ( 1 ) が満足されている。 また、 第 1レンズ 1 0 1の物体側レンズ面 1 0 6の曲率半径 r 1は 0. 7 0 0 mmである。 従って、 1. 0 < f / r 1 = 3. 7 5 < 4. 0となり、 条件式 ( 2 ) ) ^満足されている。 なお、 レンズ系の全長 Lをレンズ系の焦点距離 f で正規化した値 LZ f は 1. 2 6となる。 従って、 レンズ系の全長 L^e ^レンズ系の焦点距 離 f の 1. 3倍以下と非常にコンパクトな撮影レンズが実現されてい る。
図 2 Aから図 2 Cは図 1の撮影レンズにおける収差図である。 図 2 Aは球面収差を示し、 図 2 Bは非点収差を示し、 図 2 Cは歪曲収差を 示す。
本実施の形態においては、 従来技術に比較して、 非常にコンパク ト な撮影レンズを実現しているにも関わらず、 各収差とも良好に補正さ れている。
なお、 本実施の形態のレンズ系においては、 レンズ面 1 0 6、 1 0 7、 1 0 8および 1 0 9は非球面であるレンズを用いているが、 本発 明はこれに限定されるものではなく、 適宜選択して我用可能である。 また、 好ましくは、 第 1 レンズおよび第 2レンズは、 ともに樹脂材 料が使用される。 すべてのレンズが樹脂材料を使用していることによ り、 コストも低く、 容易に生産することができる。
(実施の形態 2)
次に、 本発明に係る撮影レンズの実施の形態 2について説明する。 図 3は本発明の実施の形態 2における撮影レンズの斷面図である。
本実施形態に係る撮影レンズが実施の形態 1と異なる点は、 図 3に 示すように、 開口絞り 1 0 3の位置が第 1 レンズ 1 0 1の前方 (物体 側) にあること、 第 2レンズ 1 0 2の像側レンズ面 1 0 9の形状が異 なること、 撮像面 1 0 5の位置が光学部材 (フェイスプレート または フィルタ) 1 04の端面上にあることである。
以上の構成を有する本実施形態における撮影レンズの各パラ メータ 値は、 (表 2) に示す通りである。 ここでも、 各値の意味すると ころは 実施の形態 1と同じである。
(表 2)
f = 2.3 2 3、 F n o = 2.8 5、 L = 2.6 3 2
レンズデータ
面番号 dj Nd v d
開口絞り
0.05
R1 * 0.782
0.572 1.606019 57.427987
R2 * 1.314
0.52
R3 * 13.894
0.9 1.478 56
R4 * 3.442
0.24
R5
0.4 1.516798 64.198258
R6 (IMA) 非球面係数
Figure imgf000012_0001
なお、 本実施形態においては、 第 1 レンズ 1 0 1の焦点距離 f 1は 2. 6 6 9 mmであり、 レンズ系の焦点距離 f は 2. 3 2 3 mmであ る。 従って、 0. 5く f l Z f = 0. 8 6 < 1. 5 となり、 条件式 ( 1 ) が満足されている。 また、 第 1 レンズ 1 0 1の物体側レンズ面 1 0 6の曲率半径 r 1は 0. 7 8 2 mmである。 従って、 1. 0く f / τ 1 = 2. 9 7 < 4. 0 となり、 条件式 ( 2 ) が満足されている。 なお、 レンズ系の全長 Lをレンズ系の焦点距離 f で正規化した値 LZ f は 1. 1 3である。 従って、 レンズ系の全長 Lがレンズ系の焦点距 離 f の 1. 3倍以下と非常にコンパク トな撮影レンズを実現している。 図 4 Aから図 4 Cは図 3の撮影レンズにおける収差図である。 図 4 Aは球面収差を示し、 図 4 Bは非点収差を示し、 図 4 Cは歪曲収差を 示す。
本実施の形態においても、 従来技術に比較して、 非常にコンパク ト な撮影レンズを実現しているにも関わらず、 各収差とも良好に補正さ れている。
なお、 本実施形態のレンズ系においても、 レンズ面 1 0 6、 1 0 7、 1 0 8および 1 0 9において非球面であるレンズを用いているが、 本 発明はこれに限定されるものではなく、 適宜選択して採用可能である。 次に、 実施の形態 3と実施の形態 4とともに、 本発明を以下に説明 する。
最近は特に、 上述した携帯通信機器の小型化に伴い、 撮影レンズに おいても、 高い光学性能を有すると同時にさらなる小型化および低コ スト化の要求が強い。 そのため、 レンズ枚数を低減し、 小型化および 構成の簡易化を図りながら従来と同程度以上の高い光学性能を有する 撮影レンズが望まれている。 また、 ガラスはプラスチックよりコスト が 2倍以上と高く、 ガラスレンズへの加工も小径になる程困難になつ てくる。
本発明は、 かかる従来技術の問題点を解決するべくなされたもので、 レンズ枚数を増やすことなく、 コンパクトかつ収差を良好に補正する ことができる撮影レンズを提供することを目的とする。
本発明に係る撮影レンズは、 物体側より順に、 開口絞り、 第 1レン ズおよび第 2レンズを具備するレンズ系から構成される撮影レンズで ある。 前記第 1レンズは、 物体側が凸で正の屈折力を有するメニスカ スレンズであり、 前記第 2レンズは、 両凹レンズである。 前記第 1レ ンズおよび第 2レンズのいずれにおいても、 少なくともいずれか一方 のレンズ面は、 非球面形状を有し、 前記レンズ系は、 以下の条件を満 たす。
0 . 6 < f 1 / f < 1 . 0 · · · ( 3 )
1 . 8 < ( n 1 - 1 ) f / r 1 < 2 . 5 · · · ( 4 )
ただし、 f はレンズ系の焦点距離、 f 1は第 1レンズの焦点距離、 n 1は第 1レンズの屈折率、 r 1は第 1 レンズの物体側の面の曲率半 径である。
ここで、 本発明における条件式 (3 ) は、 第 1レンズの焦点距離を 規定するものであり、 コンパクトかつ良好な収差性能を得るための条 件を示すものである。 すなわち、 レンズ系の焦点距離に対する第 1レンズの焦点距離の比 が条件式 (3 ) の下限値以下になると、 歪曲収差等の収差の補正が困 難となる。 一方、 条件式 (3 ) の上限値以上になると、 装置全体が大 型化し、 コンパク卜なレンズを実現できなくなってしまう。
また、 本発明における条件式 (4 ) は、 第 1レンズの屈折力を規定 するものであり、 コンパクトかつ良好な収差性能を得るための条件を 示すものである。
すなわち、 第 1レンズの物体側面の曲率半径 r 1、 第 1レンズの屈 折率 n 1およびレンズ系の焦点距離 f に関する所定値 (n l— l ) f Z r lが条件式 (4 ) の下限値以下になると、 第 1レンズの軸上芯厚 を中心に厚みが増大し、 コンパクトなレンズを実現できない。 一方、 条件式 (4 ) の上限値以上になると、 第 1レンズに軸外光束を十分に 通過させることが困難であるとともに、 球面収差の補正が困難となつ てしまう。
本発明に係る撮影レンズによれば、 2群 2枚という非常にシンプル な構成のレンズ系でありながら、 条件式 (3 ) および (4 ) を満足さ せることにより、 全長が焦点距離の約 1 . 2倍以下と非常に短く、 か つ、 良好な収差性能を得ることができる。
好ましくは、 第 1レンズおよび第 2レンズは、 ともに樹脂材料が使 用される。 すべてのレンズが樹脂材料を使用していることにより、 コ ストも低く、 容易に生産することができる。
以下、 添付図面を参照しつつ、 本発明を実施するための最良の形態 について説明する。
(実施の形態 3 )
図 5は本発明の実施の形態 3における撮影レンズの断面図である。 本実施形態に係る撮影レンズは、 図 5に示すように、 物体側より順 に、 開口絞り 5 0 3、 第 1 レンズ 5 0 1および第 2レンズ 5 0 2を具 備するレンズ系から構成される。 第 1レンズ 5 0 1は、 物体側レンズ 面 5 0 6 (第 1レンズ第 1面) が凸で正の屈折力を有するメニスカス レンズである。 第 2レンズ 5 0 2は、 両凹レンズである。 本実施形態 においては、 第 1レンズ 5 0 1および第 2レンズ 5 0 2ともに樹脂材 料が使用され、 いずれのレンズ面 5 0 6、 5 0 7、 5 0 8、 5 0 9も 非球面形状を有している。
以上の構成を有する本実施形態における撮影レンズの各パラメ一夕 値は、 (表 3) に示す通りである。 '
ここで、 r j は物体側から順に j番目の面番号 R j における曲率半 径 (mm) である。 面番号 R l、 は第 1レンズ 5 0 1の物体側レンズ 面 5 0 6であり、 R 2は第 1 レンズ 5 0 1の像側レンズ面 (第 1 レン ズ第 2面) 5 0 7であり、 R 3は第 2レンズ 5 0 2の物体側レンズ面 (第 2レンズ第 1面) 5 0 8であり、 R 4は第 2レンズ 5 0 1の像側 レンズ面 (第 2レンズ第 2面) 5 0 9である。 d j は物体側から順に j番目の面中心間隔 (mm) である。 N dは d線におけるレンズの屈 折率、 リ dは d線におけるレンズのアッベ数、 f はレンズ系の焦点距 離 (mm)、 F n o. は開放 Fナンバーを意味する。
また、 非球面形状は、 面頂点の接平面からの光軸方向の距離 (サグ 量) を x、 光軸からの高さ hとして、 rを近軸曲率半径、 κを円錐定 数、
Am (m= 4, 6, 8 , 1 0, 1 2) を第 m次の非球面係数としたとき、 次式で表される。 x= {( 1 / r ) h2} / 〔 1 + { 1 - ( 1 + κ) ( 1 / r ) 2h2} 1/2〕 + A4h4+ A6h6+A8h8+ A10hl0+A12h 12〜 (X) したがって、 以下では、 上記式 (X) における / と Amの値を示し、 非球面形状を特定している。
(表 3 )
f = 4. 64、 F n o = 4. 0 2
レンズデータ
Figure imgf000016_0001
非球面係数
Rl R2 R3 E4
K -1.7046E+00 -6.2653E+01 O.OOOOE+00 -2.5790E+00
A4 8.3075E-02 4.3744E-01 -8.6810E-02 -1.8699E-02
Ae 1.3124E-01 -7.0522E-01 -1.2928E-02 -5.8500E-03
As -1.8008E-01 1.0322E+00 5.3340E-03 1.2880E-03
Αιο 9.4棚 E-04 -4.4363E-02 5.7170E-02 -1.3600E-05
Al2 O.OOOOE+00 O.OOOOE+00 O.OOOOE+OO 0.0000E-00 なお、 本実施形態においては、 第 1 レンズ 5 0 1の焦点距離 f 1は 4. 2 1であり、 レンズ系の焦点距離 f = 4. 64である。 従って、 0. 6 < f 1 / f - 0. 9 1く 1. 0となり、 条件式 (3) は満足さ れる。 また、 第 1レンズ 5 0 1の屈折率 n 1は 1. 5 247であり、 第 1 レンズ 5 0 1の物体側面 5 0 6の曲率半径 r 1は 1. 3 3 2 mm である。 従って、 1. 8< (n l— 1 ) ί / τ 1 = 1. 8 3 < 2. 5 となり、 条件式 (4) は満足される。
図 6 Αから図 6 Cは図 5の撮影レンズにおける収差図である。 図 6 Aは球面収差を示し、 図 6 Bは非点収差を示し、 図 6 Cは歪曲収差を 示す。
図 6に示すように、 2群 2枚という非常にシンプルな構成のレンズ 系でありながら、 条件式 (2 1) および (2 2) を満足させることに より、 焦点距離の約 1. 2倍以下と非常に短く、 かつ、 良好な収差性 能を得ることができている。 また、 すべてのレンズが樹脂材料を使用 していることにより、 コストも低く、 容易に生産することができる。
(第 4実施形態)
図 7は本発明の実施の形態 4における撮影レンズの断面図である。 実施の形態 4においても実施の形態 3と同様のレンズ系から構成さ れる。 本実施形態における撮影レンズの各パラメータ値 (非球面係数 を含む) は、 (表 4) に示す通りである。
なお、 本実施形態においては、 第 1 レンズ 5 0 1の焦点距離 f 1は 3. 3 1 6であり、 レンズ系の焦点距離 f は 4. 1 1 mmである。 従 つて、 0. 6く ] f l / f = 0. 8 1く 1. 0となり、 条件式 ( 3 ) は 満足される。 また、 第 1レンズ 5 0 1の屈折率 n 1は 1. 5 247で あり、 第 1レンズ 5 0 1の物体側面 5 0 6の曲率半径 r 1は 1. 1 5 4 mmである。 従って、 1. 8 < ( n 1 _ 1 ) ί / τ 1 = 1. 8 7 < 2. 5となり、 条件式 (4) は満足される。 図 8 Aから図 8 Cは図 7の撮影レンズにおける収差図である。 図 8 Aは球面収差を示し、 図 8 Bは非点収差を示し、 図 8 Cは歪曲収差を 示す。
(表 4 )
f = 4. 1 1、 F n o = 4. 03
レンズデータ
Figure imgf000018_0001
非球面係数
Rl R2 R3 R4 κ -1.0874E+00 -5.0163E+00 0.0000E+00 0.0000E+00
Α4 1.2063E-01 2.8418E-02 -1.6794E-01 1.0059E-02
As -6.8300E-03 8.5405E-01 -1.3217E-01 -1.3965E-02
As 3.4094E-01 -2.3830E+00 1.2616E-01 2.4960E-03
Αιο -3.3592E-02 3.1384E-01 4.6397E-02 -1.6400E-05
Al2 0.0000E+00 0.0000E+00 -1.3222E-02 0.0000E+00 本実施形態においても、 図 7及び図 8に示すように、 2群 2枚とい う非常にシンプルな構成のレンズ系でありながら、 条件式 (3 ) およ び (4 ) を満足させることにより、 焦点距離の約 1 . 2倍以下と非常 に短く、 かつ、 良好な収差性能を得ることができている。 また、 すべ てのレンズが樹脂材料を使用していることにより、 コストも低く、 容 易に生産することができる。
なお、 以上の実施形態においては、 第 1 レンズ 5 0 1および第 2レ ンズ 5 0 2 ともにいずれのレンズ面についても非球面形状で構成され る例について説明した。 しかし、 これに限られるものではなく、 第 1 レンズ 5 0 1のレンズ面 5 0 6または 5 0 7の少なくともいずれか一 方が非球面形状であり、 かつ、 第 2レンズ 5 0 2のレンズ面 5 0 8ま たは 5 0 9の少なくともいずれか一方が非球面形状であればよい。 産業上の利用可能性
本発明に係る撮影レンズは、 レンズ系を 2枚のレンズで構成し、 小 型化を達成し、 諸収差の補正を良好に佇うことができ、 加工性をよく することができる。 従って、 デジタルスチルカメラや小型撮像装置等 に搭載される撮影レンズとして有用である。

Claims

請求の範囲
1. 少なくとも第 1 レンズと開口絞りと第 2 レンズを具備するレン ズ系から構成される撮影レンズであって、
前記第 1レンズは、 物体側レンズ面に凸面を有する正のメニス カスレンズであり、
前記第 1レンズの焦点距離を f 1 とし、 前記レンズ系の焦点距 離を f とし、 前記第 1 レンズの物体側レンズ面の曲率半径を r 1をと した場合に、 前記レンズ系は、 以下の 2つの条件式を満たす撮影レン ズ、。
0. 5 < f 1 Z f < 1. 5 · - · ( 1 )
1. 0 < f Z r l <4. 0 * · · (2)
2. 前記レンズ系は、 物体側より順に、 前記第 1 レンズ、 前記開口 絞り、 前記第 2レンズが配置され、
前記第 2レンズは、 正の屈折力を有する請求項 1に記載の撮影 レンズ。
3. 前記レンズ系は、 物体側より順に、 前記開口絞り、 前記第 1 レ ンズ、 前記第 2レンズが配置され、
前記第 2レンズは、 負のメニスカスレンズである請求項 1に記 載の撮影レンズ。
4. 物体側より If頃に、 少なくとも開口絞りと第 1 レンズと第 2レン ズを具備するレンズ系から構成される撮影レンズであって、
前記第 1レンズは、 物体側レンズ面に凸面を有する正のメニス カスレンズであり、 前記第 2レンズは、 両面が凹のレンズであり、
前記第 1 レンズおよび第 2 レンズのいずれにおいても、 少なく ともいずれか一方のレンズ面は、 非球面形状を有し、
前記レンズ系は、 レンズ系の焦点距離を f とし、 第 1 レンズの 焦点距離を f 1 とし、 第 1 レンズの屈折率を n 1とし、 第 1 レンズの 物体側面の曲率半径を r 1 とした場合に、 以下の 2つの条件式を満た す撮影レンズ。
0 . 6 < f 1 / f < 1 . 0 · · · ( 3 )
1 . 8 < ( n 1 - 1 ) ί / τ 1 < 2 . 5 · · · ( 4 )
5 . 前記第 1 レンズおよび第 2 レンズは、 ともに樹脂材料が使用さ れる請求項 1から 4の何れか 1つに記載の撮影レンズ。
PCT/JP2005/018384 2004-09-28 2005-09-28 撮影レンズ WO2006035990A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-281830 2004-09-28
JP2004281830A JP2006098504A (ja) 2004-09-28 2004-09-28 撮影レンズ
JP2004368808A JP2006178026A (ja) 2004-12-21 2004-12-21 撮影レンズ
JP2004-368808 2004-12-21

Publications (1)

Publication Number Publication Date
WO2006035990A1 true WO2006035990A1 (ja) 2006-04-06

Family

ID=36119114

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/018384 WO2006035990A1 (ja) 2004-09-28 2005-09-28 撮影レンズ

Country Status (1)

Country Link
WO (1) WO2006035990A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101788707A (zh) * 2009-01-27 2010-07-28 柯尼卡美能达精密光学株式会社 摄像透镜、摄像装置、便携终端及摄像透镜的制造方法
US8023204B2 (en) 2008-10-03 2011-09-20 E-Pin Optical Industry Co., Ltd. Compact short back focus imaging lens system with two lenses

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003232990A (ja) * 2001-12-07 2003-08-22 Nagano Kogaku Kenkyusho:Kk 2群2枚構成の撮影レンズ
JP2003232991A (ja) * 2002-02-07 2003-08-22 Enplas Corp 撮像レンズ
JP2004109585A (ja) * 2002-09-19 2004-04-08 Minolta Co Ltd 撮像レンズ
JP2004170460A (ja) * 2002-11-15 2004-06-17 Matsushita Electric Ind Co Ltd 撮像光学系、並びにそれを用いたディジタルスチルカメラ、ビデオカメラ及びモバイル機器
JP2004199037A (ja) * 2002-12-06 2004-07-15 Enplas Corp 撮像レンズ
JP2004198457A (ja) * 2002-12-16 2004-07-15 Enplas Corp 撮像レンズ
JP2004226595A (ja) * 2003-01-22 2004-08-12 Milestone Kk 撮像用レンズ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003232990A (ja) * 2001-12-07 2003-08-22 Nagano Kogaku Kenkyusho:Kk 2群2枚構成の撮影レンズ
JP2003232991A (ja) * 2002-02-07 2003-08-22 Enplas Corp 撮像レンズ
JP2004109585A (ja) * 2002-09-19 2004-04-08 Minolta Co Ltd 撮像レンズ
JP2004170460A (ja) * 2002-11-15 2004-06-17 Matsushita Electric Ind Co Ltd 撮像光学系、並びにそれを用いたディジタルスチルカメラ、ビデオカメラ及びモバイル機器
JP2004199037A (ja) * 2002-12-06 2004-07-15 Enplas Corp 撮像レンズ
JP2004198457A (ja) * 2002-12-16 2004-07-15 Enplas Corp 撮像レンズ
JP2004226595A (ja) * 2003-01-22 2004-08-12 Milestone Kk 撮像用レンズ

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8023204B2 (en) 2008-10-03 2011-09-20 E-Pin Optical Industry Co., Ltd. Compact short back focus imaging lens system with two lenses
CN101788707A (zh) * 2009-01-27 2010-07-28 柯尼卡美能达精密光学株式会社 摄像透镜、摄像装置、便携终端及摄像透镜的制造方法
EP2211218A1 (en) * 2009-01-27 2010-07-28 Konica Minolta Opto, Inc. Image pickup lens, image pickup apparatus, mobile terminal, and manufacturing method of image pickup lens
US8385011B2 (en) 2009-01-27 2013-02-26 Konica Minolta Opto, Inc. Image pickup lens, image pickup apparatus, mobile terminal, and manufacturing method of image pickup lens

Similar Documents

Publication Publication Date Title
CN211506003U (zh) 摄像镜头
CN211478747U (zh) 摄像镜头
US9279957B2 (en) Imaging lens and imaging apparatus including the imaging lens
US9128267B2 (en) Imaging lens and imaging apparatus including the imaging lens
CN201417337Y (zh) 摄像透镜、及摄像机模块、以及摄像设备
US7768718B2 (en) Zoom lens
CN104395806B (zh) 摄像镜头以及具备该摄像镜头的摄像装置
JP4605475B2 (ja) ズームレンズ及び撮像装置
US9235029B2 (en) Imaging lens and imaging apparatus including the imaging lens
CN203773143U (zh) 成像透镜和包括该成像透镜的成像装置
CN100476491C (zh) 成像透镜
US7508601B2 (en) Imaging lens
EP1679539B1 (en) Zoom lens and imaging device
EP1862833A2 (en) Wide-angle imaging lens
JP2008058387A (ja) 超広角レンズ
US9256053B2 (en) Imaging lens and imaging apparatus including the imaging lens
JPWO2017086051A1 (ja) 撮像レンズ
JP2004325713A (ja) 対物レンズ
JP2005258067A (ja) 撮像装置
CN208521054U (zh) 摄像镜头
JP2005316010A (ja) 撮像レンズ
CN111352223B (zh) 广角变焦镜头和摄像装置
US7982978B2 (en) Imaging lens
JP2006178242A (ja) ズームレンズ
JP4784068B2 (ja) 撮影レンズおよび撮像装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580032903.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05790190

Country of ref document: EP

Kind code of ref document: A1