WO2006034739A2 - Procede pour revetir sous vide au moyen d'une couche photo-semi-conductrice, et applications du procede - Google Patents

Procede pour revetir sous vide au moyen d'une couche photo-semi-conductrice, et applications du procede Download PDF

Info

Publication number
WO2006034739A2
WO2006034739A2 PCT/EP2005/006238 EP2005006238W WO2006034739A2 WO 2006034739 A2 WO2006034739 A2 WO 2006034739A2 EP 2005006238 W EP2005006238 W EP 2005006238W WO 2006034739 A2 WO2006034739 A2 WO 2006034739A2
Authority
WO
WIPO (PCT)
Prior art keywords
indicates
layer
pulse
coating
magnetron sputtering
Prior art date
Application number
PCT/EP2005/006238
Other languages
German (de)
English (en)
Other versions
WO2006034739A3 (fr
Inventor
Peter Frach
Daniel Gloess
Klaus Goedicke
Sigrun Klinkenberg
Christian Gottfried
Volker Kirchhoff
Original Assignee
Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. filed Critical Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Priority to EP05761661A priority Critical patent/EP1791987A2/fr
Publication of WO2006034739A2 publication Critical patent/WO2006034739A2/fr
Publication of WO2006034739A3 publication Critical patent/WO2006034739A3/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • C23C14/0042Controlling partial pressure or flow rate of reactive or inert gases with feedback of measurements

Definitions

  • the photo-induced hydrophilic and photocatalytic behavior of TiO 2 layers of the crystalline anatase phase allows the fabrication of products with new properties such as easy-to-clean surfaces, self-cleaning windows, anti-fog glass, self-sterilizing and anti-tarnish bacterial tiles or air and water cleaning devices.
  • State of the art for preparing crystalline TiO 2 layers by vacuum coating method is the use of elevated temperatures of decision 300 0 C during film deposition or during the thermal post-crystallization after Ab ⁇ . Often, the post-annealing is carried out at temperatures of up to 550 0 C.
  • the object is achieved by a method for vacuum coating at least a part of the surface of an object with a photo-semiconducting layer, wherein
  • the temperature of the near-surface region of the object is adjusted before coating to a predetermined value in the range from -40 0 C to +250 0 C,
  • a reactive pulse magnetron sputtering process with at least one electrically conductive target, which contains titanium as its main constituent, in at least one Operated inert gas and oxygen-containing working gas,
  • Such a ratio of the rates of ionized and neutral particles is set during the film formation that a proportion of at least 5 percent titanium oxide is formed in crystalline modification
  • the parameters of the pulse magnetron sputtering process are selected such that the surface temperature of the object does not exceed a predetermined maximum temperature of 300 ° C.
  • the pulse magnetron sputtering process with at least one magnetron source, energy supply in the unipolar pulse mode and a duty cycle of less than 0.6 performed;
  • the pulse magnetron sputtering process with at least one magnetron source, which is connected as a cathode, a counterelectrode, which is connected as an anode, and a magnetic field in the region of the anode, which has an amount of at least 1 kA / m, and power supply in unipolar, bipolar or pulse packet mode;
  • a working gas used which additionally contains at least one inorganic or organometallic compound active as precursor of a chemical vapor deposition process, which leads to the formation of a doping of the photo-semiconducting layer,
  • a working gas used which additionally contains a silicon-containing inorganic or organic compound as a precursor of a chemical vapor deposition process
  • an electrically insulating layer from the group of the compounds SiO 2 , Al 2 O 3 , ZrO 2 , AlN, Si 3 N 4 is deposited by a reactive powder magnetron sputtering process.
  • the method according to the invention can be used
  • a photo-semiconductive layer for depositing a photo-semiconductive layer on at least part of the surface of an object which consists wholly or partly of a temperature-sensitive material, preferably a polymer;
  • an active self-cleaning article such as e.g. Tiles or bricks in the outdoor area
  • a product having antibacterial and / or virucidal activity and / or inactivating effects on microorganisms eg of medical devices or furniture surfaces
  • a product capable of decomposing a chemical bond for example for denitrification or desulfurization of a gas or for splitting hydrocarbons
  • a layer which is part of a photovoltaic multi-layer coating system e.g. for use in a Grätzel cell
  • duty Cycle Ton ⁇ ratio
  • This system was developed and built at the Fraunhofer Institute for Electron Beam and Plasma Technology (FEP). It consists of two flange magnetrons, a switching unit (UBS-C2) to generate the pulse power, a gas control unit and a process management computer for fully automatic process control.
  • both targets are operated as cathodes of separate discharges, with a hidden anode of the magnetrons acting as counterelectrode.
  • each target of the two magnetrons operates alternately as the cathode and anode of a discharge.
  • pulse packet mode A further development of the bipolar pulse mode is the so-called pulse packet mode. Each packet consists of a certain number of unidirectional pulses. The next packet again consists of a certain number of unidirectional pulses of opposite polarity. This pulse-packet mode ensures greater process stability, especially in the case of ares occurring.
  • the duty cycle i. the ratio of on-time to total time of one pulse cycle can be adjusted for each target. Since the pulse power supply can be changed without further restriction, the PMS system allows a direct investigation of the effects of these coating parameters on the process characteristics such as deposition rate and layer properties.
  • the layers are coated during transit through an in-line coating system (moving substrates).
  • the coating parameters are summarized in Tab.
  • the maximum coating temperatures given are the average of the maximum temperatures measured with temperature gauges on the front and back of the samples.
  • the unipolar pulse mode was selected (as in the deposition of sample 1). These layers were post-crystallized at different temperatures (250 0 C: Sample 1 A 350 0 C: Probei B, 500 C 0: Sample 1 C) On the one hand deposited temperature in situ crystalline deposited layers at elevated substrate. This resulted in maximum coating temperatures of about 235 0 C.
  • the pulse mode was varied (unipolar: sample 2, bipolar: sample 3, pulse packet: sample 4).
  • the layer thickness was 45 nm
  • Example 5 85 nm (Sample 6) and 170 nm (Sample 7), respectively.
  • the layer structure was determined by X-ray diffraction with grazing incidence (Seifert FPM, RD 7, Cu K ⁇ radiation, angle of incidence: 1 °).
  • Amorphously deposited recrystallized layers showed many cracks in the TiO 2 layer when examined by light microscopy as a result of shrinkage during crystallization. In contrast, crystalline deposited layers showed no cracks and were excellent with very little visible roughness that was detectable only with DIC mode (Differential Interference Contrast) of the light microscope.
  • the surface roughness (RMS) was determined by AFM investigations and is 1, 1 1 nm for amorphously deposited recrystallized (sample 1 B: recrystallized at 350 0 C) and 10.6 nm for in situ crystalline deposited TiO 2 layers (Sample 4: PP mode).
  • the measurements of the highest crystallites could be estimated by these measurements. This was in the range of 50 to 100 nm for post-crystallized layers (Sample 1B) and 100 to 300 nm for crystalline deposited layers (Sample 4). From this observation, it was concluded that crystallization by post-crystallization produces very fine crystallites and only slightly increases the layer roughness.
  • the crystalline deposited layers showed large crystallites and high roughness, since crystal growth occurred during the layer deposition.
  • the X-ray diffraction analysis revealed the crystalline anatase phase for amorphously deposited, post-crystallized layers (Sample 1B, FIG. Crystalline deposited layers in situ showed a mixture of anatase and rutile.
  • the intensity of the X-ray reflections was significantly higher for the layers deposited in the pulse-packet mode (Sample 4, Figure 1 b) and in the bipolar pulse mode (Sample 3, not shown here) than in the unipolar pulse mode deposited layers (Sample 2, not shown here). Due to the high defect density, the reflections of the crystalline deposited layers are significantly wider, although the crystal size is larger than that of the post-crystallized layers.
  • Figure 2 shows the decrease in the water contact angle of amorphously deposited, amorphously deposited, recrystallized and crystalline deposited TiO 2 layers during UV-A irradiation.
  • Amorphous TiO 2 layers and post-crystallized TiO 2 layers at 250 0 C showed no significant photo-induced hydrophilic behavior.
  • Amorphous ab ⁇ divorced layers, recrystallized at temperatures of at least 350 0 C showed the super-hydrophilic effect (water contact angle ⁇ 10 °) after an irradiation time of 5 hours.
  • nachkristallInstituten There was no difference for the nachkristallInstituten at 350 0 C or 500 0 C layers are found.
  • FIG. 4 shows the decrease of the water contact angle during the UV-A irradiation of the thin layers as well as the comparison curve for 500 nm thick TiO 2 layers. All layers show super hydrophilic behavior after a maximum irradiation time of 5 hours. Among the thin layers, the highest activity was observed for the layers of 170 nm layer thickness (Sample 7). The activity was comparable to the activity of the 500 nm thick reference layer (sample 4).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

La présente invention concerne un procédé pour revêtir sous vide un objet avec une couche photo-semi-conductrice. Selon l'invention, la température de la zone de l'objet, proche de sa surface, est réglée avant revêtement à une valeur de -40 °C à +250 °C; une pulvérisation magnétron pulsée réactive est réalisée avec au moins une cible électriquement conductrice qui contient du titane comme composante principale, dans un gaz de travail qui contient au moins un gaz inerte et de l'oxygène; lors du déroulement du processus, en fonction de l'usage auquel est destiné l'objet à revêtir, la formation d'oxyde de titane prépondérant est garantie selon un rapport fixe prédéterminé de la composition atomique de la couche du titane par rapport à l'oxygène tel que 1: (2+x), x valant de -0,5 à +0,3; la rapport entre les taux de particules ionisées et neutres au cours de la formation de la couche, est déterminé de sorte qu'une proportion d'au moins 5 % d'oxyde de titane en modification cristalline, est formée, et de sorte que les paramètres du processus de pulvérisation sont sélectionnés de sorte que la température de surface de l'objet ne dépasse pas une température maximale de 300 °C.
PCT/EP2005/006238 2004-09-24 2005-06-10 Procede pour revetir sous vide au moyen d'une couche photo-semi-conductrice, et applications du procede WO2006034739A2 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP05761661A EP1791987A2 (fr) 2004-09-24 2005-06-10 Procede pour revetir sous vide au moyen d'une couche photo-semi-conductrice, et applications du procede

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004046390.5 2004-09-24
DE200410046390 DE102004046390A1 (de) 2004-09-24 2004-09-24 Verfahren zum Vakuumbeschichten mit einer photohalbleitenden Schicht und Anwendung des Verfahrens

Publications (2)

Publication Number Publication Date
WO2006034739A2 true WO2006034739A2 (fr) 2006-04-06
WO2006034739A3 WO2006034739A3 (fr) 2006-06-08

Family

ID=35033510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/006238 WO2006034739A2 (fr) 2004-09-24 2005-06-10 Procede pour revetir sous vide au moyen d'une couche photo-semi-conductrice, et applications du procede

Country Status (3)

Country Link
EP (1) EP1791987A2 (fr)
DE (1) DE102004046390A1 (fr)
WO (1) WO2006034739A2 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100465332C (zh) * 2006-12-14 2009-03-04 上海交通大学 低温下制备锐钛矿晶相二氧化钛薄膜的方法
EP2451755A1 (fr) * 2009-07-09 2012-05-16 Saint-Gobain Glass France Procede de depôt par pulverisation cathodique, produit obtenu et cible de pulverisation
US9994950B2 (en) 2013-07-16 2018-06-12 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for depositing a piezoelectric film containing AIN, and a piezoelectric film containing AIN
CN109722631A (zh) * 2019-01-24 2019-05-07 中国地质大学(武汉) 基于TiN衬底的NiFe磁性合金薄膜及其制备方法
CN111850492A (zh) * 2020-07-03 2020-10-30 南京航空航天大学 一种基于摩擦诱导抗菌特性增强涂层的制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008028542B4 (de) * 2008-06-16 2012-07-12 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und Vorrichtung zum Abscheiden einer Schicht auf einem Substrat mittels einer plasmagestützten chemischen Reaktion
CN105648414B (zh) * 2016-03-05 2018-10-30 无锡南理工科技发展有限公司 一种采用磁控溅射法制备含氮二氧化钛薄膜的方法
CN113930723B (zh) * 2021-10-14 2023-08-04 河南理工大学 一种高度择优取向Magnéli相Ti6O11透明导电薄膜及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4931158A (en) * 1988-03-22 1990-06-05 The Regents Of The Univ. Of Calif. Deposition of films onto large area substrates using modified reactive magnetron sputtering
DE19740793A1 (de) * 1997-09-17 1999-03-18 Bosch Gmbh Robert Verfahren zur Beschichtung von Oberflächen mittels einer Anlage mit Sputterelektroden
WO2002057508A2 (fr) * 2001-01-17 2002-07-25 N.V. Bekaert S.A. Cibles de pulverisation photocatalytiques et procedes de production et d'utilisation de ces cibles

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4931158A (en) * 1988-03-22 1990-06-05 The Regents Of The Univ. Of Calif. Deposition of films onto large area substrates using modified reactive magnetron sputtering
DE19740793A1 (de) * 1997-09-17 1999-03-18 Bosch Gmbh Robert Verfahren zur Beschichtung von Oberflächen mittels einer Anlage mit Sputterelektroden
WO2002057508A2 (fr) * 2001-01-17 2002-07-25 N.V. Bekaert S.A. Cibles de pulverisation photocatalytiques et procedes de production et d'utilisation de ces cibles

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FRACH P ET AL: "High rate deposition of insulating TiO2 and conducting ITO films for optical and display applications" PREPARATION AND CHARACTERIZATION, ELSEVIER SEQUOIA, NL, Bd. 445, Nr. 2, 15. Dezember 2003 (2003-12-15), Seiten 251-258, XP004479601 ISSN: 0040-6090 *
ZYWITZKI O ET AL: "Structure and properties of crystalline titanium oxide layers deposited by reactive pulse magnetron sputtering" SURFACE & COATINGS TECHNOLOGY ELSEVIER SWITZERLAND, Bd. 180-181, 1. März 2004 (2004-03-01), Seiten 538-543, XP002375831 ISSN: 0257-8972 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100465332C (zh) * 2006-12-14 2009-03-04 上海交通大学 低温下制备锐钛矿晶相二氧化钛薄膜的方法
EP2451755A1 (fr) * 2009-07-09 2012-05-16 Saint-Gobain Glass France Procede de depôt par pulverisation cathodique, produit obtenu et cible de pulverisation
US9994950B2 (en) 2013-07-16 2018-06-12 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for depositing a piezoelectric film containing AIN, and a piezoelectric film containing AIN
CN109722631A (zh) * 2019-01-24 2019-05-07 中国地质大学(武汉) 基于TiN衬底的NiFe磁性合金薄膜及其制备方法
CN111850492A (zh) * 2020-07-03 2020-10-30 南京航空航天大学 一种基于摩擦诱导抗菌特性增强涂层的制备方法
CN111850492B (zh) * 2020-07-03 2021-09-21 南京航空航天大学 一种基于摩擦诱导抗菌特性增强涂层的制备方法

Also Published As

Publication number Publication date
EP1791987A2 (fr) 2007-06-06
DE102004046390A1 (de) 2006-04-06
WO2006034739A3 (fr) 2006-06-08

Similar Documents

Publication Publication Date Title
WO2006034739A2 (fr) Procede pour revetir sous vide au moyen d'une couche photo-semi-conductrice, et applications du procede
EP2148899B1 (fr) Feuille barrière transparente et procédé pour sa fabrication
DE102007025577B4 (de) Verfahren zur Herstellung von Titanoxidschichten mit hoher photokatalytischer Aktivität
DE102015215006A1 (de) Verbesserte mehrschichtige solar selektive Beschichtung für Hochtemperatur-Solarthermie
EP2735018B1 (fr) Procédé et dispositif de fabrication de couches pauvres en particules sur des substrats
EP1711643A2 (fr) Procede de production d'un systeme de couche barriere ultra
EP1614763A1 (fr) Procédé de fabrication d'un matériau de revêtement à base de sous-oxyde de titane, matériau de revêtement fabriqué conformément selon le procédé et cible de pulvérisation avec le matériau de revêtement
Tang et al. Mechanical property evaluation of ZrSiN films deposited by a hybrid superimposed high power impulse-medium frequency sputtering and RF sputtering system
US20060051597A1 (en) Article coated with titanium compound film, process for producing the article and sputtering target for use in coating the film
DE102010032892B3 (de) Beschichtetes Produkt und Verwendung desselben
EP2288739A1 (fr) Système de couches barrières transparent
EP1546431B1 (fr) Materiau composite
EP0838535A1 (fr) Système de couches interférentielles
EP2286643B1 (fr) Dispositif et procédé de pulvérisation cathodique à flux gazeux par impulsions haute puissance
CH686747A5 (de) Optisches Schichtmaterial.
Kubart et al. Influence of the target composition on reactively sputtered titanium oxide films
DE102005015631B4 (de) Verfahren zur Herstellung eines reflexionsvermindernden Kratzschutzschichtsystems für Kunststoffe
Lecoq et al. Elaboration of a wide range of TiO2 micro/nanostructures by high power impulse inverted cylindrical magnetron sputtering
DE102013110118B4 (de) Solarabsorber und Verfahren zu dessen Herstellung
DE102008009337A1 (de) Verfahren zur Herstellung einer transparenten leitfähigen Schicht
CN101003894A (zh) 透明ZnO薄膜制备方法及所得产品
Nie Growth and morphology evolution of semiconducting oxides and sulfides prepared by magnetron sputtering
EP2300631B1 (fr) Procédé pour produire une couche d'oxyde métallique transparente et conductrice par pulvérisation magnétron pulsée hautement ionisante
Sidelev et al. The reactive deposition of TiOx thin films
EP2032734A1 (fr) Procédé de réalisation d'un objet revêtu par pulvérisation d'une cible céramique

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005761661

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005761661

Country of ref document: EP