WO2006035083A1 - Biomaterial para sutura - Google Patents

Biomaterial para sutura Download PDF

Info

Publication number
WO2006035083A1
WO2006035083A1 PCT/ES2005/000468 ES2005000468W WO2006035083A1 WO 2006035083 A1 WO2006035083 A1 WO 2006035083A1 ES 2005000468 W ES2005000468 W ES 2005000468W WO 2006035083 A1 WO2006035083 A1 WO 2006035083A1
Authority
WO
WIPO (PCT)
Prior art keywords
biomaterial
cell population
suture
coating
support material
Prior art date
Application number
PCT/ES2005/000468
Other languages
English (en)
French (fr)
Inventor
Manuel GONZÁLEZ DE LA PEÑA
Gemma FERNÁNDEZ MIGUEL
Damián GARCÍA-OLMO
Original Assignee
Cellerix, S.L.
Universidad Autónoma de Madrid
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cellerix, S.L., Universidad Autónoma de Madrid filed Critical Cellerix, S.L.
Priority to EP05790746.1A priority Critical patent/EP1803472B1/en
Priority to DK05790746.1T priority patent/DK1803472T3/en
Priority to ES05790746.1T priority patent/ES2610802T3/es
Publication of WO2006035083A1 publication Critical patent/WO2006035083A1/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3804Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by specific cells or progenitors thereof, e.g. fibroblasts, connective tissue cells, kidney cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L17/00Materials for surgical sutures or for ligaturing blood vessels ; Materials for prostheses or catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L17/00Materials for surgical sutures or for ligaturing blood vessels ; Materials for prostheses or catheters
    • A61L17/14Post-treatment to improve physical properties
    • A61L17/145Coating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3839Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by the site of application in the body
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0662Stem cells
    • C12N5/0667Adipose-derived stem cells [ADSC]; Adipose stromal stem cells

Definitions

  • the present invention relates to a suture material and its applications.
  • the invention relates to a cell-coated suture material that contributes biologically active in the tissue repair process and hence in wound healing.
  • any open wound represents a risk of infection, as well as an escape route of air and organic fluids, so its closure becomes an urgent necessity.
  • superficial wounds of the skin which do not pass through the dermis, there is a spontaneous primary closure due to the contact of the edges of the wound, while in those wounds where there is a clear separation of the tissues, only the surgical action ( wound suture) can get this primary closure, also called first-intention cure.
  • suturing has been the classic method for facing the edges of the wound with a view to achieving rapid tissue healing.
  • the cure by first intention by means of suturing, consists in the approximation of the edges of the wound thanks to the introduction of a suture thread in the tissue by means of a metallic needle attached to one of its ends and the realization of successive passes between both sides of the incision facilitating passive wound closure.
  • sutures are used in surgical practice to stop bleeding (hemostasis), as well as in the repair of organs and other structures of the human body. In some situations these sutures are especially delicate due to the scarring of the tissues in which they settle. Such is the case of colon wall sutures, tendons as well as microsurgery in nerve tissue and blood vessels.
  • tissue suture One of the major drawbacks of the tissue suture is the fact that the diameter of the needle is larger than that of the thread, so that the insertion point The needle will not be fully occupied by the needle, generating areas where there may be fluid loss.
  • This poor wound closure is often the cause of post-surgical complications, such as in the case of intestinal anastomosis performed in patients with carcinoma or diverticulosis, who have had to perform a resection of the diseased intestinal segment, for later join the two healthy ends.
  • due to incomplete closure fecal matter losses can occur with invasion of surrounding tissues, which will cause peritonitis, with the consequent risk to the patient's life.
  • staples represents an alternative to the classic suture method. It allows the primary closure of tissues in a shorter time, reduce blood loss, reduce pollution and preserve blood flow.
  • a limiting factor in the use of staples as a method of cure by first intention is the need to have access to the upper and lower part of the tissue to be joined. Also, due to the force exerted when inserting the staples, tears may occur in the tissue.
  • the biocompatible adhesives act by facilitating the apposition of the tissues thus providing a stable and regular biomechanical tension force, along the entire incisional path, thereby helping to maintain the tissue structure at the site of the lesion.
  • biological adhesives synthesized from plasma proteins and synthetic polymers, mainly cyanoacrylate and its derivatives.
  • sutures specifically designed for each type of intervention.
  • the surgeon chooses the suture depending on the nature of the procedure, the characteristics of the patient, the tension that the suture must withstand, ...
  • suture threads are available in the market: absorbable and non-absorbable, with monofilament structure and multifilament, as well as of natural and synthetic origin.
  • European patent EP0652017 protects biomaterials, in whose definition would be included suture materials, which have been coated to prevent deposition on the thread of blood constituents, and thus delay coagulation. Said patent also describes the use of anticoagulants and substances with anti-inflammatory properties as a biomaterial coating material.
  • US6264675 protects a suture material comprising a suture thread coated with an adhesive material whose adhesion properties are activated when inserted into the tissue to be repaired, which is attached to a needle at one end.
  • the bioadhesive used in said invention solves one of the main problems associated with the suture method, since it prevents fluid losses through of the needle insertion points. However, it presents as disadvantages the allergenic character and potential toxicity inherent in the nature of the bioadhesives.
  • suture materials induce "per se” an immune response of the organism by recognition of a foreign body, which systematically hinders the natural healing of the tissues. Therefore, to hide the foreign material from the immune system, by means of a cell coating, preferably autologous, would again be an especially important advance in cases of compromised sutures.
  • the mentioned suturing methods contribute to the apposition of the tissues passively, without participating in a biologically active way in the healing of the tissue.
  • the bone marrow stroma contains, among others, a population of cells called mesenchymal stem cells (Friedenstein et al, 1976; Caplan et al, 1991; Pittenger et al, 1999). Studies in these cells have shown that different mesenchymal cell lineages can be differentiated, such as adipocytes (Beresford et al, 1992), chondrocytes (Johnstone et al, 1998), myoblasts (Wakitani et al, 1995) and osteoblasts (Haynesworth et al , 1992).
  • adipose tissue which, like the bone marrow, derives from the embryonic mesoderm and consists of a heterogeneous cell population
  • multipotential stem cells have been identified, which can be easily isolated (Zuk et al, 2001). These cells are similar, but not identical, to the bone marrow mesenchymal stem cells (De Ugarte et al, 2003) and are also able to differentiate into multiple mesenchymal cell lineages (chondrocytes, osteocytes, adipocytes and myoblasts). In addition, like mesenchymal stem cells from bone marrow, they have differentiation capacity to neurons (Zuk et al, 2002).
  • the ability to establish bonds between biological tissues has been one of the main challenges in biomedical research.
  • the ideal suture is the one that presents Resistance characteristics and easy handling, does not induce an inflammatory tissue response and does not promote infection. That is, the one whose use not only allows the closure of the wound but also contributes to its complete healing.
  • the present invention refers to a suture material that allows the tissue ends to be brought closer, facilitating the cure by first intention, and in turn accelerating the repair process, contributing in a biologically active way to tissue healing.
  • the use of said material also implies a lower inflammation of the tissue in which the suture is performed, which allows to reduce the time required for the healing of the open wound, minimizing the risk of infection and loss of organic fluids and with it, the number of surgical failures.
  • the suture biomaterial of the present invention comprises a physiologically compatible suture material, called support material, coated with a cell population with proliferative and / or differentiation capacity, characteristics necessary for its participation in the regeneration of the tissue in which the suture is made.
  • this biomaterial for suture is not limited to approximate the two ends of the open wound, but in turn actively contributes to its healing by accelerating the tissue repair process.
  • This innovation represents an important advantage, especially in the case of sutures in internal organs, and in particular in the case of intestinal anastomosis, resulting from resections of the gastrointestinal tract or in the urogenital area.
  • the invention provides a biomaterial for suturing, useful as a therapeutic agent in the treatment of wounds, both accidental and surgical and in tissue suturing.
  • This biomaterial comprises a suture support material and a cell population, characterized by presenting proliferative and / or differentiation capacity, covering said support material.
  • the suture support material used includes but is not limited to staples, absorbable threads, non-absorbable threads, origin threads natural, threads of synthetic origin, threads of monofilament structure and threads of multifilament structure (also called braided).
  • the suture support material used includes but is not limited to absorbable threads, non-absorbable threads, threads of natural origin, threads of synthetic origin, threads of monofilament structure and threads of multifilament or braided structure, attached to a suture needle
  • the invention provides a suture biomaterial comprising a suture thread attached to a needle at one of its ends as a support material and as a coating cell population multipotent adult stem cells of mesodermal origin.
  • the suture support material used is absorbable threads, of synthetic origin, of monofilament structure, attached to a suture needle.
  • the invention comprises using cells with proliferative and / or differentiation capacity, as a cell population for coating a suture support material.
  • a particular embodiment of the invention comprises using stem cells as a cell population for coating the biomaterial for suturing.
  • a more preferred particular embodiment comprises using pluripotent stem cells, capable of differentiating any type of tissue, as a cell population of biomaterial suture coating.
  • An even more preferred particular embodiment comprises the use of multipotent stem cells capable of differentiating various types of tissue, such as cell population coating the biomaterial for suturing.
  • multipotent stem cells capable of differentiating various types of tissue, such as cell population coating the biomaterial for suturing.
  • mulipipotent adult stem cells capable of differentiating to different cell types, used as a coating population are isolated from human adipose tissue.
  • the preferred source of adipose tissue is subdermal fatty tissue, with lipoaspirate being the preferred method of collection.
  • a particular embodiment of the invention comprises using cells of autologous or allogeneic or xenogeneic origin, or combinations thereof, as the coating cell population.
  • Another particular preferred embodiment of the invention comprises the use of multipotent adult stem cells of allogeneic origin as a cell population of the biomaterial suture coating of the invention.
  • a more preferred particular embodiment of the invention comprises the use of mesenchymal stem cells of allogeneic origin as a cell population of the biomaterial coating for suturing of the invention, including stem cells isolated from mesodermal tissues such as, but not limited to: bone marrow, dermis. , adipose tissue and skeletal muscle, The non-immunogenic nature of isolated bone marrow mesenchymal stem cells, which escape recognition of allooreactive T cells in in vitro assays (Tse et al.
  • mesenchymal stem cells of an allogeneic donor the property of being able to be used in any patient, regardless of the fact that there is an incompatibility of major histocompatibility complex (CMH).
  • CMH major histocompatibility complex
  • the coating cell population will be cells of autologous origin.
  • a particularly preferred particular embodiment comprises using autologous multipotent adult stem cells isolated from lipoaspirate, as a cell population of the biomaterial suture coating of the invention (Example 1).
  • autologous adult stem cells has the advantage that by their nature they are immunocompatible, and therefore do not cause problems of inflammation or rejection.
  • said suture biomaterial comprises as an overlay cell population autologous adult stem cells, its use being restricted to the patient from which said cells originate.
  • a particular embodiment of the invention comprises using stem cells, which express at least one characteristic characteristic of a specialized cell, as a cell population covering the biomaterial for suturing of the invention.
  • a preferred embodiment of the invention comprises using progenitor cells of a specialized cell lineage and obtained from the patient's stem cells, which express at least one characteristic of specialized progenitor cell, as a cell population of the biomaterial coating for suturing of the invention. . Therefore, no inflammation or rejection problems will be generated, even more the components of the suture materials would be hidden from the immune system by coating with autologous stem cells, which would undoubtedly improve the reparative process.
  • a particular preferred embodiment comprises the use of stem cells that have been induced to differentiate in vitro to cells that express at least one characteristic of a specialized cell, as a cell population covering the biomaterial for suturing.
  • a more preferred particular embodiment comprises the use of multipotent stem cells, which have been induced to differentiate in vitro to cells that express at least one characteristic of a specialized cell, as a cell population covering the biomaterial for suturing. It includes but is not limited to the following cell types: epithelial cell, endothelial cell, adipocyte, myocyte, chondrocyte, osteocyte, neuron, astrocyte, oligodendrocyte, hepatocyte and pancreatic cell.
  • a particular preferred embodiment of the invention comprises the suture biomaterial of the invention, in which the coating cell population has been genetically modified.
  • a particular preferred embodiment comprises the biomaterial for suturing, in which the coating cell population has been genetically modified so as to express factors that contribute to the tissue repair process, which include but are not limited to: growth factors, morphogenetic factors, structural proteins and cytokines.
  • Another preferred embodiment of the invention comprises the suture biomaterial of the invention, wherein the coating cell population is constituted by a heterogeneous cell population.
  • Heterogeneous cell population is defined as that which comprises cells of different cell types or cells at different stages of differentiation or combinations of both.
  • a third aspect of the invention provides a method for obtaining the suture biomaterial of the invention, in which the coating cell population is attached to the support material, preferably by adhesion.
  • a particular preferred embodiment of the invention provides a method for obtaining the biomaterial for suture in which the coating cell population is attached to the support material, preferably by adhesion. Said method comprises:
  • a more preferred particular embodiment of the invention provides a method for obtaining the biomaterial for suturing, in which the support material has been previously coated with a material whose function is to increase the adhesion of the coating cell population.
  • Said support material coating material includes but is not limited to peptides, protein antigens, antibodies, sugars and lipids.
  • said coating material is extracellular matrix proteins of eukaryotic cells or antibodies.
  • Another particular preferred embodiment provides a method for obtaining the biomaterial for suture, which comprises the genetic modification of the cell population of choice, prior to the expansion of said cell population.
  • a fourth aspect includes the use of the biomaterial for suturing the invention in therapy.
  • a particular preferred embodiment comprises the use of the suture biomaterial in approximation of the tissue edges, which includes but is not limited to its therapeutic application in hemostasis, organ transplantation, gastrointestinal tract surgery, urogenital tract surgery, respiratory tract surgery , eye surgery, vascular surgery, plastic and restorative surgery, surgery in muscle tissue, in epithelial tissue, in nervous tissue, as well as in repair of tendons, bone tissue and cartilaginous tissue.
  • a more preferred particular embodiment of the invention comprises the use of sutures coated with mesodermal origin cells, preferably autologous, in cases where the local inflammatory reaction generated by the suture material may impair the results of the surgical intervention.
  • An even more preferred particular embodiment comprises the use of the biomaterial for suturing in the approximation of the tissue edges in any surgical activity where an improvement in local healing capacity is desirable.
  • An even more preferred particular embodiment comprises the use of the biomaterial for suturing in the approximation of the tissue edges in intestinal anastomosis.
  • Another particular preferred embodiment comprises the use of the biomaterial for suturing in the support of prostheses, such as cardiac valves or neurosurgical valves.
  • Another particular embodiment of the invention comprises the use of any prosthetic material (or artifact) used in medicine that is implanted in the human body with which there are frequently biocompatibility problems, such as implant valves and surgical prostheses, which has been coated. of cells.
  • any prosthetic material or artifact used in medicine that is implanted in the human body with which there are frequently biocompatibility problems, such as implant valves and surgical prostheses, which has been coated. of cells.
  • Figures Ia-Ie show a phase contrast photomicrograph, in visible mode, of the different fragments of suture threads used as support material in Example 1.
  • Figure 1 shows the type of vicryl absorbable thread (Ethicon) ref. V460
  • Figure Ib shows the type of absorbable thread monocryl (Ethicon) ref. Y3110
  • Figure Ic shows the type of absorbable thread Dexon II (USS-DG) Ref. 9819-41
  • Figure Id shows the type of absorbable thread Safil quick (B / Braun) Ref. 0046030 and the figure shows the type of non-absorbable thread Ethilon (Ethicon) Ref. Wl 621.
  • Figures 2a-2e illustrate by means of a phase contrast photomicrograph, in ultraviolet mode, the degree of cell coating achieved in the suture thread fragments used in Example 1, after one week of incubation.
  • Figure 2a shows the type of vicryl absorbable thread (Ethicon) ref. V460
  • Figure 2b shows the type of absorbable thread monocryl (Ethicon) ref. Y3110
  • Figure 2c shows the type of absorbable thread Dexon II (USS-DG) Ref. 9819-41
  • Figure 2d shows the type of absorbable thread Safil quick (B / Braun) Ref. 0046030
  • Figure 2e shows the type of non-absorbable thread Ethilon (Ethicon) Ref. Wl 621.
  • Figures 3a-3b illustrate the general appearance of the abdominal cavity of the rats after being laparotomized on the fourth postoperative day. A comparison of the general appearance (inflammation, general adhesions, ...) allows us to differentiate two patterns in the evolution of the healing of the anastomotic suture.
  • Figure 3 shows a photograph of one of the rats (No. 1) belonging to group A (surgery performed with the suture biomaterial of the invention).
  • Figure 3b shows a photograph of one of the rats (No. 3) belonging to group B (surgery performed with Vicryl® 4/0 threads).
  • Figures 4a-4b correspond to a photograph of the colic segment that contained the anastomosis once a catheter was inserted through the proximal end, before proceeding to determine the rupture pressure.
  • Figure 4a shows a photograph of the colic segment of one of the rats (No. 1) belonging to group A (surgery performed with the suture biomaterial of the invention).
  • Figure 4b shows a photograph of the colic segment of one of the rats (No. 3) belonging to group B (surgery performed with Vicryl® 4/0 threads).
  • the length of a portion of the catheter, whose actual size is 7, has been taken as reference mm, and indicated by a mark, used as a reference scale, in the lower part of the figures.
  • Figure 5 shows a diagram illustrating the variation of the physical resistance of a standard colic suture in the presence of intraluminal pressure increases, as a function of the time elapsed since its realization.
  • the invention provides a suture biomaterial comprising a suture support material, preferably a suture thread, and a cell population coating said support material.
  • This coating cell population is characterized in that it has proliferative and / or differentiation capacity.
  • the invention provides a suture biomaterial comprising a suture thread attached to a needle at one of its ends as a support material and as a cell population for coating autologous adult stem cells derived from lipoaspirate.
  • a suture biomaterial comprising a suture thread attached to a needle at one of its ends as a support material and as a cell population for coating autologous adult stem cells derived from lipoaspirate.
  • EXAMPLE 1 Coating suture threads with human adult stem cells derived from adipose tissue
  • the objective of the present experiment has been to study the adhesion capacity of a certain cell type to different types of suture threads, which act as a support material for the suture biomaterial of the present invention.
  • CMDLs Human adherent human lipoaspirated stem cells
  • Cop-GFP retroviral vectors encoding Cop-GFP, green fluorescent protein, used as a marker gene were used as the coating cell population.
  • CMDL isolation had previously been transduced with retroviral vectors encoding Cop-GFP, green fluorescent protein, used as a marker gene were used as the coating cell population. 1.1.1. CMDL isolation
  • Adipose tissue was obtained by liposuction.
  • a blunt end cannula was introduced into the subcutaneous space thanks to a small periumbilical incision (less than 0.5cm in diameter). Suction was performed, sliding the cannula through the adipose tissue compartment located under the abdominal wall, thus helping the mechanical disruption of adipose tissue.
  • saline and epinephrine solution was injected as a vasoconstrictor agent. Using this method, 80-100 ml of crude lipoaspirate was obtained from each patient.
  • the lipoaspirate was washed with phosphate buffered saline (PBS).
  • PBS phosphate buffered saline
  • the disruption of adipose tissue was performed by digestion of the extracellular matrix with collagenase type II in saline (5mg / ml) at 37 ° for 30 minutes to release the cell fraction.
  • Collagenase was inactivated by adding an equivalent volume of DMEM medium, with 10% fetal bovine serum. Said cell suspension was centrifuged at 250 g for 10 minutes to obtain a cell deposit. These cells were resuspended in DMEM medium, with 10% fetal bovine serum.
  • NH 4 Cl was added at a final concentration of 0.16 M and incubated for 10 minutes at room temperature to induce lysis of the erythrocytes present.
  • the suspension was centrifuged at 250-400 g and resuspended in DMEM-10% FBS with 1% ampicillin-streptomycin. Finally, the cells were plated, inoculating 20-30,000 cells per cm 2 .
  • CMDLs that had adhesion characteristics by transduction with supernatants containing retroviral particles, RetroFect ®, pseudotyped with VSV-G (vesicular stomatitis virus envelope glycoprotein), which encodes the Cop-GFP marker gene.
  • VSV-G vesicular stomatitis virus envelope glycoprotein
  • Cop-GFP is a green fluorescent copepod protein ⁇ Pontellina Plutata) and allows easy identification and selection of cells infected by direct fluorescence. Said fluorescent protein does not enter the cell nucleus. This is an advantage, since the cells that are expressing the Cop-GFP protein can be easily distinguished from interfering fluorescent particles.
  • Polybrene (adjuvant for retroviral transduction) was added to the retroviral supernatant at a final polybrene concentration of 8 ⁇ g / ml.
  • the medium of the target cells was changed and replaced by retroviral particles, using approximately 106 ⁇ l of retroviral supernatant (additives included) per cm 2 of surface.
  • DMEM fresh culture medium DMEM-10% FBS with 1% ampicillin-streptomycin
  • the cells were detached from the culture plates with a trypsin-EDTA mixture.
  • Figures Ia-Ie show a phase contrast photomicrograph, in visible mode, of the different types of suture threads used as support material. 1. 0.5 ml of complete DMEM culture medium was added, in each of the wells, to moisten the threads and find out if the threads were to remain submerged in the culture medium or would float. The threads tested did not float or after forcing their immersion remained at the bottom of the wells.
  • CMDL cells were prepared at a concentration of 50,000 cels / ml and 1 ml of this suspension was added in each well.
  • the culture plates in which the threads had been deposited were grown in the presence of the cell suspension in an atmosphere with 5% CO 2 at 37 ° C, for 20-24 hours.
  • FIGS. 2a-2e illustrate by means of a phase contrast photomicrograph, in ultraviolet mode, the degree of cell coating achieved in the fragments of suture threads used, after one week of incubation.
  • the objective of this test has been to determine the characteristics of the biomaterial for suture provided by the present invention and the advantages of its use compared to conventional suture threads, by performing colic anastomosis in rats.
  • BDIX rats were used, weighing between 130-260 grams. Two of the specimens were used to obtain rat stem cells from the subdermal adipose tissue and 10 for the study of colic sutures. Cell coated threads were made following a protocol similar to that illustrated in Example 1.
  • BDIX rats are syngeneic, that is, they are genetically identical and immunologically compatible. Each rat was identified with a number from 1-10 and each one had a batch of sutures with the same number. The sample was divided into two groups, depending on the suture material used in the anastomosis:
  • Group A 5 rats: Simple colic anastomosis performed with the suture biomaterial of the invention. Specifically, Vicryl® threads (Polyglactin 910) 4/0, absorbable braided suture were used, which had been upholstered with cells derived from adipose tissue of BDIX rats. In the preparation of the suture biomaterial of the invention the same protocol was used as in Example 1.
  • Group B (5 rats): It is considered as a control group. Simple colic anastomosis performed with Vicryl® threads (Polyglactin 910) 4/0.
  • Dilation (Di) It is considered positive when the diameter of the pre-anastomotic transverse colon was at least twice the diameter of the post-anastomotic transverse colon.
  • Obstruction Absence of fecal content in the colon distal to the anastomosis.
  • Adhered structures It is assessed which anatomical structures had adhered to the anastomotic circumference. 4 categories were established:
  • the measurement of resistance to intraluminal pressure can be expressed as rupture pressure, that is, the pressure at which the disruption of an anastomosis is subjected to increased intraluminal pressure, or as rupture tension, which expresses the tension. circular to which the wall is subjected at the time of rupture.
  • FIGS. 4a-4b show a photograph of the colic segment that contained the anastomosis after a catheter was inserted through the proximal end.
  • the catheter is connected to a three-step key or "T" system, in which one of the branches is directed to the capsule of a pressure transducer that records the pressure variations and sends these signals to a digital polygraphy system . This data is finally sent to a computer for analysis and storage.
  • the other branch is connected to an infusion pump loaded with physiological serum colored with methylene blue to observe the moment and the point of rupture.
  • the calculation of the rupture tension is determined by the measurement of the anastomotic circumference after the fixation of the piece in 20% formalin for four days.
  • the rupture tension (TR) is a function of the rupture pressure (PR) and the internal radius of the colon (r) under Laplace's Law. It is obtained by applying the following formula:
  • a colic anastomosis was performed in 10 adult BDIX rats that were distributed in two groups A and B, depending on the suture material used. Two of the animals intervened in order to assess the healing of the anastomosis, one corresponding to each of the groups, had to be excluded from the study. In one of the animals, during the surgery there was a tear of mesosigma, while in the other there was a tear of the anastomosis when the catheter was introduced in the colic-distal end at the time of measuring the rupture pressure. Table II shows the results obtained for the different variables analyzed in the assessment of the anastomotic suture.
  • Group A 1,4,6,7 ⁇ s.tudent 0,879 0.624
  • Group B 2,3,5,10
  • FIGs 3a-3b illustrate the general appearance of the ao ⁇ ommai ⁇ e cavity in rats after being laparotomized on the fourth postoperative day.
  • an assessment of the general appearance is enough to differentiate two patterns in the evolution of healing of the anastomotic suture.
  • the animals in which conventional suture threads (Group B) had been used have a greater degree of general inflammation and a greater number of structures attached to the intestine, than those animals in which the surgery was performed using the biomaterial to suture the invention (Group A).
  • Adhesion separation In Group A 75% of cases belong to level 1, adhesions are easily separated. A single case (25%) has been classified in level 3, being necessary for its separation the use of cutting instruments. However, this animal presented as a peculiarity that the placement of the blind had been reversed during the intervention. On the contrary, 100% of the cases of Group B belong to level 3.
  • Adhesions are pathologically important because they alter the normal physiology of serous surfaces.
  • the animals belonging to Group A have a pattern of more regional adhesions, easier to separate and a smaller number of adhered structures, which implies a " reduction of the complications caused by intraperitoneal adhesions: intestinal obstruction, chronic abdominal pain and Infertility
  • the use of a foreign material in the abdominal cavity produces a high level of adhesions (Ellis H, 1962, Zarapico et al, 1972)
  • the decrease in adhesions observed in the assay could be due to the biomaterial of the invention. It is not recognized as something strange by the body.
  • the average resistance of the anastomoses, calculated as rupture pressure, is 46.1575 mmHg, being higher than the average resistance found in Group B: 44.7325 mmHg.
  • the suture made with the biomaterial of the invention presents a greater resistance to pressure than that performed with conventional suture threads.
  • the maximum value of resistance to rupture corresponded to one of the animals belonging to group A and the minimum value was included in group B.
  • Greater resistance to rupture of the anastomotic suture implies a lower risk of dehiscence, separation of a part of the anastomosis, which is a severe complication and constitutes one of the main causes of death in the postoperative period of colic surgery.
  • the suture biomaterial of the invention is not limited to bringing the tissue ends together, but it contributes in a biologically active way to tissue healing by accelerating the repair process.
  • EXAMPLE 3 Use of the biomaterial suture in intestinal anastomosis. Assessment of healing in the medium term
  • Example 2 after performing the anastomosis with the suture biomaterial of the invention and in parallel with suture threads Conventional, used as a negative control, a series of parameters were determined that allowed to assess the state of the anastomotic lesion and compare the results obtained in the two study groups.
  • BDIX BDIX, with a weight between 130-260 grams.
  • the animals used were divided into two groups, depending on the suture material used in the anastomosis:
  • Group A 5 rats: Simple colic anastomosis performed with the suture biomaterial of the invention. Specifically, Vicryl® threads (Polyglactin 910) 4/0, absorbable braided suture were used, which had been upholstered with cells derived from adipose tissue of BDIX rats. In the preparation of the suture biomaterial of the invention the same protocol was used as in Example 1.
  • Group B (5 rats): It is considered as a control group. Simple colic anastomosis performed with Vicryl® threads (Polyglactin 910) 4/0.
  • Example 2 50% of the suture batches were cultured in the presence of stem cells (biomaterial for suturing of the invention) and the other half were incubated, under identical conditions, only in the presence of culture medium. , it is impossible to differentiate the two types of sutures used by their appearance. Likewise, the rats were surgically operated by performing an intestinal anastomosis, as described in Example 2.
  • a colic anastomosis was performed in 20 adult BDIX rats that were distributed in two groups of individuals which were analyzed at different times after the intervention. In turn, each group was divided into two subgroups A and B, depending on the suture material used.
  • Group A 2,3,6,7,10 T s, tudent 0,325 0,738
  • Group B 1,4,5,8,9
  • Group A 1, 4,6,7.9 X student 0.490 0.441
  • Group B 2,3,5,8,10
  • Adhered structures In all the animals belonging to Group A, the omentum and the small intestine were attached (two different anatomical structures). The animals of Group B, despite obtaining heterogeneous results, generally presented a greater number of adhered structures: 100% of the animals had adhered the epiplon and the small intestine, in 40% of the cases adhesions were observed. Three different structures and one of the animals (20%) presented adhesions to four different structures.
  • Rupture pressure In Group A, the average resistance of the anastomoses, calculated as rupture pressure, is 123.53 mmHg, being higher than the average rupture pressure found in Group B: 115.60 mmHg.
  • Tension of rupture expresses the circular tension to which the intestinal wall is subjected at the time of rupture.
  • the intestinal wall supports an average rupture tension of 57.62x10 3 dynes / cm, being higher than the average of Group B: 55.26x10 3 dynes / cm.
  • the resistance of the anastomotic line although there are no statistically significant differences, a greater resistance to an increasing intraluminal pressure is maintained, both at the level of rupture tension and rupture pressure, in those sutures made with the biomaterial of the invention.
  • the maximum value of resistance to rupture as in the test carried out on the fourth post-anastomosis day, corresponded to one of the animals belonging to group A and the minimum value was included in group B.
  • Adhesion Separation Both in animals treated with the suture biomaterial of the invention and in those treated with conventional sutures, the intensity of adherence to other organs has been high, with 80% of cases in both groups. Level 3 of separation (difficult), being necessary the use of a sharp instrument for its separation.
  • Adhered Structures In Group A, 100% of the animals presented adhesions in the epiploon, also showing 40% of cases adhesions in the small intestine. In Group B, 100% of the cases presented adhesions in the epiploon. In addition, 80% of the cases presented adhesions to two different structures, 60% of which in the small intestine.
  • Rupture pressure In Group A, the average resistance of the anastomoses, calculated as rupture pressure, is 96.44 mmHg, being lower than the average rupture pressure found in Group B: 101.75 mmHg.
  • Breaking stress In Group A the intestinal wall supports an average breaking stress of 39.37x10 3 dynes / cm, being higher than the average of Group B: 33.78 xlO 3 dynes / cm.
  • biomaterial for suturing of the invention has important advantages (lower degree of general inflammation, lower level of adhesions and greater resistance to pressure intraluminal) versus standard sutures.
  • the biomaterial for suturing of the invention contributes in a biologically active way to the healing of the anastomotic wound, the differences with respect to the use of conventional sutures being more evident on the fourth post-operative day, considered critical in the evolution of the anastomotic wound.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Epidemiology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Vascular Medicine (AREA)
  • Cell Biology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Medicinal Chemistry (AREA)
  • Dermatology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Botany (AREA)
  • Zoology (AREA)
  • Materials Engineering (AREA)
  • Surgery (AREA)
  • Urology & Nephrology (AREA)
  • Materials For Medical Uses (AREA)

Abstract

La presente invención hace referencia a un biomaterial para sutura y sus aplicaciones. Más concretamente, la presente invención se refiere a un biomaterial para sutura recubierto de células que permite acelerar el proceso de reparación, contribuyendo de manera biológicamente activa a la cicatrización del tejido. El uso de dicho biomaterial comporta también una menor inflamación del tejido en el que se realiza la sutura, lo cual permite disminuir el tiempo requerido para la curación de la herida abierta, minimizando el riesgo de infección y de pérdidas de fluidos orgánicos y con ello, el número de fracasos quirúrgicos.

Description

BIOMATERIAL PARA SUTURA
Campo de la invención
La presente invención se refiere a un material para sutura y sus aplicaciones. En concreto, la invención se refiere a un material para sutura recubierto de células que contribuye de forma biológicamente activa en el proceso de reparación tisular y por ello en la cicatrización de las heridas.
Antecedentes de la invención
Toda herida abierta representa un riesgo de infección, así como una vía de escape de aire y fluidos orgánicos, por lo que su cierre se convierte en una urgente necesidad. En heridas superficiales de la piel, que no traspasan la dermis, se produce un cierre primario espontáneo por la toma de contacto de los bordes de la herida, mientras que en aquellas heridas dónde existe una clara separación de los tejidos, solamente la acción quirúrgica (sutura de la herida) puede conseguir este cierre primario, también denominado cura por primera intención.
Tradicionalmente, la sutura ha sido el método clásico para el afrontamiento de los bordes de la herida con vista a lograr la rápida cicatrización de los tejidos. La cura por primera intención mediante sutura, consiste en la aproximación de los bordes de la herida gracias a la introducción de un hilo de sutura en el tejido mediante una aguja metálica unida a uno de sus extremos y la realización de pases sucesivos entre ambos lados de la incisión facilitando de una forma pasiva el cierre de la herida.
Además, las suturas son utilizadas en la práctica quirúrgica para detener el sangrado (hemostasis), así como en la reparación de órganos y otras estructuras del cuerpo humano. En algunas situaciones estas suturas son especialmente delicadas por las dificultades de cicatrización de los tejidos en los que se asientan. Tal es el caso de las suturas de la pared del colon, los tendones así como en microcirugía en tejido nervioso y vasos sanguíneos.
Uno de los mayores inconvenientes que presenta la sutura de tejidos, es el hecho de que el diámetro de la aguja es mayor al del hilo, de manera que el punto de inserción de la aguja no será totalmente ocupado por éste, generándose zonas por las que puede haber pérdida de fluidos. Este cierre deficiente de la herida es frecuentemente causa de complicaciones post-quirúrgicas, como por ejemplo, en el caso de anastomosis intestinales realizadas en pacientes afectos de carcinoma o diverticulosis, a los que se ha debido practicar una resección del segmento intestinal enfermo, para posteriormente unir los dos extremos sanos. En dichos pacientes, debido a un cierre incompleto, se pueden producir pérdidas de materia fecal con invasión de los tejidos circundantes, lo cuál será causa de peritonitis, con el consiguiente riesgo para la vida del paciente. Este riesgo se ve aumentado en pacientes que presentan una reducción del espesor de la pared intestinal, como en el caso de la enfermedad inflamatoria intestinal. En un intento de evitar las fugas de forma pasiva, se utilizan adhesivos biomédicos que serán aplicados sobre los puntos de sutura, de manera que quede sellada la apertura generada por el paso del hilo a través del tejido.
El uso de grapas representa una alternativa al método clásico de sutura. Permite realizar el cierre primario de los tejidos en un menor tiempo, reducir la pérdida de sangre, disminuir la contaminación y preservar el flujo sanguíneo. Un factor limitante en el empleo de grapas como método de cura por primera intención, es la necesidad de tener acceso a la parte superior e inferior del tejido a unir. Asimismo, debido a la fuerza ejercida al inserir las grapas pueden producirse desgarros en el tejido. Una solución a este problema, en un nuevo intento de contención pasiva, es decir, sin contribuir de forma biológicamente activa a la mejora del programa de la cicatrización y reparación de tejidos, es la aplicación de un bioadhesivo sobre la zona de inserción de la grapa.
Los adhesivos biocompatibles actúan facilitando la aposición de los tejidos proporcionando así una fuerza de tensión biomecánica estable y regular, a lo largo de todo el trayecto incisional, ayudando con esto al mantenimiento de la estructura tisular en el lugar de la lesión. Éstos pueden dividirse en dos categorías: adhesivos biológicos, sintetizados a partir de proteínas plasmáticas y polímeros sintéticos, principalmente cianoacrilato y sus derivados.
El mayor inconveniente que presentan los adhesivos de origen biológico es el riesgo de transmisión viral. Asimismo, los bioadhesivos sintéticos actualmente disponibles tienen varios inconvenientes. En su mayoría son líquidos, siendo de difícil aplicación, de manera que su uso queda restringido a heridas superficiales. Por otra parte, son substancias con carácter alergénico y potencialmente tóxico. Ha sido descrito que dichos materiales inducen una respuesta inflamatoria en el organismo, lo cual contribuye a retrasar la regeneración y cicatrización de los tejidos, limitando mucho su utilidad (Aronson et al, 1970; Milde et al, 1989). Por tanto, un método que permita el cierre de heridas y la sutura de tejidos sin inducir una respuesta inflamatoria, sin necesidad de que sean utilizados este tipo de adhesivos, representaría un avance especialmente importante en el caso de sutura de tejidos internos.
Por otra parte, la evolución de las suturas ha llegado a tal punto de refinamiento, que existen suturas específicamente diseñadas para cada tipo de intervención. El cirujano elije la sutura en función de la naturaleza del procedimiento, las características del paciente, la tensión que debe soportar la sutura,... Hay disponibles en el mercado una gran variedad de hilos de sutura: absorbibles y no absorbibles, de estructura monofilamento y multifilamento, así como de origen natural y sintético.
Con el objetivo de mejorar las características funcionales de los hilos de sutura, existen diversas patentes (GB577047, GB 1401842, GB 1430554, RU2125469) en que los hilos son impregnados de sustancias germicidas para evitar la contaminación de los puntos de sutura.
La patente europea EP0652017 protege biomateriales, en cuya definición estarían comprendidos los materiales de sutura, que han sido recubiertos para evitar la deposición sobre el hilo de constituyentes sanguíneos, y retrasar así la coagulación. En dicha patente se encuentra también descrito el uso de anticoagulantes y sustancias con propiedades antiinflamatorias como material de recubrimiento del biomaterial.
La patente US6264675 protege un material de sutura que comprende un hilo de sutura recubierto de un material adhesivo cuyas propiedades de adhesión se activan al ser insertado en el tejido a reparar, el cual se encuentra unido a una aguja por uno de sus extremos. El bioadhesivo utilizado en dicha invención solventa uno de los principales problemas asociados al método de sutura, ya que evita las pérdidas de fluidos a través de los puntos de inserción de la aguja. No obstante, presenta como inconvenientes el carácter alergénico y potencial toxicidad inherente a la propia naturaleza de los bioadhesivos.
Hay que tener en cuenta que todos los materiales de sutura inducen "per se" una respuesta inmunológica del organismo por reconocimiento de un cuerpo extraño, lo que sistemáticamente entorpece la cicatrización natural de los tejidos. Por ello conseguir ocultar el material extraño al sistema inmunológico, mediante un recubrimiento celular, preferiblemente autólogo, sería de nuevo un avance especialmente importante en los casos de suturas comprometidas.
A pesar del grado de sofisticación alcanzado por las suturas, los métodos de sutura citados contribuyen a la aposición de los tejidos de manera pasiva, sin participar de forma biológicamente activa en la cicatrización del tejido.
Por otra parte, se conocen diversas poblaciones celulares presentes en el adulto, capaces de contribuir a la reparación de tejidos conectivos. Así, por ejemplo, el estroma de la médula ósea contiene, entre otras, una población de células denominadas células madre mesenquimales (Friedenstein et al, 1976; Caplan et al, 1991; Pittenger et al, 1999). Estudios realizados en estas células, han demostrado que pueden diferenciarse a distintos linajes celulares mesenquimales, como adipocitos (Beresford et al, 1992), condrocitos (Johnstone et al, 1998), mioblastos (Wakitani et al, 1995) y osteoblastos (Haynesworth et al, 1992). Asimismo, en el tejido adiposo, que al igual que la médula ósea deriva del mesodermo embrionario y está constituido por una población celular heterogénea, se han identificado células madre multipotenciales, que pueden ser fácilmente aisladas (Zuk et al, 2001). Estas células son similares, aunque no idénticas, a las células madre mesenquimales de la médula ósea (De Ugarte et al, 2003) y son también capaces de diferenciarse a múltiples linajes celulares mesenquimales (condrocitos, osteocitos, adipocitos y mioblastos). Además, al igual que las células madre mesenquimales procedentes de médula ósea, presentan capacidad de diferenciación a neuronas (Zuk et al, 2002).
La capacidad de establecer uniones entre tejidos biológicos ha sido uno de los principales retos en la investigación biomédica. La sutura ideal es aquella que presenta características de resistencia y fácil manejo, no induce una respuesta inflamatoria del tejido y no promueve la infección. Es decir, aquella cuyo uso no sólo permite el cierre de la herida sino que contribuye a su completa curación.
La presente invención hace referencia a un material para sutura que permite acercar los extremos tisulares, facilitando la cura por primera intención, y a su vez acelerar el proceso de reparación, contribuyendo de manera biológicamente activa a la cicatrización del tejido. El uso de dicho material comporta también una menor inflamación del tejido en el que se realiza la sutura, lo cual permite disminuir el tiempo requerido para la curación de la herida abierta, minimizando el riesgo de infección y de pérdidas de fluidos orgánicos y con ello, el número de fracasos quirúrgicos.
Explicación de la invención El biomaterial para sutura de la presente invención comprende un material de sutura fisiológicamente compatible, denominado material de soporte, recubierto de una población celular con capacidad proliferativa y/o de diferenciación, características necesarias de cara a su participación en la regeneración del tejido en el que se realice la sutura. Así, este biomaterial para sutura no se limita a aproximar los dos extremos de la herida abierta, sino que a su vez contribuye activamente en su cicatrización acelerando el proceso de reparación tisular. Dicha innovación representa una importante ventaja, en especial en el caso de sutura en órganos internos, y en particular en el caso de anastomosis intestinales, resultado de resecciones del tracto gastrointestinal o en la zona urogenital.
En un primer aspecto, de la invención proporciona un biomaterial para sutura, útil como agente terapéutico en el tratamiento de heridas, tanto accidentales como quirúrgicas y en la sutura de tejidos. Este biomaterial comprende un material de soporte para sutura y una población celular, caracterizada por presentar capacidad proliferativa y/o de diferenciación, recubriendo dicho material de soporte.
En una realización particular, el material de soporte para sutura utilizado incluye pero no se limita a grapas, hilos absorbibles, hilos no absorbibles, hilos de origen natural, hilos de origen sintético, hilos de estructura monofilamento e hilos de estructura multifilamento (también denominados trenzados).
En otra realización particular, el material de soporte para sutura utilizado incluye pero no se limita a hilos absorbibles, hilos no absorbibles, hilos de origen natural, hilos de origen sintético, hilos de estructura monofilamento e hilos de estructura multifilamento o trenzados, unidos a una aguja para sutura.
En una realización particular, la invención proporciona un biomaterial para sutura que comprende un hilo de sutura unido a una aguja por uno de sus extremos como material de soporte y como población celular de recubrimiento células madre adultas multipotentes de origen mesodérmico
En una realización particular más preferida, el material de soporte para sutura utilizado son hilos absorbibles, de origen sintético, de estructura monofilamento, unidos a una aguja para sutura.
En un segundo aspecto, la invención comprende utilizar células con capacidad proliferativa y/o de diferenciación, como población celular de recubrimiento de un material de soporte para sutura.
Una realización particular de la invención comprende el utilizar células madre como población celular de recubrimiento del biomaterial para sutura.
Una realización particular más preferida comprende el utilizar células madre pluripotentes, capaces de diferenciar a cualquier tipo de tejido, como población celular de recubrimiento del biomaterial para sutura.
Una realización particular aún más preferida comprende el utilizar células madre multipotentes capaces de diferenciar a diversos tipos de tejido, como población celular de recubrimiento del biomaterial para sutura. En una realización preferida de la invención, las células madre adultas mulíipotentes, capaces de diferenciarse a diferentes tipos celulares, utilizadas como población de recubrimiento son aisladas a partir de tejido adiposo humano. En humanos la fuente preferida de tejido adiposo es el tejido graso subdérmico, siendo el método preferido de recolección el lipoaspirado.
Una realización particular de la invención comprende el utilizar como población celular de recubrimiento células de origen autólogo o alogénico o xenogénico, o bien combinaciones de éstas. Otra realización particular preferida de la invención comprende el uso de células madre adultas multipotentes de origen alogénico como población celular de recubrimiento del biomaterial para sutura de la invención.
Una realización particular más preferida de la invención comprende el uso de células madre mesenquimales de origen alogénico como población celular de recubrimiento del biomaterial para sutura de la invención, incluyendo células madre aisladas de tejidos mesodérmicos tales como, pero sin limitarse a: médula ósea, dermis, tejido adiposo y músculo esquelético, Ha sido descrito por otros autores el carácter no inmunogénico de células madre mesenquimales aisladas de médula ósea,las cuáles escapan al reconocimiento de las células T aloreactivas en ensayos in vitro (Tse et al.
2003). Dicha característica otorga a las células madre mesenquimales de un donante alogénico la propiedad de poder ser utilizadas en cualquier paciente, independientemente de que exista una incompatibilidad de complejo mayor de histocompatibilidad (CMH). Así pues, el uso de células madre mesenquimales de un donante alogénico supone una fuente alternativa a las células madre mesenquimales de origen autólogo para su uso en terapia.
Preferentemente, la población celular de recubrimiento serán células de origen autólogo. Una realización particular especialmente preferida comprende el utilizar células madre adultas multipotentes autólogas aisladas de lipoaspirado, como población celular de recubrimiento del biomaterial para sutura de la invención (Ejemplo 1). El uso de células madre adultas autólogas presenta como ventaja que por su naturaleza son inmunocompatibles, y por tanto, no generan problemas de inflamación, ni rechazo. Además su uso no presenta impedimentos de tipo ético y legal. En una realización preferida de la invención, dicho biomaterial para sutura comprende como población celular de recubrimiento células madre adultas autólogas siendo su uso restringido al paciente del cual proceden dichas células.
Una realización particular de la invención comprende el utilizar células madre, que expresen al menos una característica propia de una célula especializada, como población celular de recubrimiento del biomaterial para sutura de la invención.
Una realización preferida de la invención comprende el utilizar células progenitoras de un linaje celular especializado y obtenidas a partir de células madre del paciente, que expresen al menos una característica propia de célula progenitora especializada, como población celular de recubrimiento del biomaterial para sutura de la invención. Por tanto, no se generarán problemas de inflamación, ni rechazo, más aún los componentes de los materiales de sutura quedarían ocultos al sistema inmunológico por el recubrimiento con células madre autólogas, lo que sin duda mejoraría el proceso reparativo.
Una realización particular preferida comprende el utilizar células madre que han sido inducidas a diferenciarse in vitro a células que expresen al menos una característica propia de una célula especializada, como población celular de recubrimiento del biomaterial para sutura.
Una realización particular más preferida comprende el utilizar células madre multipotentes, que han sido inducidas a diferenciarse in vitro a células que expresen al menos una característica propia de una célula especializada, como población celular de recubrimiento del biomaterial para sutura. Que incluye pero no se limita a los siguientes tipos celulares: célula epitelial, célula endotelial, adipocito, miocito, condrocito, osteocito, neurona, astrocito, oligodendrocito, hepatocito y célula pancreática.
Una realización particular preferida de la invención comprende el biomaterial para sutura de la invención, en el que la población celular de recubrimiento ha sido genéticamente modificada. Una realización particular preferida comprende el biomaterial para sutura, en el que la población celular de recubrimiento ha sido genéticamente modificada de manera que exprese factores que contribuyan al proceso de reparación tisular, que incluyen pero no se limitan a: factores de crecimiento, factores morfogenéticos, proteínas estructurales y citoquinas.
Otra realización preferida de la invención comprende el biomaterial para sutura de la invención, en el que la población celular de recubrimiento está constituida por una población celular heterogénea. Se define población celular heterogénea como aquella que comprende células de distintos tipos celulares o células en diferentes estadios de diferenciación o bien combinaciones de ambas.
Un tercer aspecto de la invención proporciona un método para la obtención del biomaterial para sutura de la invención, en el que la población celular de recubrimiento se une al material de soporte, preferiblemente mediante adhesión.
Una realización particular preferida de la invención proporciona un método para la obtención del biomaterial para sutura en el que la población celular de recubrimiento se une al material de soporte, preferiblemente mediante adhesión. Dicho método comprende:
1. expandir la población celular de elección;
2. sumergir el material de sutura en un medio de cultivo adecuado para dicha población celular;
3. inocular una suspensión de la población celular pre-cultivada sobre el material de sutura;
4. cultivar la preparación anterior en condiciones adecuadas, que incluye pero no se limita a cultivo en placas y cultivo dinámico en tubos; 5. aislar el material de soporte que presenta un recubrimiento celular adecuado.
Las etapas de expansión y cultivo de la población celular utilizada en el recubrimiento del material de soporte del biomaterial, serán evidentes para cualquier experto en la materia. Una realización particular más preferida de la invención proporciona un método para la obtención del biomaterial para sutura, en el que el material de soporte ha sido previamente recubierto de un material cuya función es aumentar la adhesión de la población celular de recubrimiento. Dicho material de recubrimiento del material de soporte incluye pero no se limita a péptidos, antígenos proteicos, anticuerpos, azúcares y lípidos. En una realización particular aún más preferida, dicho material de recubrimiento son proteínas de matriz extracelular de células eucariotas o anticuerpos.
Otra realización particular preferida proporciona un método para la obtención del biomaterial para sutura, que comprende la modificación genética de la población celular de elección, previamente a la expansión de dicha población celular.
Un cuarto aspecto comprende el uso del biomaterial para sutura de la invención en terapia.
Una realización particular preferida comprende el uso del biomaterial para sutura en la aproximación de los bordes tisulares, que incluye pero no se limita a su aplicación terapéutica en hemostasis, transplante de órganos, cirugía del tracto gastrointestinal, cirugía del tracto urogenital, cirugía del tracto respiratorio, cirugía ocular, cirugía vascular, cirugía plástica y reparadora, cirugía en tejido muscular, en tejido epitelial, en tejido nervioso, así como en reparación de tendones, tejido óseo y tejido cartilaginoso.
Una realización particular más preferida de la invención comprende el uso de las suturas recubiertas de células madre de origen mesodérmico preferiblemente autólogas en los casos en que la reacción inflamatoria local generada por el material de sutura pueda perjudicar los resultados de la intervención quirúrgica.
Una realización particular todavía más preferida comprende el uso del biomaterial para sutura en la aproximación de los bordes tisulares en toda actividad quirúrgica donde sea deseable una mejora de la capacidad de cicatrización local. Una realización particular aún más preferida comprende el uso del bíomaterial para sutura en la aproximación de los bordes tisulares en anastomosis intestinales.
Otra realización particular preferida comprende el uso del biomaterial para sutura en la sujeción de prótesis, como por ejemplo válvulas cardiacas o válvulas neuroquirúrgicas.
Otra realización particular de la invención, comprende el uso de cualquier material protésico (o artefacto) usado en medicina que se implante en el cuerpo humano con los que frecuentemente haya problemas de biocompatibilidad, como por ejemplo válvulas implantes y prótesis quirúrgicas, que haya sido recubierto de células.
Descripción de las figuras
Las figuras Ia-Ie muestran una fotomicrografía de contraste de fases, en modo visible, de los distintos fragmentos de hilos de sutura usados como material de soporte en el Ejemplo 1. Donde la figura 1 a muestra el tipo de hilo absorbible vicryl (Ethicon) ref. V460; la figura Ib muestra el tipo de hilo absorbible monocryl (Ethicon) ref. Y3110; la figura Ic muestra el tipo de hilo absorbible Dexon II (USS-DG) Ref. 9819- 41; la figura Id muestra el tipo de hilo absorbible Safil quick (B/Braun) Ref. 0046030 y la figura le muestra el tipo de hilo no absorbible Ethilon (Ethicon) Ref. Wl 621.
Las figuras 2a-2e ilustran mediante una fotomicrografía de contraste de fases, en modo ultravioleta, el grado de recubrimiento celular alcanzado en los fragmentos de hilos de sutura usados en el Ejemplo 1, tras una semana de incubación. Donde la figura 2a muestra el tipo de hilo absorbible vicryl (Ethicon) ref. V460; la figura 2b muestra el tipo de hilo absorbible monocryl (Ethicon) ref. Y3110; la figura 2c muestra el tipo de hilo absorbible Dexon II (USS-DG) Ref. 9819-41; la figura 2d muestra el tipo de hilo absorbible Safil quick (B/Braun) Ref. 0046030 y la figura 2e muestra el tipo de hilo no absorbible Ethilon (Ethicon) Ref. Wl 621.
Las figuras 3a-3b ilustran el aspecto general que presentaba la cavidad abdominal de las ratas tras ser laparotomizadas en el cuarto día postoperatorio. Una comparación del aspecto general (inflamación, adherencias generales,..) nos permiten ya diferenciar dos patrones en la evolución de la cicatrización de la sutura anastomótica. La figura 3 a muestra una fotografía de una de las ratas (n°l) pertenecientes al grupo A (cirugía realizada con el biomaterial para sutura de la invención). La figura 3b muestra una fotografía de una de las ratas (n°3) pertenecientes al grupo B (cirugía realizada con hilos Vicryl® 4/0). Las figuras 4a-4b corresponden a una fotografía del segmento cólico que contenía la anastomosis una vez introducido un catéter por el extremo proximal, antes de proceder a la determinación de la presión de ruptura. La figura 4a muestra una fotografía del segmento cólico de una de, las ratas (n°l) pertenecientes al grupo A (cirugía realizada con el biomaterial para sutura de la invención). La figura 4b muestra una fotografía del segmento cólico de una de las ratas (n°3) pertenecientes al grupo B (cirugía realizada con hilos Vicryl® 4/0). Con el objetivo de facilitar la comprensión del escalado de las imágenes y poder comparar el grado de inflamación que presenta el segmento cólico resecado en las figuras 4a y 4b, se ha tomado como referencia la longitud de una porción del catéter, cuyo tamaño real son 7 mm, y se ha indicado mediante una marca, usada como escala de referencia, en la parte inferior de las figuras.
La figura 5 muestra un diagrama que ilustra la variación de la resistencia física de una sutura cólica estándar ante los incrementos de presión intraluminal, en función del tiempo transcurrido desde su realización. Así, se ha observado que tras las primeras horas de postoperatorio se produce un descenso en la resistencia, detectándose los valores más bajos entre el tercer y cuarto día del postoperatorio.
Descripción detallada de modos de realización
La invención proporciona un biomaterial para sutura que comprende un material de soporte para sutura, preferentemente un hilo de sutura, y una población celular recubriendo dicho material de soporte. Esta población celular de recubrimiento se caracteriza porque presenta capacidad proliferativa y/o de diferenciación.
En una realización particular, la invención proporciona un biomaterial de sutura que comprende un hilo de sutura unido a una aguja por uno de sus extremos como material de soporte y como población celular de recubrimiento células madre adultas autólogas derivadas de lipoaspirado. Los siguientes ejemplos se presentan para ilustrar, pero no limitan la presente invención.
EJEMPLO 1: Recubrimiento de hilos de sutura con células madre adultas humanas derivadas de tejido adiposo
El objetivo del presente experimento ha sido estudiar la capacidad de adhesión de un determinado tipo celular a diferentes tipos de hilos de sutura, que actúan como material de soporte del biomaterial para sutura de la presente invención.
1.1. Materiales
Se utilizaron cinco tipos diferentes de hilo de sutura, de igual grosor 3-0 (2 Ph .Eur.). Todos ellos de origen sintético (Tabla I).
Tabla I
Figure imgf000014_0001
Como población celular de recubrimiento se utilizaron células madre adultas derivadas de lipoaspirados (CMDLs) humanas, adherentes, que habían sido previamente transducidas con vectores retrovirales que codifican Cop-GFP, proteína fluorescente verde, utilizados como gen marcador. 1.1.1. Aislamiento de CMDLs
El tejido adiposo fue obtenido mediante liposucción. Se introdujo una cánula de extremo romo en el espacio subcutáneo gracias a una pequeña incisión periumbilical (menos de 0.5cm de diámetro). Se realizó la succión, deslizando la cánula a través del compartimiento de tejido adiposo situado bajo la pared abdominal, ayudando así, a la disrupción mecánica del tejido adiposo. Con el objetivo de minimizar la pérdida de sangre, se inyectó solución salina y epinefrina, como agente vasoconstrictor. Mediante este método se obtuvieron, 80-100 mi de lipoaspirado crudo de cada paciente.
Se procedió al lavado del lipoaspirado con solución salina tamponada con fosfato (PBS). A continuación, se realizó la disrupción del tejido adiposo mediante digestión de la matriz extracelular con colagenasa tipo II en solución salina (5mg/ml) a 37° durante 30 minutos para liberar la fracción celular. Se inactivo la colagenasa por adición de un volumen equivalente de medio DMEM, con un 10% de suero bovino fetal. Dicha suspensión celular se centrifugó a 250 g durante 10 minutos obteniéndose un depósito de células. Dichas células se resuspendieron en medio DMEM, con un 10% de suero bovino fetal. Se añadió NH4Cl a una concentración final de 0,16 M y se incubó durante 10 minutos a temperatura ambiente para inducir la lisis de los eritrocitos presentes. La suspensión fue centrifugada a 250-400 g y se resuspendió en DMEM- 10% FBS con 1% ampicilina-estreptomicina. Finalmente, se plaquearon las células, inoculándose 20-30.000 células por cm2.
1.1.2. Cultivo de CMDLs
Las células se mantuvieron en cultivo durante 20-24 horas a 370C, en atmósfera con 5% de CO2. Tras 24 horas de incubación, las placas se lavaron con PBS para eliminar aquellas células que no presentaban adherencia, así como restos celulares.
1.1.3. Transfección de CMDLs adherentes con el gen marcador Cop-GFP
Transfección de las CMDLs que presentaban características de adherencia mediante transducción con sobrenadantes que contenían partículas retrovirales, RetroFect ®, pseudotipadas con VSV-G (glicoproteína de la envuelta del virus de la estomatitis vesicular), que codifican el gen marcador Cop-GFP. Cop-GFP es una proteína verde fluorescente de copépodo {Pontellina plumata) y permite la fácil identificación y selección de las células infectadas por fluorescencia directa. Dicha proteína fluorescente no entra en el núcleo celular. Esto constituye una ventaja, ya que las células que están expresando la proteína Cop-GFP pueden ser fácilmente distinguidas de partículas fluorescentes interferentes.
El método utilizado en la transducción de las CMDLs adherentes consistió en:
1. Se añadió polibreno (adyuvante para la transducción retroviral) al sobrenadante retroviral a una concentración final de polibreno de 8 μg/ml.
2. Se cambió el medio de las células diana y se reemplazó por las partículas retrovirales, usando aproximadamente 106 μl de sobrenadante retroviral (aditivos incluidos) por cada cm2 de superficie.
3. Para infectar las células se utilizó un método de transducción dinámico. Se centrifugaron las células a 1000 g durante 60 minutos a 370C en presencia del sobrenadante retroviral.
4. Se retiró el sobrenadante y se añadió medio de cultivo fresco DMEM completo (DMEM-10% FBS con 1% ampicilina-estreptomicina). Las células transducidas se cultivaron durante 48-72 horas en dicho medio de cultivo
5. Las células se despegaron de las placas de cultivo con una mezcla de tripsina-EDTA.
6. Se analizó una alícuota mediante citometría de flujo, el resto de células se pasaron a otro recipiente de cultivo para expandirlas.
1.2. Ensayo de adhesión de las células a los hilos de sutura
Como material de soporte, se ensayaron cinco tipos de hilos de sutura distintos.
Se cortaron fragmentos de aproximadamente 1 cm de longitud, introduciéndose dos fragmentos de hilo por pocilio, en placas de cultivo de 24 pocilios. Las figuras Ia-Ie muestran una fotomicrografía de contraste de fases, en modo visible, de los distintos tipos de hilos de sutura usados como material de soporte. 1. Se añadieron 0,5 mi de medio de cultivo DMEM completo, en cada uno de los pocilios, para humedecer los hilos y averiguar si los hilos iban a permanecer sumergidos en el medio de cultivo o flotarían. Los hilos ensayados no flotaron o tras forzar su inmersión permanecieron en el fondo de los pocilios.
2. Se preparó una suspensión de células CMDL a una concentración de 50.000 cels/ml y se añadió 1 mi de esta suspensión en cada pocilio.
3. Las placas de cultivo en que se habían depositado los hilos, fueron cultivadas en presencia de la suspensión celular en atmósfera con 5% CO2 a 37°C, durante 20-24 horas.
4. Se observó al microscopio el grado de recubrimiento celular de los hilos alcanzado tras 20-24 horas de incubación, en modo visible y en modo de fluorescencia.
En modo visible no es posible detectar las células sobre los hilos pero si permitió detectar la presencia de células muy dispersas en el fondo del pocilio. Mientras que en modo fluorescencia, gracias a la expresión de la proteína Cop-GFP en las células CMDL transfectadas, se observaron algunas células fluorescentes individuales sobre los hilos, aunque en número muy escaso. 5. Se observó al microscopio el grado de recubrimiento celular de los hilos alcanzado 48 horas de incubación, en modo visible y en modo de fluorescencia. No se observaron cambios significativos en la cobertura de los hilos, respecto a las 24 horas de incubación. Se trasladaron los hilos a pocilios con nuevo medio de cultivo. A partir de este momento, el medio de cultivo fue cambiado cada 2-3 días según calendario.
6. Se observó al microscopio el grado de recubrimiento celular de los hilos alcanzado a las 72 horas de incubación, en modo visible y en modo de fluorescencia. Se pudieron observar y fotografiar grupos de células sobre algunos de los hilos ensayados, incluso se pudo diferenciar las células individuales al distinguirse el núcleo de las mismas ya que la proteína Cop- GFP no se expresa en el núcleo de la célula,
7. Tras 1 semana de incubación de. las células CMDL transducidas con la proteína Cop-GFP en presencia de los hilos, se observó un aumento en el grado de recubrimiento celular de la superficie de los hilos gracias a las células generadas por división a partir de aquellas que inicialmente se adhirieron a los hilos. Las figuras 2a-2e ilustran mediante una fotomicrografía de contraste de fases, en modo ultravioleta, el grado de recubrimiento celular alcanzado en los fragmentos de hilos de sutura usados, tras una semana de incubación.
EJEMPLO 2: Uso del biomaterial de sutura en anastomosis intestinales
El objetivo de este ensayo ha sido el determinar las características del biomaterial para sutura que proporciona la presente invención y las ventajas que aporta su uso frente a hilos de sutura convencionales, mediante la realización de anastomosis cólicas en ratas.
Tras realizar la anastomosis con el biomaterial para sutura de la invención y paralelamente con hilos no recubiertos de células, utilizados como control negativo, se determinaron una serie de parámetros que permitieron valorar el estado de la lesión anastomótica y comparar los resultados obtenidos con ambos tipos de hilos.
2.1. Intervención quirúrgica
2.1.1. Animales y material de sutura
En la realización de la experiencia se utilizaron 12 ejemplares adultos de ratas BDIX, con un peso comprendido entre 130-260 gramos. Dos de los ejemplares se emplearon para la obtención de células madre de rata del tejido adiposo subdérmico y 10 para el estudio de suturas cólicas. Los hilos recubiertos de células se hicieron siguiendo un protocolo similar al ilustrado en el Ejemplo 1. Las ratas BDIX son singénicas, es decir, son genéticamente idénticas e inmunológicamente compatibles. Cada rata se identificó con un número del 1-10 y a cada una le correspondió un lote de suturas con el mismo número. La muestra se dividió en dos grupos, en función del material de sutura utilizado en la anastomosis:
• Grupo A (5 ratas): Anastomosis cólica simple realizada con el biomaterial de sutura de la invención. Concretamente, se utilizaron hilos Vicryl® (Polyglactin 910) 4/0, sutura trenzada absorbible, que habían sido tapizados con células derivadas de tejido adiposo de ratas BDIX. En la preparación del biomaterial de sutura de la invención fue utilizado el mismo protocolo que en el Ejemplo 1.
• Grupo B (5 ratas): Se considera como grupo control. Anastomosis cólica simple realizada con hilos Vicryl® (Polyglactin 910) 4/0.
El 50% de los lotes de sutura se cultivaron en presencia de células madre (biomaterial para sutura de la invención) y la otra mitad fueron incubadas, en idénticas condiciones, tan sólo en presencia de medio de cultivo. Por tanto, resultaba imposible diferenciar los dos tipos de suturas empleados por su aspecto. Se trata de un estudio ciego puesto que los cirujanos desconocían el tipo de hilo empleado en cada intervención.
2.1.2. Anastomosis cólica simple Las ratas fueron laparotomizadas bajo anestesia general tras 24 horas de ayuno con agua "ad libitum". Se practicó una sección completa del colon en el punto medio del colon transverso, cuidando de no lesionar la vascularización marginal y evitando la hemorragia. A continuación, se realizó una anastomosis de los cabos, termino-terminal, evertida y en un plano, con al menos 6 puntos de sutura. Cada punto se anudó tres veces. Finalizada la anastomosis se reintrodujo el colon en la cavidad abdominal y se cerró la laparotomía con hilo de seda del 0 en dos planos.
2.2. Valoración de la cicatrización
Los animales fueron sacrificados, por decapitación, el cuarto día postoperatorio. Con el animal en asistolia se procedió a la apertura del abdomen y se valoraron la dehiscencia, dilatación, obstrucción, adherencias generales, dificultad en la separación de las adherencias generales y determinación de estructuras adheridas. Criterios de valoración de las variables a estudio:
1. Dehiscencia clínica (De): Existencia de contenido cólico libre en la cavidad peritoneal.
2. Dilatación (Di): Se considera positiva cuando el diámetro del colon transverso pre-anastomótico era al menos dos veces superior al diámetro del colon transverso post-anastomótico.
3. Obstrucción (Ob): Ausencia de contenido fecal en el colon distal a la anastomosis.
4. Adherencias generales (AG): Se realiza una medida basada en una escala de valoración cualitativa del número de adherencias de la cavidad peritoneal
(Ellis H., 1962; Verreet PR et al, 1992). Se establecieron 4 niveles o grados:
0 = No hay adherencias, 1 = Adherencias muy localizadas, 2 = Adherencias loco-regionales, 3 = Adherencias difusas
5. Separación de las adherencias generales (Se). Lisis por tracción: Se establecieron 3 niveles: 1 = Fácil, la mayoría de las adherencias podían separarse con una tracción suave, 2 = Moderado, la mayoría de las adherencias se podían separar mediante un instrumento romo, 3 = Difícil, la mayoría de las adherencias precisaron un instrumento punzante para ser separadas. 6. Estructuras adheridas (EA): Se valora qué estructuras anatómicas se habían adherido a la circunferencia anastomótica. Se establecieron 4 categorías:
1 = epiplon, 2 = intestino delgado, 3 = colon, 4 = otras localizaciones
La medición de la resistencia a la presión intraluminal se puede expresar como presión de ruptura, es decir, Ia presión a la que se produce la disrupción de una anastomosis sometida a presión intraluminal creciente, o bien como tensión de ruptura,, que expresa la tensión circular a la que está sometida la pared en el momento de la ruptura.
2.2.1. Medida de la presión de ruptura (PR)
Medíante una bomba de infusión conectada a un sistema de medición de presiones se determina la presión a la que se produce el escape por la línea anastomótica (presión de ruptura). Una vez resecado el segmento cólico que contenía la anastomosis, se procedió al cierre del extremo distal con sutura de seda 1/0. El extremo proximal fue ligado de forma similar una vez introducido un catéter de perfusión intravenosa. En las figuras 4a- 4b se muestra una fotografía del segmento cólico que contenía la anastomosis tras ser introducido un catéter por el extremo proximal. El catéter es conectado a una llave de tres pasos o sistema en "T", en la que una de las ramas se dirige a la cápsula de un transductor de presión que registra las variaciones de presión y envía estas señales a un sistema de poligrafía digital. Estos datos son finalmente enviados a un ordenador para proceder a su análisis y almacenamiento. La otra rama se conecta a una bomba de perfusión cargada con suero fisiológico coloreado con azul de metileno para observar el momento y el punto de ruptura.
2.2.2. Tensión de ruptura de la pared (TR)
El cálculo de la tensión de ruptura está determinado por la medición de la circunferencia anastomótica tras la fijación de la pieza en formol al 20% durante cuatro días. Se practicó un corte longitudinal con bisturí del segmento de colon que contenía la anastomosis y mediante una regla graduada, se midió la circunferencia interna (en) de la pieza en décimas de milímetro. El conocer la longitud de la circunferencia interna nos permite calcular el radio interno del colon (r), aplicando la siguiente fórmula: cn=2π r
La tensión de ruptura (TR) es función de la presión de ruptura (PR) y del radio interno del colon (r) en virtud de la Ley de Laplace. Se obtiene aplicando la siguiente fórmula:
TR = 1.33 x 103 x PR x r (TR = dinas/ cm; PR = mmHg; r = cm)
2.3. Resultados
Se realizó una anastomosis cólica en 10 ratas adultas BDIX que se distribuyeron en dos grupos A y B, en función del material de sutura utilizado. Dos de los animales intervenidos con el objeto de valorar la cicatrización de la anastomosis, uno correspondiente a cada uno de los grupos, tuvieron que ser excluidos del estudio. En uno de los animales, durante la cirugía se produjo un desgarro de mesosigma, mientras que en el otro se produjo un desgarro de la anastomosis al introducir el catéter en el extremo cólico-distal en el momento de medir la presión de ruptura. En la Tabla II se presentan los resultados obtenidos para las diferentes variables analizadas en la valoración de la sutura anastomótica.
Tabla II
INFLAMACIÓN ADHERENCIAS RESISTENCIA
ANIMAL De Di Ob AG Se EA PR (mmHg) r (cm) TR x103(dinas/cm)
1 NO NO NO 2 1 1 ,3 43,1 0,38 21,78
4 NO Sl NO 2 1 1 ,2 41 ,73 0,35 19,43
6 NO Sl NO 1 2,4 63,1 0,22 18,46
T NO Sl NO 3 3 1,2 36,7 0,27 13,18
MEDIA 46,16 0,31 19,03
2 NO Sl Sl 3 1 ,2,3,4 52 0,24 16,60
3 NO Sl NO 2 3 1 ,2,3 50,47 0,35 23,49
5b NO NO NO 3 3 1 ,2,3 52,06 0,25 17,31
10 NO Sl Sl 3 3 1 ,2,4 24,4 0,24 7,79
MEDIA 44,73 0,27 16,06
Grupo A: 1,4,6,7 τ s.tudent 0,879 0.624 Grupo B: 2,3,5,10
OBSERVACIONES: a ciego invertido b 7 puntos sutura ABREVIATUEAS:
Dehiscencia clínica (De) Adherenciasgenerales (AG) Presión de ruptura (PR) Dilatación (Di) Separación de las adherencias generales (Se) Radio (r) Obstrucción (Ob) Estructuras adheridas (EA) Tensión de ruptura (TR)
2.4. Discusión
La valoración de la cicatrización de la herida anastomótica se realizó el cuarto día postoperatorio, por considerarlo el día crítico en la evolución de las anastomosis cólicas (Ravo, 1988).
Tras la apertura de la cavidad abdominal, los cuadrantes fueron retraídos exponiendo de forma global toda la cavidad peritoneal. Las figuras 3a-3b ilustran el aspecto general que presentaba la cavidad aoαommai αe las ratas tras ser laparotomizadas en el cuarto día postoperatorio. Sorprendentemente, una valoración del aspecto general (inflamación, adherencias generales,..) es suficiente para diferenciar dos patrones en la evolución de la cicatrización de la sutura anastomótica. Así, los animales en que se habían utilizado hilos de sutura convencionales (Grupo B) presentan un mayor grado de inflamación general y un mayor número de estructuras adheridas al intestino, que aquellos animales en que la cirugía se realizó utilizando el biomaterial para sutura de la invención (Grupo A).
En primer lugar, se determinó que el manejo quirúrgico del biomaterial para sutura de la invención es idéntico al de los hilos convencionales. La presencia de células tapizando los hilos no altera la manejabilidad de las suturas.
Con el objetivo de valorar la cicatrización de la sutura anastomótica, se determinaron de una serie de variables: dehiscencia, dilatación, obstrucción, adherencias generales, separación de adherencias, estructuras adheridas, presión de ruptura y tensión de ruptura.
1. Dehiscencia: En ninguno de los grupos se observó presencia de material fecal en la cavidad peritoneal. Para el tipo de rata utilizado, la técnica quirúrgica así como el material de sutura empleados eran adecuados. 2. Dilatación: En ambos grupos se observó dilatación del colon pre- anastomótico en un 75% de los casos.
3. Obstrucción: Aunque la dilatación del segmento pre-anastomótico era similar en ambos grupos, la repercusión clínica fue distinta. Así, el 100% de los animales del grupo tratado quirúrgicamente con el biomaterial de la invención (Grupo A) no presentaban obstrucción intestinal, mientras que había obstrucción en el 50% de los animales tratados con suturas convencionales (Grupo B). La no existencia de obstrucción cólica implica una serie de ventajas clínicas en cuanto a rapidez en la recuperación del paciente y reducción de complicaciones postoperatorias. 4. Adherencias Generales: Una valoración cualitativa del número de adherencias de la cavidad peritoneal muestra que en el Grupo A un 75% de los casos presenta adherencias loco-regionales, mientras que en el Grupo B un 75% de los casos presentan adherencias difusas. 5. Separación de adherencias: En el Grupo A un 75% de los casos pertenecen al nivel 1, las adherencias se separan fácilmente. Un único caso (25%) se ha clasificado en el nivel 3, siendo necesario para su separación el uso de instrumentos de corte. No obstante, este animal presentaba como particularidad que la colocación del ciego había sido invertida durante la intervención. Por el contrario, el 100% de los casos del Grupo B pertenecen al nivel 3.
6. Estructuras adheridas: En el Grupo A, el epiplon se encuentra adherido en un 75% de los casos y el 100% de los casos presentan adherencias a dos estructuras distintas. El 100% de los casos del Grupo B presentan adherido el epiplon y el intestino delgado. En un 75% de los casos se observan adherencias a tres estructuras distintas y el caso restante presenta adherencias a cuatro estructuras distintas.
Las adherencias tienen importancia patológica debido a que alteran la fisiología normal de las superficies serosas. Sorprendentemente, los animales pertenecientes al Grupo A presentan un patrón de adherencias más regionales, más fáciles de separar y un menor número de estructuras adheridas, lo cuál implica una" reducción de las complicaciones originadas por las adherencias intraperitoneales: obstrucción intestinal, dolor crónico abdominal e infertilidad. La utilización de un material extraño en la cavidad abdominal produce un nivel de adherencias elevado (Ellis H, 1962, Zarapico et al, 1972). La disminución de las adherencias observada en el ensayo podría ser debida a que el biomaterial de la invención no es reconocido como algo extraño por el organismo.
La utilización de un método físico para la valoración de la cicatrización de la anastomosis, tiene por objeto que ésta sea lo más global posible, ya que el uso de otros métodos como pueden ser los bioquímicos o histológicos, nos dan una visión parcial de estos procesos a nivel de la anastomosis. La resistencia física de una sutura cólica ante los incrementos de presión intraluminal, varía según el tiempo transcurrido desde su realización. Así, se ha observado que tras las primeras horas de postoperatorio se produce un descenso en la resistencia, detectándose los valores más bajos entre el tercer y cuarto día del postoperatorio. A partir de este momento se produce un rápido aumento de la resistencia, alcanzándose al séptimo día del postoperatorio, valores cercanos a los de la resistencia de la pared cólica en estado fisiológico (figura 5). Esta inflexión de la curva de fuerza anastomótica alrededor del cuarto día postoperatorio está íntimamente relacionada con los procesos celulares y químicos que tienen lugar a lo largo del proceso inflamatorio y reparador.
En el Grupo A, la resistencia media de las anastomosis, calculada como presión de ruptura, es de 46,1575 mmHg, siendo superior a la resistencia media encontrada en el Grupo B: 44,7325 mmHg.
La medición de la resistencia a la presión intraluminal mediante determinación de la presión de ruptura, presenta el inconveniente de no tener en cuenta el diámetro de ese segmento del colon. Si medimos la presión de ruptura sin tener en cuenta el diámetro del segmento del colon, dejamos a un lado la Ley de Laplace (T = P x r) y no consideramos el hecho de que para una misma presión de ruptura la tensión que soporta la pared es mayor en la zona de mayor radio (Asencio F. et al, 1989). Al realizar el cálculo de la tensión de ruptura media, comprobamos que en el Grupo A la pared intestinal soporta una tensión de ruptura media de 19,03 xlO3 dinas/cm, siendo superior a la resistencia media encontrada en el Grupo B: 16,06 xl 03 dinas/cm.
Así, a pesar de que no existen diferencias estadísticamente significativas a nivel de presión de ruptura, el cálculo de la tensión de ruptura corroboró los resultados obtenidos: la sutura realizada con el biomaterial de la invención presenta una mayor resistencia a la presión que la realizada con hilos de sutura convencionales. Además, el valor máximo de resistencia a la ruptura correspondió a uno de los animales pertenecientes al grupo A y el valor mínimo quedó incluido en el grupo B. Una mayor resistencia a la ruptura de la sutura anastomótica implica un menor riesgo de dehiscencia, separación de una parte de la anastomosis, la cuál es una complicación severa y constituye una de las principales causas de muerte en el postoperatorio de cirugía cólica.
2.5. Conclusión Una valoración del aspecto general (inflamación, adherencias generales,..) es suficiente para diferenciar dos patrones en la evolución de la cicatrización de la sutura anastomótica. Así, los animales en que se utilizaron hilos de sutura convencionales (Grupo B) presentaban un mayor grado de inflamación general y un mayor nivel de adherencias (adherencias más difusas, un mayor número de estructuras adheridas y un mayor grado de dificultad en su separación) que aquellos animales en que la cirugía se realizó utilizando el biomaterial para sutura de la invención (Grupo A). El uso del material de sutura de la invención induce una menor respuesta inflamatoria dando lugar a una reducción de las complicaciones post-anastomóticas características. Asimismo, en aquellos animales que han sido intervenidos con el biomaterial para sutura de la invención (Grupo A) se observa una mayor resistencia de las suturas cólicas a la presión intraluminal creciente y por tanto un menor riesgo de dehiscencia.
En el cuarto día post-operatorio, establecido como día crítico en la evolución de las anastomosis cólicas, podemos concluir que las suturas anastomóticas realizadas con el biomaterial para sutura de la invención presentan una mejor evolución respecto aquellas que han sido realizadas con hilos de sutura convencionales. El biomaterial para sutura de la invención no se limita a acercar los extremos tisulares, sino que contribuye de manera biológicamente activa a la cicatrización del tejido acelerando el proceso de reparación.
EJEMPLO 3: Uso del biomaterial de sutura en anastomosis intestinales. Valoración de la cicatrización a medio plazo
Una vez estudiadas las características del biomaterial para sutura que proporciona la presente invención y las ventajas que aporta su uso frente a hilos de sutura convencionales, en la realización de anastomosis cólicas en ratas a corto plazo (cuarto día postoperatorio), se realizó un segundo ensayo con el objetivo de determinar si se mantienen los dos patrones a nivel de inflamación y adherencias observados en el cuarto día post-anastomosis. Para poder valorar la evolución de la cicatrización a medio plazo, se estudió la evolución de la herida anastomótica en animales sacrificados una y dos semanas después de la intervención. Al igual que en el Ejemplo 2, tras realizar la anastomosis con el biomaterial para sutura de la invención y paralelamente con hilos de sutura convencionales, utilizados como control negativo, se determinaron una serie de parámetros que permitieron valorar el estado de la lesión anastomótica y comparar los resultados obtenidos en los dos grupos de estudio.
3.1. Intervención quirúrgica
En la realización de la experiencia se utilizaron 20 ejemplares adultos de ratas
BDIX, con un peso comprendido entre 130-260 gramos. Se realizaron dos ensayos, sacrificándose los animales la primera y segunda semana post-anastomosis. En cada ensayo se identificó a cada una de las ratas con un número del 1-10, correspondí éndole un lote de suturas con el mismo número.
Los animales empleados se dividieron en dos grupos, en función del material de sutura utilizado en la anastomosis:
• Grupo A (5 ratas): Anastomosis cólica simple realizada con el biomaterial de sutura de la invención. Concretamente, se utilizaron hilos Vicryl® (Polyglactin 910) 4/0, sutura trenzada absorbible, que habían sido tapizados con células derivadas de tejido adiposo de ratas BDIX. En la preparación del biomaterial de sutura de la invención fue utilizado el mismo protocolo que en el Ejemplo 1.
• Grupo B (5 ratas): Se considera como grupo control. Anastomosis cólica simple realizada con hilos Vicryl® (Polyglactin 910) 4/0.
Al igual que en el Ejemplo 2, el 50% de los lotes de sutura se cultivaron en presencia de células madre (biomaterial para sutura de la invención) y la otra mitad fueron incubadas, en idénticas condiciones, tan sólo en presencia de medio de cultivo, resultando imposible diferenciar los dos tipos de suturas empleados por su aspecto. Asimismo, las ratas fueron intervenidas quirúrgicamente mediante realización de una anastomosis intestinal, según se describe en el Ejemplo 2.
3.2. Valoración de la cicatrización Con el objetivo de realizar un seguimiento de la evolución de la cicatrización a medio plazo, se valoró la cicatrización de la herida anastomótica en los animales sacrificados una y dos semanas tras la intervención. Las variables estudiadas son definidas en el Ejemplo 2. 3.3. Resultados
Se realizó una anastomosis cólica en 20 ratas adultas BDIX que se distribuyeron en dos grupos de individuos los cuales fueron analizados a diferentes tiempos tras la intervención. A su vez, cada grupo fue dividido en dos subgrupos A y B, en función del material de sutura utilizado.
En la Tabla Illa se presentan los resultados obtenidos para las diferentes variables analizadas en la valoración de la sutura anastomótica, una semana después de la intervención quirúrgica.
Tabla Illa
INFLAMACIÓN ADHERENCIAS RESISTENCIA
ANIMAL De Di Ob AG Se EA PR (mmHg) r (cm) TR x103(d¡nas/cm)
2 NO NO NO 2 2 1 ,2 124 0,366 60,36
3 NO NO NO 2 2 1 ,2 126,4 0,302 50,77
6 NO NO NO 2 . 2 1 ,2 138,54 0,398 73,33
7 NO NO NO 2 3 1 ,2 120,73 0,318 51,06
10 NO NO NO 2 1 ,2 108 0,366 52,57
MEDIA 123,53 0,35 57,62
1 NO NO NO 3 3 1 ,2,4 119,7 0,429 68,08
4 NO NO NO 3 3 1 ,2 121 ,82 0,27 43,74
5 NO NO NO 2 3 1 ,2,3 92,78 0,35 43,16
8 NO NO NO 3 3 1 ,2 124 0,398 65,63
9 NO UO NO 3 3 1 ,2,3,4 119,68 0,35 55,71
MEDIA i 115,60 0,359 55,26
Grupo A: 2,3,6,7,10 T s,tudent 0,325 0,738 Grupo B: 1,4,5,8,9
ABREVIATURAS:
Dehiscencia clínica (De) Adherencias generales (AG) Presión de ruptura (PR) Dilatación (Di) Separación de las adherencias generales (Se) Radio (r) Obstrucción (Ob) Estructuras adheridas (EA) Tensión de ruptura (TR) En la Tabla IHb se presentan los resultados obtenidos para las diferentes variables analizadas en la valoración de la sutura anastomótica, dos semanas después de la intervención quirúrgica.
Tabla IHb
INFLAMACIÓN ADHERENCIAS RESISTENCIA
ANIMAL De Di Ob AG Se EA PR (mmHg) r (cm) TRx103(d¡nas/cm)
1 NO NO NO 1 2 1 114,57 0,286 43,58
4 NO Si NO 2 3 1 ,2 80,2 0,366 39,04
6 NO Sl NO 1 3 1 87,62 0,222 25,97
7 NO NO NO 1 3 1 105,6 0,302 42,41
9 NO Sl NO 2 3 1 ,2 94,21 0,366 45,86
MEDIA 96,44 0,308 39,37
2 NO Sl NO 2 3 1 ,2 101 ,21 0,191 25,71
3 NO Sl NO 2 3 1 ,2 87,62 0,127 14,8
5 NO NO NO 1 2 1 101 ,36 0,318 42,87
8 NO NO NO 2 3 1 ,2 110,63 0,318 46,79
10 NO Sl NO 3 3 1 ,4 107,92 0,27 38,75
MEDIA 101,75 0,245 33,78
Grupo A: 1 ,4,6,7,9 X student 0,490 0,441 Grupo B: 2,3,5,8,10
ABREVIATURAS:
Dehiscencia clínica (De) Adherencias generales (AG) Presión de ruptura (PR) Dilatación (Di) Separación de las adherencias generales (Se) Radio (r) Obstrucción (Ob) Estructuras adheridas (EA) Tensión de ruptura (TR)
3.4. Discusión
Con el objetivo de conocer si existen diferencias en la evolución de la cicatrización a medio plazo entre los dos grupos de estudio, se efectuó una valoración de la cicatrización de la herida anastomótica transcurridas una y dos semanas desde la intervención quirúrgica. Para ello, se determinación una serie de variables: dehiscencia, dilatación, obstrucción, adherencias generales, separación de adherencias, estructuras adheridas, presión de ruptura y tensión de ruptura. 3.4.1. Análisis la 1 "semana post-anastomosis:
1. Dehiscencia: En ninguno de los grupos de estudio se observó presencia de materia fecal en la cavidad peritoneal. Los resultados observados indican que la técnica quirúrgica, así como el material de sutura empleados, fueron adecuados.
2. Dilatación: En ambos grupos de estudio, ninguno de los animales presentó dilatación del colon pre-anastomótico.
3. Obstrucción: De acuerdo con la ausencia de dilatación observada, tanto el grupo de animales tratado quirúrgicamente con el biomaterial de sutura de la invención (Grupo A) como el grupo en el que se utilizaron suturas convencionales (Grupo B) no presentaron obstrucción intestinal.
4. Adherencias Generales: Una valoración cualitativa del número de adherencias de la cavidad peritoneal muestra que en el Grupo A un 100% de los casos presentaba adherencias loco-regionales, mientras que en el Grupo B, un 80% presentaba adherencias difusas.
5. Separación de adherencias: En el Grupo A un 80% de los casos se clasificaron en un nivel 2 (moderado), las adherencias son separadas mediante un instrumento romo. Por el contrario, el 100% de los casos del Grupo B fueron clasificados en un nivel 3, ya que para la separación de las adherencias fue necesario el uso de un instrumento punzante.
6. Estructuras adheridas: En todos los animales pertenecientes al Grupo A se encontraban adheridos el epiplon y el intestino delgado (dos estructuras anatómicas distintas). Los animales del Grupo B, a pesar de obtenerse resultados heterogéneos, de manera general presentaban un mayor número de estructuras adheridas: el 100% de los animales presentaban adherido el epiplon y el intestino delgado, en un 40% de los casos se observaron adherencias a tres estructuras distintas y uno de los animales (20%) presentó adherencias a cuatro estructuras distintas.
7. Presión de ruptura: En el Grupo A, la resistencia media de las anastomosis, calculada como presión de ruptura, es de 123,53 mmHg, siendo superior a la presión de ruptura media encontrada en el Grupo B: 115,60 mmHg.
8. Tensión de ruptura: La tensión de ruptura expresa la tensión circular a la que está sometida la pared intestinal en el momento de la ruptura. En el Grupo A la pared intestinal soporta una tensión de ruptura media de 57,62x103 dinas/cm, siendo superior a la media del Grupo B: 55,26x103 dinas/cm.
No existen diferencias entre los dos grupos de estudio en cuanto a la valoración de la inflamación de manera general. Sin embargo, en el aspecto adherencial
(adherencias generales, separación de adherencias, estructuras adheridas) se conserva el patrón observado el cuarto día post-anastomosis. Así pues, se observa que los animales pertenecientes al Grupo A, tratados con el biomaterial para sutura de la invención, presentan adherencias más localizadas, más fáciles de separar y con un menor número de estructuras adheridas.
En cuanto a la resistencia de la línea anastomótica, pesar de que no existen diferencias estadísticamente significativas, se mantiene una mayor resistencia a una presión intraluminal creciente, tanto a nivel de tensión de ruptura como de presión de ruptura, en aquellas suturas realizadas con el biomaterial de la invención. Además, el valor máximo de resistencia a la ruptura, al igual que en el ensayo realizado el cuarto día post-anastomosis, correspondió a uno de los animales pertenecientes al grupo A y el valor mínimo quedó incluido en el grupo B.
3.4.2. Análisis la 2a semana post-anastomosis:
1. Dehiscencia: En el 100% de los animales de ambos grupos, había ausencia de material cólico libre en la cavidad peritoneal. Los resultados observados indican que la técnica quirúrgica, así como el material de sutura empleados, fueron adecuados. 2. Dilatación: El 60% de los animales de ambos grupos presentaron dilatación del colon pre-anastomótico. No observándose diferencias en función del material de sutura utilizado.
3. Obstrucción: Tanto en el grupo de animales tratado quirúrgicamente con el biomaterial de sutura de la invención (Grupo A) como en los que se utilizaron suturas convencionales (Grupo B) se obtuvo un 100% de resultados libres de obstrucción intestinal.
4. Adherencias Generales: Una valoración cualitativa del número de adherencias de la cavidad peritoneal muestra que en el grupo A un 60% eran muy localizadas y el 40% restante loco-regionales. En el grupo B un 60% eran loco-regionales, un 20% muy localizadas y el 20% restante difusas.
5. Separación de Adherencias: Tanto en los animales tratados con el biomaterial de sutura de la invención como en aquellos tratados con suturas convencionales, la intensidad en la adherencia a otros órganos ha sido elevada, presentando en ambos grupos un 80% de los casos un nivel 3 de separación (difícil), siendo necesaria la utilización de un instrumento punzante para su separación.
6. Estructuras Adheridas: En el Grupo A, el 100% de los animales presentaron adherencias en el epiplon, mostrando además un 40% de los casos adherencias en el intestino delgado. En el Grupo B el 100% de los casos presentaron adherencias en el epiplon. Además, un 80% de los casos presentaba adherencias a dos estructuras distintas, un 60% de los cuales en el intestino delgado.
7. Presión de ruptura: En el Grupo A, la resistencia media de las anastomosis, calculada como presión de ruptura, es de 96,44 mmHg, siendo inferior a la presión de ruptura media encontrada en el Grupo B : 101,75 mmHg.
8. Tensión de ruptura: En el Grupo A la pared intestinal soporta una tensión de ruptura media de 39,37x103 dinas/cm, siendo superior a la media del Grupo B: 33,78 xlO3 dinas/cm.
No existen diferencias entre los dos grupos de estudio en cuanto a la valoración de la inflamación de manera general. En relación con el grado de adherencias observado, el uso del biomaterial para sutura de la invención da lugar a adherencias más localizadas, con menor número de estructuras anatómicas adheridas y con un grado similar de dificultad en su separación, respecto al uso de suturas convencionales. En cuanto a la resistencia de la sutura anastomótica, al analizar la tensión de ruptura observamos que la tensión circular a la que está sometida la pared intestinal en el momento de la ruptura es mayor en el grupo de animales que han sido intervenidos utilizando el biomaterial de sutura de la invención (Grupo A).
Se mantiene una mejor evolución de la herida anastomótica en aquellos animales que han sido intervenidos utilizando el biomaterial para sutura de la invención. No obstante, tanto a nivel de patrón de inflamación como en el patrón adherencial, las diferencias observadas en los animales sacrificados dos semanas después de la intervención son más leves que las observadas el cuarto día post-operatorio y la primera semana post-anastomosis.
3.5. Conclusión Al valorar la evolución de la cicatrización en el cuarto día post-anastomosis y en semanas posteriores, observamos que el biomaterial para sutura de la invención presenta ventajas importantes (menor grado de inflamación general, menor nivel de adherencias y una mayor resistencia a la presión intraluminal) frente a las suturas estándar. El biomaterial para sutura de la invención contribuye de manera biológicamente activa en la cicatrización de la herida anastomótica, siendo las diferencias respecto al uso de suturas convencionales más evidente en el cuarto día post-operatorio, considerado crítico en la evolución de la herida anastomótica. Dichas ventajas se mantienen a medio plazo, a pesar de ser de menos significativas.
Referencias
- Aronson SB, Mc Master PR, Moore TE Jr, Coon MA. Toxicity of the cyanoacrylates. Arch Ophthalmol. 1970 Sep; 84(3):342-9.
" Asencio Arana F., Martínez Soriano F., Fenollosa Vázquez R. Aproximación a los estudios de las anastomosis intestinales experimentales. Métodos bioquímicos, físicos y microangiográficos. Cir Esp 1989; 46:805-810 " Beresford JN, Bennett JH, Devlin C, Leboy PS, Owen ME. Evidence for an inverse relationship between the differentiation of adipocytic and osteogenic cells in rat marrow stromal cell cultures. J CeIl Sci. 1992 Jun; 102 (Pt 2):341-51. " Caplan AI. Mesenchymal stem cells. J Orthop Res. 1991 Sep; 9(5):641-50.
• De Ugarte DA, Morizono K, Elbarbary A5 Alfonso Z, Zuk PA, Zhu M, Dragoo
JL, Ashjian P, Thomas B, Benhaim P, Chen I, Fraser J, Hedrick MH.
Comparison of multi-lineage cells from human adipose tissue and bone marrow.
Cells Tissues Organs. 2003; 174(3):101-9. " Ellis H. The aetiology of postoperative abdominal adhesions. An experimental study. Br J Surg 1962; 50:10-16 ' Friedenstein AJ. Precursor cells of mechanocytes. Int Rev Cytol. 1976; 47:327-
59. " Haynesworth SE, Goshima J, Goldberg VM, Caplan AI. Characterization of cells with osteogenic potential from human marrow. Bone. 1992; 13(l):81-8. " Johnstone B, Hering TM, Caplan AI, Goldberg VM, Yoo JU. In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp CeIl Res. 1998 Jan 10; 238(l):265-72.
" Milde LN. An anaphylactic reaction to fibrin glue. Anesth Analg. 1989 Nov; 69(5):684-6.
• Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science. 1999 Apr 2; 284(5411): 143-7.
" Ravo B: Colorectal anastomotic healing and intracolonic bypass procedure. Surg Clin North Am 1988; 68:1267-1294
• Tse WT, Pendleton JD, Beyer WM, Egalka MC, Guiñan EC. Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation. 2003 Feb 15; 75(3):389-97.
" Verreet PR, Fakir C, Ohmann C, Roer HD. Preventing recurrent postoperative adhesions: An experimental study in rats. Eur Surg Res 1992; 21 : 267-273. " Wakitani S, Saito T, Caplan AI. Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle Nerve. 1995 Dec; 18(12):1417-26.
" Zarapico Romero M, Saez López de Rueda F. La asociación fibrino- desoxirribonucleasa en la profilaxis de las adherencias peritoneales postoperativas. Rev Fac Med Sevilla 1972; 20: 347-362.
" Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH. Human adipose tissue is a source of multipotent stem cells. Mol Biol CeIl. 2002 Dec; 13(12):4279-95.
Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001 Apr; 7(2):211-28

Claims

REIVINDICACIONES
1. Biomaterial para sutura que comprende: a. un material de soporte. b. una población celular con capacidad proliferativa y/o de diferenciación recubriendo dicho material de soporte.
2. Biomaterial, según la reivindicación 1, en el que el material de soporte son hilos absorbibles o no absorbibles.
3. Biomaterial, según las reivindicaciones 1-2, en el que el material de soporte son hilos de origen natural o de origen sintético.
4. Biomaterial, según las reivindicaciones 1-3, en el que el material de soporte son hilos de estructura monofilatnento o de estructura multifüamento.
5. Biomaterial, según cualquiera de las reivindicaciones anteriores, en el que el material de soporte es un hilo de sutura unido a una aguja.
6. Biomaterial, según la reivindicación 1, en el que el material de soporte son grapas.
7. Biomaterial, según cualquiera de las reivindicaciones 1-6, en el que la población celular de recubrimiento comprende células madre.
8. Biomaterial, según cualquiera de las reivindicaciones 1-6, en el que la población celular de recubrimiento comprende células madre adultas multipotentes.
9. Biomaterial, según cualquiera de las reivindicaciones 1-6, en el que la población celular de recubrimiento comprende células madre adultas multipotentes de origen mesodérmico.
10. Biomaterial, según cualquiera de las reivindicaciones 1-6 en el que la población celular de recubrimiento comprende células madre adultas multipotentes derivadas de tejido adiposo.
11. Biomaterial, según cualquiera de las reivindicaciones 1-6, en el que la población celular de recubrimiento del material de soporte comprende células que expresan, al menos, una característica propia de una célula especializada.
12. Biomaterial, según la reivindicación 11, en el que la población celular de recubrimiento del material de soporte es seleccionada entre células que expresen al menos una característica propia de célula epitelial o de célula endotelial o de adipocito o de miocito o de condrocito o de osteocito o de neurona o de astrocito o de oligodendrocito o de hepatocito o de célula pancreática.
13. Biomaterial, según cualquiera de las reivindicaciones anteriores, en el que la población celular de recubrimiento del material de soporte es una población celular heterogénea.
14. Biomaterial, según cualquiera de las reivindicaciones anteriores, en el que la población celular de recubrimiento del material de soporte comprende células genéticamente modificadas.
15. Biomaterial, según la reivindicación 14, en el que la población celular de recubrimiento del material de soporte comprende células modificadas con un gen que codifica una proteína implicada en reparación tisular.
16. Biomaterial, según cualquiera de las reivindicaciones anteriores, en el que la población celular de recubrimiento del material de soporte comprende una población celular autóloga o alogénica o xenogénica o bien una combinación de éstas.
17. Biomaterial, según la reivindicación 16, en el que la población celular de recubrimiento del material de soporte comprende una población celular autóloga.
18. Bíomaterial, según la reivindicación 16, en el que la población celular de recubrimiento del material de soporte comprende una población celular alogénica.
19. Método de preparación de un biomaterial, según cualquiera de las reivindicaciones anteriores, que comprende:
" Expansión de la población celular de elección.
" Inmersión del material de sutura en un medio de cultivo adecuado para dicha población celular. " Inoculación de una suspensión de la población celular pre-cultivada sobre el material de sutura.
• Cultivo de la preparación anterior en condiciones adecuadas. " Aislar el material de sutura que presente un recubrimiento celular adecuado.
20. Método de preparación de un biomaterial para sutura, según la reivindicación anterior, en el que la población celular de recubrimiento se une al material de sopoite mediante adhesión.
21. Método de preparación de un biomaterial, según la reivindicación 19, que comprende además un recubrimiento previo de la superficie del material de soporte que facilite la adherencia de la población celular.
22. Método de preparación de un biomaterial, según la reivindicación 21, en el que dicho material de recubrimiento es seleccionado del grupo constituido por: péptidos, antígenos proteicos, azúcares y lípidos.
23. Método de preparación de un biomaterial, según la reivindicación 21, en el que dicho material de recubrimiento son proteínas de matriz extracelular de células eucariotas o anticuerpos.
24. Biomaterial para sutura, según las reivindicaciones 1-18, para su uso en terapia.
25. Biomaterial para sutura, según las reivindicaciones 1-18, para su uso en la aproximación de los bordes tisulares en sutura de heridas, accidentales o quirúrgicas, y en reparación de tejidos.
26. Biomaterial para sutura, según las reivindicaciones 1-18, para su uso en hemostasis, transplante de órganos, cirugía del tracto gastrointestinal, cirugía del tracto urogenital, cirugía del tracto respiratorio, cirugía ocular, cirugía vascular, cirugía plástica, cirugía en tejido muscular, en tejido epitelial, en tejido nervioso, así como en reparación de tendones, tejido óseo y tejido cartilaginoso.
27. Biomaterial para sutura, según las reivindicaciones 1-15, que comprende una población celular de recubrimiento del material de soporte autóloga para su uso en los casos en que la reacción inflamatoria local generada pueda perjudicar los resultados de la intervención quirúrgica.
28. Uso del biomaterial para sutura, según cualquiera de las reivindicaciones 1-18, para su uso en la elaboración de un material útil en la aproximación de los bordes tisulares en sutura de heridas, accidentales o quirúrgicas, y en reparación de tejidos.
29. Uso del biomaterial para sutura, según cualquiera de las reivindicaciones 1-18, para su uso en la elaboración de un material útil en la aproximación de los bordes tisulares en anastomosis intestinales.
30. Uso del biomaterial para sutura, según cualquiera de las reivindicaciones 1-18, en la sujeción de prótesis.
31. Uso de células con capacidad proliferativa y/o de diferenciación como población celular de recubrimiento de un material de soporte para sutura.
32. Uso según la reivindicación 31, caracterizado porque la población celular de recubrimiento son células madre adultas pluripotentes.
33. Uso según la reivindicación 31, caracterizado porque la población celular de recubrimiento son células madre adultas muí tipo tentes.
34. Uso según la reivindicación 31, caracterizado porque la población celular de recubrimiento son células madre adultas multipotentes de origen mesodérmico.
35. Uso según la reivindicación 31, caracterizado porque la población celular de recubrimiento son células madre adultas multipotentes derivadas de tejido adiposo.
36. Uso según la reivindicación 31 caracterizada porque la población celular de recubrimiento es de origen autólogo, alogénico, xenogénico o bien combinaciones de éstas.
PCT/ES2005/000468 2004-08-25 2005-08-17 Biomaterial para sutura WO2006035083A1 (es)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP05790746.1A EP1803472B1 (en) 2004-08-25 2005-08-17 Biomaterial for suture
DK05790746.1T DK1803472T3 (en) 2004-08-25 2005-08-17 Biomaterial for suture
ES05790746.1T ES2610802T3 (es) 2004-08-25 2005-08-17 Biomaterial para sutura

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200402083 2004-08-25
ES200402083A ES2264862B8 (es) 2004-08-25 2004-08-25 Biomaterial para sutura.

Publications (1)

Publication Number Publication Date
WO2006035083A1 true WO2006035083A1 (es) 2006-04-06

Family

ID=35431112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2005/000468 WO2006035083A1 (es) 2004-08-25 2005-08-17 Biomaterial para sutura

Country Status (5)

Country Link
US (3) US20060047312A1 (es)
EP (2) EP1634608A1 (es)
DK (1) DK1803472T3 (es)
ES (2) ES2264862B8 (es)
WO (1) WO2006035083A1 (es)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060045872A1 (en) 2004-08-25 2006-03-02 Universidad Autonoma De Madrid Ciudad Universitaria de Cantoblanco Use of adipose tissue-derived stromal stem cells in treating fistula
ES2313805B1 (es) 2004-10-04 2009-12-23 Cellerix, S.L. Identificacion y aislamiento de celulas multipotentes de tejido mesenquimal no osteocondral.
PL1926813T5 (pl) 2005-09-23 2019-11-29 Tigenix S A U Populacje komórkowe mające aktywność immunoregulatorową, sposób izolacji i zastosowania
US20110034867A1 (en) * 2007-03-22 2011-02-10 Jacques Guyette Microthread delivery system
US8876864B2 (en) 2008-06-24 2014-11-04 Bioactive Surgical, Inc Surgical sutures incorporated with stem cells or other bioactive materials
WO2010017459A1 (en) 2008-08-07 2010-02-11 Bioactive Surgical, Inc> Stem cell capture and immobilization coatings for medical devices and implants
DE102008057213A1 (de) * 2008-11-06 2010-05-12 Aesculap Ag Medizintechnisches Produkt, ein chirurgisches Kit sowie ein Herstellungsverfahren für das medizintechnische Produkt
EP3085313B1 (en) 2009-06-29 2021-11-17 Aesculap AG Surgical thread comprising cells and method of manufacturing the thread
US8883210B1 (en) 2010-05-14 2014-11-11 Musculoskeletal Transplant Foundation Tissue-derived tissuegenic implants, and methods of fabricating and using same
US10130736B1 (en) 2010-05-14 2018-11-20 Musculoskeletal Transplant Foundation Tissue-derived tissuegenic implants, and methods of fabricating and using same
US9352003B1 (en) 2010-05-14 2016-05-31 Musculoskeletal Transplant Foundation Tissue-derived tissuegenic implants, and methods of fabricating and using same
ES2682470T3 (es) 2010-06-25 2018-09-20 Aesculap Ag Producto médico, en particular para la gestión de reparación de tejido
US8834928B1 (en) 2011-05-16 2014-09-16 Musculoskeletal Transplant Foundation Tissue-derived tissugenic implants, and methods of fabricating and using same
US8998059B2 (en) 2011-08-01 2015-04-07 Ethicon Endo-Surgery, Inc. Adjunct therapy device having driver with cavity for hemostatic agent
US9492170B2 (en) 2011-08-10 2016-11-15 Ethicon Endo-Surgery, Inc. Device for applying adjunct in endoscopic procedure
US9101359B2 (en) 2011-09-13 2015-08-11 Ethicon Endo-Surgery, Inc. Surgical staple cartridge with self-dispensing staple buttress
US8998060B2 (en) 2011-09-13 2015-04-07 Ethicon Endo-Surgery, Inc. Resistive heated surgical staple cartridge with phase change sealant
US9999408B2 (en) 2011-09-14 2018-06-19 Ethicon Endo-Surgery, Inc. Surgical instrument with fluid fillable buttress
US9254180B2 (en) 2011-09-15 2016-02-09 Ethicon Endo-Surgery, Inc. Surgical instrument with staple reinforcement clip
US8814025B2 (en) 2011-09-15 2014-08-26 Ethicon Endo-Surgery, Inc. Fibrin pad matrix with suspended heat activated beads of adhesive
US9125649B2 (en) 2011-09-15 2015-09-08 Ethicon Endo-Surgery, Inc. Surgical instrument with filled staple
US9198644B2 (en) 2011-09-22 2015-12-01 Ethicon Endo-Surgery, Inc. Anvil cartridge for surgical fastening device
US9393018B2 (en) 2011-09-22 2016-07-19 Ethicon Endo-Surgery, Inc. Surgical staple assembly with hemostatic feature
US8985429B2 (en) 2011-09-23 2015-03-24 Ethicon Endo-Surgery, Inc. Surgical stapling device with adjunct material application feature
US8899464B2 (en) 2011-10-03 2014-12-02 Ethicon Endo-Surgery, Inc. Attachment of surgical staple buttress to cartridge
US9089326B2 (en) 2011-10-07 2015-07-28 Ethicon Endo-Surgery, Inc. Dual staple cartridge for surgical stapler
WO2014186854A1 (pt) * 2013-05-24 2014-11-27 Universidade Estadual De Campinas - Unicamp Processo de obtenção de fio de sutura enriquecido com celulas-tronco, fios obtidos, kit de sutura e seus usos
WO2015017500A1 (en) 2013-07-30 2015-02-05 Musculoskeletal Transplant Foundation Acellular soft tissue-derived matrices and methods for preparing same
US20160287855A1 (en) * 2015-04-06 2016-10-06 Alvaro Pacifici Surgical methods/devices for tissue injury removal by tattooing of autologous stem cells
CA3177726A1 (en) 2015-05-21 2016-11-24 Musculoskeletal Transplant Foundation Modified demineralized cortical bone fibers
US10912864B2 (en) 2015-07-24 2021-02-09 Musculoskeletal Transplant Foundation Acellular soft tissue-derived matrices and methods for preparing same
US11052175B2 (en) 2015-08-19 2021-07-06 Musculoskeletal Transplant Foundation Cartilage-derived implants and methods of making and using same
IL243461A0 (en) * 2016-01-05 2016-02-29 Amir Avraham Surgical sutures for skin filling
GB201604304D0 (en) 2016-03-14 2016-04-27 Tigenix S A U Adipose tissue-derived stromal stem cells for use in treating refractory complex perianal fistulas in crohn's disease
US10322206B2 (en) 2016-03-29 2019-06-18 Worcester Polytechnic Institute Compositions and methods for wound healing

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5855619A (en) * 1994-06-06 1999-01-05 Case Western Reserve University Biomatrix for soft tissue regeneration
WO2005062857A2 (en) * 2003-12-24 2005-07-14 The Trustees Of Columbia University In The City Of New York Creation of a biological atrioventricular bypass to compensate for atrioventricular block

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3842439A (en) * 1971-07-06 1974-10-22 D Connelly Method of replacing hair
US4409974A (en) * 1981-06-29 1983-10-18 Freedland Jeffrey A Bone-fixating surgical implant device
US4482516A (en) * 1982-09-10 1984-11-13 W. L. Gore & Associates, Inc. Process for producing a high strength porous polytetrafluoroethylene product having a coarse microstructure
US5004681B1 (en) * 1987-11-12 2000-04-11 Biocyte Corp Preservation of fetal and neonatal hematopoietic stem and progenitor cells of the blood
US5496722A (en) * 1988-06-30 1996-03-05 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method for producing non-neoplastic, three dimensional, mammalian tissue and cell aggregates under microgravity culture conditions and the products produced therefrom
US5236563A (en) * 1990-06-18 1993-08-17 Advanced Surface Technology Inc. Surface-modified bioabsorbables
US5916265A (en) * 1994-03-30 1999-06-29 Hu; Jie Method of producing a biological extracellular matrix for use as a cell seeding scaffold and implant
US6174333B1 (en) * 1994-06-06 2001-01-16 Osiris Therapeutics, Inc. Biomatrix for soft tissue regeneration using mesenchymal stem cells
US6004341A (en) * 1996-12-05 1999-12-21 Loma Linda University Medical Center Vascular wound closure device
US5885829A (en) * 1996-05-28 1999-03-23 The Regents Of The University Of Michigan Engineering oral tissues
US6090910A (en) * 1996-12-10 2000-07-18 Mitsui Chemicals, Inc. Degradable monofilament and preparation process thereof
US6197586B1 (en) * 1997-12-12 2001-03-06 The Regents Of The University Of California Chondrocyte-like cells useful for tissue engineering and methods
CA2320040C (en) * 1998-03-18 2007-05-22 Osiris Therapeutics, Inc. Mesenchymal stem cells for prevention and treatment of immune responses in transplantation
US5993475A (en) * 1998-04-22 1999-11-30 Bristol-Myers Squibb Co. Tissue repair device
US6835377B2 (en) * 1998-05-13 2004-12-28 Osiris Therapeutics, Inc. Osteoarthritis cartilage regeneration
US6103255A (en) * 1999-04-16 2000-08-15 Rutgers, The State University Porous polymer scaffolds for tissue engineering
US6287340B1 (en) * 1999-05-14 2001-09-11 Trustees Of Tufts College Bioengineered anterior cruciate ligament
US7078232B2 (en) * 1999-08-19 2006-07-18 Artecel, Inc. Adipose tissue-derived adult stem or stromal cells for the repair of articular cartilage fractures and uses thereof
US6264675B1 (en) * 2000-02-04 2001-07-24 Gregory R. Brotz Single suture structure
WO2002067867A2 (en) * 2001-02-23 2002-09-06 The University Of Pittsburgh Rapid preparation of stem cell matrices for use in tissue and organ treatment and repair

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5855619A (en) * 1994-06-06 1999-01-05 Case Western Reserve University Biomatrix for soft tissue regeneration
WO2005062857A2 (en) * 2003-12-24 2005-07-14 The Trustees Of Columbia University In The City Of New York Creation of a biological atrioventricular bypass to compensate for atrioventricular block

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
AWAD HANI A ET AL: "Repair of patellar tendon injuries using a cell-collagen composite.", JOURNAL OF ORTHOPAEDIC RESEARCH., vol. 21, no. 3, 2003, pages 420 - 431, XP008117513 *
KIM DONG-IK ET AL: "Comparative study of seeding and culture methods to vascular smooth muscle cells on biodegradable scaffold.", JOURNAL OF MICROBIOLOGY AND BIOTECHNOLOGY., vol. 14, no. 4, May 2004 (2004-05-01), pages 707 - 714, XP008117562 *
VAN EIJK F ET AL: "Tissue Engineering of ligaments: A Comparison of Bone Marrow Stromal Cells, Anterior Cruciate Ligament, and Skin Fibroblasts as Cell Source.", TISSUE ENGINEERING., vol. 10, no. 5-6, May 2004 (2004-05-01), pages 893 - 903, XP008117512 *

Also Published As

Publication number Publication date
ES2264862B1 (es) 2008-03-16
EP1803472B1 (en) 2016-10-19
US20060047312A1 (en) 2006-03-02
ES2264862B8 (es) 2017-01-20
US20090292311A1 (en) 2009-11-26
EP1634608A1 (en) 2006-03-15
EP1803472A1 (en) 2007-07-04
ES2264862A1 (es) 2007-01-16
US11253632B2 (en) 2022-02-22
ES2610802T3 (es) 2017-05-03
US20200101199A1 (en) 2020-04-02
DK1803472T3 (en) 2017-01-23

Similar Documents

Publication Publication Date Title
ES2610802T3 (es) Biomaterial para sutura
ES2540242T3 (es) Estructura tridimensional de tejido
JP6289858B2 (ja) 瘻の治療における脂肪組織由来間質幹細胞の使用
US20220306992A1 (en) Cellular seeding and co-culture of a three dimensional fibroblast construct
JP4709393B2 (ja) 三次元的間質組織
RU2470611C2 (ru) Окклюдер для чрезкожной транслюминальной процедуры (варианты), способ чрезкожного транслюминального закрытия отверстия в сердце, способ активизации васкуляризации ткани млекопитающего in vivo и способ активизации заживления места анастомоза
US20050164388A1 (en) Method of isolating epithelial cells, method of preconditioning cells, and methods of preparing bioartificial skin and dermis with the epithelial cells and preconditioned cells
KR20130067247A (ko) 상처 치유 조성물의 제조를 위한 방법, 튜브 및 장치
US20060140914A1 (en) Repairing or replacing tissues or organs
JP2021121206A (ja) 筋細胞パッチおよびその使用
US20190054123A1 (en) Cell sheet composition including mesenchymal stem cells, and method for healing luminal organ using same
EP2258833A2 (en) Isolation of a new cardiac stem cell population
Wonski Development of Biologically-Engineered Blood Vessels Towards Clinical Translation
CN116549733A (zh) 一种兼具抗凝及促内皮化的脱细胞血管支架及制备方法
Wainwright Cardiac reconstruction with organ specific extracellular matrix
Perko Applying Mesenchymal Stromal Cells and Platelet-Rich Plasma on a Collagen Matrix to Improve Fascial Repair

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2005790746

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2005790746

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005790746

Country of ref document: EP